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In this work, the adsorption-desorption kinetic in the framework of the lattice gas model is analyzed. The
transition probabilities are written as an expansion of the occupation configurations. Due to that, the detail
balance principle determine half of the adsorption Ai and desorption Di coefficients, consequently, different
functional relations between them are proposed. Introducing additional constrains, it is demonstrated that when
those coefficients are linearly related through a parameter �, there are values of lateral interaction V, that lead
to anomalous behavior in the adsorption isotherms, the sticking coefficient and the thermal programmed
desorption spectra. Diagrams for the allowed values of V and � are also shown. Alternatively, a more reliable
formulation for the adsorption desorption kinetic based on the transition state theory is introduced. In such way
the equilibrium and non equilibrium observables do not present anomalous or inconsistent behavior.
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I. INTRODUCTION

The importance of surfaces and interfaces in a wide vari-
ety of fields has inspired an enormous interest in their struc-
ture and dynamics. In particular, the study of the kinetic and
dynamic of the surface processes is of fundamental interest
in the understanding of heterogeneous catalysis and other
processes taking place in gas-solid interfaces �1–14�. The
kinetic is fundamentally determined by the energy transfer
�15�.

The rate of change in the adsorbate can be written as a
difference between adsorption and desorption terms. This
can be made in a heuristic way or in the framework of a
rigorous approach using the nonequilibrium thermodynamic
theory �7,15,16�. If during desorption the adsorbate does not
remain in quasiequilibrium or, more specifically, the adsor-
bate configurations are not close to those predicted by the
grand canonical distribution, the description of the system
through macroscopic variables is not enough and it should be
carried out based on the nonequilibrium statistical mechanics
that involves time-dependent distribution functions.

The kinetic lattice gas model �KLGM� is an example of
such theory, and it was set up in close analogy to the time-
dependent Ising model for magnetic systems, which was
originally introduced by Glauber �17,18�. In its simplest
form, the KLGM is restricted to the submonolayer regime
and to the gas-solid system where the surface structure and
the adsorption sites do not change with the coverage �19�.
However, further generalizations of the lattice-gas model
have been made in the past. For example, the multilayer
lattice gas model was used for analyzing and simulating de-
sorption data for Li and Cs on Ru�0001� �20,21�, the influ-
ence of the precursor state in the adsorption-desorption ki-
netic �16� and other related problems �22�, the adsorption-
desorption kinetic with multiple site occupations �23–25�,
etc.

On the other hand, it is well known that different micro-
scopic dynamics can yield different equilibrium paths and

equilibrium fluctuations �26� �cluster versus local MC algo-
rithms being the most extreme example �27�� and even no-
ticeable differences in the steady-state microstructure
�28,29�. Recent studies indicate that different stochastic dy-
namics, even when they have the same conserved quantities
and satisfy the detailed balance principle, lead to important
differences in the nanostructure of field-driven interfaces
�30–34�.

Before defining the transition probabilities, an important
distinction must be made. That is, between models with hard
dynamics �32,34–39�, in which the single-site transition rates
cannot be factorized into one term that depends only on the
interaction energies, in contrast with those models with soft
dynamics �31,33,34,40–46�, for which this factorization is
possible.

In this context, Kang et al. �44� have analyzed different
choices for the transition probabilities in MC simulations for
studying the growth exponent in the growth of domains.
They showed that the choice of transition probabilities af-
fects directly the dynamic quantities. Particularly, they found
this dependence in the growth exponent in the ordered do-
mains out of equilibrium �47�. In the same way, Rikvold et
al. have shown that the intrinsic interface width and proper-
ties in field-driven solid-on-solid interface studies depend on
the choice of the dynamics. They have found that, in the
framework of the soft dynamics, all dependence on the field
canceled due to the detailed balance principle �31,33,34�.
While in hard dynamics the intrinsic interface width and
properties, such as the propagation velocity, are strongly af-
fected by the field driven �31�.

Despite the fact that detailed microscopic mechanisms of
the surface processes are usually not known, in the KLGM
the transition probabilities can be written in terms of the
occupation configurations of all neighboring sites
�7,15,16,19,22,48–50�. In this point, the detailed balance
principle imposes a set of restrictions on the coefficients of
adsorption Ai, desorption Di, diffusion Ci, etc., as is dis-
cussed by Kreuzer and co-workers �15,16,19,22�, where the
authors have introduced different kinetics according to the
relations among those coefficients. In fact, any functional
relation between the coefficients in the transition probabili-*smanzi@unsl.edu.ar
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ties must be postulated ad hoc, or calculated from micro-
scopic Hamiltonian that account for coupling of the adsor-
bate to the lattice or electronic degrees of freedom of the
substrate, for example, by using the transition state theory
�TST� �51,52�. This theory, worked out by Eyring, Wigner,
and Pelzer about 70 years ago, forms the mainstay of the
gas- and liquid-phase kinetics �for the current status of TST
and numerous references, see a recent paper by Schenter et
al. �53��. In the framework of the TST, the adsorption and
desorption kinetic and other rate processes were extensively
analyzed in the past, particularly in a series of paper written
by Zhdanov �see Refs. �12,54–59��.

On the other hand, when adsorption and desorption are
the only processes taken into account, Kreuzer and co-
workers have assumed a linear relation Ai=�Di �where � is a
proportionality parameter�. In such a way the authors have
obtained the adsorption-desorption kinetic calculating the
sticking coefficient for different cases, including Langmuir
kinetic, sticking on random adsorbate and the influence of
intrinsic and extrinsic precursors �16�. Moreover, very re-
cently, Payne and Kreuzer have discussed the one and two-
dimensional diffusion with different kinetic schemes, using
the same methodology �48,49�.

Although those coefficients satisfy the detailed balance
principle, the relation between them depends strongly on the
lateral interaction energy and must be carefully analyzed in
order to describe the adsorption and desorption processes,
otherwise the results could lead to anomalous general behav-
iors in the kinetics. The aim of the present paper is to dem-
onstrate that, even for the simplest one-dimensional case, a
linear relation among the adsorption and desorption coeffi-
cients gives some inconsistencies. With this purpose, the ad-
sorption desorption kinetic is analyzed for a 1D KLGM with
nearest-neighbor lateral interaction V.

The analytical treatment has been done in a one-
dimensional system, mainly due to two reasons. The first one
is the availability of the exact solution for the coverage and
two-sites correlation function �which is not possible in
higher dimensions�. The second one is the presence of phase
transitions in two and higher dimensions. This could mask
the possible anomalous behaviors of the observables, which
is precisely the objective of the present investigation.

The outline of the paper is as follows. In Sec. II, the
KLGM is setup, introducing the master equation and writing
the transition probabilities in terms of the occupation con-
figurations of all neighboring sites. A set of restrictions on
the adsorption and desorption coefficients are obtained ac-
cording to the detailed balance principle. In order to fix the
unknown coefficients in the transition probabilities, two dif-
ferent linear relations are proposed. The equilibrium and non
equilibrium properties of the system are analyzed solving the
rate equations for the coverage and higher correlations. Ad-
ditional inequalities among the adsorption and desorption pa-
rameters are found, determining forbidden values for the pa-
rameters � and V, for which, the adsorption isotherms,
sticking coefficients and thermal desorption spectra are ill
behaved. Diagrams with forbidden regions as function of lat-
eral interaction V and the parameter � are shown. In Sec. IV,
the transition state theory is introduced to obtain the adsorp-
tion desorption kinetic. Finally, in Sec. V our conclusions are
presented.

II. THE KINETIC LATTICE GAS MODEL AND THE
MASTER EQUATION

To set up the KLGM one restricts the analysis to a gas-
solid system in which all relevant processes, such as diffu-
sion, adsorption, desorption, reactions, etc., are Markovian.
One assumes that the system can be divided into cells, la-
beled i, for which one introduces microscopic variables ni
=1 or 0 depending on whether cell i is occupied by an ad-
sorbed gas particle or not. The connection with magnetic
systems is made by a transformation to spin variables �i
=2ni−1. To introduce the dynamic of the system one writes
down a model Hamiltonian

H = Es�
i

ni +
1

2
V�

�ij�
ninj + ¯ . �1�

Here Es is a single particle energy, V is the two particle
interaction between nearest neighbors �ij�. Interactions be-
tween next-nearest neighbors, etc., and many particle inter-
actions can be easily added to Eq. �1�.

As long as the number of particles in the adsorbate does
not changed, which is the case for systems in equilibrium or
diffusion studies, the first term in Eq. �1� is constant and can
be dropped from further consideration. However, if the ob-
jective is the study of the adsorption-desorption kinetic, the
number of particles in the adsorbate changes as a function of
time and a proper identification of Es is mandatory. Arguing
that the lattice gas Hamiltonian should give the same Helm-
holtz free energy as a microscopic Hamiltonian �for nonin-
teracting particles� one can show that the proper identifica-
tion is given by �60�

Es = − V0 −
1

�
ln�q3qint� −

1

�
�ln���3P� − ln�Zint�� , �2�

where �=1 /kBT; kB and T are the Boltzmann constant and
the absolute temperature, respectively. V0 is the �positive�
depth of the surface potential, q3 is the single particle parti-
tion function of an adsorbed particle, qint is the internal par-
tition function for �frustrated� vibrations and rotations of the
adsorbed molecule; P is the pressure in the gas phase above
the surface and �=h /�2�mkBT is the thermal wavelength of
the adparticle with mass m, the partition function of which
for �free� vibrations and rotations is Zint.

One introduces a function P�n , t� which gives the prob-
ability that a given microscopic configuration n
= �n1 ,n2 , . . . ,nM� is realized at time t, where M is the total
number of adsorption sites on the surface. It satisfies a mas-
ter equation

dP�n;t�
dt

= �
n�

�W�n;n��P�n�;t� − W�n�;n�P�n;t�� , �3�

where W�n� ;n� is the transition probability that the mi-
crostate n changes into n� per unit time. It satisfies detailed
balance

W�n�;n�P0�n� = W�n;n��P0�n�� , �4�

where
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P0�n� = Z−1 exp�− �H�n�� �5�

is the equilibrium probability and Z is the partition function
given by

Z = �
	n


e−�H�n�. �6�

In principle, W�n� ;n� must be calculated from a Hamil-
tonian that includes, in addition to Eq. �1�, coupling terms to
the gas phase and the solid that mediate mass and energy
exchange. However, depending of the system, different ex-
pressions for transition probabilities can be proposed. In
transition dynamic approximation �41,45�, transition rates
cannot be factorized into one part that depends only on the
interaction energy and another that depends only on the field
energy �34� �hard dynamic �35��.

Usually, one follows the procedure introduced by Glauber
and guesses an appropriate form for W�n� ;n�. One further
assumes that the duration of an individual transition, e.g.,
hopping to a neighboring site, is much shorter than the resi-
dence time in the initial state. In this situation there will be
only one transition at any given time and the total transition
probability as a sum of individual terms can be written.

In order to analyze the simplest case, let us consider the
one-dimensional lattice gas with nearest-neighbor interac-
tions where only direct adsorption and desorption processes
are taken into account �no other processes are considered�, in
this case, the transition probability can be written as

Wad-des�n�;n� = �
i

	wa�1 − ni��A0 + A1�ni−1 + ni+1�

+ A2ni−1ni+1� + wdni�D0 + D1�ni−1 + ni+1�

+ D2ni−1ni+1�
��ni�,1 − ni�� j�i��nj�,nj� .

�7�

Here adsorption into site i occurs if ni=0 initially, with a rate
controlled by prospective neighbors if Ai�0. The Kronecker
� for sites j� i excludes multiple transitions.

The motion equation for coverage can be obtained by
multiplying the master equation by occupation number ni
and summing overall sites. Thus one can obtain the follow-
ing expression for the coverage �8–10,23,50,61�:

d	

dt
= wa�A0��� + 2A1���� + A2������

− wd�D0��� + 2D1���� + D2������ . �8�

���, ����, �����, ���, ����, and ����� symbols rep-
resent correlation functions. Here and elsewhere, some inter-
mediate factorizations and manipulations of correlators are
conveniently carried out in diagrammatic form. For example,
���� denotes the average occupation number for the second
order moment which evaluates the probability that the site
located at the right of an occupied site would be empty. With
the same procedure the rate equations for the next correlation
functions for three independent sites can be written as

d����
dt

= 2wa��A0 + A1����� + �A1 + A2�������

− 2wd��D0 + D1����� + �D1 + D2������� ,

�9�

d�����
dt

= wa�2A0����� + 2A1������

− �A0 + 2A1 + A2�������

− wd�2D0����� + 2D1������

− �D0 + 2D1 + D2������� , �10�

d�����
dt

= wa�2�A0 + A1������ + �A0 + 2A1 + A2������

+ 2�A1 + A2��������

− wd��3D0 + 4D1 + D2������

+ 2�D1 + D2�������� . �11�

The detailed balance principle imposes a set of restrictions
on the coefficients Ai and Di �22� are

waA0 = wdD0e−�Es, �12�

wa�A0 + A1� = wd�D0 + D1�e−��Es+V�, �13�

and

wa�A0 + 2A1 + A2� = wd�D0 + 2D1 + D2�e−��Es+2V�. �14�

Note that in general wa and wd cannot be fixed by detailed
balance because they contain the information about the en-
ergy exchange with the solid in the adsorption and desorp-
tion processes not present in the static lattice gas Hamil-
tonian �22�. However, if one considers that wa=wd=w0, and
by comparison with the phenomenological expression for ad-
sorption, one can identify it as

w0 =
P�as

h
, �15�

where as is the area of a surface unit cell. It contains the
dynamic information about the energy transfer from the ad-
sorbing particle to the solid which gives rise to its tempera-
ture dependence, for instance, an exponential Boltzmann fac-
tor for activated adsorption. It can be calculated only on the
basis of a dynamic theory that accounts for the coupling of
the ad-particles to the vibrational and electronic degrees of
freedom of the substrate, and must be postulated ad hoc
within the context of the kinetic lattice gas model.

The long-range interaction introduces similar constraints
on the other coefficients. Each such constraints introduces
two new coefficients. However, detailed balance provides
only half the number of relations to fix these unknown coef-
ficients in the transition probabilities. Again, the static �lat-
tice gas� Hamiltonian cannot completely dictate the kind of
kinetic possible in the system. As it is pointed out in Refs.
�15,19,22�, any functional relation between the A and D co-
efficients must be postulated ad hoc, or calculated from a
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microscopic Hamiltonian that accounts for coupling of the
adsorbate to the lattice or electronic degrees of freedom of
the substrate. In the next section two different relations
among the adsorption and desorption coefficients are ana-
lyzed.

III. LINEAR RELATIONS BETWEEN ADSORPTION AND
DESORPTION COEFFICIENTS

A linear relationship between the Ai and Di coefficients is
proposed �case K1� as

Ai

A0
= �

Di

D0
, �16�

for i=1,2, where � is a proportionality coefficient. Note that
this linear relation was previously proposed in Refs.
�15,19,22�, where A0=1 has been considered. The detailed
balance principle imposes

D1 = D0� e�V − 1

1 − �e�V� �17�

and

D2 = D0� e2�V − 1

1 − �e2�V� − 2D1. �18�

Other possible choice of the parameters Ai and Di, which
fulfill the detailed balance and leads to a new formulation of
the adsorption-desorption kinetic is �case K2�

A2 = �A1 �19�

and

D2 = �D1. �20�

Considering only nearest-neighbor interactions one can
replace Eqs. �19� and �20� in Eqs. �13� and �14� and find the
following expressions for the coefficients:

A1 = A0� �2 + ��e−�V − �1 + ��e−2�V − 1

�2 + ���1 − e−�V� � �21�

and

D1 = D0� �1 + ��e�V − �2 + �� + e−�V

�2 + ���1 − e−�V� � . �22�

When adsorption and desorption coefficients are determined,
the properties of the system such as adsorption isotherms,
sticking coefficient and thermal desorption �TPD� spectra
can be obtained.

However, to analyze correctly the consequences of the
linear relations assumed above, let us introduce the following
identities �62�:

��� = ����� + 2����� + ����� �23�

and

���� = ����� + ����� . �24�

In such way, one can easily obtain alternative expressions for
the equations �8�–�11�, namely,

d	

dt
= w0��A0������ + 2�A0 + A1������

+ �A0 + 2A1 + A2������� − w0��D0������

+ 2�D0 + D1������ + �D0 + 2D1 + D2������� ,

�25�

d����
dt

= 2w0��A0 + A1������ + �A0 + 2A1 + A2�������

− 2w0��D0 + D1������

+ �D0 + 2D1 + D2������� , �26�

d�����
dt

= w0�2�A0������� + 2�A0 + A1�������

− �A0 + 2A1 + A2�������

− �A0 + 2A1 + A2��������

− w0�2�D0������� + 2�D0 + D1�������

− �D0 + 2D1 + D2�������

− �D0 + 2D1 + D2�������� , �27�

d�����
dt

= w0�2�A0 + A1�������

+ 3�A0 + 2A1 + A2�������

+ �A0 + 2A1 + A2��������

− w0	�2�D0 + D1� + �D0 + 2D1 + D2��������

+ 3�D0 + 2D1 + D2�������
 . �28�

Note that �����, �����, �����, �����, �����, and
�����, as well as ������, ������, ������,
������, ������, ������, and ������ are mutually
exclusive conditional probabilities, therefore each of the pa-
rentheses in Eqs. �25�–�28� must be positive. After some al-
gebra one can obtain the following inequalities:

Qads
0 = A0 
 0, �29�

Qads
1 = �A0 + A1� 
 0, �30�

Qads
2 = �A0 + 2A1 + A2� 
 0, �31�

Qdes
0 = D0 
 0, �32�

Qdes
1 = �D0 + D1� 
 0, �33�

and

Qdes
2 = �D0 + 2D1 + D2� 
 0. �34�

It it easy to see that Eqs. �29�–�34� impose new restrictions
on the Ai and Di coefficients. If these additional restrictions
are applied to the two proposed kinetics, certain values of �
are not allowed. These forbidden values depend on the lateral
interaction V and they are shown in the diagrams of Fig. 1�a�
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and 1�b� for the K1 and K2 kinetics, respectively.
Region I corresponds to those values of � and V which

make positive all the coefficients in Eqs. �29�–�34�. Region II
corresponds to those values of the parameters which make
Qads

1 
0, Qdes
1 
0, Qads

2 �0, and Qdes
2 �0 �intermediate re-

gion�. Region III corresponds to those values of � and V
which make all the coefficients negative �except Qads

0 and
Qdes

0 �, Qads
1 �0, Qads

2 �0, Qdes
1 �0, and Qdes

2 �0 �forbidden re-
gion�.

To calculate the exact solution for adsorption isotherm the
two first rate equations �Eqs. �25� and �26�� must be set equal
to zero �23,61�. To calculate the sticking coefficient one uses
the following definition �16�:

S�	,T� = A0��� + 2A1���� + A2����� . �35�

The exact solution for TPD spectra of immobile particles
is obtained by solving the rate equations for the first four
correlations �Eqs. �25�–�28��, where the adsorption terms are
neglected �23,61,63�. In all TPD spectra the desorption is
considered as an activated process. Where the activation en-
ergy is 10 kcal /mol, the pre-exponential factor is 1013 s−1

and the initial coverage is 	0=0.9.
The adsorption isotherms, sticking coefficients and TPD

spectra for immobile adsorbate are shown in Figs. 2, 3, and

4, respectively. For those values of � out of the allowed
region, the first derivative of the isotherm as a function of the
chemical potential presents a discontinuity, and both the
sticking coefficient and TPD spectra take negative values.
These behaviors are certainly anomalous.

For values of � belonging to the allowed region the be-
havior of the observables do not present any inconsistencies.
Although the physical meaning of the relations given in Eqs.
�16�, �19�, and �20� is not clear, it seems to be perfectly valid
in view that they fulfill the detailed balance. However, it
must have certain coherence in the behavior of the observ-
ables according to the lateral interaction. For example, when
repulsive lateral interaction is considered, the adsorption iso-
therms for monomers present a characteristic plateau at cov-
erage 	=1 /2 for low enough temperature. This is due to an
ordering of the adsorbed particles, namely, there is an alter-
nation between particles and vacancies. For the same inter-
action the sticking coefficient will be below the straight line
S�	 ,T� /S0�T�=1−	, which corresponds to the Langmuir ki-
netic �null interaction� �16�. Finally, the immobile TPD for
high initial coverages will have three peaks, as expected
�64,65�. This behavior cannot be reproduced by using one of
the proposals K1 or K2.

FIG. 1. Diagram � versus �V corresponding to �a� K1 and �b�
K2 proposed kinetics.

FIG. 2. Adsorption isotherms for different values of the param-
eter � and for two linear proposed kinetics. �a� Attractive and �b�
repulsive lateral interaction.
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Moreover, in the framework of proposal K1, the three
peaks in the immobile TPD can be observed only in the limit
�→0. However, this value of � corresponds to the Langmuir
kinetic.

As is discussed here the relation among the adsorption
and desorption coefficients must be carefully chosen. In par-
ticular, linear relations between them, as is proposed by
Kreuzer and co-workers in Refs. �15,19,22� are not valid in
general and some values of the parameter � and V are not
allowed. In fact, the observables obtained for those values of
� and V are ill behaved. Clearly, the detailed balance prin-
ciple is not enough to guarantee the correct behavior of the
kinetic and deeper analysis must be done to choose the func-
tional relation between the A and D coefficients.

IV. TRANSITION STATE THEORY AND THE
ADSORPTION AND DESORPTION COEFFICIENTS

A theoretical calculation of the rate of an elementary
physicochemical processes is a rather complicated proce-
dure. This is true both for the description of the dynamic of
the interaction on the atomic level and for statistical averag-
ing over all the possible initial states of the system under
investigation. Adsorption and desorption are examples of

physicochemical rate processes occurring at thermal condi-
tions. The transition state theory provides a way to obtain the
constant rates of the involved processes throughout the
knowledge of the appropriate kinetic equation �12,54–59�.
To describe the kinetic of monomolecular adsorption and de-
sorption on uniform surface by using TST let us introduce
the following expression for the coverage rate equation:

d	

dt
= kaP − kd	 , �36�

where

ka = �1 − 	�ka
0�

i

P0,i exp�− ��
i
*� �37�

and

kd = kd
0�

i

PA,i exp�− ���
i
* − �i�� . �38�

In these equations, P0,i is the conditional probability that a
vacant site has the environment denoted by index i and PA,i
is a similar conditional probability for an adsorbed particle.
In the framework of TST, ka

0 and kd
0 are the adsorption and

desorption constants corresponding to the low-coverage

FIG. 3. Sticking coefficients for different values of the param-
eter � and for two linear proposed kinetics. �a� Attractive and �b�
repulsive lateral interaction.

FIG. 4. Immobile TPD for different values of the parameter �
and for two linear proposed kinetics. �a� Attractive and �b� repulsive
lateral interaction.
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limit; �i and �
i
* are the lateral interactions �with neighbors� in

the initial �ground� and activated �transition� states. These
interactions can be calculated by using DFT �66–74�. Note
that Eq. �36� is a purely phenomenological expression. Cor-
relations can be included by using pair approximations, such
as the quasichemical or even more sophisticated approxima-
tions �12�. Although in the case of the nearest-neighbor in-
teractions the quasichemical approximation is accurate pro-
vided that surface diffusion is fast and the adsorbed
overlayer is close to equilibrium, its applicability is limited
in general. In fact, to obtain the exact solution for the immo-
bile thermal desorption, one needs to solve the first four cor-
relations �Eqs. �25�–�28��, where the adsorption terms are
neglected �23,61,63�.

Density-functional theory calculations for a number of
systems have shown that there are generally more than one
interactions of appreciable magnitude between adsorbates.
Analysis of the heat of adsorption as a function of coverage
�72� phase diagrams of adlayers �73,74�, and other experi-
ments point to the same fact.

In order to obtain additional information about the values
of the adsorption and desorption coefficients, one can rewrite
Eq. �36� considering a 1D system with nearest-neighbor in-
teraction as

d	

dt
= Pka

0e�Es/2������e−��Es/2+�
0
*� + 2�����e−��Es/2+�

1
*�

+ �����e−��Es/2+�
2
*�� − kd

0e−�Es/2������e��Es/2−�
0
*+�0�

+ 2�����e��Es/2−�
1
*+�1� + �����e��Es/2−�

2
*+�2�� . �39�

In such way, one can identified the adsorption and desorption
coefficients

Qads
i = exp�− ��Es/2 + �

i
*�� �40�

and

Qdes
i = exp	��Es/2 − ��

i
* − �i��
 . �41�

The detailed balance principle imposes that

�i = iV . �42�

The TST does not imposes any restriction on the value of
the lateral interactions, either in the ground or activated
states. Although the lateral interactions can be calculated by
first principles methods, e.g., DFT, in some of the papers
related to desorption kinetics �65,75,76�, the lateral interac-
tion in the activated states is customarily believed to be weak
compared to other interactions and neglected �

i
*=0. One of

the reason is that at the UHV conditions the experimentalists
tend to study systems where the sticking coefficient is high at
all the coverages up to saturation. Clearly, this assumption
means that the sticking coefficient corresponds to a Lang-
muir adsorption kinetics, independently on the value of V.
However, in many situations important for practical cataly-
sis, e.g., TPD in real systems �see Refs. �77,78��, or reaction
kinetics �79� �

i
*�0 are available as well. From physical con-

siderations relations between both parameters �i and �
i
* can

be deduced. To this purpose, let us write the expression for
sticking coefficient by using Eqs. �23�, �24�, and �39� as

S�	,T� = S0�T��e−��
0
*��� + 2�e−��

1
*

− e−��
0
*�����

+ �e−��
2
*

− 2e−��
1
*

+ e−��
0
*������� . �43�

The sticking coefficient at zero coverage is a function of
temperature S�	=0,T�=S0�T� �see Refs. �80–82��, and is in-
dependent on any lateral interaction, then �

0
*=0. Therefore,

Eq. �43� can be written as

S�	,T� = S0�T���1 − 	� + 2�e−��
1
*

− 1�����

+ �e−��
2
*

− 2e−��
1
*

+ 1������� , �44�

where, from Eqs. �15� and �36�

S0�T� =
ka

0h

�as
. �45�

Assuming that the energy transfer in the adsorption pro-
cess takes place within angstroms of the surface, the adsorb-
ing particles actually experiences the interaction with par-
ticles already adsorbed on neighboring sites in more or less
the same way as desorbing particles do, i.e., a lateral repul-
sion �attraction� will aid �hinder� desorption and conversely
for adsorption as is discussed by many authors �16,22�.
Therefore, it seems to be plausible that for attractive lateral
interaction �V�0� the next relation should be fulfilled:

2�e−��
1
*

− 1����� + �e−��
2
*

− 2e−��
1
*

+ 1������  0,

�46�

similarly, for repulsive lateral interaction �V0�:

2�e−��
1
*

− 1����� + �e−��
2
*

− 2e−��
1
*

+ 1������ � 0.

�47�

Equations �46� and �47� determine the allowed values for �
1
*

and �
2
* as a function of coverage and ground state lateral

interaction V. For V=0, one easily deduces that �
1
*=0 and

�
2
*=0. From those equations, one also obtain that the lateral

interaction in the activated state must have the same sign that
the lateral interaction in the ground state.

Due to the fact that TST does not imposes any restriction
on the value and sign of the lateral interaction, in both the
ground and activated states, then several scenarios can be
obtained for the desorption processes. Particularly, the pres-
ence of three peaks in the TPD curves of immobile particles
is not exclusive of the repulsive lateral interactions. More-
over, one can obtain a TPD curve with three peaks, with both
the activated and ground lateral interaction attractive, while
the sticking coefficient for these interactions is higher than
the Langmuirs sticking coefficient. Moreover, one can obtain
a TPD spectra with only one peak for repulsive lateral inter-
actions, which temperature corresponding to the peak is
higher than the non-interacting case. These results are cer-
tainly unexpected.

In many cases, TST can be combined with the Brönsted-
Polanyi-type relations between the lateral interactions in the
ground and activated states �83�, for instance,
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�
i
* =

iV

2
�48�

and an inverse relation between the A and D coefficients is
found:

A0 =
1

D0
, �49�

A0 + A1 =
1

D0 + D1
, �50�

and

A0 + 2A1 + A2 =
1

D0 + 2D1 + D2
. �51�

After some algebra, one can easily obtain the following ex-
pressions for the A and D coefficients:

A0 = exp�− �Es/2� , �52�

D0 = exp��Es/2� , �53�

A1 = exp�− �Es/2��exp�− �V/2� − 1� , �54�

D1 = exp��Es/2��exp��V/2� − 1� , �55�

A2 = exp�− �Es/2��exp�− �V/2� − 1�2, �56�

and

D2 = exp��Es/2��exp��V/2� − 1�2. �57�

In Figs. 5�a�–5�c�, the adsorption isotherms, sticking coeffi-
cients and TPD spectra for different lateral interaction using
the above formulation, are shown. As is observed, there are
coherence between the behavior of the observables. In the
framework of the TST, the observables obtained by using
those values of the transition state lateral interaction that sat-
isfies the inequalities given in Eqs. �46� and �47�, do not
present any anomalous behavior.

V. SUMMARY AND CONCLUSIONS

In this work, the adsorption-desorption kinetic in the
framework of the one-dimensional lattice gas model with
nearest-neighbor lateral interaction is considered. The master
equation approach has been used to derive the rate equations
for coverage and higher correlations, which give the equilib-
rium and nonequilibrium properties of the system. In order to
obtain those equations, transition probabilities are written in
terms of the occupation configurations. In such way, the de-
tail balance principle imposes a set of restrictions on the
adsorption �Ai� and desorption �Di� coefficients. However, it
determines half of them. To overcome such difficulty differ-
ent functional relations among those coefficients can be pos-
tulated, the simplest one is a linear relation. However, it is
observed that, when rate equations are written in terms of
mutually exclusive conditional probabilities, additional con-
strains appear on Ai and Di coefficients. These are rather

restrictive because not all the values of the lateral interac-
tions �V� and linear parameter ��� are allowed. Moreover, the
kinetics obtained for some values of these parameters are
wrong, or at least, the equilibrium and nonequilibrium ob-
servables present anomalous behaviors. The diagrams of the
allowed and forbidden values as a function of the parameters
V and �, as well as the adsorption isotherms, sticking coef-
ficient and TPD spectra for two different linear relations are
showed. Three well-defined regions emerge from these dia-
grams in both cases. �i� The allowed region, where the
adsorption-desorption kinetics is well behaved, i.e., the iso-
therms, sticking coefficients and the TPD spectra are well
behaved too. It is also observed that Langmuir �Ai=0� and
interaction kinetics �Ai=−Di� belong to this region. �ii� The

FIG. 5. �a� Adsorption isotherms, �b� sticking coefficients, and
�c� immobile TPD, for attractive �dot�, repulsive �dash�, and null
�line� interaction, using the inverse relation L3.
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intermediate region, where the first derivative of the adsorp-
tion isotherms is discontinuous. This result is not possible in
a one-dimensional lattice gas with nearest-neighbor lateral
interaction. �iii� The forbidden region, where the adsorption
isotherms behave like in region II and sticking coefficients
are negative.

A third formulation based on the TST is introduced. From
physical considerations on the behavior of the sticking coef-
ficient, one concludes that additional relations should be ful-
filled by the lateral interactions in the activated states. In
addition, that no restriction is imposed by the TST on the
value and sign of the interactions, therefore several scenarios
can be obtained in the desorption processes depending on
these values. Some of them are unexpected, i.e., the presence
of three peaks in the TPD curves of immobile adsorbate is
not exclusive of the repulsive lateral interactions. Consider-
ing the lateral interaction in the transition state as half of the
lateral interaction in the ground state �the standard Brönsted-
Polanyi relation� an inverse relation among adsorption and
desorption coefficients is obtained.

As a general conclusion, the detailed balance principle is
not enough to guarantee the correct behavior of the kinetic.

The linear relations among the adsorption and desorption
coefficients are not general and some values of the V and �
are not allowed. TST seems to be more adequate to analysis
the adsorption desorption kinetic. On the other hand, both
linear relations as well the inverse relation belong to the so
called soft dynamics, where transition probabilities factorize
into a part due only to the change in the field energy and a
part due only to the change in the interaction energy.

Finally, it is important to emphasize that, even when the
treatment has been done in a one-dimensional system, the
results seem to be general and they do not depend on the
dimensionality. However, the extension to higher dimen-
sions, the incorporation of next-nearest neighbor interac-
tions, as well as of diffusion terms should be done in the
future.
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