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Simple Summary: Inflammation has been acknowledged as one of the causes of increased cancer
risk. Among the pro-inflammatory mediators, tumor necrosis factor alpha (TNFα) has been identified
as an important player in cancer progression and metastasis. On the other hand, TNFα has a central
role in promoting innate and adaptive immune responses. These apparently controversial effects are
now starting to be uncovered through different studies on TNFα isoforms and distinct mechanisms
of action of TNFα receptors. The use of immunotherapies for cancer treatment such as monoclonal
antibodies against cancer cells or immune checkpoints and adoptive cell therapy, are beginning
to broaden our understanding of TNFα’s actions and its potential therapeutic role. This work
describes TNFα participation as a source of treatment resistance and its implication in side effects to
immunotherapy, as well as its participation in different cancer types, where TNFα can be a suitable
target to improve therapy outcome.

Abstract: Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory
roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response,
inducing both activation and the effector function of macrophages, dendritic cells, natural killer
(NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is
one of the main mediators of cancer-related inflammation. It is involved in the recruitment and
differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These
characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer.
This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance
to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and
adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with
immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.

Keywords: TNFα; immunotherapy; adoptive cell therapy; monoclonal antibody; immune checkpoint
inhibitor; cancer

1. Introduction

It is well known that tumor necrosis factor alpha (TNFα) participates as a proinflam-
matory cytokine, increasing the risk of several cancers, such as colorectal, esophageal,
pancreatic, liver, and breast cancer [1]. However, another layer of complexity in TNFα
functions was added with the emergence of immunotherapy. In this review we highlight
recent data pointing out TNFα participation in the effectiveness of monoclonal antibodies
(mAbs) targeting cancer cells, immune checkpoint inhibitors, and adoptive cell therapy
(ACT), as well as its involvement in the adverse immune effects of immunotherapy.
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2. TNFα Overview

TNFα was identified in 1975 as a molecule capable of causing tumor necrosis at high
concentration [2–4]. Many studies on TNFα showed that it is a pleiotropic proinflammatory
cytokine involved in a wide variety of cellular processes and, moreover, has contradictory
effects ranging from cell proliferation to cell death. First, it was described that TNFα was
involved in immune system regulation and was mainly secreted by cells such as monocytes,
macrophages, natural killer (NK) cells, T lymphocytes, mast cells, and neutrophils, but
later several works showed that it is also produced by non-immune cells like endothelial
cells, adipocytes, neurons, fibroblasts, and smooth muscle, among others [5–9].

The human TNFα gene consists of a single copy located in chromosome 6 near the
major histocompatibility complex genes [10]. It comprises four exons and three introns.
The first exon contains the leader peptide sequence and the last ones the information for the
protein. TNFα transcription is stimulated by NF-κB [11], AP-1, c-Jun, and Nuclear Factor
of Activated T-cells (NFAT) [6]. TNFα is present in either of two forms: transmembrane
(tmTNFα) or soluble TNFα (sTNFα). tmTNFα is classified as a type II membrane protein,
like many of the TNF-related ligands; it has a molecular weight of 26 kDa and forms a
homotrimer that can also act as a receptor. TNFα can regulate several pathological and
physiological processes beyond the immune system. The duality of many members of
the TNF superfamily, as ligand and receptor, gives rise to the particular phenomenon of
reverse signaling [12]: when acting as a receptor, tmTNFα can signal outside-to-inside
back to the tmTNFα expressing cell. This mechanism has been mostly described in the
regulation of the immune system but has not yet been completely characterized. On the
other hand, sTNFα of 17 kDa is generated through proteolytic cleavage of tmTNFα by the
TNFα Converting Enzyme (TACE/ADAM17) [13]. The active mature sTNFα also forms a
homotrimer of 52 kDa that exerts a powerful autocrine, paracrine, and endocrine effect [14].

There are two membrane receptors for TNFα, also classified as type I membrane
proteins, TNFα receptor 1 (TNFR1/CD120a, 55 kDa) and 2 (TNFR2/CD120b, 75 kDa) [15],
and tm- and sTNFα can bind to them. Both isoforms of TNFα trigger receptor trimerization
and subsequent recruitment of scaffold proteins to the cytoplasmic domain to induce
different signaling pathways depending on the receptor involved, the type of TNFα that
activated the receptor, the cell type, and the cellular context [16]. Pleiotropic effects of TNFα
can be due not only to its two forms but also to the low homology of the ligand binding
domain and no homology in the intracellular domain of the receptors, which have no
enzymatic activity and therefore have to recruit scaffold proteins to unleash the signaling
cascade [16]. Another particularity of the TNFα pathway, which explains its contradictory
and varied effects, is that both TNFR1 and TNFR2 have soluble forms that are cleaved
by TACE/ADAM17. The function of soluble receptors is to regulate TNFα availability
and protect this cytokine from degradation to accomplish a sustained signal [17,18]. Most
nucleated cells of the body express TNFR1, which can be activated by both forms of
TNFα [19]. On the contrary, TNFR2 is expressed mainly in immune cells and in limited cell
types like neurons, oligodendrocytes, astrocytes, and endothelial cells, among others, and
can only be fully activated by tmTNFα [20,21].

Regarding the signaling of each receptor, TNFR1 has a cytoplasmic death domain,
which can recruit TNFR1-Associated Death Domain (TRADD) protein and TNF Receptor-
Associated Factor 2 (TRAF2), which can form two complexes: complex I, which stimulates
cell survival and proliferation through JNK, NF-κB, AP-1, and MAPK pathways [22], and
complex II, which, on the contrary, recruits Fas-Associated protein with Dead Domain
(FADD) and pro-caspases that constitute a death-inducing signaling complex [23], which
ends in apoptosis [24]. Which of these pathways prevails is determined by the signaling
molecules of the scaffold, signal strength, and crosstalk with other pathways [25]. TNFR2,
instead, lacks the death domain and mainly regulates cell activation, migration, and
proliferation [26]. Nonetheless, TNFR2 can also bind TRAF2 through TRAF1, concluding
in the activation of both the canonical and non-canonical NF-κB pathway like TNFR1, but
activation is slower and more sustained [27,28]. It has also been reported that TNFR2 can
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activate the abovementioned TNFR1 pathways through recruitment of Receptor Interacting
Protein 1 (RIP-1) and TRADD via TRAF2, resulting in apoptosis.

Briefly, the convoluted pathway of TNFα involves a transmembrane and a soluble
form, as well as two distinct receptors, which also exist in a soluble form. The combination
of these elements activates distinct and unique signaling pathways that account for the
pleiotropic effects of this cytokine. To add to the complexity, the pathways stimulated by
each receptor can converge depending on different factors such as the adaptor proteins,
TNFα concentration, cell type, and cellular context.

3. TNFα and the Immune System

Regulation of the innate immune system is the main role of TNFα, and it has been re-
viewed extensively throughout time. In particular, it is a major protagonist in immunity against
intracellular organisms [29–32], has been intensively studied in Mycobacterium infection [33],
and is responsible for the proliferation of thymocytes [34]. TNFα is also the main player in the
initiation of inflammatory reactions characterizing the onset of the immune response.

Neither the TNFα nor TNFRs knockout model is lethal, but lymphoid organs and the
immune response are affected. TNFα and its receptors are essential for the regulation of pro-
and anti-inflammatory processes [30], the formation of Peyer’s patches [35], and the adaptive
B cell immune response [36], since it is involved in the generation of B cell follicles and germinal
centers, and consequently, they affect the humoral immune response, among others.

TNFα also has contradictory effects in the immune system, since it can act as an im-
munosuppressor or an immunostimulant [2,37]. TNFα activates macrophages that produce
more TNFα, generating a feed-forward loop, and is essential in guiding proliferation and
proper effector function of several cell populations of the immune system, such as T, B, NK,
and dendritic cells (DC). TNFα immunosuppressor effects encompass the regulation of sup-
pressor cell populations like regulatory T and B cells (Tregs and Bregs, respectively) [38–40]
and myeloid-derived suppressor cells (MDSCs) [41,42].

The central role of TNFα as an immunostimulant is to initiate the inflammatory
response of the innate immune system and stimulate the Th1 profile. When a pathogen
enters the organism, TNFα expression is induced. The elevated level of TNFα induces a
chemokine/cytokine signaling cascade which, at the site of injury, induces certain adhesion
molecule expression on the endothelial cells and immune cells, which allow neutrophil
extravasation and the recruitment of macrophages and lymphocytes. It is noteworthy that
TNFα generates a positive autocrine feedback loop that activates NF-κB, which increases
GM-CSF, IL-8, and TNFα itself [43].

As stated before, TNFR2 is mainly expressed in immune cells, and when TNFα binds
to it, TRAF1, 2, and 3 are recruited together with cIAP1/2 to activate canonical and non-
canonical NF-κB and PI3K-Akt pathways, which consequently guides cell proliferation and
survival. TNFR2 expression is higher in Tregs with respect to the rest of the T cell population,
and in humans, this set of Tregs also expresses higher levels of cytotoxic T lymphocyte
antigen 4 (CTLA-4), a well-known immunomodulator. TNFR2 has also been found to be
involved in the suppressive activity of Tregs, but the mechanisms behind this process remain
to be elucidated. Tregs also produce TNFα in certain inflammatory pathologies, and their
function depends on the context, indicating that TNFα could be an attractive target to treat
these inflammatory diseases. This proves once again the pleiotropic activity of TNFα, since
it can promote the inhibition of Treg function in co-culture conditions with effector T lym-
phocytes but can also stimulate their immunosuppressive role, promoting Treg proliferation
and survival, depending on the context [44–46]. Unstimulated CD4+ T lymphocytes increase
MDSC accumulation [47] through tmTNFα via TNFR2 [48] and through 17-β-estradiol [49],
and enhance their immunosuppressive activity through Nos2 [42].

4. TNFα in Cancer

TNFα has a plethora of functions and implications, and this also applies to cancer
cells. TNFα has been described as having contradictory effects on almost every type of can-
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cer. In high concentrations, TNFα is able to eliminate methylcolanthrene (MCA)-induced
sarcomas, as first described by Carswell [2], and approximately 28% of cancers are sen-
sitive to sTNFα [50]. TNFα antitumor mechanisms are varied and include the following:
mediating cellular apoptosis extensively reviewed by Rath et al. [51]; directing tumor-
associated macrophages (TAMs) to the M1 profile (antitumoral phenotype) [52]; guiding
neutrophils and monocytes to tumor sites [53,54], activating macrophages and inhibiting
monocyte differentiation to immunosuppressive phenotypes [55]; and inducing disruption
of tumor vasculature [56,57]. Despite the above, TNFα expression at low levels can be
pro-tumorigenic, an effect broadly reviewed by Balkwill [37,58].

There has been a large amount of evidence linking pro-inflammatory cytokines to
cancer and the association with poor prognosis (reviewed by Mantovani) [59]. TNFα is
one of the major pro-inflammatory cytokines of the immune system and has been found
in several human cancers, such as breast [60], gastric [61], pancreatic [62], ovarian [63,64],
endometrial [65], prostate [45], bladder [66], colorectal [67], oral [68], and liver [69]. It has
also been detected in leukemias and lymphomas. Even so, there has been disagreement in
considering TNFα expression as a biomarker, since the cytokine is increased in numerous
other pathologies as well.

The distinct and opposing effects of TNFα in cancer depend on cytokine concentration
and s- TNFα or tm- TNFα isoforms, distinct caspase activation, varied expression of adap-
tor proteins, different expression levels of members of the Bcl-2 family, among others [70].
TNFα acts as a pro-tumoral cytokine involved in different processes, such as cell prolifera-
tion, tumor progression, migration, epithelial-to-mesenchymal transition (EMT), angiogen-
esis and metastasis in several cancer types. The pro- and anti-tumorigenic/tumoral effects
of TNFα are shown in Table 1 for different types of cancers.

Concerning breast cancer, our group has extensively reviewed TNFα impact/role on
the different subtypes [71]. Regarding TNFα involvement in resistance to therapy, we have
described TNFα involvement in trastuzumab resistance in HER2+ breast and gastric cancer. In
the case of gastric cancer, the HER2 expressing gastric cancer cell line sensitive to trastuzumab
NCI-N87 becomes refractory to the antibody after TNFα exposure [72]. In pancreatic cancer,
blocking TNFα strategies proved to be effective in animal models [62] and in patients [73].

In melanoma, TNFα induces cell invasion [74] and aggressiveness [75], extravascular
migration of cancer cells [76] and impairs CD8 T lymphocytes accumulation in the TME [77],
moreover blocking TNFα prevents metastasis formation in the lungs in pre-clinical mod-
els [78]. TNFα is also overexpressed in oral squamous cell carcinoma (OSCC) [79], promotes
the sphere-forming abilities of its cells maintaining a cancer stem cell-like phenotype [80],
and increases proliferation in leukemia stem cells [81]. Interestingly, TNFα at low doses
increases CD20 expression in B chronic lymphocytic leukemia, which can take advantage
of the proven anti-CD20 therapy [82].

There are reports pointing to TNFα having no effect in endometrial cancer [83,84]. On
the other hand, elevated pre-diagnostic concentrations of TNFα and its soluble receptors
and the activation of TNFα-related pathways have been related to higher risk and poorer
survival in endometrial cancer [85], prostate cancer [86] where could induce a shift to an
untreatable phenotype [87]. In OSCC correlates with progression [88,89] and with relapse
in children with B-lineage acute lymphoblastic leukemia (ALL) [90], but not with response
to treatment [91] and in patients with non-Hodgkin’s lymphoma [92] and diffuse large
B cell lymphoma, TNFα is useful to differentiate risk groups [93]. In the latter TNFR1
expression in the tumor is also a good biomarker for prognosis [94].

Regarding TNFα as a potential biomarker, it was shown that TNFα polymorphisms
in the gene promoter or coding region are associated with a risk of progression in patients
with gastric lesions [95,96], with worse prognosis in prostate cancer patients [97], with
tumor stage in bladder cancer [98], with risk of recurrence in hepatocellular carcinoma [99]
and with higher risk in non-Hodgkin’s lymphoma [100], T cell lymphoma [101], and gastric
B cell lymphoma [102]. In ovarian cancer, TNFα gene polymorphisms are associated with
pathogenesis but remains to be validated [103].
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Table 1. Dual role of tumor necrosis factor alpha (TNFα) in cancer.

Cancer Type Pro-Tumorigenic References Anti-Tumorigenic References

Breast Promotes proliferation, progression, and metastasis [70] Apoptosis and inhibition of proliferation [70]

Gastric Proliferation, progression and metastasis [104–108] Apoptosis acting together with TGFβ [109]

Pancreatic Promotes tumor progression [110,111] Apoptosis [112–114]
Generates a immune evasive microenvironment [115] - -

Ovarian

Tumor promotion through TNFR1 and IL-17 [116]
-

-
Generates a immunosuppresor microenvironment [117] -

Contributes to the EMT process through the NF-κB pathway [64] -
Tumor proliferation, progression, and invasion. [118–120] -

Prostate Survival and proliferation, progression, angiogenesis and metastasis [121–126] Apoptosis [127,128]

Bladder Migration and invasion through the p38 MAPK pathway [129–131] Apoptosis [132,133]

Colorectal Together with Th17-cytokines promotes immune escape, proliferation,
survival, progression, and metastasis [134–136] - -

Oral
Promotes immune evasion [137]

-
-

Promotes cell viability [138] -
Promotes angiogenesis, invasion and metastasis [139,140] -

Liver
Induces PTTG1, which in turn upregulates c-myc [141] In combination with IFN-γ showed reduction of liver tumors [142]

Promotes proliferation and metastasis in HCC through p38 MAPK,
Erk1/2 and β-catenin [143–145] - -

Promotes resistance to the adaptive immune response through PD-L1
and PD-L2 [146] - -

Melanoma Induces cell invasion and metastasis [74,76] Reduces tumor growth [147,148]
Increases aggressiveness [75] Apoptosis [149]

Hematological

Cell survival [150–152] Apoptosis thorugh TNFR1, iNOS and PKC [153,154]
Promotes progression through the NF-κB pathway and proliferation

thorugh GM-CSF [81,155,156] Increases efficacy of anti-CD20 therapy [82]

Promotes cell survival in Burkitt’s lymphoma through reverse
signaling [157] Induces maturation of AML generating specific cytotoxic CD8+

lymphocytes targeting leukemic disease [158]

- - Activate B cells to fight again lymphoma cells [159]
- - Combined with IL-1 and IFN-γ has an antiproliferative effect [160]
- - Participates in the crosstalk between DC and NK cells [161]
- - Promotes cell death in Burkitt’s lymphoma through forward signaling [157]

TGFβ: Transforming Growth Factor beta; EMT: epithelial-to-mesenchymal transition; p38MAPK: p38 Mitogen-Activated Protein Kinase; PTTG1: Pituitary Tumor Transforming Gene 1; IFN-γ: Interferon gamma;
HCC: hepatocellular carcinoma; PD-L1: Programmed Death Ligand 1; PD-L2: Programmed Death Ligand 2; iNOS: Inducible Nitric Oxide Synthase; PKC: Protein Kinase C; GM-CSF: Granulocyte-Macrophage
Colony-Stimulating Factor; AML: Acute Myeloid Leukemia; DC: dendritic cells; NK: natural killer cells.



Cancers 2021, 13, 564 6 of 33

Comprehensively, the data presented in this section point to the central role of TNFα in
cancer initiation, progression, and metastasis, despite its potential to activate cell death when
present in high concentrations. A plethora of accumulated evidence highlights TNFα as a
pro-tumoral cytokine, which stresses its appeal as a potential target to treat different cancers.

5. Immunotherapy Overview

The concept of using immune response specificity to target cancer cells has been
investigated for a long time and has given rise to different strategies. So-called passive
immunotherapy is based on the administration of antibodies or adoptive cell therapy,
including chimeric antigen receptor (CAR)-T cells. Active immunotherapy, on the other
hand, relies on several approaches, including the use of cancer vaccines, which can, for
example, enhance antigen uptake and presentation, and the administration of antibodies
that release the brakes of the immune response, known as immune checkpoint inhibitors.
TNFα participation in these immunotherapies, either by hampering their success or medi-
ating side effects, is discussed below and summarized in Table 2. For cancer vaccines, we
refer to several recent reviews [162–164].

Table 2. Impact of anti-TNFα drugs in cancer immunotherapies.

IT Target/Cell Type Drug Name Anti-TNFa Effect on Cancer Side Effects of IT Ref.

Monoclonal
antibodies

HER2 Trastuzumab Etanercept
Overcomes

trastuzumab
resistance in HER2+

breast cancer
NT [72]

INB03
Overcomes

trastuzumab
resistance in HER2+

breast cancer
- [165]

CD20 Rituximab Etanercept

Improves
disease-related
symptoms and
increases OS in

chronic lymphocytic
leukemia patients

NT [166,167]

PD-1 anti-PD-1 Anti-TNFR1
or anti-TNFa

Prevents T
lymphocytes

exhaustion and death
by anti PD-1
treatment in
melanoma

Prevents
immune-related

adverse effect
[168]

Pembrolizumab Infliximab NT
Treatement of

immune-related
adverse effects

[169–171]

PD-1+ CTLA-4 anti-PD-1 + anti CTL-4 Etanercept

Improves antitumor
effect of anti PD-1+

anti CTL-4 antibodies
in colon cancer

Prevents
immune-related

adverse effect
[172]

CTLA-4 Ipilimumab Infliximab NT
Treatement of

immune-related
adverse effects

[169,170,
173,174]

PD-L1
Atezolizumab,

duvalumab and
avelumab

Infliximab NT
Treatement of

immune-related
adverse effects

[170]

CAR-T cells CD19 - Etanercept NT
Treatment of systemic

inflammatory response
syndrome

[175]

IT: immunotherapy; OS: overall survival; NT: not tested; TNFα: Tumor necrosis factor alpha; TNFR1: TNFα receptor 1; PD-1: programmed
cell death protein 1; PD-L1: PD-ligand 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; CAR-T cells: chimeric antigen receptor T cell.

5.1. Monoclonal Antibodies

The mAbs, widely used to treat cancer and inflammatory diseases, are either chimeric,
humanized, or fully human mAbs [176–178]. In this section, we outline the different cancer
therapies based on mAbs targeting cancer cells and, in the following section, the mAbs
directed to immune checkpoints, highlighting the implications of combining them with
TNFα blocking agents.



Cancers 2021, 13, 564 7 of 33

Anti-TNFα Drugs

The first attempts to target TNFα were made decades ago, with the understanding that
this cytokine was the major mediator of inflammation and its deregulation was implicated
in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclero-
sis, psoriasis, Crohn’s disease, scleroderma, systemic lupus erythematosus, ankylosing
spondylitis, and diabetes. The pro-inflammatory effects of TNFα are mediated mainly
by the activation of the NF-κB pathway, which, in turn, promotes the transcription of
inflammatory proteins, generating a positive feedback loop.

In several models of experimental metastasis in mice, both endogenous and exoge-
nous administration of TNFα increased the development and number of metastatic le-
sions [179–181]. Additionally, TNFα is known to be a major inducer of chemokines [182]
such as CCL2 and IL-6 in the TME, thus increasing monocyte and macrophage infiltra-
tion [183] as well as tumor growth and angiogenesis [184], respectively. On the other hand,
increasing evidence has been accumulating about the positive impact of TNFα-blocking
strategies in cancer treatment. Balkwill and collaborators demonstrated that neutralization
of TNFα during early stages of skin carcinogenesis is sufficient to inhibit tumor formation
and set the basis of the rationale of anti-TNFα therapy for cancer treatment [185]. Given
the mentioned effects of TNFα, several blocking agents have been developed against it
for use in the clinical setting. In this review, we will address the well-known etanercept,
infliximab, and adalimumab and the new blocking agent, INB03.

Etanercept is a fusion protein that consists of two extracellular portions of human
TNFR2 linked to the Fc portion of human immunoglobulin 1 (IgG1) [19] and exerts its
anti-inflammatory properties by competitively binding sTNFα and tmTNFα, preventing
their interaction with their receptors and therefore inhibiting the activation of important
inflammatory pathways. Its use in cancer is limited and certainly poorly explored. Kai Sha and
collaborators proved that a TNFα–CCL2 paracrine loop is induced in response to androgen
deprivation therapy with enzalutamide in prostate cancer patients and might account for some
forms of prostate cancer therapy resistance. Moreover, they showed that TNFα inhibition
with etanercept in castration-resistant prostate cancer cells blocked enzalutamide-induced
CCL2 protein secretion and mRNA expression. These data suggest that TNFα blockade
would be a suitable therapy combined with androgen deprivation therapy in prostate cancer
patients with primary tumors prior to the onset of castration-resistant prostate cancer and
metastasis [186]. Almost two decades ago, etanercept was evaluated in a phase II clinical
trial on patients with advanced metastatic breast cancer [187] who had shown incomplete or
partial response, and a decrease in TNFα and CCL2 concentration in plasma samples was
shown. A phase I trial assessing the clinical benefit of infliximab in patients with advanced
cancer also reported no objective responses (either complete or partial). However, several
patients achieved disease stabilization, which correlated with undetectable TNFα, CCL2,
and IL-6 plasma levels [188]. These trials highlighted the need to further explore the use of
TNFα-blocking agents in combination with radiotherapy and chemotherapy for advanced
cancer treatment, yet scarce progress has been made in this direction.

Another TNFα blocking agent is the chimeric human-murine mAb infliximab, initially
approved by the FDA in 1999 to treat patients with Crohn’s disease who failed to respond
to conventional therapy. Its structure consists of human constant regions and murine
variable regions that specifically bind to human TNFα [189]. Like etanercept, this mAb
binds both sTNFα and tmTNFα molecules and interferes with their activity. Moreover, the
drug lyses cells bearing tmTNFα. However, infliximab contains 25% murine sequences in
its structure, leading to the secretion of human anti-infliximab antibodies, which generates
adverse reactions or a gradually increasing lack of efficacy [190].

The beneficial use of mAbs against TNFα has also been demonstrated in ovarian cancer
xenografts; treatment of tumor-bearing mice with infliximab twice a week for 4 weeks resulted
in reduced tumor burden, a significantly decreased proportion of infiltrating macrophages,
and a marked reduction of IL-6 in the TME [191]. The authors suggested that targeting
predominant cytokines like TNFα in the TME would be more useful in combination with
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conventional chemotherapy regimens or treatments that target malignant cells directly, and
better tolerated as well, than simply addressing tumor cells with targeted therapy.

Another way in which this pro-inflammatory cytokine can orchestrate the TME in
ovarian cancer was described by Charles and collaborators, who demonstrated that TNFα
is able to bind to TNFR1 and maintain the production of IL-17 in CD4+ leukocytes [116].
This sustained TNFR1-dependent IL-17 production and secretion leads to recruitment
of the myeloid cell population to the TME and increased tumor growth [116]. These
data were confirmed after blocking TNFα with infliximab in a mouse model of ovarian
cancer and were also consistent with clinical results; patients with advanced ovarian cancer
treated with infliximab exhibited substantially reduced plasma and ascitic levels of IL-17.
Additionally, the authors found an association between high activation of TNFα signaling
and expression of genes related to Th17 cell activation and expansion [116]. Unfortunately,
some tumor types showed no benefit from the combination regime of the gold standard
with TNFα blocking agents. Such is the case with advanced renal cell carcinoma (RCC),
where phase I and II clinical trials demonstrated that the combined administration of
sorafenib and infliximab, whose acceptable safety and tolerability were duly reported, was
not more efficient than sorafenib alone [192]. In line with these data, recent results indicate
that TNFα pathway activation would play a crucial role in resistance to tyrosine kinase
inhibitors (TKIs) in patients with clear RCC [193]. Moreover, the authors suggest that
TNFR1 could be a predictive biomarker for patient responsiveness to TKI treatment since it
is augmented in TKI-resistant RCC tumors. In addition, the potential antitumor activity
of infliximab has been reported in advanced RCC patients who progressed on cytokine
therapy [194,195]. Therefore, a combination using infliximab or other TNFα inhibitors still
holds promise as a therapeutic strategy for patients with RCC.

Adalimumab is a fully human recombinant mAb that binds and neutralizes both
TNFα isoforms. Moreover, this mAb also induces apoptosis in immune cells bearing TNFα
receptors. It was first approved by the FDA in 2008 for psoriasis treatment, but it is currently
used in many other inflammatory diseases, such as RA, ankylosing spondylitis, Crohn’s
disease, ulcerative colitis and certain types of uveitis [196]. Its role in clinical oncology is not
certain, but there is evidence that proves its efficacy in inhibiting TNFα tumor-promoting
properties. In colorectal cancer cells, treatment with adalimumab hindered the induction of
the Metastasis-Associated in Colon Cancer 1 (MACC1), a crucial oncogene that promotes
cell proliferation, motility, and survival, increasing metastasis in preclinical models [197].
The authors proved that the expression of MACC1 in inflamed tissues from ulcerative colitis
and Crohn’s disease patients is upregulated by TNFα through NF-κB signaling pathway,
via TNFR1, which lead to an increase in cell migration. These effects were abolished using
anti-TNFR1 antibodies or adalimumab, suggesting a potential role of this mAb in MACC1
driven colorectal tumors. Moreover, adalimumab has demonstrated a high efficacy to delay
the acquisition of the senescence associated secretory phenotype (SASP) in endothelial
cells, which is strictly related to inflammation and cancer progression [198]. Treatment of
HUVEC cells with adalimumab generated a decrease in the release of the SASP marker
IL-6, together with an upregulation of eNOS, indicating an enhanced endothelial function.
Interestingly, TNFα inhibition by adalimumab in senescent endothelial cells diminished
the tumor-promoting and pro-metastatic properties of their conditioned medium since
the authors observed a decreased migration rate and mammospheres formation of MCF-7
breast cancer cells in the presence of such senescent secretome. These data highlight the
potential role of adalimumab in restraining the SASP and delaying the consequent age-
related diseases onset and progression in patients with a chronic inflammation background.

Etanercept, infliximab and adalimumab are based on the structure and function of
mAbs, but there are other approaches to neutralize this cytokine. An example is INB03, a
dominant-negative TNFα biologic that selectively neutralizes sTNFα without affecting the
tmTNFα variant [199]. INB03 consists of a sTNFα mutant that forms inactive heterotrimers
with the native cytokine. This differential blockade of TNFα isoforms is critical for activat-
ing the immune system in cancer patients, since it is known that the tmTNFα–TNFR2 inter-
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action is necessary for the crosstalk between DC and NK cells, which does not depend on
the sTNFα-TNFR1 axis [200–202]. This crosstalk acts as an immunomodulatory mechanism
inducing an increase in Th1-type cytokines and promotes antitumor response [203]. There
is evidence, including results from our own team, that confirms the pivotal role of sTNFα
in the recruitment and expansion of MDSCs in the tumor bed, generating immunosup-
pression and favoring tumor progression [71,165,200]. Sobo-Vujanovic and collaborators
proved that selectively blocking sTNFα with INB03 reduced tumor incidence and growth
rate in mice with chemically induced carcinogenesis, compared to MCA-injected mice
treated with etanercept or with vehicle [200]. Moreover, the authors demonstrated that
wild-type mice and TNFR2 knockout mice treated with MCA exhibited significantly higher
tumor incidence and poorer survival than TNFR1 knockout mice. These results suggest
that sTNFα is the one that drives tumor progression and is critical for MCA-induced
carcinogenesis, while tmTNFα is dispensable for tumor growth but has a pivotal role
in immune system activation and promotion of its antitumor activity. In addition, they
propose that tmTNFα could have a protective role in cancer and should therefore not be
inhibited during treatment regimens [200]. These data place INB03 as the most appealing
treatment option to block TNFα and avoid compromising the immune system in order to
mount an antitumor response.

5.2. Monoclonal Antibodies Targeting Cancer Cells
5.2.1. HER2

HER2 tyrosine kinase receptor is overexpressed in 13–20% of human breast cancer
cases and in 60% of metastases to bone and is associated with poor outcome. Additionally,
it is amplified in 80% and 12% of urinary bladder and ovarian tumors, respectively, as well
as in pancreatic adenocarcinoma and gastric cancer [204,205]. Moreover, when small-cell
lung cancer (SCLC) cells acquire chemoresistance, HER2 is frequently upregulated and
acts as a biomarker of poor prognosis in advanced cases [206–208]. As it constitutes an
interesting target for directed therapy, several mAbs have been developed against it.

Trastuzumab is a humanized mAb that recognizes the fourth domain of the extracellu-
lar region of HER2 [177] and was approved in 1998 by the FDA as the first mAb for solid
tumors, particularly for breast cancer treatment. We have also demonstrated that block-
ade of tmTNFα and sTNFα with etanercept downregulates the membrane glycoprotein
mucin 4 (MUC4) expression and overcomes trastuzumab de novo or acquired resistance
in HER2+MUC4+ breast cancer cells and xenografts. Moreover, we disclosed that it is
sTNFα and not tmTNFα that drives MUC4 expression; we observed that HER2+MUC4+
breast cancer cells and tumors were also sensitized to trastuzumab in combination with
INB03 [165]. TNFα blockade overcomes trastuzumab resistance in HER2+ breast can-
cer tumors not only by downregulating MUC4 expression, but also by transforming the
TME to a less immunosuppressive state, characterized by increased NK cell activation
and degranulation, a higher M1/M2 ratio, and decreased MDSC infiltration [71]. Tumor
heterogeneity poses an immense challenge, which is why current therapeutic research is
intended to develop several strategies to tackle HER2. sTNFα is certainly an interesting
target for HER2+ breast cancer, and its combination with HER2 blocking agents should be
further investigated to offer better treatment for patients.

T-DM1 is an antibody–drug conjugate (ADC) that combines trastuzumab with may-
tansine, a cytotoxic agent that inhibits microtubule polymerizationT-DM1 has also shown
efficacy in women with progressive disease as second-line HER2-targeted therapy for
metastatic breast cancer [209]. Results from our team demonstrate that TNFα expression
and secretion by tumor cells is implicated in the resistance of HER2+ breast cancer cells to
T-DM1 therapy by the upregulation of MUC4 [72].

5.2.2. EGFR/HER1

It is common knowledge that chemokines play a substantial role in cancer progres-
sion and metastasis, as they regulate cell migration in and out of the TME, among other
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cellular processes that promote metastasis formation [210,211]. TNFα has been impli-
cated in the transactivation of EGFR signaling to promote survival of colon epithelial
cells [212]. It has been demonstrated that TNFα signaling, through its receptors, stim-
ulates EGFR phosphorylation and promotes cellular proliferation, migration, and sur-
vival [213,214], and both TNFα and EGF can induce expression and secretion of cyclooxyge-
nase 2 (COX-2), a prostaglandin synthase implicated in several biologic responses through
prostaglandins [215,216]. Chronically elevated COX-2 levels correlate with increased risk
for colorectal adenocarcinomas, and the use of chronic nonsteroidal anti-inflammatory
drugs and administration of TNFα blocking antibodies have been associated with a de-
creased risk of developing colorectal cancer [217,218]. In this respect, it has been demon-
strated that the induction of COX-2 expression by TNFα in gastrointestinal epithelial cells
is dependent on TNFα-induced EGFR transactivation, promoting cell survival and prolifer-
ation. Furthermore, it has been elucidated that COX-2 expression is driven by the TNFR1
signaling pathway and not by TNFR2, by means of an EGFR-, Src-, and MAPK-dependent
mechanism. These results add to accumulating evidence in favor of a critical role of sTNFα
in colorectal cancer, which should be addressed by TNFα-blocking agents [191].

Interestingly, it has recently been demonstrated that in several ovarian cancer cell
lines, cytokines like CCL20, CXCL1-3, and CXCL8 are the primary cytokines induced by
EGFR activation or TNFα, through the NF-κB and PI3K-Akt signaling pathways [219],
indicating that TNFα could be a suitable target in ovarian cancer. We speculate that
it would be beneficial for patients with EGFR+ ovarian tumors that secrete TNFα to
consider a combination regime of anti-EGFR mAb, like cetuximab, and TNFα blocking
agents. Considering all the above, it seems that TNFα is the driving force of the increased
expression of pro-inflammatory cytokines in several cancer types and that it promotes this
increase by transactivating the EGFR molecule and the consequent autocrine and paracrine
loop with its ligands, EGF and TGFα. These data suggest the potential use of TNFα
blocking agents in combination with anti-EGFR therapies to overcome resistance and target
the pro-inflammatory and tumor promoting TME for better outcomes for said patients.

5.2.3. CD20

It is known that TNFα inhibits CLL cell death by upregulating Bcl-2, among other anti-
apoptotic proteins, while it increases the proliferation of malignant cells [220]. In addition,
TNFα is one of the main cytokines released as part of the toxicity in CLL patients receiving
weekly treatment with rituximab [221,222].

Several clinical trials have been carried out to test the potential improvement of the
anti-CD20 mAb rituximab treatment in combination with TNFα blocking agents, such as
etanercept. Administration of etanercept has been shown to be safe in patients with CLL
and other hematologic malignancies, whose disease-related symptoms also improved [166].
Particularly, in a phase I/II clinical trial, Woyach and collaborators showed that 75% of
patients treated with rituximab in combination with etanercept exhibited a response, either
complete or partial (29%), or had stable disease (56%) and did not require further treatment
for 12 months after trial completion [167]. Moreover, the combination of rituximab and
etanercept showed increased OS in responder patients, suggesting an improved outcome
when compared to historical cytotoxic agent-based therapies. Furthermore, the addition of
anti-TNFα mAb mitigated the toxicity of rituximab treatment [167]. The authors claimed
that this combination regime would benefit fludarabine-refractory patients and people who
are not eligible for more aggressive therapy, such as chemoimmunotherapy or rituximab
alone, due to their high infusion toxicity.

Another fact that favors the study of TNFα in hematologic malignancies is that TNFα
concentration is higher in the serum of patients with progressive CLL compared to healthy
donors or patients with indolent disease [223]. Furthermore, it has been identified that
TNFα overproduction in progressive CLL patients and CLL mouse models induces a
decrease of plasmacytoid dendritic cells (pDCs), an immune cell population crucial for
antiviral immunity and antitumor responses. The reduction in number and functionality
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of pDCs causes impaired INFα production due to the decreased expression of FMS-like
tyrosine kinase 3 receptor (Flt3) and Toll-like receptor 9 (TLR9). This effect was reverted
when splenocytes from progressing CLL mice were treated with anti-TNFα mAbs, upon
which increased pDC numbers and restored Flt3 expression were observed [223]. Similar
results, along with reduced splenic tumor burden and increased splenic pDCs, were
obtained by injection of anti-TNFα mAbs in mice with progressive CLL compared to control
mice. In addition, anti-TNFα therapy promoted an increase in serum IFNα production
and augmented CD8+ T lymphocytes [223]. Blocking TNFα may be a potential strategy
for immune reactivation in CLL patients. These results confirm the role of TNFα in CLL
and the importance of addressing this pro-inflammatory cytokine as a therapeutic target
in combination regimes with targeted therapies such as rituximab or standard cytotoxic
agents like chemotherapy.

5.3. Monoclonal Antibodies against Immune Checkpoints

One of the shutdown mechanisms that are triggered after T lymphocyte activation
operates through checkpoint inhibitors. The most well-known checkpoints in the context of
cancer immunotherapy are CTLA-4 and programmed cell death protein 1 (PD-1, CD279),
which are transmembrane molecules expressed by T lymphocytes after their activation.
CTLA-4 binds to CD80 (B7-1) and CD86 (B7-2) expressed in DC, and PD-1 interacts with
PD-ligand 1 (PD-L1, CD274) present in T lymphocytes, B lymphocytes, APCs, and tissues
with immunological tolerance such as placenta and pancreatic islets, and with PD-L2
(CD273), expressed in APCs, thus mediating T lymphocytesinhibition [224–228]. Both im-
mune checkpoints are hijacked by cancer cells, which promote CTLA-4 induction in T lym-
phocytes and induce PD-L1 expression in tumor cells as a mechanism of immune evasion.
Thus, the interest in preventing CTLA-4/CD80/86 and PD-1/PD-L1 interactions derived in
the development of antibodies against them as T cell-targeted immunomodulators [229,230]
whose action is based on reinvigoration of the antitumor immune response. The impressive
clinical benefit of this strategy, obtained first in melanoma patients [231], triggered a large
number of clinical trials for the treatment of almost all types of cancer (Table S1).

There is plenty of evidence that TNFα upregulates PD-L1 expression in several cancer
types. In prostate cancer cell lines HCT116 and LNCaP, TNFα increase PD-L1 mRNA
and protein expression. In the case of LNCaP cells [232], the pathways involved in PD-L1
upregulation, dependent on ERK1/2 activation in HCT116 and in Akt and NF-κB. In
ovarian cancer cell lines HO8910 and SKOV3, it was demonstrated that TAMs or cytokines
released from them, like IFN-γ, TNFα, IL-10, and IL-6, are responsible for the upregulation
of PD-L1 expression in the surface of these cells, but no modification in its mRNA was
observed. The increase in PD-L1 levels produced by IFN-γ and TNFα was due to the
activation of PI-3K and ERK1/2 pathways, respectively. In a preclinical model, treatment
with anti-PD-1 or anti-PD-L1 was able to inhibit SKOV3 tumor growth [233] and was
associated with decreased PD-1+ CD8+ T lymphocytes infiltration. A study demonstrated
a progressive increase in PD-L1 levels ranging from immature bone marrow monocytes in
tumor to circulating monocytes and to tumor tissue macrophages, the latter exhibiting the
highest expression.

TNFα has been identified as the cytokine present in tumor-conditioned medium
from B16 melanoma cells and 4T1 breast cancer cells that causes upregulation of PD-L1 in
monocytes. In addition, tumor cells secrete versican, which stimulates TNFα production
by monocytes via activation of TLR2 [234]. The role of adipocytes in PD-L1 expression
was also addressed. Using an obese mouse model, it was demonstrated that B16-F10
melanomas and Hep-G2 hepatomas grew faster in the treated mice than in control animals,
which was correlated with PD-L1 expression in cancer cells. Conditioned medium of
adipocytes was able to increase PD-L1 levels due to the presence of TNFα and IL-6, both
regulating the NF-κB and STAT3 pathways (Figure 1) [235].
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Figure 1. Tumor necrosis factor alpha (TNFα) modulates programmed death ligand 1 (PD-L1) expression transcriptionally
and post-transcriptionally. TNFα, acting through TNFα receptor 1 (TNFR1), activates extracellular signal-regulated kinase
(ERK) and phosphatidylinositol-3-kinase (PI-3K/AKT) pathways and nuclear factor kappa B (NF-κB) and signal transducer
and activator of transcription 3 (STAT3) transcription factors that promote PD-L1 gene transcription. In addition, NF-κB
also induces transcription of the deubiquitinase COP9 signalosome 5 (CSN5), which promotes PD-L1 protein stability.
Ub: ubiquitin, sTNFα: soluble TNFα.

In addition, PD-L1 expression induced by TNFαwas also proved in gastric cancer, where
mast cell infiltration was directly related to its progression and reduced overall survival. A
direct correlation was demonstrated between PD-L1+ mast cells and TNFα in gastric cancer
specimens. TNFα secreted from gastric cancer cells induces PD-L1 expression in mast cells
via activation of the NF-κB signaling pathway [236]. It was recently demonstrated that PD-L1



Cancers 2021, 13, 564 13 of 33

expression in gastric cancer was dependent on TNFα and IL-6 produced by infiltrating
macrophages. These cytokines promote PD-L1 expression through the activation of NF-κB
and STAT3 signaling [237]. Similar findings were observed in pancreatic cancer, where TNFα
was the macrophage-secreted cytokine responsible for upregulation of PD-L1 in pancreatic
ductal adenocarcinoma cells. In pancreatic cancer specimens, PD-L1 expression in tumor
cells directly correlated with macrophage infiltration and poor survival [115].

PD-L1 expression can also be regulated at the posttranscriptional level. Seminal
work by Hung’s lab demonstrated that TNFα can increase PD-L1 expression in breast
cancer cells by posttranscriptional regulation. TNFα stabilizes PD-L1 protein by inducing
the expression of the deubiquitinating enzyme COP9 signalosome 5 (CSN5) via NF-κB
activation. This PD-L1 stabilization by TNFα also affects dendritic and T lymphocytes,
inducing an immunosuppressive response (Figure 1) [238].

5.4. TNFα in Resistance to Anti-PD-1/PD-L1 and Anti-CTLA-4 Therapies

Several antibodies were designed to interfere with the PD-1/PD-L1 interaction and
have been approved by the FDA for the treatment of different types of cancer at different
stages (Table S1). These are the anti-PD-1 antibodies nivolumab, pembrolizumab, cemi-
plimab, and sintinimab and the anti-PD-L1 antibodies atezolizumab, durvalumab, and
avelumab. In addition, CTLA-4 was effectively targeted by ipilimumab. Nivolumab, cemi-
plimab, sintinimab, avelumab, and ipilimumab are human monoclonal antibodies, while
pembrolizumab, atezolizumab, and durvalumab are humanized monoclonal antibodies.
The impressive clinical impact of these antibodies in the oncology arena was recognized by
the 2018 Nobel Prize in Physiology or Medicine awarded to Dr. James Allison (MD Ander-
son Cancer Center at the University of Texas, Houston, TX, USA) and Dr. Tasuku Honjo
(Kyoto University, Kyoto, Japan), for their contributions to the research on CTLA-4 and
PD-1, respectively [239]. However, some patients exhibit resistance to anti-immune check-
point treatment, depending on their cancer type and stage. Here, we highlight TNFα
involvement in treatment failure based on immune checkpoint blockade.

In a preclinical melanoma model, TNFα, acting through TNFR1, impaired the infil-
tration of CD8+T lymphocytes into the TME and promoted their activation-induced cell
death, facilitating tumor growth [77]. In addition, TNFR1 blockade improved the efficacy
of anti-PD-1 treatment. Preventing TNFα upregulation of PD-L1 and TIM-3 expression by
CD8+ tumor infiltrating lymphocytes (TILs) causes reinvigoration of the antitumor immune
response, consequently overcoming anti-PD-1 resistance (Figure 2). These findings were
validated using TCGA melanoma data, where a direct correlation was observed between
TNFα and an immune escape signature, particularly with genes encoding PD-L1, PD-L2,
and TIM-3 [168].

In an experimental melanoma, it was determined that anti-CTLA-4 treatment in-
creased the production of TNFα associated with T lymphocytes infiltration, which in turn
upregulated Ezh2, silencing tumor cell immunogenicity and antigen presentation. The in-
hibition of Ezh2 improved the effectiveness of anti-CTLA-4 and IL-2 immunotherapy [240].

The metabolic status of the tumor also conditions the efficacy of PD-L1 antibodies.
In NSCLC, it was found that TNFα-induced aerobic glycolysis of TAMs was associated
with tumor hypoxia in preclinical and clinical settings. TAM depletion facilitates the
upregulation of PD-L1 in tumor cells, which can then be effectively targeted by anti-PD-L1
antibodies [241]. In addition, NSCLC patients with increased IFN-γ, TNFα, IL-1β, IL-2, IL-4,
IL-5, IL-6, IL-8, IL-10, and IL-12 serum levels at diagnosis and at 3 months post initiation
of anti-PD-1 treatment exhibited longer OS [242]. Determination of these cytokines was
proposed as a biomarker of patient selection for anti-PD-1 treatment.
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Figure 2. TNFα induces anti-immune checkpoint therapy resistance acting on CD8+ T lymphocytes.
TNFα, produced by either tumor cells or macrophages from the tumor microenvironment, induces
activation-induced cell death (AICD) and exhaustion of CD8+ T lymphocytes, impairing the effectiveness
of anti-immune checkpoint therapy. TIM3: T-cell immunoglobulin and mucin-domain containing-3.

5.5. TNFα Involvement in the Adverse Effects of Immune Checkpoint Inhibitors

Releasing the brakes of the immune system through immune checkpoint blockade can
trigger nonspecific immunologic activation that resembles autoimmune disease. These sec-
ondary effects, known as immune-related adverse effects (irAEs), can compromise the liver
and skin (rash, pruritus, and vitiligo) and the endocrine (hypophysitis, hypothyroidism,
and thyroiditis) and gastrointestinal (diarrhea and colitis) systems, among others [243].
About 50% of patients treated with anti-immune checkpoint therapy experienced some
form of irAE and 20% suffered grade 3 or 4 toxicity, limiting the implementation of this treat-
ment [244–246]. irAEs sometimes lead to discontinuation of treatment or administration of
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corticosteroids or other immunosuppressive agents or TNFα antagonists [169–171,173,174].
The combination of anti-CTLA-4 and anti-PD-1 or PD-L1 antibodies is now more frequently
used because of its increased clinical benefit compared to monotherapy regimens [247], but
it also increases the severity of irAEs.

While in several cancers, such as lung and bladder cancer, there is an association
between clinical benefit and irAEs, in melanoma the results are contradictory. In melanoma,
the presence of irAEs does not guarantee tumor response, whereas the absence of side
effects can be accompanied by clinical benefit [248,249]. In this respect, Perez-Ruiz et al.,
using melanoma and colon carcinoma models, demonstrated that the combined administra-
tion of anti-CTLA-4 and anti-PD-1 antibodies with anti-TNFα or etanercept reduced colitis
and hepatitis in mice [172]. Importantly, they also showed that TNFα blockade enhanced
the antitumor effect of immune checkpoint inhibitor treatment in melanoma and colon
cancer, revealing that TNFα mediates irAEs [172]. This is an important piece of evidence
indicating that preventing irAEs with TNF blocking agents allows the antitumor effect of
immune checkpoint blockade.

Another work analyzed the effect of anti-TNFα treatment concomitant with or after anti-
CTL-4 administration on irAEs and the antitumor effect. Results showed that although the
antitumor effect on breast and colon cancer models of anti-CD40 decreased, the most suitable
combination was simultaneous rather than delayed treatment with anti-TNFα administration.
In this way, irAEs were prevented [250]. In the clinical setting, a recent report on patients
from the Dutch Melanoma Treatment Registry showed that those treated with ipilimumab
and anti-PD1 with severe irAEs had longer survival. However, treatment with infliximab
blunted this clinical benefit [251]. Using large cohorts of 225,090 and 188,420 patients with
Crohn’s disease or ulcerative colitis, respectively, it was demonstrated that those treated with
anti-TNFα agents were less likely to develop colorectal cancer. Further studies in different
cancer types are needed to define the clinical benefit of TNFα blockade in terms of dose and
administration in patients undergoing anti-immune checkpoint treatment [252].

5.6. Adoptive Cell Therapies

The development of ACTs has increased greatly in the last four years. Hundreds of
new cell therapies have been added since 2017, quadrupling in 2020. Even in the current
year, despite the COVID-19 pandemic, the number of cellular therapies has outgrown that
of all existing types of immunotherapy [253].

In recent years, many advances have been made in immunotherapy for ALL [254].
ACTs have been developed with CAR-T cells, which consist of genetically modified
T lymphocytes obtained from patients themselves, resulting in cells that combine an extra-
cellular antigen-binding domain with one or more intracellular T lymphocytes signaling
domains, leading to the activation of T lymphocytes and finally the elimination of lym-
phoblasts. In other words, these modified T lymphocytes are redirected to target specific
antigens on the surface of lymphoblasts [255–257]. The CD19 antigen is a transmembrane
protein expressed in all cells of the B lineage and is thus an attractive target for CAR-T cell
therapy toward ALL B lymphoblasts [258,259]. Indeed, in 2017 the FDA approved an
anti-CD19 CAR-T called CTL019 for the treatment of B cell ALL that is refractory to treat-
ment or for second or later relapse of patients up to 25 years of age. The future of ACTs
with CAR-T cells for B cell ALL is promising. Currently, various groups are working
on addressing different targets such as CD22 for patients with CD19 negative relapses,
optimizing the dose of CAR-T cells, and standardizing the management of neurological
toxicity and systemic inflammatory response syndrome (SIRS) [254].

SIRS is the most common toxicity associated with CAR-T cell therapies. SIRS is gener-
ated due to the release of proinflammatory cytokines such as IL-6, IL-10, and IFN-γ (and
possibly TNF-α and IL-1α) after the activation of CAR-T cells. SIRS causes symptoms that
range from myalgia, fever, and flu-like symptoms to capillary leak, vascular collapse, pul-
monary edema, coagulopathy, and multiple organ failure [260]. Another highly unwanted
possible adverse effect of CAR-T cell infusion is anaphylactic shock [261]. Treatment of
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SIRS still remains challenging, and management is not well established. Corticosteroids
have been used to treat severe SIRS with some success, but such treatment may interfere
with the efficacy of CAR-T cell therapy itself [262]. Other anti-inflammatory agents have
also been proposed, such as the IL-1 receptor antagonist anakinra or etanercept [175].

A barrier to ACTs in solid tumors is the formation of abnormal blood vessels, which
hinders tumor infiltration of T lymphocytes [263]. Hypoxia can lead to the formation
of new, tortuous, and leaky vessels, thus generating irregular blood flow and increased
interstitial tumor pressure. Furthermore, endothelial cells fail to express leukocyte adhesion
molecules correctly, an event known as endothelial anergy [264]. Therefore, crossing
the abnormal endothelial barrier and interstitium in solid tumors is a major obstacle
for cells of the immune system and CAR-T cell therapy [265]. This may also explain
the resistance of some solid tumors to immune checkpoint inhibitors [266,267]. It has
been shown that minimizing the amount of TNFα targeting the vascular endothelium
with Cys-Asn-Gly-Arg-Cys-Gly-TNFα (NGR-TNF), a fusion protein targeting the tumor
vasculature [147], can activate the endothelial cells and enhance tumor infiltration by
cytotoxic T lymphocytes [268]. This approach has also been shown to enhance ACT with
TCR redirected T lymphocytes [269]. Based on this, Elia et al. proposed using low doses of
TNFα directed toward the tumor vasculature in association with ACT, which may represent
a novel strategy to improve the infiltration of T cells in solid tumors and overcome the
resistance to CAR-T cells and anti-immune checkpoint inhibitor therapy [263].

Anti-cancer ACT with tumor-specific cytotoxic T lymphocytes has been well docu-
mented in animal models, where infusion of modified T lymphocytes into mice resulted
in tumor eradication [270–272]. The results of Ye et al. show that cytotoxic T lympho-
cytes transfected with adenovirus genetically modified to express TNFα, cytotoxicity, and
survival of lymphocytes were improved [273]. Furthermore, ACT induces long-term anti-
tumor immunity by generating memory T lymphocytes after ACT. Therefore, cytotoxic
T lymphocytes designed to secrete TNFα may be useful when designing strategies for ACT
in solid tumors [273].

Induction of antitumor immunity by DC vaccines correlates with their maturation
stage. TNFα appears to have profound effects on DC function, as it contributes to activa-
tion [274], maturation [275], subsequent migration and accumulation in lymph nodes [276],
and significantly reduces inhibition of these processes mediated by IL-10 [277]. Based
on this, and the previously mentioned characteristics of TNFα as an antitumor cytokine,
Liu et al. proposed the use of combination immunotherapy [278]. Gene therapy with
adenoviruses expressing TNFα and DC vaccines genetically modified to overexpress TNFα
were used to treat well-established tumors in animal models. The modified DCs stimu-
lated cytotoxic T lymphocytes in vitro and in vivo and produced more efficient antitumor
immune responses than wild-type DCs [278].

Lymphodepletion is a preconditioning strategy carried out by high-dose chemother-
apy and is commonly used to increase the clinical efficacy of adoptive T cell therapy.
Suppression of the host’s immune system ensures that the transferred immune cells will be
capable of surviving and proliferating, since they would otherwise be suppressed or de-
prived of key cytokines for their functioning [279]. However, as might be expected, this type
of treatment can become highly toxic to patients, causing severe cytopenias [280,281]. In
contrast, oncolytic adenoviruses are safer and, when engineered to express IL-2 and TNFα,
can achieve lymphodepletion-like antitumor immunomodulatory effects [282]. When pro-
duced from these adenoviruses, IL-2 and TNFα can recruit NK and T lymphocytes into the
tumor bed [283]. Studies in patients and mice revealed that toxicity was minimal. These
findings demonstrate that ACT can be facilitated by adenoviruses that encode cytokines,
thus avoiding lymphodepletion and its consequences [282].

In the case of melanoma, ACT with cytotoxic T lymphocytes that target melanocytic
antigens can achieve remission in patients with metastatic melanomas, but tumors often re-
lapse [284,285]. Landsberg et al. demonstrated that melanoma cells can resist ACT through
a reversible dedifferentiation process in response to the inflammatory microenvironment in-
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duced by T lymphocytes [286]. TNFα secreted by macrophages induces dedifferentiation of
human melanoma cells, leading to impaired recognition by cytotoxic T lymphocytes specific
for melanocytic antigens. These results demonstrate that an inflammatory microenviron-
ment is responsible for the phenotypic plasticity of melanoma cells, contributing to tumor
relapse after initially successful T lymphocyte immunotherapy [286]. This inflammation-
induced dedifferentiation mechanism from tumor cells to precursor cells was also shown
in a case report of a 60-year-old male patient with metastatic melanoma who received
specific ACT against the melanocytic antigen MART-1 and developed resistance to therapy
in association with a dedifferentiated tumor phenotype lacking conventional melanocytic
antigens [287]. In vitro assays showed that TNFα treatment led to dedifferentiation of
tumor cells. The dedifferentiation process was proved to be reversible upon removal of
inflammatory media from cultures. The RNA of different melanoma cell lines treated
with TNFα was also sequenced, and it was seen that the pathways of dedifferentiation
induced by inflammation may overlap with those of innate resistance to anti-PD-1 gene
signature [288], which includes genes related to EMT transition, hypoxia, and angiogene-
sis, and suggests that dedifferentiation may reflect a more invasive phenotype. The data
exposed here highlight the need to deepen studies of the underlying mechanisms of ACT
resistance in humans [287].

6. Clinical Implications

The administration of anti-TNFα drugs was originally limited to inflammatory and
autoimmune pathologies, where they proved to be beneficial for patients [289]. Neverthe-
less, about 40% of patients did not respond to anti-TNFα treatment [290]. The different
anti-TNFα biologics show no differences in the treatment of inflammatory pathologies such
as RA and spondyloarthritis [291]. Regarding treatment effectiveness, it has been shown
that polymorphisms in the TNFα promoter or the gene region can predict response to TNFα
inhibition therapy. Meta-analyses showed that TNFα -308 G and -238 G alleles predicted
good response to anti-TNFα therapy, and this prediction was more powerful for etaner-
cept than for infliximab in patients with spondyloarthritis [292] or refractory sarcoidosis.
Regarding patients with psoriatic arthritis, another study found that the polymorphism in
+489 A exhibited a trend of association with better response to etanercept [293].

One of the main concerns of anti-TNFα treatment is the increased risk of infection
upon therapy administration, a matter extensively studied in patients with inflammatory
diseases. In these patients, TNFα-blocking therapies are administered alone or in combi-
nation with disease-modifying anti-rheumatic drugs (DMARDs) [294–296]. Concerning
opportunistic intracellular bacterial infections, tuberculosis (TB) is one of the most studied,
since TNFα is responsible for the recruitment and effector function of neutrophils and
lymphocytes to battle the infection [297,298]. It was shown that TNFα or TNFR1 knockout
mice, as well as those treated with TNFα inhibitors, cannot fight TB infection [299]. There
are controversial studies about the adverse effects of TNFα inhibitor administration [300].
While several works show no correlation between adverse effects and TNFα inhibitor treat-
ment [301–303], a substantial number show the opposite [304–307]. These works underline
the importance of appropriate TB screening before TNFα inhibitor administration. Similar
results were found for L. monocytogenes infection [304]. Something similar also occurs
in viral and fungal infections. While there are reports that show no correlation between
herpes zoster infection and TNFα blockage [308], others show the opposite [304,309,310].
Other detrimental effects of TNFα inhibitors were described regarding the nervous system,
with headache as the most common event. Other serious neurological events [311,312]
were also reported: multiple sclerosis [313], central and peripheral demyelinating events,
vasculitis, and transverse myelitis, among others [314–316]. Regarding cardiac disease, it
was demonstrated that anti-TNFα therapy is injurious [317]. Surprisingly, TNFα inhibi-
tion can cause de novo disease or reactivation of inflammatory disease, such as psoriasis,
arthritis, colitis, uveitis, etc. [318].
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Given the mentioned pivotal role of TNFα in the immune system, another important
concern regarding its blockade is related to cancer development. Numerous studies
have addressed this issue in patients with inflammatory diseases. At present, there is
increasing evidence that TNFα inhibition does not correlate with an augmented incidence
of cancer [319–321], but there are a few reports that show the opposite [322], including two
reports that indicate an elevated risk of hematological malignancies and nonmelanoma skin
cancers in patients with RA [298,323]. It is noteworthy that these studies also claim that
an increased risk of lymphoma is associated with RA regardless of the anti-TNFα therapy,
which inhibits any conclusion regarding the treatment. Instead, more recent studies show
that, plausibly, the underlying inflammation caused by the pathology is more likely to
promote the development of malignancy than the therapy itself [321,324]. Moreover, they
claim the treatment can have positive implications in preventing cancer. There is a study on
inflammatory bowel disease in patients with a prior history of cancer showing that TNFα
inhibition poses a mild risk of acquiring cancer. This report poses a conundrum, since it
is an established fact that former cancer patients have a higher probability of developing
new cancers, once again highlighting that the results cannot be ascribed to the anti-TNFα
therapy. These data indicate that TNFα-blocking treatments should not be administered to
patients with cancer in their clinical history [325].

There are limited reports in the field of cancer and TNFα inhibitors. Only one phase
II clinical trial studied the effect of etanercept in breast cancer patients, and the results
showed that there was no objective response to treatment, which could, however, be due
to the advanced tumor stage of the cohort [187]. Polymorphisms in the TNFα gene have
also been studied related to cancer incidence. In breast cancer, it was reported that the
TNFα -308 G>A allele is associated with higher expression of TNFα, but no predisposition
for any breast cancer subtype was found, although this polymorphism is associated with an
increased risk of metastasis in triple-negative breast cancer [326]. Another study showed
that the same polymorphism was correlated with vascular invasion in breast cancer [327],
while another group found a possible association between the -308 G>A polymorphism and
lower OS in cancer patients [328]. However, these polymorphisms could be meaningful
regarding responsiveness to anti-TNFα therapy. The matter remains to be explored in
cohorts of patients with malignancies receiving anti-TNFα treatment.

Various reports have acknowledged the pro-tumorigenic role of TNFR1, which indi-
cates that hindering sTNFα action could be a potential new strategy to tackle cancer [37,329].
In this regard, it has been shown that targeting sTNFα prevents skin carcinogenesis [203]
and overcomes trastuzumab resistance in HER2+ breast cancer [72].

Besides targeting TNFα, another interesting approach is the development of therapies
directed to TNFRs. One of the strategies is based on the fact that soluble TNFRs (sTNFR) are
immunosuppressive because they impede TNF-α activity. Therefore, a selective apheresis
to remove sTNFRs from systemic circulation can release TNFα and reactivate an effective
antitumor immune response. In the beginnings, the apheresis column contained anti-TNFR
and antiIL-2R antibodies and the treatment was effective in reducing patient’s tumor
burden [330]. Now an improvement was achieved using single-chain TNFα as bait [331]
and this strategy has shown to be effective in the treatment of canine cancers [332]. On
the other hand, TNFR2 is expressed in Tregs and particularly in a subset that present the
most immunosuppressive characteristics [333]. Tregs in general have been a potential
target for cancer therapy [334], but delivery to the TME has been challenging [335]. TNFR2
induces activation of NF-κB and PI3K/Akt pathways, which finalizes in cell proliferation,
augmenting the number of Tregs [336], positioning TNFR2 as an attractive target. In addi-
tion, MDSCs also express TNFR2 in mice, and their inhibition diminished metastasis in
a liver cancer model [337]. Furthermore, TNFR2 expression has been proved in different
cancers, such as RCC [338], colorectal cancer [339], Hodgkin’s lymphoma [340], multiple
myeloma [341], and ovarian cancer [342]. Interestingly, several studies show that tumors
can escape immune checkpoint inhibitor therapy by upregulating TNFR2 expression in
Tregs [343]. Moreover, TNFα/TNFR2 axis supports angiogenesis promoting VEGF secre-
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tion and neovascularization via endothelial colony forming cells [344]. Recently, it has been
demonstrated that endothelial progenitor cells secrete immunosuppressive cytokines in a
TNFR2-dependent manner and inhibit T lymphocytes proliferation [345]. All this evidence
points to the need to develop TNFR2-targeted therapy to diminish tumor-infiltrating Tregs,
to impair MDSCs differentiation and endothelial cell neovascularization and to directly
attack TNFR2-expressing tumor cells. In this respect, Vanamee et al. postulated that TNFR2
inhibitors could be safer than immune checkpoint inhibitors for cancer treatment, given the
restricted expression of the receptor [346]. TNFR2 antagonistic antibodies were successfully
tested in the OVCAR3 preclinical model and proved to be effective in killing Tregs from
ascites and ovarian cells [347]. Finally, an IgG2 antibody targeting TNFR2 proved to be
effective in killing cancer cells in direct correlation to their TNFR2 expression density. It
was also shown that this antibody modified the TME eliminating Tregs while preserving
viability of effector T cells [348]. Therefore, a new horizon of specific treatment targeting
immunosuppressive cells is open with anti-TNFR2 strategies.

7. Conclusions

The clinical relevance of TNFα to either fostering or hindering the success of im-
munotherapy has not yet been fully elucidated. In practice, however, the clinical appli-
cation of anti-TNFα drugs to prevent irAEs produced by immune checkpoint inhibitors
and ACTs has provided interesting results, showing that neutralizing this cytokine has
potential antitumor benefit. In addition, several clinical trials have demonstrated the im-
portance of TNFα blockade in prostate and renal cancer and in hematologic malignancies,
as it promotes higher OS. Furthermore, there is plenty of preclinical evidence showing
that TNFα is able to induce immunotherapy resistance. For example, TNFα can induce
PD-L1 overexpression in a large variety of tumors, rendering an immunosuppressive
TME, impairing inhibition of immune checkpoints, and inducing resistance to targeted
therapies [72,165–168,172,232–238]. All of the above therefore suggest that the use of TNFα
inhibitors should be considered as a novel strategy in cancer treatment, particularly in
combination with the gold standard therapy for each particular cancer.

On the other hand, due to its potent antitumor activity, the production of TNFα by
DC and cytotoxic T lymphocytes is important in ACT. In addition, the administration of
a fusion protein of TNFα targeting tumor vessels can rescue their normal permeability
and promote tumor infiltration by cytotoxic T lymphocytes, enhancing the effectiveness of
immune checkpoint inhibitors.

In conclusion, the administration of TNFα-blocking agents emerges as a promising
option in the oncology arena, but their combination with other therapies in specific tumor
types needs to be further studied to attain optimal clinical results.
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