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a b s t r a c t

A simple statistical mechanical approach for studying multilayer adsorption of interacting rigid molecu-
lar chains of length k (k-mers) has been presented. The new theoretical framework has been developed on
a generalization in the spirit of the lattice-gas model and the classical Bragg–Williams (BWA) and quasi-
chemical (QCA) approximations. The derivation of the equilibrium equations allows the extension of the
well-known Brunauer–Emmet–Teller (BET) isotherm to more complex systems. The formalism repro-
duces the classical theory for monomers, leads to the exact statistical thermodynamics of interacting
k-mers adsorbed in one dimension, and provides a close approximation for two-dimensional systems
accounting multisite occupancy and lateral interactions in the first layer. Comparisons between analytical
data and Monte Carlo simulations were performed in order to test the validity of the theoretical model.
The study showed that: (i) the resulting thermodynamic description obtained from QCA is significantly
better than that obtained from BWA and still mathematically handable; (ii) for non-interacting k-mers,
the BET equation leads to an underestimate of the true monolayer volume; (iii) attractive lateral interac-
tions compensate the effect of the multisite occupancy and the monolayer volume predicted by BET
equation agrees very well with the corresponding true value; and (iv) repulsive couplings between the
ad-molecules hamper the formation of the monolayer and the BET results are not good (even worse than
those obtained in the non-interacting case).

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Adsorption on solid surfaces is a complex phenomenon [1–5],
which implies a series of questions about the nature of the forces
binding foreign molecules to a surface and about the thermody-
namic behavior of the system. Although the problem of the forces
is still far from being elucidated, a large amount of interest has
been devoted to the study of statistical properties, within the
frame of simplified models for both monolayer and multilayer
adsorption. In 1918 Langmuir derived the monolayer adsorption
isotherm kinetically for gas molecules adsorbed on the homoge-
neous surface of adsorbents without attractions among the ad-
sorbed molecules [6]. After that Brunauer et al. [7], based on a
model of localized adsorption, developed the most important the-
ory of multilayer adsorption. Their equation, the BET isotherm, was
the first and the most useful, covering the complete range of pres-
sures up to p0, the saturation pressure. Later, Hill [1] derived the
BET isotherm statistically on a group of homogeneous adsorption
sites for the multilayer adsorption since it was derived kinetically

by Brunauer, Emmett and Teller. It is found to be in good agree-
ment with some experimental data for relative pressures less than
about 0.5 [8].

But the theoretical BET isotherm deals with the common
assumption that each ad-molecule occupies one adsorption site
of the surface. However, most adsorbates involved in experiments
are polyatomic; hence, the theoretical description of their thermo-
dynamic properties is a topic of much interest in adsorption the-
ory.1 Leading contributions to this subject, generically called
multisite occupancy adsorption, have been presented by Flory
[9], Huggins [10], Guggenheim [11], DiMarzio [12], Nitta et al.
[13] and Rudzinski et al. [14] through approximate treatments of
monolayer adsorption on homogeneous and heterogeneous
surfaces. Aranovich and Donohue [15,16] derived a multilayer
adsorption isotherm, which is not limited by the functional form
of the monolayer adsorption isotherm and should be capable to in-
clude multisite occupancy (with an adequate choice of a fitting
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1 Even for simple gases such as oxygen, nitrogen and carbon monoxide, which
basically are not altered in their molecular dimensions under physical adsorption, the
adsorption energy depends in general on the orientation of the molecule in the
adsorbed state.
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parameter). The closed exact solution for the multilayer adsorption
isotherm of dimers, along with the basis for calculating adsorption
thermodynamics of homonuclear polyatomic molecules (k-mers)
on one- (1D) and two-dimensional (2D) substrates, have been re-
cently presented [17,18]. This rigorous thermodynamic study dem-
onstrated that the entropic contribution of non-spherical
adsorbates is significant in the multilayer regime when compared
with monoatomic adsorption. Thus, the determinations of surface
areas and adsorption energies from polyatomic adsorbate adsorp-
tion may be severely misestimated, if this polyatomic character
is not properly incorporated in the thermodynamic functions from
which experiments are interpreted.

There is another important physical fact which has not been
sufficiently studied; namely, the effect of the lateral interactions
between the ad-molecules in presence of multilayer adsorption.
A seminal contribution to this subject was done by Dreyfus et al.
[19], who included lateral interactions between the atoms inside
a given layer by using mean-field approximation. More recently,
the influence of the lateral interactions on the phase transitions
occurring in the adsorbed layer has been studied [20–22]. On the
other hand, effects coming from lateral interactions, multisite
occupancy and surface heterogeneity have been analyzed in the
interesting paper by Nikitas [23]. In Ref. [23], the author concludes
that: (1) one can obtain an underestimation of the true monolayer
capacity of the order of 25% when the adsorbate occupies more
than one lattice site, and this underestimation will become worse
if the effect of the multisite occupancy is coupled with heterogene-
ity effects and (2) the attractive interactions in the gas adsorption
lead always to a weak overestimation of the monolayer volume.

In this context, the aim of the present work is to extend the
treatment of Refs. [17,18] to include lateral interactions in the
adsorbate. Here, we introduce nearest-neighbor interactions be-
tween the molecules adsorbed in the first layer,2 by following
the configuration-counting procedure of the Bragg–Williams ap-
proach and the quasi-chemical approximation. In addition, Monte
Carlo (MC) simulations are performed in order to test the validity
of the theoretical model. The new theoretical scheme allows us:
(1) to reproduce the classical theory for monomers [1,5]; (2) to de-
velop a closed exact expression for the multilayer adsorption iso-
therm of interacting k-mers on 1D chains; (3) to obtain an
accurate approximation for multilayer adsorption on 2D substrates
accounting multisite occupancy and lateral interactions; and (4) to
provide a simple model from which experiments may be
reinterpreted.

The present work is organized as follows: in Section 2, the the-
oretical formalism along with the basis of the MC method are pre-
sented. In Section 3, the results of the theoretical model are shown
and discussed by comparing with MC simulations. Finally, conclu-
sions are drawn in Section 4.

2. Basic definitions: adsorption model and Monte Carlo
simulation

2.1. Model

In this section we present the lattice-gas model for the adsorp-
tion of particles with multisite occupancy in the multilayer regime.
The adsorbent is a homogeneous lattice of sites with coordination
number f. The adsorbate is assumed as linear molecules having

k-identical units (k-mers) each of which occupies an adsorption
site. Furthermore (i) a k-mer can adsorb exactly onto an already
adsorbed one; (ii) attractive and repulsive lateral interactions are
considered in the first layer and horizontal interactions are ignored
in higher layers; (iii) the adsorption heat in all layers, except the
first one, equals the molar heat of condensation of the adsorbate
in bulk liquid phase. Thus, c ¼ q1=qi ¼ q1=q with qi ¼ q ði ¼ 2;
. . . ;1Þ denotes the ratio between the single-molecule partition
functions in the first and higher layers [17]. The fact that k-mers
can arrange in the first layer leaving sequences of l empty sites
with l < k, where no further adsorption of a k-mer can occur in
such a configuration, makes the calculation of entropy much elab-
orated than the one for monomer adsorption.

To describe a system of N k-mers adsorbed on M sites at a given
temperature T, let us introduce the occupation variable si which
can take the values si ¼ 0 or 1, if the site i is empty or occupied
by a k-mer unit, respectively. Under these conditions, the Hamilto-
nian of the system is given by

H ¼
XM

i¼1

�1si þ k�ðN � N1Þ þ
X
hi;ji

wsisj � N1ðk� 1Þw; ð1Þ

where �1ð�Þ represents the adsorption energy of a k-mer unit on the
first layer (higher layers); N1 ¼

PM
i¼1si=k is the number of k-mers

adsorbed on the first layer; w is the lateral interaction energy be-
tween two nearest-neighbor (NN) units belonging to different k-
mers adsorbed in the first layer (we use w > 0 for repulsive and
w < 0 for attractive interactions) and hi; ji represents pairs of NN
sites. The term N1ðk� 1Þw is subtracted in Eq. (1) since the summa-
tion over all the pairs of NN sites overestimates the total energy by
including N1ðk� 1Þ bonds belonging to the N1 adsorbed k-mers.

2.2. Theory

From a theoretical point of view, when intermolecular forces
are introduced (in our case, NN interactions in the first layer), an
extra term in the partition function for interaction energy is re-
quired. With this extra term, only partition functions for the whole
system can be written. Ising [24] gave an exact solution to the 1D
monolayer in 1925. All other cases are expressed in terms of series
solution [1,25], except for the special case of 2D monolayers at
half-coverage, which was exactly solved by Onsager [26] in 1944.
Close approximate solutions in dimensions higher than one can
be obtained, and the two most important of these are the Bragg–
Williams approximation (BWA) [1] and the quasi-chemical
approximation (QCA) [1,27]. These leading models have played a
central role in the study of adsorption systems in presence of lat-
eral interactions between the adatoms. Next, we apply BWA and
QCA to study multilayer adsorption of interacting k-mers.

The BWA is the simplest mean-field treatment for interacting
adsorbed particles, even in the case of multilayer adsorption and
multisite occupancy. For a lattice having M adsorption sites, the
maximum number of columns that can be grown up onto it is
nmax ¼ M=k. If an infinite number of layers is allowed to develop
on the surface, the grand partition function, N, of the adlayer in
equilibrium with a gas phase at chemical potential l and temper-
ature T, is given by

N ¼
Xnmax

n¼0

nnXkðn;M; fÞ exp½�bEkðn;MÞ�; ð2Þ

where n is the grand partition function of a single column of k-mers
having at least one k-mer in the first layer; Xkðn;M; fÞ is the total
number of distinguishable configurations of n columns on M sites
with connectivity f and Ekðn;MÞ is the mean total energy of the sys-
tem assuming that the n columns are randomly distributed over the
lattice.

2 As it is well-known, BET equation can be applied at coverage not greatly
exceeding (statistically) monolayer coverage. Thus, although the contribution from
the secondary adsorption can already be significant, the density of the molecules in
the second and higher adlayers is expected to be much lower than that in the first
adsorbed layer. Therefore, it seems to be satisfactorily enough to take into account
only the interactions between the primarily adsorbed molecules [1].
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Then

n ¼
X1
i¼1

q1qi�1ki ¼ c
X1
i¼1

qiki ¼ ckq
1� kq

¼ cx
1� x

; ð3Þ

where k ¼ expðl=kBTÞ is the fugacity and kB is the Boltzmann con-
stant. In addition, it is possible to demonstrate that x ¼ kq ¼ p=po

is the relative pressure [5,17].
Xkðn;M; fÞ can be approximated considering that the columns

are distributed completely at random on the lattice and assuming
the arguments given by different authors [28–30] to relate the con-
figurational factor Xkðn;M; fÞ for any f, with the same quantity in
the 1D case ðf ¼ 2Þ. Thus

Xkðn;M; fÞ ¼ gðf; kÞnXkðn;M;2Þ; ð4Þ
where gðf; kÞ is, in general, a function of the connectivity and the
size of the molecules. In the particular case of rigid straight k-mers
it follows that gðf; kÞ ¼ f=2. In addition, Xkðn;M;2Þ can be readily
calculated [30] giving

Xkðn;M;2Þ ¼ ½M � ðk� 1Þn�!
n!½M � kn�! : ð5Þ

On the other hand, Ekðn;MÞ needs to be calculated. For this purpose,
let us consider the number of NN of a k-mer (column) adsorbed in
the first layer

z ¼ ½2ðf� 1Þ þ ðk� 2Þðf� 2Þ�; ð6Þ
where the first term in the RHS of Eq. (6) is the number of NN con-
nected to both extremes of the k-mer and the second term is due to
the NN connected to the k� 2 inner units of the molecule. The prob-
ability that one of the NN is filled by molecules is equal to kn=M
(random distribution of molecules among sites). Then, the mean
number of pairs of filled sites is given by

Ekðn;MÞ ¼
1
2

n½2ðf� 1Þ þ ðk� 2Þðf� 2Þ� kn
M

� �
¼ zkn2

2M
: ð7Þ

Then, the grand partition function can be written as

N ¼
Xnmax

n¼0

½gðf; kÞn�n ½M � ðk� 1Þn�!
n!½M � kn�! exp �bwzkn2

2M

 !
: ð8Þ

When w ¼ 0, the summation in Eq. (8) can be performed very easily.
In the more general case w–0, the summation cannot be done in an
easy way, but we can apply the method of the maximum term.
Then, the sum in Eq. (8) is replaced by its maximum term, found
from the condition @ ln t

@n ¼ 0, being tðn;M; TÞ ¼ ½gn�n ½M�ðk�1Þn�!
n!½M�kn�!

expð� bwzkn2

2M Þ. Thus

lngn�bwzkn1

M
�ðk�1Þ ln½M�ðk�1Þn1�� lnn1þk lnðM�kn1Þ¼0;

ð9Þ

where n1 is the value of n giving the maximum term in the sum in
Eq. (8).

Introducing n1 in Eq. (8) and applying Stirling’s approximation,
ln N is given by

ln N ¼ n1 ln gn� bwzkn2
1

2M
þ ½M � ðk� 1Þn1� ln½M � ðk� 1Þn1�

� n1 ln n1 � ðM � kn1Þ lnðM � kn1Þ: ð10Þ

The average number of the molecules in the adsorption system N is

N ¼ kBT
@ ln N
@l

� �
T;M

: ð11Þ

Then

@ ln N
@l

� �
T;M

¼ n01 lngnþ n1
n0

n
� bwzkn1n01

M
� ðk� 1Þn01 ln½M

� ðk� 1Þn1� � n01 ln n1 þ kn01 lnðM � kn1Þ; ð12Þ

where n01 ¼
@n1
@l and n0 has the following explicit form:

n0 ¼ @n
@l
¼ 1

kBT
q1 expðl=kBTÞ

½1� q expðl=kBTÞ�2
: ð13Þ

Inserting the condition Eq. (9) into Eq. (12), we obtain

@ ln N
@l

� �
T;M
¼ n1

n0

n
: ð14Þ

Considering now Eqs. (9), (11), (13) and (14), the adsorption iso-
therm equation can be obtained. In the case of adsorbed monomers
(k ¼ 1;g ¼ 1), Eq. (9) can be written as

ln n� bwzn1

M
� ln n1 þ lnðM � n1Þ ¼ 0 ð15Þ

and

h1 ¼
n1

M
¼ n expð�bwzh1Þ

1þ n expð�bwzh1Þ
; ð16Þ

where h1 ¼ kn1=M is the monolayer coverage, being h ¼ kN=M the
total coverage. Then, from Eqs. (3), (11), (13) and (16)

h ¼ N
M
¼ kBT

@ ln N
@l

� �
T;M

¼ 1
1� q expðl=kBTÞ

� �

� q1 expðl=kBT �wzh1=kBTÞ
1� q expð�l=kBTÞ þ q1 expðl=kBT �wzh1=kBTÞ

� �
; ð17Þ

which can be easily recognized as the classical BET equation if we
write it in the form

h ¼ 1
ð1� xÞ

c�x
ð1� xþ c�xÞ ; ð18Þ

where c� ¼ ðq1=qÞ expð�wzh1=kBTÞ.
For the case of dimers (k ¼ 2), Eq. (9) reduces to

lngn� bwzn1

M
� ln n1 � lnðM � n1Þ þ lnðM � 2n1Þ2 ¼ 0 ð19Þ

and

h1 ¼
2n1

M
¼ 1� 1

½1þ 4gn expð�bwzh1Þ�1=2 : ð20Þ

Using Eqs. (3), (11), (13) and (20) we obtain

h ¼ 2N
M
¼ 2kBT

@ ln N
@l

� �
T;M

¼ 1
1� q expðl=kBTÞ 1� 1

½1þ 4gn expð�bwzh1Þ�1=2

( )
ð21Þ

and, in terms of c� ¼ gðq1=qÞ expð�wzh1=kBTÞ and x

h ¼ 1
ð1� xÞ 1� 1� x

ð1þ 4c�x� xÞ

� �1=2
( )

: ð22Þ

Eq. (22) is similar to the recently reported multilayer isotherm
for non-interacting dimers [18]. In this case, taking into account
the lateral interactions between the primarily adsorbed mole-
cules adds to the adsorption energy the term bwzh1, which
represents the potential of the average force acting on an ad-
molecule in the first adsorbed layer from its NN in the first
layer.

For k > 2 the explicit expression of the adsorption isotherm
cannot be obtained in a easy way. However, the calculations for
large molecules can be easily done through a standard computing
procedure; in our case, we used Maple software.

An alternative method to calculate the multilayer adsorption
isotherm was recently reported in Ref. [18]. The theoretical proce-
dure can be described as follows:

982 G.D. García et al. / Surface Science 603 (2009) 980–991
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(1) By using h1 as a parameter (0 6 h1 6 1), the relative pressure
is obtained by using the condition

x ¼ 1
1þ ck�1

1

; ð23Þ

where k1 is the monolayer fugacity. This calculation requires
the knowledge of an analytical expression for the monolayer
adsorption isotherm, k1ðh1Þ.

(2) The values of h1 and x are introduced in

h ¼ h1

1� x
ð24Þ

and the total coverage is obtained.

The equivalence between both methodologies can be easily
understood. In fact, Eq. (23) can be obtained from Eq. (3) and the
maximum term condition Eq. (9). On the other hand, from Eqs.
(11), (13) and (14) and after some algebra, the total coverage can
be written in terms of the monolayer coverage, and Eq. (24) is
recovered. As an example, in the following we show the use of
the method in Ref. [18] to calculate the adsorption isotherms in
Eqs. (18) and (22):

We start from the equation

k1 ¼
h1

gðf; kÞk
1� ðk�1Þ

k h1

h ik�1

ð1� h1Þk
expðbzwh1Þ; ð25Þ

which represents the BWA isotherm of interacting k-mers adsorbed
at monolayer [31,32].

Substituting Eq. (25) into Eq. (23), one obtains the following
expression for the relative pressure:

p
po
¼

h1 1� ðk�1Þ
k h1

h ik�1
expðbzwh1Þ

cgðf; kÞkð1� h1Þk þ h1 1� ðk�1Þ
k h1

h ik�1
expðbzwh1Þ

: ð26Þ

Eqs. (24) and (26) represent the mean-field solution describing the
adsorption of interacting k-mers at multilayer regime on a homoge-
neous surface. In the case of monomer [dimer] adsorption, Eqs. (24)
and (26) reduce to Eq. (18) [(22)].

We now turn to the QCA, which is significantly better than the
BWA. The important assumption in this method is that pairs of NN
sites are treated as if they were independent of each other (this
assumption is, of course, not true, because the pairs overlap [1]).

In order to apply the scheme in Ref. [18], we start with the
monolayer adsorption isotherm of interacting k-mers adsorbed
on a lattice of connectivity f obtained from the formalism of QCA
[32]

k1 ¼
h1 expðbwz=2Þ

kgðf;kÞ 2
f

� �2ðk�1Þ

2
64

3
75 ð1�h1Þkðf�1Þ½k�ðk�1Þh1�k�1 zh1

2k �a
� 	z=2

fk
2 �ðk�1Þh1Þ
� 	k�1 f

2ð1�h1Þ�a
� 	kf=2 zh1

fk

� �z

2
64

3
75;
ð27Þ

where a is

a ¼ zf
2k

h1ð1� h1Þ
f
2� k�1

k


 �
h1 þ b

� 	 ; ð28Þ

b ¼ f
2
� k� 1

k

� �
h1

� �2

� zf
k

Ah1ð1� h1Þ
( )1=2

ð29Þ

and

A ¼ 1� expð�bwÞ: ð30Þ

Replacing Eq. (27) into Eq. (23), we obtain

p
po

� ��1

¼ 1þ
ckgðf; kÞ 2

f

� �2ðk�1Þ
fk
2 � ðk� 1Þh1Þ
� 	k�1 f

2 ð1� h1Þ � a
� 	kf=2 zh1

fk

� �z

h1 expðbwz=2Þð1� h1Þkðf�1Þ½k� ðk� 1Þh1�k�1 zh1
2k � a
� 	z=2 :

ð31Þ

Eqs. (24) and (31) represent the solution describing the multilayer
adsorption of interacting k-mers on homogeneous surfaces in the
framework of the QCA.

2.3. Monte Carlo simulation of adsorption in the grand canonical
ensemble

The adsorption process is simulated through a grand canonical
ensemble Monte Carlo (GCEMC) method [18].

For a given value of the temperature T and chemical potential l,
an initial configuration with N k-mers adsorbed at random posi-
tions (on kN sites) is generated. Then, an adsorption–desorption
process is started, where each elementary step is attempted with
a probability given by the Metropolis et al. [33] rule:

W ¼min 1; exp½�bðDH � lDNÞ�f g; ð32Þ

where DH and DN represent the difference between the Hamiltoni-
ans and the variation in the number of particles, respectively, when
the system changes from an initial state to a final state. In the pro-
cess there are four elementary ways to perform a change of the sys-
tem state, namely, adsorbing one molecule onto the surface,
desorbing one molecule from the surface, adsorbing one molecule
in the bulk liquid phase and desorbing one molecule from the bulk
liquid phase. In all cases, DN ¼ �1.

The algorithm to carry out one MC step (MCS), is the following:

(1) Set the value of the chemical potential l and the tempera-
ture T.

(2) Set an initial state by adsorbing N molecules in the system.
Each k-mer can adsorb in two different ways: (i) on a linear
array of (k) empty sites on the surface or (ii) exactly onto an
already adsorbed k-mer.

(3) Introduce an array, denoted as A, storing the coordinates of
ne entities, being ne

ne ¼ number of available adsorbed k-mers for desorption ðndÞ
þ number of available k-uples for adsorption ðnaÞ;

ð33Þ

where na is the sum of two terms: (i) the number of k-uples
of empty sites on the surface and (ii) the number of columns
of adsorbed k-mers.3

(4) Choose randomly one of the ne entities, and generate a ran-
dom number n 2 ½0;1�:
(4.1) if the selected entity is a k-uple of empty sites on the

surface then adsorb a k-mer if n 6Wsurf
ads , being Wsurf

ads

the transition probability of adsorbing one molecule
onto the surface.

(4.2) if the selected entity is a k-uple of empty sites on the
top of a column of height i, then adsorb a new k-mer
in the iþ 1 layer if n 6Wbulk

ads , being Wbulk
ads the transition

probability of adsorbing one molecule in the bulk
liquid phase.

(4.3) if the selected entity is a k-mer on the surface
then desorb the k-mer if n 6Wsurf

des , being Wsurf
des the

3 Note that the top of each column is an available k-uple for the adsorption of one
k-mer.

G.D. García et al. / Surface Science 603 (2009) 980–991 983
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transition probability of desorbing one molecule from
the surface.

(4.4) if the selected entity is a k-mer on the top of a column
then desorb the k-mer if n 6Wbulk

des , being Wbulk
des the

transition probability of desorbing one molecule from
the bulk liquid phase.

(5) If an adsorption (desorption) is accepted in (4), then, the
array A is updated.

(6) Repeat from step (4) M times.

In the present case, the equilibrium state could be well repro-
duced after discarding the first m � 106 MCS. Then, averages were
taken over m0 � 106 MCS successive configurations. The total cov-
erage was obtained as simple averages

h ¼ khNi
M

; ð34Þ

where hNi is the mean number of adsorbed particles, and h. . .i
means the time average over the MC simulation runs.

The computational simulations have been developed for 1D
chains of 104 sites, and square L� L lattices, with L ¼ 100, and peri-
odic boundary conditions. With this lattice sizes we verified that
finite-size effects are negligible.

3. Results

In the present section, we will analyze the main characteristics
of the thermodynamic functions given in Section 2.2, in compari-
son with simulation results for a lattice-gas of interacting k-mers
on 1D and 2D substrates.

3.1. Exact solution in the 1D case

In Figs. 1 and 2 we address the comparison between the analyt-
ical adsorption isotherms for 1D substrates and MC simulations.
Different values of the parameter c, the lateral interactions and
the k-mer sizes have been considered.

We start analyzing the case of k ¼ 1; c ¼ 1 and different values
of w=kBT ¼ �2;�1;0;1 and 2 (see Fig. 1a). The case w ¼ 0 (stan-
dard BET model) has been widely discussed in the literature (see,
for instance, Ref. [8]) and it has been shown that a shape of a Type
II isotherm is obtained so long as c exceeds 2. In the case of this fig-
ure, c ¼ 1 and the curve for non-interacting particles has the gen-
eral shape of a Type III isotherm. For repulsive couplings, the
interactions do not favor the adsorption on the first layer and the
isotherms shift to higher values of pressure. On the other hand,
attractive lateral interactions facilitate the formation of the mono-
layer. Consequently, the isotherms shift to lower values of p=po and

a b

Fig. 1. Adsorption isotherms for k-mers on 1D lattices, c ¼ 1 and different values of w=kBT (as indicated). (a) k ¼ 1 and (b) k ¼ 4. Symbols, solid lines and dashed lines
represent results from Monte Carlo simulations, QCA and BWA, respectively.

a b

Fig. 2. As Fig. 1 for c ¼ 100. A zoom of the low-pressure region is presented in the inset of each figure.
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their slope increases as the ratio jwj=kBT increases. With respect to
the shape of the curves, there exists a range of w=kBT where the
isotherms keep the shape of a Type III isotherm (in this case,
�1 6 w=kBT 6 1). However, a knee appears in the isotherms (the
curves adopt the shape of a Type II isotherm) as the ratio jwj=kBT
increases. The shape of the knee depends on the value of jwj=kBT ,
becoming sharper as the value of w=kBT becomes more negative.
This point will be illustrated more clearly in Fig. 4.

The effect of the k-mer size on the adsorption isotherm can be
understood by analyzing Fig. 1b, where the study in Fig. 1a is re-
peated for k ¼ 4. Two main conclusions can be drawn from the fig-
ures. Namely, (1) the difference between the curves corresponding
to different values of w=kBT and (2) the range of w=kBT where the
isotherms do not develop an inflection point diminish as k is
increased.

Fig. 2 shows the effect of the parameter c on the adsorption iso-
therms. As can be observed, all curves exhibit a pronounced knee
as the parameter c is increased. This effect can be better visualized
in the insets of Fig. 2, where a zoom of the region of low-pressure is
presented. In the case of attractive interactions, the knee appears
around h ¼ 1 and can be associated to the formation of the mono-
layer. In the case of repulsive interactions, k-mers avoiding config-
urations with NN heads arrange in a structure of alternating
particles separated by an empty site. Thus, for a given value of k
and strong repulsive interactions, a marked knee is found at
h ¼ k=ðkþ 1Þ.

To complete the discussion of Figs. 1 and 2, we evaluate the
reaches and limitations of the two theoretical approximations
studied. QCA leads to exact solution in 1D systems. Consequently,
MC simulations in the grand canonical ensemble (symbols) fully
agree with the predictions from QCA (solid lines), which reinforces
the robustness of the two methodologies employed here. With re-
spect to BWA, two different behaviors are observed: (i) for small
values of jwj=kBT , the theoretical curves show a good agreement
with the simulation data and (ii) for jwj=kBT > 2, appreciable dif-
ferences are observed between BWA and MC results. For strong
attractive couplings (see, for instance, the case corresponding to
w=kBT ¼ �2 in Fig. 1a), a characteristic van der Waals loop is ob-
served in the adsorption isotherm and BWA incorrectly predicts a
phase transition for f ¼ 2. The shape of the isotherms is fairly inde-
pendent of the size of the molecules. However, the disagreement
between the BWA curves and the exact results turns out to be sig-
nificantly large for larger k-mer sizes (see, for instance, Fig. 1b).

The analysis of the curves in Figs. 1 and 2 indicates that the
appearance of a inflection point in the curves depends on k, c
and w=kBT . This will be studied in detail in the following. The point
of inflection can be obtained in three steps: (1) differentiating
twice the adsorption isotherm equation to obtain d2h=dY2 (being
Y ¼ p=po for the sake of simplicity); (2) equating the resulting
expression to zero and solving for Y gives YF , the value of p=po at
the point of inflection; and (3) inserting YF in the adsorption iso-
therm equation gives hF , the value of h at the point of inflection.

a b

c

Fig. 3. (a) Coordinates of the point of inflection (being XF and YF coverage and relative pressure, respectively) for monomers (k ¼ 1) adsorbed on 1D lattices and different
values of w=kBT (w=kBT ¼ 2;1:5;1:0;0:5; 0:25;0:0;�0:05, �0:25;�0:3;�0:4;�0:45;�0:55;�0:75;�0:95;�1:1;�1:2). As a reference, the curve corresponding to w=kBT ¼ 0 is
highlighted. Each point on a given curve corresponds to a determined value of c. Solid circles indicate the values of c where the inflection point disappears. (b) Same as in part
(a) for dimers (k ¼ 2) adsorbed on 1D lattices and different values of w=kBT (w=kBT ¼ 2;1:5;1:0;0:5, 0:0;�0:1;�0:25;�0:4;�0:45;�0:5;�0:55;�0:6;�0:65;�0:7,
�0:75;�0:8;�0:9;�1:0;�1:25;�1:5;�2:0). (c) Same as in part (a) for tetramers (k ¼ 4) adsorbed on 1D lattices and different values of w=kBT
(w=kBT ¼ 2;1:5;1:0; 0:5; 0:0;�0:25;�0:5, �0:75;�1:0;�1:25;�1:5;�1:75;�2:0).
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The location of the point of inflection (XF � hF ;YF) is plotted in
Fig. 3 for different values of k and w=kBT . The information is orga-
nized as follows: (i) parts (a), (b) and (c) correspond to k ¼ 1, k ¼ 2
and k ¼ 4, respectively; (ii) the curves in (a), (b) and (c) were ob-
tained for different values of w=kBT (as indicated in the caption
of each figure); and (iii) each point on a given curve corresponds
to a determined value of c.

In order to understand the basic phenomenology, we consider
in the first place the case corresponding to w=kBT ¼ 0 (highlighted
curve). Clearly, the value of h at the point of inflection may deviate
considerably from unity. However, there exist a certain value of
c ¼ cm, where the point of inflection coincides with the point cor-
responding to the monolayer capacity. Fig. 4 shows the values of
cm, obtained numerically, as a function of w=kBT for four k-mer
sizes (k ¼ 1;2;4;10). Two regimes can be clearly differentiated
according to the sign of the lateral interactions. For attractive inter-
actions, cm is not defined in all the range of w=kBT. Thus, for each k-
mer size, there exists a limit value of the lateral interaction,
wmin=kBT , below of which the coordinate XF characterizing the
inflection point in the adsorption isotherm is larger than one. In
other words, the XF � YF diagrams corresponding to values of
w=kBT below wmin=kBT do not cross the line corresponding to
XF ¼ 1 (dashed line in Fig. 3). The values of wmin=kBT for
k ¼ 1;2;4;10 are collected in Table 1. Finally, cm increases mono-
tonically as the interaction energy is increased in the range
wmin=kBT < w=kBT < 0. On the other hand, cm shows an exponential
dependence [expðjw=kBTÞ] in the range w=kBT > 0, where j is
a parameter depending on the k-mer size. The different values
of j, obtained from the slope of ln cm vs. w=kBT are reported in
Table 1.

For values of c between cm and infinity the adsorption at the
point of inflection exceeds the monolayer capacity; for values of
c below cm the two quantities deviate more and more and for a lim-
it value of c ¼ cn, the point of inflection disappears.4 In the low-
coverage regime (h! 0), cn vs. w=kBT can be calculated analytically
(see Appendix 1 for further discussion). The result of this calcula-
tion is presented in Fig. 5 for different values of k. Solid lines rep-
resent theoretical data from Eq. (73) and symbols correspond to
values of cn obtained numerically. As can be visualized from the
figure, the dashed line separates two well differentiate regions.
At right of the dashed line, the coordinates of the inflection point
corresponding to the limit value cn are XF ¼ 0 and YF ¼ 0. Then,

the assumption of h! 0 in Appendix 1 is valid and the symbols
coincide with the solid line. At left of the dashed line, the point
of inflection disappears for XF > 0 and the solid line is not defined.
The value of w=kBT corresponding to the dashed line was obtained
from the condition 2kþ 1� 2e�w=kBT ¼ 0 [see Eq. (73)]. From the
point of view of the XF � YF diagrams, the previous condition sep-
arates diagrams defined in the origin ðXF ¼ 0;YF ¼ 0Þ from those
where the inflection point disappears for ðXF > 0;YF > 0Þ (see solid
circles in Fig. 3).

In the next we will refer to one of the main applications of BET
model, which consists in taking an experimental isotherm in the
low-pressure region and fitting values of the monolayer volume
and the parameter c, from the linearized form of the BET equation

p=po

½vð1� p=poÞ�
¼ 1

cvm
þ ðc � 1Þ

cvm
p=po: ð35Þ

The plot of ðp=poÞ=½vð1� p=poÞ� vs. p=po should therefore be a
straight line with slope s ¼ ðc � 1Þ=cvm and intercept i ¼ 1=cvm.
Solution of these two simultaneous equations gives vm and c:

vm ¼
1

sþ i
and c ¼ s

i
þ 1: ð36Þ

In this context, it is of interest to study the behavior of multilayer
isotherms of k-mers (with k > 2) in the low-pressure region5 in
comparison with BET isotherm. For this purpose, we will analyze,
by using the standard BET formalism, exact theoretical isotherms
in the 1D case. As an example, Fig. 6 shows the results obtained
for k ¼ 2, c ¼ 10, w=kBT ¼ �2;�1;0;1;2 and pressures ranging from
p=po ¼ 0 up to p=po ¼ 0:30. Symbols represent theoretical data from
QCA (exact results) and lines correspond to linearized forms of the
BET equation. A linear function is only obtained if k ¼ 1 and
w=kBT ¼ 0 (see inset). The non-linear behavior of interacting k-mers
isotherms at low-pressures, which is a distinctive characteristic of
many experimental isotherms, is showing that the polyatomic char-
acter of the adsorbate and the lateral interactions must be taken into
account. The significant differences observed as k and w=kBT are var-
ied indicate that the analysis of experimental isotherms of interact-
ing larger molecules by means of the BET isotherm would lead to
values of the parameters c and vm appreciably different from the real
ones.

In order to measure the differences mentioned above, the anal-
ysis of Fig. 6 was repeated in Fig. 7 for c ¼ 10 (part a), c ¼ 100 (part
b) and different values of k and w=kBT. The results obtained for the
monolayer volume are shown in the figure, where vm and vBET rep-
resent the real monolayer volume and the corresponding value ob-
tained from the BET fitting, respectively. We start analyzing the
case of w=kBT ¼ 0 (see inset). In this condition, the difference be-
tween vm and vBET (vBET=vm) increases (decreases) initially as the
k-mer size is increased and remains almost constant for larger val-
ues of k. As is shown in the figure, these differences diminish as the
parameter c increases. Now, it is interesting to analyze the effect of
the lateral interactions. As was discussed above, attractive lateral

Fig. 4. ln cm (as it is indicated in the text) as a function of w=kBT for different values
of k (k = 1, 2, 4 and 10) and 1D lattices. From the slope of the curves in the range
w=kBT > 0 one obtains j (see discussion in the text).

Table 1
Values of wmin=kBT and j (see discussion of Figs. 3 and 4) for different k-mer sizes.

k-mer size wmin=kBT j

k ¼ 1 �1.1 �2.23
k ¼ 2 �1.75 �3.31
k ¼ 4 �2.5 �5.24
k ¼ 10 �3.5 �11.26

4 For c > cn , the isotherm is of Type II and when c is less than cn the isotherm is of
Type III and discussion of the point of inflection is meaningless.

5 Although in each particular case it is possible to find an optimum range of relative
pressures, for practical purposes, we have chosen to set this range from 0.05 to 0.25.
Nevertheless, by choosing other ranges (for example, between 0.05 and 0.35) we
obtain similar results.
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interactions favor the formation of the monolayer and, conse-
quently, compensate the effect of the multisite occupancy. Thus,
for a given value of k, vBET=vm tends to one as jwj=kBT is increased.
On the other hand, repulsive interactions do not facilitate the for-
mation of the monolayer, increasing the differences between vm

and vBET. For w=kBT 	 1, a marked knee is found at h ¼ k=ðkþ 1Þ
and vBET is close to this value of coverage. As the k-mer size is in-

creased, h ¼ k=ðkþ 1Þ ! 1 and, consequently, vBET=vm ! 1. This
phenomenon can be clearly visualized by observing the curves cor-
responding to w=kBT ¼ 2 in the insets of Fig. 7a and b.

3.2. Approximate solution in the 2D case

Because the structure of lattice space plays such a fundamental
role in determining the statistics of k-mers, it is of interest and of
value to inquire how a specific lattice structure influences the main
thermodynamic properties of adsorbed k-mers. Following this line
of thought, we use in this section the lattice-gas language again
and assume the same model as in Section 3.1 with one exception:
the sites form a 2D square lattice instead of a 1D lattice.

In Fig. 8 simulated isotherms are compared to theoretical ones
from Eqs. (24), (26) and (31) for dimers adsorbed on 2D lattices
with different values of c and w=kBT: (a) c ¼ 1 and w=kBT ¼ �1;
�0:5;0;0:5;1;2; (b) c ¼ 10 and w=kBT ¼ �2;�1;0;1;2; and (c)
c ¼ 100 and w=kBT ¼ �2;�1;0;1;2.

In the attractive case, the two theoretical approximations agree
qualitatively well and the adsorption isotherms for BWA (dashed
lines) and QCA (solid lines) are hardly distinguishable from each
other. The differences between numerical and theoretical results
can be much easily rationalized with the help of the absolute error,
Dhðp=poÞ, which is defined as Dhðp=poÞ ¼ jhtheor � hsimjp=po

=hsim,
where hsim (htheor) represents the surface coverage obtained by
using MC simulation (analytical approach). Each pair of values
(hsim, htheor) is obtained at fixed p=po. The curves of Dhðp=poÞ vs.
p=po (data are not shown here for sake of simplicity) indicate that,
in all cases, QCA leads to appreciably better results than BWA.

a b

c

Fig. 5. (a) cn as a function of w=kBT for k ¼ 1. The meaning of the solid lines and the symbols is explained in the text. (b) As part (a) for k ¼ 2 and (c) as part (a) for k ¼ 4.

B

B

B

B

B

Fig. 6. ½p=po�=½vð1� p=poÞ� vs. p=po for a typical case (c ¼ 10 and k ¼ 2) and different
values of w=kBT (as indicated). All curves are plotted in the range (0� 0:3) of
relative pressure and vm is set equal 1 (in arbitrary units). Inset: ½p=po�=½vð1� p=poÞ�
vs. p=po for k ¼ 1, c ¼ 10 and three different values of w=kBT: full circles, w=kBT ¼ 0;
open squares, w=kBT ¼ �1 and full squares, w=kBT ¼ 1.
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Note that the stronger the lateral interaction, the more steep
the adsorption isotherm becomes. This behavior could be indica-
tive of the existence of a first-order phase transition at low temper-
atures. However, the study of the critical behavior of the system is
out of the scope of the present work and will be object of future
studies.

With respect to repulsive interactions, the differences between
QCA and BWA are very appreciable. Beyond quantitative discrep-
ancies, there exists qualitative differences between both approxi-
mations. Thus, while QCA is practically independent of c, the
discrepancies between BWA and MC results diminish appreciably
for larger values of c.

a b

Fig. 7. (a) Dependence on w=kBT of the monolayer volume obtained by using BET analysis for multilayer k-mer adsorption on 1D lattices and c ¼ 10. The curves correspond to
different values of k as indicated. In the inset, the data are plotted as a function of k for three values of w=kBT (w=kBT ¼ �2, w=kBT ¼ 0 and w=kBT ¼ 2). (b) Same as part (a) for
c ¼ 100.

a b

c

Fig. 8. Comparison between theoretical and simulated adsorption isotherms for dimers adsorbed on square surfaces and different values of w=kBT (as indicated). (a) c ¼ 1; (b)
c ¼ 10 and (c) c ¼ 100. Symbols, solid lines and dashed lines represent results from Monte Carlo simulations, QCA and BWA, respectively.
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Summarizing, QCA gives a much better description of the 2D
MC adsorption isotherms than the BWA. In the particular case of
repulsive interactions, the disagreement between MC and BWA
turns out to be significantly large, while QCA appears as the sim-
plest approximation capable to take into account the main features
of the multisite occupancy adsorption. In fact, there exists a wide
range of w=kBT ’s (�2 6 w=kBT 6 2), where QCA provides an excel-
lent fitting of the simulation data. In addition, most of the experi-
ments in surface science are carried out in this range of interaction
energy [35–38]. Then, QCA not only represents a qualitative ad-
vance in the description of the multilayer adsorption of k-mers
with respect to the BWA, but also gives a framework and compact
equations to consistently interpret thermodynamic adsorption
experiments of rigid polyatomics on regular surfaces.

As indicated in the previous section, it is of interest to study the
behavior of 2D multilayer isotherms (with k > 2) in the low-pres-
sure region in comparison with BET isotherm. For this purpose, the
adsorption isotherms are plotted in the low-pressure regime and
fitted with the linearized form of the BET equation. A typical exam-
ple is shown in Fig. 9. The values of the parameters used in the fig-
ure are: k ¼ 2, c ¼ 10 and w=kBT ¼ �1;0;1. Open symbols
represent Monte Carlo data, full symbols correspond to theoretical
results obtained from QCA and lines correspond to linearized forms
of the BET equation. As discussed in Fig. 8, QCA provides very good
results in the limit of attractive lateral interactions and its accuracy
diminishes for repulsive ad–ad interactions.

The analysis of Fig. 9 was repeated for different values of c and
w=kBT . In all cases, the monolayer volume was calculated from the
slope and intercept of the linearized form of the BET equation. The
results are shown in Fig. 10. Several conclusions can be drawn from
the figure: (1) QCA agrees very well with the numerical results in
all range of c and w=kBT studied; (2) the differences between vm

and vBET diminish as the parameter c increases; and (3) attractive
lateral interactions compensate the effect of the multisite occu-
pancy. In other words, the behavior of vBET=vm vs. w=kBT is similar
to the one described above for the 1D case.

Finally, the effect of the k-mer size on vBET=vm is analyzed in
Fig. 11. In the figure, simulation results for k ¼ 2 (full symbols)
are compared with the corresponding ones obtained for k ¼ 4
(crossed symbols). As can be observed, the behavior of vBET=vm

vs. w=kBT does not significantly vary as the k-mer size changes
from k ¼ 2 to k ¼ 4. In addition, the agreement between QCA and
MC data (not shown here for sake of clarity) remains very good.
Even though MC simulations of larger linear adsorbates on regular
2D lattices would be necessary to confirm the applicability of Eqs. (24) and (31), it should be pointed out that QCA is a good analytical

approach considering the complexity of the physical situation
which is intended to be described.

4. Conclusions

In this work, we have studied the multilayer adsorption of
interacting polyatomic molecules. Two analytic isotherms were
developed in the framework of the BWA and the QCA. The poly-
atomic character of the adsorbate was modelled by a lattice-gas
of k-mers. With respect to lateral interactions, the ad–ad couplings
in the monolayer were explicitly considered in the solutions. The
range of validity of both isotherms was analyzed by comparing
theoretical and MC simulation results.

The new formalism from QCA leads to exact results in 1D and
provides a close approximation to study multilayer adsorption of
interacting rigid polyatomics on 2D surfaces. In the case of more
complex adsorbates, the recently reported fractional statistical
theory of adsorption (FSTA) [39,40] can be used to calculate the
monolayer adsorption isotherm in Eq. (23). FSTA allows us to deal
with adsorbates of arbitrary shape and size, beyond of the rigid lin-
ear molecules studied in the present work. In this sense, it will be

Fig. 10. Dependence on w=kBT of the monolayer volume obtained by using BET
analysis for multilayer k-mer adsorption on square lattices and k ¼ 2. Open symbols
represent Monte Carlo data and full symbols correspond to theoretical results
obtained from QCA. The curves correspond to different values of c as indicated.

Fig. 9. Comparison between theoretical and simulated adsorption isotherms for
dimers adsorbed on square surfaces with k ¼ 2, c ¼ 10 and different values of w=kBT
as indicated. The isotherms are plotted in the range of low-relative pressure.

Fig. 11. Dependence on w=kBT of the monolayer volume obtained by using BET
analysis for multilayer k-mer adsorption on square lattices and two different values
of k: k ¼ 2 (full symbols) and k ¼ 4 (crossed symbols). The curves correspond to
different values of c as indicated.
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of interest to compare our theoretical results with experimental
and simulation data, which take into account the structure of long
molecule chains (as an example, see Ref. [41], where the adsorp-
tion of flexible alkanes in carbon slit pores was studied using con-
figurational-biased grand canonical Monte Carlo simulations).
Future efforts will be done in this direction.

On the other hand, the artificial effects that the BWA induces on
the main thermodynamic functions can now be rationalized and
compared with other analytical approaches. In this sense, we have
shown that the disagreement between BWA and MC simulations
increases as: (i) the temperature is decreased (or the ratio w=kBT
is increased) and (ii) the k-mer size is increased.

In addition, we have studied the 1D and 2D BET plots obtained
using the analytic and simulation isotherms. For non-interacting k-
mers, we found that the use of BET equation leads to an underes-
timate of the true monolayer volume: this volume diminishes as
k is increased. The situation is different for the case of interacting
molecules. Thus, attractive lateral interactions favor the formation
of the monolayer and, consequently, compensate the effect of the
multisite occupancy. In this case, the monolayer volume predicted
by BET equation agrees very well with the corresponding true va-
lue. In the case of repulsive couplings, the lateral interactions im-
pede the formation of the monolayer and the BET predictions are
bad (even worse than those obtained in the non-interacting case).
Both the compensation effect for attractive interactions and the
underestimation of the monolayer volume for repulsive interac-
tions are more important for 2D systems.
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Appendix 1

In order to determine cn, we will use a similar scheme to that
employed in Appendix A of Ref. [18]. Here, we restrict the analysis
to 1D systems.

We start calculating the inflection point of the adsorption
isotherm

d2h

d2ðp=p0Þ
¼ 0 and p=p0 ! 0 ðlow densityÞ: ð37Þ

By calculating the second derivative of h in Eq. (24), we obtain:

h00 ¼ h001
ð1� p=p0Þ

þ 2h01
ð1� p=p0Þ

2 þ
2h1

ð1� p=p0Þ
3 ; ð38Þ

where h00 and h0 represent @h=@ðp=poÞ and @2h=@ðp=poÞ
2, respectively.

Now, by taking limp=p0!0 in Eq. (38), which implies limh1!0, the fol-
lowing relation is obtained:

0 ¼ h001 þ 2h01: ð39Þ

The last equation allows us to obtain cn from the monolayer adsorp-
tion isotherm. At low density (h1 ! 0), the virial expansion ap-
proach can be considered as an exact result [34]. As usual, k1ðh1Þ
can be written as a power series. Thus, by using Eq. (23)

p=p0 ¼
k1

k1 þ c
¼

P1
i¼0aih

i
1P1

i¼0aih
i
1 þ c

: ð40Þ

Differentiating both sides of the last equation with respect to p=p0,
we obtain

1 ¼ k01ðk1 þ cÞ þ k1k
0
1

ðk1 þ cÞ2
¼ k01c

ðk1 þ cÞ2
; ð41Þ

1 ¼ c
P1

i¼0iaih
i�1
1 h01P1

i¼0aih
i
1 þ c

� �2 : ð42Þ

Note that k1 ! 0 as h1 ! 0 and, consequently, a0 ¼ 0. By taking the
limit as h1 ! 0, Eq. (42) results

1 ¼ cna1h
0
1

ðcnÞ2
ð43Þ

and

h01 ¼
cn

a1
: ð44Þ

Now, by calculating the second derivative of Eq. (40), we obtain

0 ¼ ck001ðk1 þ cÞ2 � ck2
12ðk1 þ cÞ

ðk1 þ cÞ4
¼ cðk1 þ cÞ
ðk1 þ cÞ4

ðk001k1 þ k001c � 2k021 Þ; ð45Þ

0 ¼ k001c2 � 2k021 c
c3 ¼ k001c � 2k021

c2 ; ð46Þ

0 ¼ k001c � 2k021 ; ð47Þ

being

k01 ¼
X1
i¼0

aih
i�1
1 ih01 ð48Þ

and

k001 ¼
X1
i¼0

ai hi�2
1 iði� 1Þh021 þ hi�1

1 ih001
� �

: ð49Þ

By taking the limit as h1 ! 0, Eqs. (48) and (49) can be written as:

k01ðh1 ! 0Þ ¼ a1h
0
1; ð50Þ

k001ðh1 ! 0Þ ¼ 2a2h
02
1 þ a1h

00
1: ð51Þ

Then, by introducing Eqs. (50) and (51) in Eq. (47) and by using Eq.
(44), we obtain

0 ¼ �2a2
1

c2
n

a2
1

þ cna1h
00
1 þ 2cna2

c2
n

a2
1

; ð52Þ

0 ¼ �2c2
n þ cna1h

00
1 þ 2cna2

c2
n

a2
1

ð53Þ

and

h001 ¼
2c2

n � 2 a2c2
n

a2
1

cna1
¼ 2cn

a1
� 2a2c2

n

a3
1

: ð54Þ

Finally, by introducing Eqs. (44) and (54) in Eq. (39), cn can be writ-
ten in terms of a1 and a2:

0 ¼ 2cn

a1
� 2a2c2

n

a3
1

þ 2cn

a1
ð55Þ

and

cn ¼
2a2

1

a2
: ð56Þ

Now, we start with the calculation of a1 and a2 [34]. For this pur-
pose, we write the first two terms of the grand partition function
of a lattice-gas of N k-mers on M sites

NkðM; k1Þ ¼ 1þ Q kðM;1Þk1 þ QkðM;2Þk2
1 þ 
 
 
 ð57Þ
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where QkðM;1Þ and QkðM;2Þ represent the partition functions for
one and two k-mers, respectively.

By using the following expression:

ln½1þ f ðxÞ� ¼ ln½1þ f ð0Þ� þ f 0ðxÞ
1þ f ðxÞ

� �����
x¼0

x

þ 1
2!

f 00ðxÞ
1þ f ðxÞ �

f 0ðxÞ
1þ f ðxÞ

� �2
( )�����

x¼0

x2

þ 1
3!

f 000ðxÞ
1þ f ðxÞ � 3

f 00ðxÞf 0ðxÞ
½1þ f ðxÞ�2

þ 2
f 0ðxÞ

1þ f ðxÞ

� �3
( )�����

x¼0

x3

þ 
 
 
 ;
ð58Þ

where f ðxÞ is an arbitrary function, f 0ðxÞ ¼ df=dx, f 00ðxÞ ¼ d2f=dx2 and
f 000ðxÞ ¼ d3f=dx3, ln NkðM; k1Þ can be written as

ln NkðM; k1Þ ¼ Q kðM;1Þk1 þ
1
2
½2Q kðM;2Þ � Q 2

kðM;1Þ�k2
1 þ 
 
 
 ð59Þ

and the surface coverage results

h ¼ k
N
M
¼ k

k1

M
@ ln Nk

@k1

����
M;k

¼ k
M

QkðM;1Þk1 þ
k
M
½2Q kðM;2Þ � Q 2

kðM;1Þ�k2
1 þ 
 
 


¼ b1k1 þ b2k
2
1 þ 
 
 
 ¼

X1
i¼0

bik
i
1; ð60Þ

where the bi’s are the well-known virial coefficients. In this case

b1 ¼
k
M

Q kðM;1Þ ð61Þ

and

b2 ¼
k
M

2Q kðM;2Þ � Q kðM;1Þ2
h i

: ð62Þ

In addition, the relationship between the bi’s and the ai’s can be ob-
tained by simple algebra. Thus

a1 ¼
1
b1

ð63Þ

and

a2 ¼ �
b2

b3
1

: ð64Þ

On the other hand, QkðM;1Þ and QkðM;2Þ can be calculated as
Q kðM;1Þ ¼ M ð65Þ
and

Q kðM;2Þ ¼ g0e�0=kBT þ g1e�w=kBT ; ð66Þ
where the configurational factors can be easily obtained. Thus,

g0 ¼
1
2!

M½M � ð2kþ 1Þ�; ð67Þ

g1 ¼
1
2!

M2: ð68Þ

Then

b1 ¼
k
M

XkðM;1Þ ¼ k; ð69Þ

a1 ¼
1
b1
¼ 1

k
; ð70Þ

b2 ¼
k
M

2Q kðM;2Þ � Q kðM;1Þ2
h i

¼ k
M
fM½M � ð2kþ 1Þ� þ 2Me�w=kBT �M2g

¼ 2ke�w=kBT � ð2kþ 1Þk; ð71Þ

a2 ¼ �
b2

b3
1

¼ 2kþ 1� 2e�w=kBT

k2 ð72Þ

and finally

cn ¼
2a2

1

a2
¼ 2

2kþ 1� 2e�w=kBT
: ð73Þ

In the case w ¼ 0, Eq. (73) reduces to the expression obtained pre-
viously for non-interacting ad-molecules [18].
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