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We study the relationship between vocabulary size and text
length in a corpus of 75 literary works in English, authored
by six writers, distinguishing between the contributions of
three grammatical classes (or ‘tags,’ namely, nouns, verbs and
others), and analyse the progressive appearance of new words
of each tag along each individual text. We find that, as
prescribed by Heaps’ Law, vocabulary sizes and text lengths
follow a well-defined power-law relation. Meanwhile, the
appearance of new words in each text does not obey a power
law, and is on the whole well described by the average of
random shufflings of the text. Deviations from this average,
however, are statistically significant and show systematic
trends across the corpus. Specifically, we find that the
appearance of new words along each text is predominantly
retarded with respect to the average of random shufflings.
Moreover, different tags add systematically distinct
contributions to this tendency, with verbs and others being
respectively more and less retarded than the mean trend, and
nouns following instead the overall mean. These statistical
systematicities are likely to point to the existence of
linguistically relevant information stored in the different
variants of Heaps’ Law, a feature that is still in need of
extensive assessment.
1. Introduction
Among the handful of statistical regularities reported for written
human language during the last several decades [1,2], Zipf’s
Law [3,4] and Heaps’ Law [5,6] are undoubtedly the best
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known and most thoroughly studied [7]. Zipf’s Law establishes a quantitative connection between the

number of occurrences of a given word in a corpus of text, m, and the rank of that word in a list
where all the different words in the corpus are ordered by their decreasing frequency, r. According to
Zipf’s Law, within a wide range of values of r, a power-law relation m∝ r−z is verified. From the
analysis of a broad variety of corpora, it has been empirically shown that this relation holds in many
languages, with an exponent usually close to unity, z≈ 1.

Heaps’ Law, in turn, postulates a power-law relation of the form V∝Nh between the size a corpus
measured in words—namely, the number of word tokens, N—and the vocabulary size—the number of
word types, V. The exponent h is positive and lower than unity, which accounts for the fact that the
vocabulary grows slower than the corpus itself.

The mathematical-statistical connection between Zipf’s Law and Heaps’ Law has been discussed by
several authors [8–11], whose main goal has been to prove the formal link between the power-law
relations postulated by the two laws. However, even a superficial inspection of various reports on
the relationship between the sizes of actual corpora and their vocabularies reveals systematic
deviations from a power-law interdependence [9,10,12–15], a fact that has been dealt with only
rarely [16,17].

To be precise, Heaps’ Law (and, similarly, Zipf’s Law) can be formulated in at least three variants,
depending on the nature of the corpus being analysed. Some of the longest corpora for which Heaps’
Law has been studied correspond to concatenations of many individual texts, such as the digitized
documents of Project Gutenberg [15,18] or Google Books [19,20], or the novels of certain authors
[14]. In this case, the whole corpus is divided into sections following some prescribed criterion, and
the values of V and N are recorded for each section. Very recently, concatenated speech utterances
have also been analysed from this perspective [21]. In the second variant, a corpus is formed by
several individual texts which share a common attribute—for instance, the Wikipedia articles
written in English [1], or the academic papers on a certain subject published in a given period [22]—
and the values of V and N are those which correspond to each text. Finally, taking a corpus formed
by a single text with a total of N word tokens and V word types, the progressively growing sizes of
text and vocabulary can be related to each other as the text develops from beginning to end
[9,12,13,23]. At each step n along the text, the number of words types v(n) used until then is
recorded, and the function v(n)—starting at v(1) = 1 and ending at v(N ) =V—characterizes Heaps’
Law in this third variant.

Due to the kinds of corpora used in the first two variants, such formulations of Heaps’ Law bear
information on global features of language, related to the overall number of different words needed
to produce a text corpus of a certain (typically large) size, complying with the rules of grammar but
not necessarily self-consistent with respect to its semantic contents. The third variant, in contrast,
records the progressive incorporation of new words as a text—presumably coherent in subject,
style, and genre—builds up. In fact, the function v(n) keeps record, in simplified mathematical
terms, of the succession of decisions made by the author of the text, who either uses already
employed words or adds new ones in response to both linguistic principles and the purpose of
constructing long-term meaning and context. In this sense, such approach is expected to bear
valuable quantitative information on how language works when a consistent written discourse is
being produced.

In the present contribution, we analyse Heaps’ Law for a collection of 75 literary texts written in
English by six British and North American novelists from the nineteenth and twentieth centuries
(details on this corpus are given in §2). The main novelty in our analysis is that we use a tagged
version of each text, discriminating between three classes of words (nouns, verbs and others) on the
basis of their grammatical function. This allows us to discern between the contribution of each class to
the building-up of the vocabulary. Beginning by the above second variant of Heaps’ Law, we show in
§3 that the total number of word tokens and types for the 75 works in the corpus collectively obey a
well-defined power-law relation. Each grammatical class by itself, moreover, satisfies a similar relation.
In §4, we study the Heaps functions v(n) constructed for each individual text, as explained above for
the third variant of Heaps’ Law. By quantifying its difference with the average Heaps function of all
the random shufflings of the text—whose analytical form does not follow a power law—we
demonstrate that v(n) generally possesses a high statistical significance, that might be related to
relevant linguistic features associated with discourse production. Finally, in §5, we show that the three
grammatical classes contribute very differently to the difference between v(n) and the shuffled-text
Heaps function, adding another evidence of the linguistic relevance of Heaps’ Law. Our results are
briefly discussed in the last section.
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2. Material and methods

The corpus analysed in this contribution consists of 75 English texts in narrative style—spanning from
fables, tales, and short stories to full novels—written by six well-known British and North American
authors: J. Austen, Ch. Dickens, A. Huxley, E. A. Poe, M. Twain, and H. G. Wells. The dates of their
first publication cover a period of some 150 years, between the decades of 1810 and 1960. The number
of word tokens vary from N≈ 800 (with a vocabulary of V≈ 300 word types) to N≈ 350 000 (with V≈
22 000). Table 1 gives the complete list of works, indicating author, identification code (to be used along
the paper), title, publication year, length and vocabulary size. Digitized versions of the 75 works were
obtained as plain-text files from the repositories at Project Gutenberg [18] and Faded Page [24].

Each file obtained from these repositories was first manually cleaned up of contents not belonging to
the original text. This included editorial preambles and closing notes, transcription attributions, page
numbering and figure captions among a few others. The entire cleaned texts were then automatically
processed using the Natural Language Toolkit library (NLTK) in Python [25,26]. This allowed, first, to
tokenize each text into single words, punctuation marks and other separators. Punctuation marks
were preserved in the tokenized text, as they are crucial elements in the syntax analysis used at the
ensuing stage of word tagging. On the other hand, capitalization was ignored. The stage of tagging
consisted of classifying all the words into the 35 lexical categories recognized by the NLTK’s POS
(part of speech) tagger. Tagging combines a collection of techniques, ranging from dictionary search
to hidden Markov models training [27]. In our analysis, in order to make the classification more
intelligible—and, at the same time, to increase the statistical weight of sampling—we have grouped
the 35 categories into three grammatical classes: nouns, including the categories of common and
proper nouns in singular and plural, as well as personal pronouns; verbs, including the categories of
verbs in all persons and tenses; and others, comprising all the remaining categories. To simplify the
nomenclature, we refer to each one of these three classes as a ‘tag.’ For each file, the output of the
whole process was a sequence of words corresponding to the original text, each word added with its
tag attribute.

Other specific analytical and numerical procedures are opportunely described along the paper.
3. Assessing Heaps’ Law across the corpus
We start the analysis by studying the relation between the total vocabulary V and the total length N for
the 75 works in the corpus, as recorded in table 1. This corresponds to the second variant of Heaps’ Law
referred to in the Introduction. The main panel of figure 1 shows a log-log plot of V versus N, with
different symbols for each author. The straight line is a linear fit, corresponding to a power-law
dependence, V∝Nh, with h= 0.68 ± 0.01. Pearson’s correlation coefficient is r= 0.99, indicating very
good agreement with Heaps’ Law. Moreover, the value found for the exponent h lies within the
interval of values reported for similar corpora [1,14,16].

Note that, regarding the works of different authors, there are a few systematic deviations with respect
to the power law fitted for the whole corpus. Austen’s novels (aus), in particular, possess a relatively
small vocabulary in relation to their length. Her longest works, with N> 105, have vocabularies which
are two-thirds as rich as expected on the average. By contrast, Huxley’s works (hux) lie systematically
above the fitting, indicating relatively abundant vocabularies. For his longest novels, the value of V is
between 20 and 30% above the average. The inset in figure 1 shows the same data as in the main
panel but in linear scales, to facilitate appraising these differences.

Figure 2a shows the number of word tokens in each tagged class (tag = nouns, verbs and others) as a
function of the total number of tokens in each text. The straight lines in this log-log plot have unitary
slope, clearly showing that each tag represents a well-defined fraction of the total length, Ntag≈ αtagN.
Specifically, we find αn= 0.313 ± 0.002, αv= 0.186 ± 0.001 and αo= 0.501 ± 0.002, for nouns, verbs and
others, respectively. The values of αn and αv are in reasonable agreement with those reported by
standard sources [28], although accounts for extensive corpora are still rare.

Regarding the fraction of each tag in the vocabularies, figure 2b shows that approximate
proportionality, Vtag≈ βtagV, holds when the vocabulary is large (V * 4000), with βn=0.47 ± 0.01, βv=
0.28 ± 0.01, and βo=0.247 ± 0.004. Note that the tag others, whose overall frequency over the whole
texts is above 50%, represents the smallest fraction in large vocabularies, with less than 25%. For
smaller vocabularies, on the other hand, the relative quantity of words in each tag changes, with
others becoming more abundant as the vocabulary size decreases.



Table 1. List of works in the present corpus. When two years are indicated in the second column (aus07, wel04) the first one
corresponds to the (estimated) year of writing. The two last columns give the length N (number of word tokens) and the
vocabulary size V (number of word types).

author and code title (publication year) N V

J. Austen

aus01 Pride and Prejudice (1813) 12 2576 8698

aus02 Emma (1815) 161 338 10 241

aus03 Sense and Sensibility (1811) 120 373 8631

aus04 Northanger Abbey (1817) 77 937 7822

aus05 Persuasion (1818) 83 821 7553

aus06 Mansfield Park (1814) 160 770 10 883

aus07 Lady Susan (1794/1871) 23 254 3495

Ch. Dickens

dic01 Oliver Twist (1838) 159 565 14 851

dic02 A Christmas Carol (1843) 28 954 5215

dic03 The Cricket on the Hearth (1845) 31 440 5818

dic04 The Haunted Man and the Ghost’s Bargain (1848) 33 778 5818

dic05 Hard Times (1854) 102 977 13 086

dic06 A Tale of Two Cities (1859) 137 153 14 040

dic07 Great Expectations (1860) 187 455 15 717

dic08 The Mystery of Edwin Drood (1870) 95 252 12 135

dic09 David Copperfield (1850) 356 161 22 486

dic10 The Pickwick Papers (1836) 300 495 24 016

dic11 Little Dorrit (1857) 38 553 23 311

dic12 Barnaby Rudge (1841) 255 447 20 158

dic13 The Chimes (1844) 30 570 5822

A. Huxley

hux01 The Tilloston Banquet (1922) 14 393 3534

hux02 Antic Hay (1923) 87 974 13 908

hux03 Chrome Yellow (1921) 57 208 10 342

hux04 Farcical History of Richard Greenow (1920) 20 478 4954

hux05 Those Barren Leaves (1925) 122 484 16 807

hux06 Brave New World (1932) 63 778 11 078

hux07 Eyeless in Gaza (1936) 146 216 19 068

hux08 The Devils of Loudun (1952) 124 116 17 282

hux09 Island (1962) 107 723 15 845

hux10 Happily Ever After (1920) 13 704 3283

hux11 Eupompus Gave Flavor to Art by Numbers (1920) 3334 1225

hux12 Cynthia (1920) 2437 935

hux13 The Bookshop (1920) 1698 776

hux14 The Death of Lully (1920) 4455 1443

hux15 The Gioconda Smile (1921) 11 190 2756

E. A. Poe

poe01 The Purloined Letter (1844) 7042 1950

(Continued.)
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Table 1. (Continued.)

author and code title (publication year) N V

poe02 The Thousand-and-Second Tale of Scheherazade (1845) 5660 1737

poe03 A Descent into the Maelström (1841) 7035 1878

poe04 Von Kempelen and his Discovery (1849) 2783 993

poe05 Mesmeric Revelation (1844) 3742 1133

poe06 The Facts in the Case of M. Valdemar (1845) 3559 1177

poe07 The Black Cat (1843) 3925 1348

poe08 The Fall of the House of Usher (1839) 7186 2234

poe09 Silence-a Fable (1838) 1359 427

poe10 The Masque of the Red Death (1842) 2425 900

poe11 The Cask of Amontillado (1846) 2341 850

poe12 The Imp of the Perverse (1845) 2437 936

poe13 The Island of the Fay (1841) 1974 823

poe14 The Assignation (1834) 4473 1613

poe15 The Pit and the Pendulum (1842) 6152 1788

M. Twain

twa01 The Gilded Age (1873) 162 003 16 879

twa02 The Prince and the Pauper (1881) 69 693 10 869

twa03 A Connecticut Yankee in King Arthur’s court (1889) 119 560 14 200

twa04 The American Claimant (1892) 65 776 9462

twa05 The Tragedy of Pudd’nhead Wilson (1893) 53 274 8175

twa06 Personal Recollections of Joan of Arc (1896) 151 693 14 697

twa07 A Horse’s Tale (1907) 17 127 3906

twa08 The Mysterious Stranger (1916) 37 262 5580

twa09 A Fable (1909) 810 307

twa10 Hunting the Deceitful Turkey (1906) 1259 519

twa11 The McWilliamses And The Burglar Alarm (1882) 2680 904

twa12 The Adventures of Tom Sawyer (1876) 72 697 9996

twa13 Adventures of Huckleberry Finn (1884) 114 973 9971

twa14 Tom Sawyer Abroad (1894) 35 067 4676

twa15 Tom Sawyer, Detective (1896) 24 078 3354

H. G. Wells

wel01 The Time Machine (1895) 32 391 5887

wel02 The Island of Dr. Moreau (1896) 43 909 6696

wel03 The Wonderful Visit (1895) 38 884 6709

wel04 The Wheels of Chance (1895/1935) 55 824 9380

wel05 The Invisible Man (1897) 49 460 7400

wel06 The War of the Worlds (1898) 59 861 9063

wel07 The First Men in the Moon (1901) 69 114 9266

wel08 The Passionate Friends (1913) 103 694 12 852

wel09 The Shape of Things to Come (1933) 156 204 18 662

wel10 The Soul of a Bishop (1917) 80 080 11 066
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Figure 2. (a) Number of word tokens in each tagged class, Ntag (tag = nouns, verbs and others) as a function of the text length N,
in log-log scales, for the 75 works in the corpus. Straight lines have unitary slope. (b) As in (a), for the number of word types in
each tag, Vtag, as a function of the vocabulary size V. (c) Heaps plot for the words in each tag, for the 75 works. Open symbols
correspond the same data plotted in figure 1. The two upper straight lines, are fittings for nouns and verbs, both with slope hn,v=
0.70. The lower straight line is the fitting for others, with slope ho= 0.62.
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Figure 1. Heaps plot (vocabulary size V versus text length N, measured in number of words) in log-log scales, for the 75 works in the
corpus. Different symbols correspond to different authors (aus: J. Austen, dic: Ch. Dickens, hux: A. Huxley, poe: E. A. Poe, twa: M. Twain, wel:
H. G. Wells; table 1). The inset shows the same data in linear-linear scales. Lines correspond to a power-law fitting, V∝ Nh, with h= 0.68.
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Remarkably, for both nouns and verbs, the above proportionality constants satisfy the approximate
relations bn � ah

n and bv � ah
v, with h the same exponent as obtained for the relation between V

and N. A direct consequence of these relations is that Vn/V≈ (Nn/N )h and Vv/V≈ (Nv/N )h which, in
turn, implies that the log-log plots of Vn versus Nn and Vv versus Nv lie approximately over the same
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straight line as V versus N in figure 1. This is clearly seen in figure 2c, where empty symbols stand for the

data of figure 1. Linear fittings for nouns and verbs, shown as straight lines in figure 2c, have coincident
slopes hn,v=0.70 ± 0.01, with correlation coefficients r=0.98 and 0.99, respectively. For others, as
demonstrated by the lowermost straight line, the relation between Vo and No is also well
approximated by a power law, with exponent ho=0.62 ± 0.01 and correlation coefficient r= 0.98.

In summary, interdependence between text lengths and vocabulary sizes for the 75 works in the
corpus is in very good agreement with the power-law relation postulated by Heaps’ Law, although
systematic deviations from the average trend seem to occur for specific authors. The three
grammatical classes considered here comprise well-defined fractions along each text and, for long
texts, within each vocabulary. As for the relation between the number of word tokens and types in
each tag, nouns and verbs closely follow the same power-law relation as the whole word collections,
while others complies Heaps’ Law with a smaller power-law exponent.
 os
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4. Quantifying the significance of Heaps functions
Turning the attention to the third variant of Heaps’ Law referred to in the Introduction, we now consider
the progressive appearance of new words along each individual text. As advanced in §1, for each text, we
define the Heaps function v(n) as the number of word types v that have occurred up to the n-th word token
(inclusive) along the whole text. For a text with a total length of N word tokens and a vocabulary formed
by V word types, v(n) is a non-decreasing function with v(1) = 1 and v(N ) =V.

A straightforward test of statistical significance for the information provided by the Heaps function
consists in comparing v(n) for the text under study and for a shuffled version of the same text. More
precisely, we can calculate the average of v(n) over the whole set of different word orderings, �v(n).
Since, in this average, all possible orderings are equally represented, �v(n) is solely determined by the
numbers of occurrences, m1, m2,…,mV, of all the words in the vocabulary. Note that this set of
numbers is equivalent to the information stored in Zipf’s Law. In fact, if the vocabulary is ordered by
decreasing number of occurrences, the graph of mr as a function of r is nothing but Zipf’s plot for the
text in question.

In previous work on Heaps’ Law, the average �v(n) has been estimated numerically [13,22,23], as it
seems to have passed unnoticed that its exact analytical expression has been available in the literature
since at least four decades ago.1 It reads [29]

�v(n) ¼
XV
r¼1

[1� BN(mr, n)], (4:1)

with

BN(mr, n) ¼
N �mr

n

� �

N
n

� � : (4:2)

In this equation, the binomial coefficients are assumed to vanish,

k1
k2

� �
¼ 0, (4:3)

if k2 > k1. The function �v(n) grows monotonically with n and, irrespective of the specific values
m1, m2, . . . ,mV , we have �v(1) ¼ 1 and �v(N) ¼ V.

The significance of the difference between the Heaps function for the actual text and �v(n) can be
assessed by comparison with the standard deviation over the different word orderings, σv(n). The
1To the present authors’ knowledge, the analytical expressions of equations (4.1) and (4.4) were first obtained in the framework of a
traditional quantitative technique in ecology and other related life sciences, called rarefaction [29,30]. The basic problem is, given a large
collection of objects divided into categories, to estimate the number of different categories obtained in a random extraction of a certain
number of objects from that collection. In the original framework, objects and categories are—for instance—individuals and species in
a collection of animals. In our problem, they respectively correspond to word tokens and types.



aus04

hux03

wel03

0

–10

–5

–400

–300

–200

–100

100
0

2000

4000

6000

8000

10 000

0

5

0

d 
(n

)
D 

(n
)

v 
(n

)

20 000 40 000
n

60 000 80 000

(b)

(a)

(c)

Figure 3. (a) Curves stand for the Heaps functions v(n) of three works in the corpus, namely, Austen’s Northanger Abbey (aus04),
Huxley’s Chrome Yellow (hux03) and Wells’ The Wonderful Visit (wel03). Narrow shaded areas are bounded by the average functions
�v(n)+sv(n). (b,c) Respectively, the absolute and relative Heaps anomalies, defined as in equation (4.5), for the same three texts.
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corresponding variance, whose exact analytical expression is also known [29], reads

s2
v(n) ¼

XV
r¼1

BN(mr, n) 1� BN(mr, n)½ � þ 2
XV
r¼2

Xr�1

s¼1

BN(mr þms, n)� BN(mr, n)BN(ms, n)½ �, (4:4)

and satisfies s2
v(1) ¼ s2

v(N) ¼ 0. The value of n for which s2
v(n) attains its maximum, as well as the

maximal value of s2
v(n), depend on the specific set m1, m2,…,mV.

Figure 3a shows a comparison between the actual Heaps function for three works in the present
corpus, and the respective averages and standard deviations. For each work, v(n) is plotted as a curve.
The analytical values obtained from equations (4.1) and (4.4) are represented as narrow shaded areas,
limited above and below by the curves �v(n)þ sv(n) and �v(n)� sv(n), respectively. These plots make it
clear that v(n) and �v(n) are quite close to each other, although v(n) is sometimes appreciably outside
the corresponding shaded area. The likeness between v(n) and �v(n), which is verified for all the works
in the present corpus—and which has been previously reported for a few other individual texts
[13,23]—indicates, in particular, that v(n) should not be expected to verify a Heaps-like law, v∝nh,
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since the functional form of the average �v(n), as given by equation (4.1), is not well described by a power-
law approximation over any significantly long interval. This is consistent with previous reports on the
Heaps function for individual texts [9,12,13,23], where the merest inspection reveals systematic
deviations from a power-law interdependence.

To quantitatively compare the Heaps function v(n) with the corresponding average �v(n), we define
the absolute and relative Heaps anomalies as

D(n) ¼ v(n)� �v(n) and d(n) ¼ D(n)
sv(n)

, (4:5)

respectively. Note that Δ(1) =Δ(N ) = 0, while δ(n) is undefined at the two ends. Figure 3b,c shows the
Heaps anomalies Δ(n) and δ(n) for the three works in figure 3a. The widths of the horizontal shaded
bands in the lower panel correspond to integer values of δ(n), in order to graphically contrast the
difference v(n)� �v(n) with the standard deviation σv(n). In the three cases, the difference reaches
values which are, in modulus, between 8 and 12 times larger than the standard deviation, indicating a
statistically highly significant deviation of the actual Heaps functions from the respective averages.

More strikingly, we see that for the three works considered in figure 3, both Δ(n) and δ(n) are
predominantly negative. This regularity, which indicates that in the actual texts the appearance of new
word types is for the most part retarded with respect to the average over word shufflings, turns out
to be a widespread rule over the whole corpus, especially for long works. To demonstrate this feature
in a compact way, we have calculated, for each work, the average and the variance of the relative
anomaly along the text

hdi ¼ 1
N

XN
n¼1

d(n) and s2
d ¼

1
N

XN
n¼1

(d(n)� hdi)2: (4:6)

Symbols in figure 4 stand for the values of 〈δ〉 as functions of the vocabulary size V for the 75 works of
the corpus. Error bars indicate the standard deviation sd. The curve corresponds to a linear regression
between 〈δ〉 and V (note that in this plot the horizontal scale is logarithmic). Along this fitting, whose
correlation coefficient is r=−0.33, not only is 〈δ〉 always negative, but its modulus increases with the
vocabulary size, indicating that the relative Heaps anomaly grows for longer texts. The inset shows
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the individual standard deviations sd as functions of V in log-log scales. The linear fitting, corresponding
to a power-law sd / Vs with exponent s=0.29 ± 0.04, has correlation coefficient r=0.63.

The above results on the relative Heaps anomaly averaged along each work clearly show that,
generally, the difference between Heaps curves for actual texts and their shuffled versions has a
substantial statistical significance. This significance, moreover, grows for longer works with richer
vocabularies. For texts with vocabularies of 104 words and beyond, the difference can be some 10
times larger than the deviation expected by chance.

We now turn the attention to the analysis of the absolute anomaly Δ which, as shown below, allows for
a more straightforward comparison between actual and random word orderings when it comes to tagged
texts. Empty symbols in the main panel of figure 5 correspond to the absolute anomaly of each work
averaged along the whole text, 〈Δ〉, as a function of the vocabulary size. Joined by a vertical line to each
empty symbol, full symbols show the overall maximum Δmax and minimum Δmin along each text.
Curves stand for linear fittings of each one of the three sets, with correlation coefficients r=0.39, −0.48
and −0.71 for Δmax, 〈Δ〉 and Δmin, respectively. As expected from the results shown in figure 4, the
average trend is that 〈Δ〉 remains negative, with absolute values increasing as the vocabulary grows,
confirming that the introduction of new word types is on the average retarded with respect to random
word orderings. Note that Δmin can reach negative values of several hundreds for the largest
vocabularies. The inset of figure 5 shows the standard deviation of the absolute anomaly as a function
of the vocabulary size, in log-log scales. These data admit a sharper linear fitting than for the relative
anomaly (see inset of figure 4), with slope s=0.83± 0.05 and correlation coefficient r=0.90.
5. Discerning between grammatical classes
Focusing on the contribution of each tagged class to the absolute Heaps anomaly Δ considered in the
preceding section, we first note that the Heaps function v(n) can be straightforwardly divided into
three terms, v(n) = vn(n) + vv(n) + vo(n), where vtag(n) (tag =nouns, verbs and others) indicates the total
number of occurrences of each tag up to the n-th word (inclusive) along the whole text. A measure of
the contribution of each tag to v(n), by comparison to a random distribution of words along the text,
is given by the Heaps excess

Etag(n) ¼ vtag(n)�
Vtag

V
v(n), (5:1)

where the ratio Vtag/V represents the fraction of each tag in the vocabulary (cf. figure 2b). If the words in
each tag were uniformly distributed all along each text, we would expect En(n)≈Ev(n)≈Eo(n)≈ 0 for all n.
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Conversely, a systematic deviation from zero would indicate persistent heterogeneity in the distribution
of the corresponding words. From equation (5.1), moreover, we have En(n) +Ev(n) +Eo(n) = 0 for all n. By
construction, therefore, a positive or negative excess in a tag must necessarily be balanced by an excess of
the opposite sign in at least one of the other tags. In this sense, the quantities Etag(n) measure distribution
deviations of tags respective to each other.

Note also that, defining the absolute Heaps anomaly of each tag as

Dtag(n) ¼ vtag(n)�
Vtag

V
�v(n), (5:2)

the Heaps excess introduced in equation (5.1) can be rewritten as

Etag(n) ¼ Dtag(n)�
Vtag

V
D(n); (5:3)

cf. equation (4.5). Comparing this expression with equation (5.1), it becomes clear that the Heaps excess,
as a measure of the heterogeneity in the distribution of each tag along the text, can also be interpreted in
terms of its contribution to the absolute anomaly. If all tags would uniformly add to Δ(n), we should
expect Etag(n)≈ 0 for all n. Significant values of the Heaps excess can therefore be interpreted as
deviations with respect to tag homogeneity in Δ(n).

Figure 6 shows the Heaps excess Etag(n) for the tree tags in an individual work of the corpus, namely,
Twain’s The Mysterious Stranger (twa08). This example illustrates a trend that is found for other works, as
we show below. Specifically, the tag others typically exhibits rather large, positive values of Eo(n),
compensated by smaller, negative values of En(n) and Ev(n), for nouns and verbs, respectively. Among
the two latter, moreover, the Heaps excess for verbs is on the average more negative than for nouns.

Figure 7a–c shows plots similar to that of figure 5, now with the Heaps excess as a function of the
number of word types in each tag, Vtag, for the 75 works of the corpus. For each work, the middle
dot stands for the average of Etag(n) over the whole text. The upper and the lower dots, in turn,
represent the maximal and minimal values attained by Etag(n). In the respective insets, whose
horizontal axes coincide with those of the main plots, we show the standard deviations of the Heaps
excess along each work.

Comparison of the panels reveals substantial differences in the behaviour of Etag for the three tagged
classes. In figure 7a, we see that the distribution of maximal, average, and minimal values of the Heaps
excess for nouns is markedly symmetric around zero. The linear fitting of the average, with correlation
coefficient r=0.06, is barely distinguishable from the horizontal line at En=0. In turn, linear fittings
for maxima and minima are virtually symmetric to each other. Their respective correlation coefficients
are r=0.63 and −0.61. As for the standard deviation, it is well approximated (r=0.92) by a power law
sE / Vs

n, with s= 0.66 ± 0.03.
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On the other hand, as shown in the middle panel, verbs are clearly biased towards negative values.
The linear fitting for the average, with r=−0.41, reaches values below Ev=−50 for the largest
vocabularies. Meanwhile, the minimal excesses for vocabularies larger than a few thousands lie
typically between −200 and −100. By contrast, maximal excesses are consistently positive and, except
for a few cases, they are always below 50. Correlation coefficients for the linear fittings of maxima and
minima are r= 0.52 and −0.71, respectively. In the inset, the linear fitting for the standard deviation,
with r=0.90, corresponds to a power law with slope s=0.60 ± 0.03.

Finally, we see from figure 7c that the distribution of the Heaps excess for others is roughly symmetric
to that of verbs with respect to Etag = 0. In fact, while the minima of Eo are negative and very close to zero,
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maxima are always positive and grow with the vocabulary size reaching values between 100 and 200 for

the largest vocabularies. This overall symmetry between verbs and others is, on the whole, not unexpected,
because of the symmetric distribution of the Heaps excess for nouns (figure 7a) and the fact that the sum
of the excesses for the three tags must vanish at any point along the text.

Closer inspection of the Heaps excess for others, however, reveals an important difference with that of
verbs, regarding its dependence on the vocabulary size. While averages and minima of Ev are reasonably
well approximated by linear fittings—as shown by the curves in the middle panel, with the correlations
reported in the preceding paragraph—averages and maxima of Eo exhibit systematic deviations from a
linear trend. The linear-log scales of figure 7, in fact, clearly suggest that a much better fitting for both
averages and maxima is a linear interdependence between Eo and ln Vo. The straight lines correspond
to fittings with correlation coefficients r= 0.42 and 0.83, respectively, for averages and maxima, while
linear fittings in linear-linear scales produce substantially lower correlations. This distinctive behaviour
of the Heaps excess for others appears also in its standard deviation. Note that, in contrast with verbs
and nouns, the inset plot has linear-log scales. The linear fitting, with r= 0.84, again suggests a
dependence on the vocabulary size of the type σE∝ lnVo.

The fact that the Heaps excess of nouns remains relatively close to zero—even for long texts—
indicates that the anomaly in the appearance of new word types of this specific tag follows, on the
average, the same trend as for the overall vocabulary. As we have seen in §4, such trend amounts to a
systematic retardation in drawing upon the available vocabulary as compared with the average of
random shufflings of the text. The predominantly negative excess for verbs, in turn, shows that the
contribution of this tag to the anomaly is itself retarded with respect to the expected average.
Compensating this tendency, the mostly positive values of the Heaps excess for others reveal a
comparatively early appearance of new word types belonging to this tag.
6. Discussion
In this closing section, we briefly comment on the results that, in our view, are the most relevant
contributions of Heaps analysis to the understanding of statistical patterns of language in the texts of
the studied corpus. Although we are not able to provide an explanation of those results within a
formal linguistic framework, we find it possible to point out several regularities that may provide
useful insight on structural features in the production of written language, in particular, connecting
texts and vocabularies.

In the first place, we mention the distinct overall participation of the tag others as compared with that
of nouns and verbs (figure 2). The last two represent well-defined proportions of texts and vocabularies,
with consistently more nouns than verbs. Meanwhile, the tag others constitutes the largest fraction of texts,
but the smallest fraction of vocabularies—at least, when the vocabularies are large. For smaller
vocabularies, on the other hand, the representation of others grows. This may be due to the fact that
this tag comprises function words (or ‘stop words,’ such as conjunctions, connectors, articles, etc.)
whose use is hardly avoidable in any text, no matter how short. They are therefore always present in
any vocabulary, and may be dominant when the vocabulary is small. As the vocabulary grows, such
words as adjectives and adverbs, many of which are directly related to specific nouns and verbs, are
better represented in others, and the participation of this tag becomes similar to that of nouns and
verbs. The peculiar behaviour of others may also be underlying the different power-law relation
between the number of word tokens and types for this tag with respect to that of the other two tags,
which closely coincides with the relation for the whole texts.

From the analysis of the difference between the Heaps functions of individual texts and the average of
text shufflings, the most intriguing observation is the consistent retardation in the appearance of new
word types in real texts with respect to the corresponding averages (figures 3–5). This effect, which
becomes more conspicuous in longer texts with richer vocabularies, seems to point out a generic
global feature in the production of literary discourse, in the form of a sustained delay in the
occurrence of the elements that progressively create and shape the semantic context of the work [31].
The delay is perhaps related to the need of establishing connections between already present
elements, creating the word clusters that establish topicality [22] and ‘networks of concepts’ [32,33],
before new elements are introduced. On the other hand, taking into account the distinct nature of the
words in the tag others referred to in the preceding paragraph, it may be that the need of introducing
function words to comply with grammatical rules, which uniformly apply from the beginning of the
text, implies a relative retardation in the use of words with more lexical meaning, which appear when
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specific semantic contexts are being built. The widely disparate contributions of the three tags to the

anomaly in the appearance of new word types, quantified by their respective excesses (figures 6 and 7),
represents a remarkable finding that could support this second alternative. In any case, discerning
between the two possibilities—or detecting a combination of both—would require a more ‘microscopic’
analysis of the progressive use of new words, possibly discriminating between a larger set of
grammatical classes.

The corpus studied in this contribution has been assembled having in mind not only a certain
uniformity in language—namely, standard narrative English in a circumscribed historical period—but
also a degree of homogeneity in style, choosing a set of genres that should ensure a well-developed,
self-contained discourse along each individual text. The lengths spanned by the selected works are
adequate representatives of the narrative style, from short fables to long novels. Although the corpus
could be expanded in several directions, the consistency of the statistical regularities revealed by our
analysis of these 75 works suggests that they stand for significant features in the usage of language.
As such, they should find correspondences in other corpora. We have already studied a small
collection of literary works written in different languages—namely, Latin, Spanish, German, Finnish
and Tagalog, for which automated tagging techniques are not yet as developed as for English—and
found that the phenomenon of relative retardation in the appearance of new words is also present in
the longest works. This, however, should not come as a surprise, in view of the possibility of
translating texts between those languages. Although translation is of course not a word-by-word
process, a parallelism between the creation of semantic contents along the same work in different
languages is expected to emerge over the scales relevant to the regularities disclosed by Heaps analysis.

The identification of statistically significant regularities in data corpora of broader origins may point
to the usefulness of Heaps functions—and, in general, Heaps-like analyses—not only in the processing of
natural languages but also in the characterization of other complex combinatorial structures [34], such as
those created by generative models [35], evolution and learning (both natural and artificial [36]), as well
as innovation mechanisms [15].
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