
Integer programming formulations for the
time-dependent elementary shortest path

problem with resource constraints

Gonzalo Lera-Romero 1

Departamento de Computación
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

CABA, Argentina

Juan José Miranda-Bront 2

Universidad Torcuato Di Tella
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

CABA, Argentina

Abstract

In this paper we study the Time-Dependent Elementary Shortest Path Problem with
Resource Constraints (TDESPPRC). We consider two integer programming formu-
lations which exploit the characteristics of the time-dependent travel time function.
Two exact algorithms based on these formulations are developed and evaluated on
benchmark instances from the literature. Preliminary experiments show that the
approach has potential to be used within a Branch and Price algorithm.

Keywords: Elementary Shortest Path, Integer Programming, Time-Dependent
Travel Times

1 Introduction

Congestion in large cities and populated areas is one of the major challenges
in urban logistics, becoming one of the major issues in city planning and last-

1 Email: gleraromero@dc.uba.ar
2 Email: jmiranda@utdt.edu



mile logistics due to its economic, social and environmental impact. Most of
the research devoted to the Vehicle Routing Problem (VRP) considers that
travel times between any two locations are fixed along the time horizon. In the
last few years, there has been a trend to enrich these models by incorporating
more complex travel time functions to capture the effect of congestion, known
as Time-Dependent VRPs (TDVRP, see, e.g., Gendreau et al. [2], for an
updated survey). Incorporating the congestion explicitly at a tactical level is
a key aspect of modern Decision Support Systems (DSS) in order to obtain
distribution plans that are representative of the real-life operations.

Exact approaches for multi-vehicle variants of the classical VRP generally
resort to Integer Linear Programming (ILP) and decomposition techniques,
resulting in Branch and Price (BP) and Branch-cut and price (BCP) algo-
rithms. These approaches produce the best results in general, and one of
their key ingredients rely on the pricing problem within the column genera-
tion algorithm to solve the LP relaxation at each node of the enumeration
tree. When tackling a TDVRP, the pricing problem can be formulated as
a Time-Dependent Elementary Shortest Path Problem with Resource Con-
straints (TDESPPRC). In this sense, to the best of our knowledge, most of
the research has been devoted to variants of the TDVRP with the presence of
time windows. This is the case of Dabia et al. [1] for the capacitated TDVRP
with time windows (TDVRP-TW) and Sun et al. [6], which further consid-
ers the TDESPPRC with time windows and precedence constraints. In both
cases, the problem is tackled using dynamic programming (DP).

In this paper, we consider the capacitated TDVRP without the time win-
dows constraints. From an algorithmic perspective, under this setting the
traditional DP and labeling algorithms are not expected to produce good re-
sults, especially if no limiting resource is present. In this sense, we build
upon the works of Taccari [7] and Jepsen et al. [4] on the ESPPRC with time-
independent travel times, where they consider ILP formulations to address the
ESPPRC. We propose a strengthened version of the ILP formulation proposed
in Sun et al. [6], studied also by Montero et al. [5] for the Time-Dependent
Traveling Salesman Problem with Time Windows (TDTSP-TW). In addition,
we present a tailored formulation which reduces the number of variables and
constraints in the model by exploiting the structure of the travel time func-
tion. We develop a Branch and Cut (BC) algorithm including the well-known
cutset inequalities. To the best of our knowledge, we conduct the first compu-
tational experiments over a set of TDESPPRC benchmark instances without
time windows, comparing both formulations and evaluating the feasibility of
using them within a BP algorithm.



2 Problem definition

In this section we define the TDESPPRC in its general fashion. We refer the
reader to Dabia et al. [1] for details regarding its incorporation within a BP
framework based on a set partitioning formulation for the TDVRP.

The time-dependent network is defined as follows. Let D = (V,A) be
a digraph, with V = {vs, ve, 1, 2, . . . , n} the set of vertices representing the
customers, and A the set of arcs representing their connections. Two distin-
guished vertices, vs and ve, denote the starting and ending point of the path,
respectively. Typically, these two vertices represent the depot and therefore
no incoming arcs to vs and outgoing arcs from ve are considered. Each vertex
i ∈ V has an associated demand qi, a service time si and a profit pi which is
collected when visiting customer i. Given the context, we set pvs , qvs , svs and
pve , qve , sve to 0. We consider a single vehicle with capacity Q.

We consider the travel time model proposed in Ichoua et al. [3]. Each
arc (i, j) ∈ A has an associated travel distance Lij. There is a time horizon
[0, T ] in which operations take place, which is partitioned into H intervals
[Th, Th+1], h = 0, . . . , H − 1. The average travel speed for each arc (i, j)
during time interval [Th, Th+1] is assumed to be known, and is denoted by vijh.
This partition is usually referred as speed profiles. The model captures the
variable travel times by combining the distance to be traveled for an arc with
its different travel speeds defined for the arc depending on the starting time of
the trip. Formally, we let τij(t) denote the time-dependent travel time for arc
(i, j) ∈ A when departing at i at time t ∈ [0, T ], which is computed using the
Algorithm 1 from Ichoua et al. [3]. It can be easily shown that the resulting
travel time function τij(t) is piecewise linear. Figure 1 illustrates the relation
between the travel speed and the travel time function. It is important to
remark that the travel time function satisfies the First-In First-Out property.

The definition of the travel time function τij(t) induces a new partition of
the planning horizon for each edge (i, j) ∈ A. The limits defining this partition
can be computed by a simple algorithm and are usually referred as travel time
breakpoints. For the sake of simplicity, we follow the notation introduced in
Montero et al. [5]. Let T ij = {T ij1 , . . . , T

ij
M} be the this new partition for arc

(i, j) ∈ A, where T ijm = [wm, wm+1]. We remark that the value of M may be
different among arcs. Within each of these intervals, τij(t) remains linear.

Similarly to Dabia et al. [1] and Sun et al. [6], we focus on the path
duration instead of the makespan. Consequently, the vehicle is allowed to delay
its departure from vs to reduce the duration of the route. Given a path P ,
let ∆(P ) denote the duration. Therefore, the TDESPPRC involves finding an



20 40 60 80 100

1

2

(a) Travel speed function for (i, j).

20 40 60 80 100

5

10

15

20

(b) Travel time function τij(t).

Fig. 1. Time-dependent travel time model (Lij = 10).

elementary path P = (vs, v1, . . . , vk, vs) minimizing ∆(P )−
∑

v∈P pv, starting
and ending within the planning horizon and not exceeding the capacity.

Finally, we introduce some further notation used throughout the paper.
We let δ−(j) = {(i, j) : (i, j) ∈ A} and δ+(i) = {(i, j) : (i, j) ∈ A}. In
addition, we denote with τij(t) = θmij t + ηmij , for t ∈ T ijm , to the linear travel
time function in time period m ∈ T ij.

3 ILP formulations

We next present a formulation derived from the one presented in Sun et al. [6]
and considered also in Montero et al. [5]. Binary variables xmij indicates the
path travels from i to j departing from i within travel time period m ∈ T ij.
We implicitly define traditional binary variables xij in terms of xmij . Binary
variable yi takes value 1 iff vertex i ∈ V is visited. In addition, for each vertex
a non-negative variable ti indicates the departure time from i ∈ V , if visited
by the path. The value of ti is decomposed to account for the departure time
for each specific arc and travel time period, if any is selected. Thus, we define
variables tmij = ti if xmij = 1, and tmij = 0 otherwise.

min tve − tvs −
∑

i∈V \{vs,ve}

piyi (1)

s.t.:

|Tm
ij |∑

m=0

xmij = xij (i, j) ∈ E (2)∑
(i,j)∈δ−(j)

xij = yj j ∈ V \{vs} (3)

∑
(vs,j)∈δ+(vs)

xvsj =
∑

i∈δ−(ve)

xive = 1 (4)



∑
(i,k)∈δ−(k)

xik −
∑

(k,j)∈δ+(k)

xkj = 0 k ∈ V \{vs, ve} (5)

∑
(i,j)∈δ−(j)

|Tm
ij |∑

m=0

(1 + θmij )tmij + ηmij x
m
ij + sjx

m
ij = tj j ∈ V \{vs} (6)

∑
(i,j)∈δ+(i)

|Tm
ij |∑

m=0

tmij = ti i ∈ V \{ve} (7)

wmij x
m
ij ≤ tmij ≤ wm+1

ij xmij (i, j) ∈ E,m ∈ Tmij (8)∑
i∈V \{vs,ve}

qiyi ≤ Q (9)

tmij , ti ≥ 0 (i, j) ∈ E,m ∈ Tmij (10)

yi, xij , x
m
ij ∈ {0, 1} (i, j) ∈ E,m ∈ Tmij (11)

The objective function (1) minimizes the duration while maximizing the prof-
its collected. Constraints (2) - (5) define the xij and yi variables in terms of
xmij and establish that the vehicle must depart from vs, finish at ve, and impose
the classical flow conservation constraints. Constraints (6) compute the ready-
time for vertex j, if visited. We remark that this constraint is a strengthened
version of the ones considered in [6,5]. Constraints (7) express variables ti in
terms of tmij , and constraints (8) impose the relation between variables tmij and
xmij . Finally, constraints (10) and (11) establish the domain for all variables.

The absence of time windows and precedence constraints limits, compared
to other variants, the possibility of applying effective preprocessing techniques
to reduce the size of the ILP formulation. This increment in the size of the
model has been observed in preliminary experiments and is aligned with the
results reported in Montero et al. [5] where the preprocessing phase is one of
the key ingredients of the algorithm.

Depending on the definition of the speed profile and the length of the arc,
Lij, we noted that some of the travel time periods correspond a trips starting
and ending within the same travel speed interval Th, meaning that there is
no boundary crossing between consecutive travel speed intervals. As a result,
in these cases the travel time function for some of the travel time intervals
T ijm ∈ T ij becomes constant, and therefore has θmij = 0. This is the case for
the first, third and fifth time intervals in Figure 1b.

For each (i, j) ∈ A, let T̂ ij = {m ∈ T ij : θmij = 0} be the subset of
intervals where the travel time function is constant. We further define a new
set of variables t̂ij = ti if arc (i, j) is traversed departing from i within one of

the time intervals m ∈ T̂ ij, and t̂ij = 0 otherwise. Formally, we can rewrite



t̂ij =
∑

m∈T̂ ij

tmij .

We first rewrite constraints (6) by including the definition of t̂ij. Then,
the constraints can be rewritten as∑
i∈δ−(j)

(
t̂ij +

∑
m∈T ij\T̂ ij

(1 + θmij )t
m
ij + ηmij x

m
ij + sjx

m
ij

)
= tj, j ∈ V \{vs}. (12)

Similarly, we rewrite the decomposition of variables ti as∑
j∈δ+(i)

(
t̂ij +

∑
m∈T ij\T̂ ij

tmij

)
= ti, i ∈ V \{ve}. (13)

Finally, constraints (8) can be adapted as well to incorporate the new
definitions. First, we remark that for m ∈ T ij\T̂ ij constraints (8) should be
maintained as part of the formulation. However, for m ∈ T̂ ij, we can replace
them by the following aggregated constraints∑

m∈T̂ ij

wmij x
m
ij ≤ t̂ij ≤

∑
m∈T̂ ij

wm+1
ij xmij , (i, j) ∈ E. (14)

Recall that at most one variable xmij , m ∈ T̂ ij, can take value 1 and therefore

t̂ij captures the correct departure time.

These definitions allow to reduce the size of the resulting formulation by
replacing all variables tmij for m ∈ T̂ ij by only one variable t̂ij. A similar
reduction is obtained in terms of the number of restrictions by considering
constraints (14). It must be noted that the impact of the reduction depends
on the granularity of the speed profiles and the distances to be travelled. This
is the case on the benchmark instances available in the related literature,
which are defined aiming to capture the standard rush hour congestion in
large cities. In addition, we emphasize that this also appears as a reasonable
setting for tactical planning, which motivates and justifies our approach.

4 Computational results

Computational experiments have been conducted to evaluate the performance
of both formulations presented in this paper. The algorithms are coded in
C++, using g++ 4.8.4 and an Ubuntu Linux 16.04 LTS, in addition to CPLEX
12.4 Callable Library as an ILP solver. The experiments were run on a Work-
station with an Intel Core i7-2600 3.4GHz CPU and 16Gb of RAM.



TTBF TTBF-Compact

Instance #vars #cons Opt Time Nodes #vars #cons Opt Time Nodes

C101 25 12354 12351 5 121.30 14948.80 7804 9751 5 84.59 15806.80

C201 25 12353 12351 4 1688.71 268141.2 7803 9751 5 941.32 308258.80

R101 25 11862 11859 5 202.15 29755.40 9732 10503 5 107.57 27912.20

R201 25 12345 12343 4 11.84 3935.25 8027 9859 5 638.69 172679.20

RC101 25 11384 11383 5 251.21 26668.40 9332 10096 5 144.13 22636.20

RC201 25 12353 12351 5 347.58 52348.40 8243 9971 5 48.50 26535.20

Average over solved instances 402.91 60961 146.68 47474

Table 1
Average aggregated results for instances with 25 customers.

Regarding the methods, we consider a BC algorithm for each of the ILP
formulation presented in the previous section. The standard formulation (1)
- (10) is named as TTBF while the new formulation obtained by considering
constraints (12) - (14) is named as TTBF-Compact. For both algorithms, a
cutting plane algorithm at the root node including the cutset inequalities (see,
e.g., Taccari [7]) and an initial heuristic are considered. Thus, the algorithms
can be seen as a Cut and Branch. The algorithms are evaluated over a subset
of the benchmark instances with 25 customers proposed in Dabia et al. [1]
for the TDVRPTW, constructed by incorporating the time-dependency to the
well-known Solomon instances, but discarding the time windows. We report
the results over 30 instances derived from the following instances: C101 25,
C201 25, R101 25, R201 25, RC101 25, RC201 25. For each of these, the LP
relaxation of the set partitioning formulation for the TDVRP is tackled using
column generation, and five instances of the column generation subproblem
at different points in the enumeration of columns are generated using the
corresponding dual variables (which represent the profits in the TDESPPRC).
A time limit of two hours is imposed for the running times.

Table 1 presents the average results over each of the original instances.
For each algorithm, we report the number of variables (#vars) and constraints
(#cons) in the resulting formulation, as well as the number of instances solved
to optimallity (Opt), the computational time in seconds (Time) and the num-
ber of nodes (Nodes) enumerated in the BC tree.

The main message in Table 1 is that TTBF-Compact obtains better re-
sults than TTBF on average, solving all instances within the imposed time
limit. Furthermore, if restricted to the 28 instances solved by both algorithms,
TTBF requires on average 402.91 seconds while TTBF-Compact only requires
146.68 seconds, approximately half of the time. As expected, we can observe



a significant reduction in the number of variables and constraints in TTBF-
Compact compared to TTBF.

5 Conclusions

In this paper, we consider the TDESPPRC formulation proposed by Sun et al.
[6] for the case with time windows and precedence constraints and adapted
it to the case where the only resource is the capacity of the vehicle. Two
formulations have been evaluated on benchmark instances, and preliminary
results show that the approach has potential to be included as part of a BP
algorithm. As future research, it would be interesting to derive families of valid
inequalities in order to improve the LP relaxation and evaluate its behaviour
within a column generation algorithm.

References

[1] Dabia, S., S. Ropke, T. van Woensel and T. D. Kok, Branch and price for
the time-dependent vehicle routing problem with time windows, Transportation
Science 47 (2013), pp. 380–396.

[2] Gendreau, M., G. Ghiani and E. Guerriero, Time-dependent routing problems:
A review, Computers & Operations Research 64 (2015), pp. 189–197.

[3] Ichoua, S., M. Gendreau and J.-Y. Potvin, Vehicle dispatching with time-
dependent travel times, European journal of operational research 144 (2003),
pp. 379–396.

[4] Jepsen, M. K., B. Petersen, S. Spoorendonk and D. Pisinger, A branch-and-cut
algorithm for the capacitated profitable tour problem, Discrete Optimization 14
(2014), pp. 78–96.

[5] Montero, A., I. Méndez-Dı́az and J. J. Miranda-Bront, An integer programming
approach for the time-dependent traveling salesman problem with time windows,
Computers & Operations Research 88 (2017), pp. 280 – 289.

[6] Sun, P., L. P. Veelenturf, S. Dabia and T. V. Woensel, The time-dependent
capacitated profitable tour problem with time windows and precedence constraints,
European Journal of Operational Research 264 (2018), pp. 1058 – 1073.

[7] Taccari, L., Integer programming formulations for the elementary shortest path
problem, European Journal of Operational Research 252 (2016), pp. 122–130.


	Introduction
	Problem definition
	ILP formulations
	Computational results
	Conclusions
	References

