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Numerical simulations of mass transfer are performed for a circulating liquid drop with applications in
liquid-liquid extraction. Simulation parameters are chosen for a multi-component ternary system
acetone-methanol-benzene. The drop circulation pattern is estimated via a truncated Galerkin
representation of the drop streamfunction. Fickian diffusivities for multi-component mass transfer are
obtained via Maxwell-Stefan theory with thermodynamic corrections. The advection-diffusion
equations governing mass transfer are solved via two distinct numerical methods: a finite difference
scheme (using the alternating direction implicit method) and a finite element scheme. Good agreement
was obtained between both schemes. Simulation results are presented for a Reynolds number (Re=30)
and for a selection of Peclet numbers (Pe=100, 1000 and 10000, thereby giving insight into the effects
of increasing Peclet number). The numerical simulations of the full advection-diffusion equations are
compared against predictions of a rigid drop model (i.e. without circulation) and also against
predictions of a semi-analytical boundary layer model developed by Uribe-Ramirez and Korchinsky.
Results for bulk mass fractions reveal that the rigid drop model predictions evolve too slowly, while the
boundary layer model predictions evolve much more quickly than the numerical simulations.
Advection-diffusion simulation results for the evolution of mass fractions at selected individual
locations in the drop show that points on streamlines nearest to the drop surface and/or drop axis
evolve fastest, while those closest to the drop internal stagnation point evolve slowest. Corroborated by
contour plots of component concentrations throughout the drop at selected times, this supports a
picture whereby mass fractions become roughly uniform along individual streamlines, but mass is
transferred diffusively from streamline to streamline.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mass transfer via liquid-liquid extraction is an important
chemical engineering operation in many processes (van Vliet
et al,, 2001; Li et al., 2002a; Chambliss et al., 2002; Alonso et al.,
2007). Liquid-liquid extraction proceeds by suspending a dis-
persed phase of liquid droplets (solvent plus solute) in a
continuous phase of another immiscible liquid (again solvent
plus solute). Solute transfers down concentration gradients
(or strictly down gradients of chemical potential, Taylor and
Krishna, 1993; Klocker et al., 1997) from the dispersed to the
continuous phase or vice versa.

Good physical understanding of these mass transfer processes
is essential for robustly designing a liquid-liquid extraction
system. There have been many research efforts toward this end,
including theories for predicting solute diffusivities (often in
systems with multiple components) (Kooijman and Taylor, 1991;
Wesselingh and Krishna, 1991; Bandrowski and Kubaczka, 1982),
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predictions of mass transfer coefficients (Kumar and Hartland,
1999; Handlos and Baron, 1957; Kronig and Brink, 1950), CFD
simulations of droplet motion in feasible/realistic extraction
system geometries (Piarah et al., 2001; Vikhansky and Kraft,
2004; Drumm et al., 2008, 2009), and population balance mass
transfer models for swarms of droplets (Vikhansky and Kraft,
2004; Drumm et al., 2009; Goodson and Kraft, 2004; Toutain et al.,
1998).

However, it is fair to say that even the mass transfer process on
the scale of a single drop is not fully understood. Drops dispersed
in liquid-liquid extraction systems are generally not rigid
entities: instead circulation patterns are set up internal to and
external to the drop (Kumar and Hartland, 1999; Kronig and
Brink, 1950; Juncu, 1999). These circulation patterns convert the
mass transfer process from a purely diffusive one, to an
advective-diffusive process (Juncu, 2001, 2005), leading to a
considerable complication in the spatiotemporal distribution of
solute. Ideally one would want to gain an in depth understanding
of these (quite complicated) single drop processes, and incorpo-
rate that understanding into larger scale modelling and design of
liquid-liquid extraction systems (containing a multitude of
drops).
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The present work aims to study the single drop mass transfer
process at a greater level of detail than has been achieved hitherto.
Towards this end, a numerical simulation of the advection-diffusion
processes in a single drop has been developed/analysed. Some of the
previously proposed models (Uribe-Ramirez and Korchinsky,
20004, b; Negri and Korchinsky, 1986; Negri et al., 1986) for mass
transfer on the drop scale will be found to over- or under-predict
the mass transfer rates compared to the full numerical simulation.
The scale of one previous model’s overprediction (in particular that of
Uribe-Ramirez and Korchinsky, 2000a, b) is very large indeed—mass
transfer predictions could be up to the order of 10 times more rapid
with the previous model compared to the present simulations. The
reasons for this discrepancy turn out to be insightful, and are
explained in depth.

This paper is laid out as follows. Section 2 reviews mass
transfer and fluid flow for single drops. Section 3 develops the
equations describing mass transfer. Numerical methods for
solving the equations are given in Section 4. Results are presented
in Section 5, whilst Sections 6 and 7 offer discussion and
conclusions. Technical and mathematical details of the analysis
are relegated to appendices.

2. Review of single drop mass transfer and fluid flow

This section is laid out as follows. Section 2.1 reviews mass
transfer in drops which are effectively rigid entities, whereby
mass transfer is wholly diffusive. Section 2.2 reviews circulation
patterns in and around drops. Then Section 2.3 treats advective-
diffusive mass transfer in drops in the presence of circulation.

2.1. Mass transfer in rigid drops

It is simplest to consider mass transfer to and from a spherical
drop in the case where there is no fluid circulation (Newman,
1931). Mass transfer is then wholly radial, and analytic solutions
are available to describe the solute concentration field as a
function of radial coordinate. There are two distinct analytical
approaches.

One is a separation of variables technique (Negri and
Korchinsky, 1986; Negri et al., 1986). Given an initial mass
fraction of solute in the drop and a different mass fraction
imposed externally and/or on the boundary, the separation of
variables solution describes the solute concentration field as a
product of a radial function and a temporal function (or strictly
speaking as an infinite sum of such products). The radial functions
give a Fourier series representation of the instantaneous con-
centration field, while the temporal functions describe exponen-
tial decay.

The higher Fourier modes have faster temporal decay rates, so
that (at long times) relatively few Fourier modes survive. At early
times, however, increasing numbers of Fourier modes must be
considered. Indeed, at extremely early times, changes in the
solute concentration field (compared to the initial concentration
field) are confined to a relatively thin layer of material near the
drop surface: large numbers of Fourier modes need to be included
to resolve these thin layers. Under such circumstances one is
prompted to search for a more efficient/compact analytical
description of the solute field.

The second analytical approach (Bird et al., 1960) therefore
applies at sufficiently early times, when (as far as gradients of
solute concentration are concerned), the drop surface looks locally
flat. One-dimensional diffusion models can then be applied. So-
called similarity solutions for the solute concentration field then
arise, expressed in terms of distance from the drop surface and
time.

The thickness of the layer (to which concentration gradients
are confined) grows proportional to the square root of time.
A similarity variable can be defined as a ratio between two
distances: the distance of a coordinate point from the drop
surface, and the growing layer thickness. Expressed in terms of
this similarity variable, the solute concentration field takes the
form of an error function: this interpolates between the initial
solute concentration and the surface concentration. The similarity
form of the solution breaks down when the layer thickness grows
to a significant fraction of the drop radius: at this point the
similarity solution should be abandoned.

The above discussion concerned a rigid drop. The key change
occurring in the presence of circulation is that the solute
concentration field depends on (polar) angle as well as radial
coordinate and time (Kronig and Brink, 1950; Juncu, 2001, 2005;
Chao and Chen, 1970). Understanding the circulation pattern is
essential first, before analysing mass transfer with circulation.
Thus circulation patterns are treated in the next subsection.

2.2. Circulation patterns in and around drops

We suppose that the drop shape remains spherical despite the
circulation. As drop sizes and/or velocities grow, drops deviate
from sphericity (and their shape may even become oscillatory/
unsteady with respect to time) (Yang and Mao, 2005; Li et al.,
2002b; Dandy and Leal, 1989; Rose and Kintner, 1966): such
complications are ignored here. Instead we restrict attention to
steady state, laminar and axisymmetric circulation fields within
and around a spherical circulating drop. Note, however, that while
the flow fields here are at steady state, the solute concentration
fields are unsteady. Flow fields are assumed independent of the
solute concentration fields (but certainly not vice versa).

Solving for the flow fields in and around a moving spherical
liquid drop is a well-posed fluid mechanics problem (Batchelor,
1967). The flow satisfies momentum and continuity equations, as
well as boundary conditions, on velocities and tangential viscous
stresses at the drop surface. In the frame of the drop, the flow field
must also asymptote to a uniform translational motion at large
distances. The parameters affecting the flow are the ratio between
internal and external densities, the ratio between internal and
external viscosities, and the Reynolds number (either the internal
or external Reynolds number is sufficient, since one can be
transformed to the other using the density and viscosity ratios).

Except in the limit of zero Reynolds number, the momentum
equation is non-linear and generally speaking is only amenable to
numerical solution. Several full numerical solutions have been
published in the literature (see e.g. Juncu, 1999; Yan et al., 2002).

However, in order to gain insights into the manner in which
circulation patterns might affect mass transfer (which is the focus
of the present paper) it is not strictly necessary to compute the
circulation pattern in complete detail: an approximation to
the circulation pattern may be adequate. The key requirement
for the insights we seek is that the typical speed of the circulation
(measured, as far as mass transfer is concerned, via a so-called
Peclet number) is matched for the approximate and true patterns.
We are not claiming here that the mass transfer process is
independent of the precise details of the circulation pattern-
merely that similar insights into mass transfer are available from
an approximate circulation pattern as from a more accurate
pattern.

Approximations to circulation patterns (specifically approx-
imations to streamline patterns) are available in the literature
using drastically truncated Galerkin expansions (Uribe-Ramirez
and Korchinsky, 2000a,b; Nakano and Tien, 1967). Mathemati-
cally these are (comparatively) simple functional forms defined
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over the entire solution domain, which respect the same
kinematic and dynamic matching conditions on the drop surface
as the full circulation pattern would, and also have the correct
asymptotic behaviour at long distances from the drop. They also
respect the continuity equation (by construction, through being
expressed in terms of a streamfunction) but satisfy the momen-
tum equation only in some approximate (projected) sense.

Each term in the proposed Galerkin expansion contains a free
coefficient, the values of which are then determined by imposing
a number of boundary conditions and/or momentum equation
projections equal to the number of free coefficients. The resulting
coefficients become functions of the internal-external density
ratio, internal-external viscosity ratio and the Reynolds number.
The truncated Galerkin streamline patterns ideally have the same
topology as and a similar spatial layout to those obtained by full
numerical methods.

Uribe-Ramirez and Korchinsky (2000a,b) applied the Galerkin
expansion to study flows for Reynolds numbers between 10 and
250. At Reynolds numbers smaller than this, the hope might be
that one can (at least approximately) employ the analytical
solution (Batchelor, 1967) which arises in creeping flow. Indeed
the so-called Hadamard-Rybczynski streamfunction (Batchelor,
1967) is amongst the terms included in the truncated Galerkin
expansion.

As Reynolds numbers increase, the true flow fields become
increasingly complex. To capture properly such additional com-
plexity, presumably requires increasing numbers of terms in a
Galerkin expansion: a drastic truncation is no longer appropriate.
Harrison (2006) compared velocity profiles on the drop surface
(computed by the truncated Galerkin expansion) to numerical
profiles published in the literature. Two different (internal)
Reynolds numbers were considered, the values being 50 and
150, along with a variety of density and viscosity ratios.
Agreement was fair: relative errors between the two sets of
profiles were on the order of 20% provided the viscosity ratio
(internal to external) was not too low (a ratio of 0.1 gave
exceedingly poor agreement) and provided the density ratio
(again internal to external) was not too high (again a ratio of 3 or
above gave exceedingly poor agreement).

In summary the drastically truncated Galerkin expansion as
used by Uribe-Ramirez and Korchinsky (2000a,b) and Harrison
(2006) is believed to be a sufficiently good approximation to offer
useful insights into circulating drop mass transfer, provided
neither the density ratio, viscosity ratio nor the Reynolds number
are too extreme. The truncated Galerkin expansion will be
employed throughout this paper, specifically with the value of
the Reynolds number chosen to be 30. Having decided upon a
suitable flow field/circulation pattern, we now turn to consider
mass transfer superposed on such a pattern.

2.3. Mass transfer in circulating drops

Mass transfer in a circulating drop (as sketched in Fig. 1) can be
described via an advection-diffusion equation (Waheed et al,,
2002). Even though the advection-diffusion equation is linear in
solute mass fraction (at least assuming the solute diffusivities are
independent of concentration, Toor, 1964a, b) analytic solution is
generally not possible. The reason for this is that the velocity
fields become coefficients in the mass transfer equation. The
spatial variation of the velocity fields (and thereby of the above
mentioned coefficients) is sufficiently complex to preclude
analytic solution for the solute mass fractions. This is true even
in the case where circulation patterns are given by a truncated
Galerkin expansion, and indeed even in the creeping flow limit

into/out of
droplet

Fig. 1. Schematic of mass transfer into or out of a circulating drop. As sketched the
drop is ascending, or equivalently (in the frame of the drop) the external flow is
from top to bottom. An arbitrary point in the drop (M) can be specified by
spherical r, 6 coordinates.

diffusion
across
thin
surface
boundary
layer

4 .. .
’ injection of AN
bulk material
onto surface

well mixed bulk

\\\J_L/

Fig. 2. Schematic of boundary layer mass transfer model.

where the analytic Hadamard-Rybczynski streamfunction can be
utilised: see e.g. Juncu (2001, 2005).

One way that previous authors (Chao, 1969; Ruckenstein,
1967) have dealt with the complexity of mass transfer in
circulating drops is to introduce so-called boundary layer models
for mass transfer which can be tackled analytically or semi-
analytically.

These boundary layer models exploit the fact that in typical
circulating drops in liquid-liquid extraction, advection of mass is
much faster than diffusion. Indeed Peclet numbers (see precise
definition given later) of around 10000 are not unusual. As is well
established for mass transfer at high Peclet numbers (Bird et al.,
1960; Leal, 2007), concentration gradients often tend to be
confined to thin boundary layers.

Uribe-Ramirez and Korchinsky (2000a,b) presented a semi-
analytic boundary layer theory of mass transfer in circulating
drops: see Fig. 2, with full details in Appendix A. They utilised the
drastically truncated Galerkin expansion approximations (Nakano
and Tien, 1967) to represent the fluid flow field, and assumed that
gradients of solute concentration fields occurred solely in the
vicinity of the drop surface.

By and large Uribe-Ramirez and Korchinsky (2000a,b) pre-
dicted much faster equilibration of a solute concentration field
with their model than was the case for a rigid drop (Negri and
Korchinsky, 1986; Negri et al., 1986). Although rigid drop mass
transfer permits the transient appearance of sharp concentration
gradients confined to thin layers (see Section 2.1), these sharp
gradients do not persist over time.

Uribe-Ramirez and Korchinsky, by contrast, applied a well-
mixed assumption to their drop interior, which kept the solute
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concentration gradients (in their boundary layer) sharp over
time (Uribe-Ramirez and Korchinsky, 2000a,b). The mass
transfer speed up which occurred in the Uribe-Ramirez and
Korchinsky model (compared to the rigid drop) was dramatic:
speed up was by a factor on the order of the square root of the
Peclet number. For the high Peclet numbers of interest here,
substantially over a 10-fold speed up was observed (as alluded to
in Section 1).

One of our aims in this paper is to compare the predictions of
the rigid drop model and of the Uribe-Ramirez and Korchinsky
boundary layer model with full numerical simulations of the
advection-diffusion equations to see which of the models agrees
better with the simulations. We will find that the rigid drop
model evolves more slowly compared to the numerical simula-
tions whereas the Uribe-Ramirez and Korchinsky model evolves
far more rapidly.

3. Theory and governing equations

Consider a drop of radius R, translating with respect to a
surrounding liquid at speed Ugyop. Switching to the reference
frame of the drop, and provided the viscosity ratio of internal to
external fluid is not too extreme, liquid at a typical point on the
drop surface (e.g. on the equator) will also be circulating at a
speed of the order of magnitude of Ugyop. The time scale for a fluid
element to sweep around the drop surface (and hence the time
scale for fluid elements beneath the surface to execute a complete
streamline orbit) will be on the order of R/Ugrp. This represents
the typical time scale of advection.

As regards diffusion, we consider typical values of diffusivity
from a recent study (Korchinsky et al., 2009) on a ternary mixture
of acetone-methanol-benzene (labelled components 1, 2 and 3,
respectively). The scale of the diffusivities can be set by taking the
average of the infinite dilution diffusivities amongst all the
components. We denote this value ¢(D°>, and note that it
depends on the system (i.e. which components are present) but
not on the component concentrations. For acetone-methanol-
benzene (Korchinsky et al, 2009) ¢(D°> =3.48 x 10~ 9m?2s-1.
Given the value of (D°), the typical time scale for diffusive
transport is R?/{D°>.

The ratio between the two above mentioned time scales
defines a key dimensionless group governing the advection-
diffusion process in a circulating drop, namely the Peclet number
Pe,

Pe = RUgyp/<D°>. M

For a typical drop radius R of 10> m and a typical drop velocity of
Ugrop of around 0.03ms~!, it is clear that Pe is on the order of
10000, as already stated in Section 2.3. This implies that there
is a large separation of time scales between advection and
diffusion: indeed in the limit of an infinite Pe, material can
execute a complete streamline orbit before any diffusion has
taken place.

This scale separation is the physical feature that makes
simulating mass transfer in a circulating drop so challenging.
We are primarily interested in long-time scale diffusive processes,
but in order to access these, the simulations must resolve also the
much shorter time scale advection.

In what follows, we describe the governing advection-
diffusion equation (Section 3.1) with its boundary and initial
conditions (Section 3.2). We also specify the fluid flow field
(Section 3.3) and the various component diffusivities (Section
3.4). Moreover we show how to decouple the evolution of
particular components from each other (Section 3.5).

3.1. Advection-diffusion equation

We work in a dimensionless system of units in which time is
made dimensionless on the scale R?/(D°), distance is made
dimensionless on the scale R, and circulation velocities are made
dimensionless on the scale Ugp. The circulation pattern is
represented by a dimensionless velocity field u which is a
(specified) function of dimensionless radial coordinate r and
polar angle 6.

Advective-diffusive multi-component mass transfer satisfies
(Bird et al., 1960)

ow/ot+Peu-Vw=V . (AVw). 2)

Here t is dimensionless time, and w is a vector of mass fractions:
wy is the mass fraction of component 1, w, is the mass fraction of
component 2, etc. In a ternary system (e.g. acetone-methanol-
benzene as mentioned above), the vector w only contains two of
the components (e.g. w; and w, say), because the sum of all mass
fractions is necessarily unity. Our objective is to solve for each
component mass fraction as a function of ¢, r and 0. The quantity A
is a matrix of (dimensionless) diffusivities. Specifically these are
the Fickian diffusivities divided by ¢(D°). The reason that A is a
matrix (rather than just having a single diffusivity per compo-
nent) is that in a ternary (or higher) component system with more
than one solute, a gradient of one solute mass fraction can induce
a flux of another (Taylor and Krishna, 1993; Krishna and
Wesselingh, 1997; Smith and Taylor, 1983; Krishna and Standart,
1979, 1976): thus A has off-diagonal components as well as
diagonal ones (although the diagonal components are generally
dominant).

3.2. Boundary and initial conditions

Eq. (2) must be solved with suitable initial and boundary
conditions.

Ordinarily the solution domain would include both the region
internal to and that external to the drop. The initial condition
would specify mass fractions inside w® and external to wd,, the
drop. The boundary conditions would be specified mass fractions
in the external far field w3, and a regularity condition internal to
the drop at the centre. It would also be necessary to match
concentrations (or more correctly chemical potentials, Taylor and
Krishna, 1993) and fluxes at the drop surface: these surface
concentrations and fluxes are time dependent. All the above
conditions have been discussed by Uribe-Ramirez and Korchinsky
(2000a,b). More generally, the drop radius may also vary
gradually over time as mass transfers in or out, but this effect
was ignored by Uribe-Ramirez and Korchinsky, and will also be
ignored here: again recall that at the large Peclet numbers of
interest, the circulation rates within the drop are inherently much
faster than drop growth rates mediated by mass transfer in or
out. The net mass transport rate summed over all components
(1, 2 and 3 in a ternary system) depends solely on the local
circulation velocity and the local density, the latter being assumed
not to vary significantly spatially over the drop.

In this work, in the interests of simplicity, we shall assume that
the mass fractions on the drop surface are fixed over time with
specified values wR. Mathematically this assumption is conveni-
ent because it means that one only has to solve for the
concentration field in the inside (say) of the drop, instead of
solving a coupled mass transfer problem both inside and outside.

Fixing the surface mass fractions at wk is an approximation
which would only be justified in the limit where the mass transfer
resistance inside the drop is much larger than that outside. One
way of achieving this is to have a much smaller diffusivity inside
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the drop than outside. However, even when the diffusivities
inside and outside are comparable, it is possible to justify this
approximation a posteriori on the grounds that material outside
the drop sweeps past the drop surface once only, whereas that
inside the drop circulates around a multitude of times. The spatial
distance over which concentration gradients are set up depends
on the time available to establish them. Gradients outside the
drop are sharper (having limited contact time with the drop to be
set up, particularly when the flow is inherently rapid, i.e. Peclet
number is large) whilst those inside the drop are less sharp
(indeed, contrary to what is assumed in the boundary layer model
of Uribe-Ramirez and Korchinsky, 20004, b, gradients are realised
over larger distances with each successive circulation). Less sharp
gradients internal to the drop imply mass transfer resistance
inside the drop tends to be somewhat larger than that outside.

It is noteworthy that the opposite limit (i.e. external mass
transfer resistance being dominant) has been previously consid-
ered in the literature (Juncu, 2001, 2005). However, that study
was not for liquid drops suspended in another liquid, but rather
for gas bubbles suspended in liquid. Diffusivities in the gas
bubbles are much higher than those in the liquid, meaning
external mass transfer resistance really is dominant there. In the
present work, however, the focus is on liquid-liquid systems, not
gas-liquid ones.

In the liquid-liquid system we shall consider here for the
ternary mixture acetone-methanol-benzene (components 1, 2
and 3, respectively), we shall impose initial and boundary
conditions

wy=02, w)=06, wi=0.2, 3)

wk=03, wf=04, wi=03. “4)

3.3. Obtaining the flow field

We use the same flow field as Uribe-Ramirez and Korchinsky
(20004, b) (originally used by Nakano and Tien, 1967). The flow is
given by a (dimensionless) streamfunction via a truncated
Galerkin expansion with coefficients as follows:

W = (e17% + €513 +e3r*)sin? 0+ (e412 +es13 +egr*)sin?6 cos 0 5)

from which the (dimensionless) velocity components are

1 oy

U= 2sin0a0° ®)
1 oy

Y ="rsinoar @)

Note that i vanishes on both the drop axis and (by suitably
choosing the coefficients e; through eg) the drop surface, and the
sign convention is such that i is positive inside the drop.

The coefficients ey, e,, etc. depend on the drop density ratio,
viscosity ratio and Reynolds number. For the purposes of this
study, we shall assume unit density and viscosity ratios and a
Reynolds number Re (defined here as RUg,p/v, Where v is
kinematic viscosity) of Re=30. For the drop envisaged above
(see the discussion following Eq. (1)) with R=10"3>m and Udrop=
0.03ms ™!, this requires a kinematic viscosity v on the order of
10~ °m2s~!, which is a typical order of magnitude for many
common solvents.! Under the above conditions it is then possible

! Incidentally, for these parameter values, with a typical liquid density
1000kgm~3 and a typical interfacial tension of 0.01Nm~', hydrodynamic
stresses are estimated to be an order of magnitude smaller than capillary
pressures, justifying, in a first approximation, an assumption of drop sphericity.

to show

e; =0.390, 3)
e; =—0.190, )
e3 = —0.200, (10
e4=0.012, an
es =0.288, (12)
e = —0.300. (13)

Note that these coefficients are somewhat different from those
that arise in the Hadamard-Rybczynski streamfunction in the
creeping flow limit (Batchelor, 1967). For the same unit viscosity
ratio (the density ratio now being irrelevant), it turns out
e1=0.125, e3=—0.125 and all other coefficients vanish.

The streamline pattern associated with Egs. (5)-(13) is plotted
in Fig. 3.

3.4. Obtaining the dimensionless diffusivities

Fickian diffusivities vary with composition (Taylor and
Krishna, 1993), so that A is in principle a function of mass
fraction, making Eq. (2) non-linear in w.

In most liquid-liquid extraction operations, differences in
solute concentration within and between the dispersed and
continuous phases are not large (Korchinsky et al, 2009).
Therefore Fickian diffusivities, whilst differing from their infinite
dilution counterparts, are essentially constant and uniform
throughout the process. Thus A is effectively a constant matrix
(Korchinsky et al., 2009), and Eq. (2) can be linearised (Toor,
19644, b)

66—1/:+Peu-Vw=AV2w. (14)
Two extraction processes both working with the same system
(e.g. acetone-methanol-benzene), but operating in very different
composition ranges, would have different values of A, but the
value of A can nonetheless be assumed held constant during each
individual process.

Selecting appropriate values of A in a given composition range
requires either experimental Fickian diffusivity data in the range

Fig. 3. Streamline pattern for the truncated Galerkin expansion (right-hand side of
the figure). For comparison (left-hand side of the figure) the Hadamard-
Rybczynski streamline pattern, which applies in the creeping flow limit. Equal
numbers of streamlines are shown on either side, but the maximal values of the
streamfunctions differ, being 0.0812 (on the right) and 0.0312 (on the left).



S. Ubal et al. / Chemical Engineering Science 65 (2010) 2934-2956 2939

of interest or else infinite dilution diffusivity data coupled to a
theory for determining diffusivities at finite compositions. Here
the so-called Maxwell-Stefan theory is used (Taylor and Krishna,
1993). Further details of the method are given in a recent
publication (Korchinsky et al., 2009). Briefly the method works as
follows. So-called Maxwell-Stefan diffusivities are estimated at
any specified composition by interpolating between infinite
diffusivity data. Thermodynamic corrections to the diffusivities
are then computed using activity coefficient models. Finally
Fickian diffusivities are computed by combining the Maxwell-
Stefan interpolations with the thermodynamic corrections.

For the ternary system acetone-methanol-benzene at compo-
sition w;=0.25 (acetone), w,=0.50 (methanol) and ws3=0.25
(benzene), corresponding to the midrange composition of Egs.
(3) and (4), the method (Korchinsky et al., 2009) predicts

A A1 4y 0905 0.112

T\ 4o 4 )T (—0.041 0.362>'
Note that the off-diagonal terms are smaller than the diagonal
ones. Moreover 4,; here is negative (which means that in the
absence of an imposed gradient of component 2, the flux of

component 2 is in the opposite direction to that of component 1).
We shall use Eq. (15) throughout this work.

(15)

3.5. Component decoupling

Owing to the off-diagonal components of A (Eq. (15)), the
evolution of the various components of w are coupled to one
another. The components of Eq. (14) can be decoupled (Toor,
1964a, b) by diagonalising the system (see also Korchinsky et al.,
2009, which used this technique recently).

A matrix P and its inverse P~ are sought such that

P'AP =, (16)

where A is a diagonal matrix with elements consisting of the
eigenvalues of A, the columns of P being the corresponding
eigenvectors. The matrix A, like A, is assumed constant
(i.e. independent of the composition/mass fractions) here. For
the specific A given in Eq. (15), we find

(7 O)_(089%6 o0 17
“\0 i _< 0 0.371)' an
Mass fractions of so-called pseudo-components are obtained by

premultiplying w by P~'. The analogue of Eq. (14) written in
terms of pseudo-component mass fractions (denoted w) is

oW /ot +Peu - Vw = \LV*W. (18)

The decoupled (scalar) equations (18) are solved, with initial and
boundary conditions on W (obtained by premultiplying the
analogous conditions on w by P~!). Finally actual component
mass fractions are recovered by premultiplying the pseudo-
component mass fractions by the matrix P, i.e. w=Pw.

4. Numerical methods

We solved Eq. (14) (or rather its decoupled analogue equation
(18)) by two independent numerical methods, described in
Sections 4.1 and 4.2. We also compared the circulating drop
predictions with those of previous models: solution methods for
the previous models are described in Section 4.3. The set of
parametric studies that we analysed and compared is described in
Section 4.4: Peclet numbers up to 1000 were simulated using the
numerical method of Section 4.1, whereas Peclet numbers up to
10000 were simulated using the method of Section 4.2.

4.1. Finite difference method

The first numerical method was a finite difference algorithm
using centred spatial differences along with the alternating
direction implicit method (Press et al., 1992).

Briefly the method obtains an estimate of mass fractions half
way through a time step via (known) radial finite differences at
the beginning of the time step and (a priori unknown) angular
finite differences half way through the step. A tridiagonal matrix
must then be solved to obtain the mass fractions half way through
the step. Once these are obtained, the method proceeds to find
mass fractions at the end of the time step. These are obtained via
the average of radial finite differences at the beginning of the step
(known) and at the end of the step (a priori unknown) and angular
finite differences estimated half way through the step (already
obtained). Another tridiagonal matrix must then be solved to
obtain finally the mass fractions at the end of the step. The
advantage of the alternating direction implicit method is that only
relatively compact tridiagonal matrices need to be solved at each
stage.

The sensitivity of the algorithm to the number of spatial finite
difference points was tested by switching off the flow field
i.e. setting u =0, and also starting with an (artificial) initial mass
fraction field which varied spatially with r and 6 in the form of a
spherical harmonic. Analytic (exponentially decaying) solutions to
the mass transfer equations are then available (Harrison, 2006),
against which convergence studies of the finite difference scheme
can be performed (Harrison, 2006). For at least 64 grid intervals in
both the radial and angular directions, the relative error between
the analytic and finite difference solutions was less than 1%. We
settled on 128 radial grid intervals and 64 angular grid intervals.

In order to test the sensitivity of the finite difference solution
to the size of the numerical time step, we switched the flow field
back on (and the initial condition for w was also restored to being
uniform over the drop).

The permitted size of the time step can be limited both by
diffusive effects and advective ones. For the Peclet numbers
considered here (which are always considerably larger than unity)
the limit on the time step is advectively controlled. Accordingly
we used a dimensionless time step of 0.02/Pe, which is only a
small fraction of the time to execute a streamline orbit. For
benchmarking purposes, we also did some runs at time step
0.002/Pe. These only differed from the runs at 0.02/Pe by about
0.4% in relative terms: we decided therefore that choosing a time
step of 0.02/Pe was sufficiently small for our predictions. This
choice was supported via a formal convergence study (using a
range of time steps between 0.002/Pe and 0.04/Pe), enabling us to
bound the error for time step 0.02/Pe at less than a percent in
relative terms.

The algorithm was implemented in Mathcad 13, with run
times on a PC between a few hours (when Pe=100) to tens of
hours (when Pe=1000).

As Peclet number increased towards the regime of primary
interest (Pe on the order of 10000) run times became longer. We
emphasise (see the discussion in Section 3) that this is not solely a
limitation of the numerical algorithm per se, but rather a physical
feature of the problem under consideration.

Moreover, on the time scale of the first circulation, a mass
transfer boundary layer (Bird et al., 1960) is found to appear on
the drop surface, and during this first circulation, the boundary
layer achieves a (dimensionless) thickness of only O(Pe~1/?). In
order to resolve this properly, more spatial grid intervals should
be used as Pe increases (e.g. 128 radial intervals may prove to be
insufficient), and these should be accompanied by yet smaller
time steps to regain accuracy and stability. Further restrictions on
the size of grid intervals (and thereby time steps) arose from
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questions of numerical stability: convective problems are gen-
erally only numerically stable provided the grid-Peclet number
(defined as the drop Peclet number divided by the number of
radial or angular intervals) is not too large (Heinrich et al., 1997):
otherwise numerical tricks such as upwind differencing should be
used (Press et al., 1992; Heinrich et al., 1997). Whilst 128 radial
and 64 angular intervals proved sufficient for drop Peclet
numbers Pe=100 and 1000, the case Pe=10000 was not stable,
and would have required a finer spatial grid, and still finer time
steps (or alternatively upwind differencing). The numerical
challenges presented by this prompted us to explore an
alternative numerical method with slightly improved computa-
tional efficiency: see Section 4.2.

4.2. Finite element method

For the largest Peclet numbers that we accessed (Pe=10000),
we switched to a finite element code (Zimmerman, 2007). The
commercial package Comsol Multiphysics was employed. For the
flow field, the same truncated Galerkin streamline pattern as
previously (i.e. Eq. (5)) was employed. Dimensionless diffusivities
were given by Eq. (15) as before. Initial and boundary conditions
on mass fractions were again given by Eqgs. (3) and (4). The finite
element code (while it does not overcome the massive separation
between circulation and diffusive time scales that is inherent to
large Peclet numbers) had the advantage that the computational
mesh could be adjusted to have most resolution in the region
where high resolution is needed (i.e. near the drop boundary), and
less resolution elsewhere. Although the finite element package
offers the possibility to introduce ‘upwind’-type stabilisation
schemes, these were not implemented here. The numerical
mesh was sufficiently refined (in other words, the cell-Peclet
number—being the analogue of the grid-Peclet number in Section
4.1—was kept sufficiently small), that numerical stability was not
problematic, even when the drop Peclet number ranged up to
10000.

Benchmarks were done by varying the mesh refinement
between 25800 and 220800 degrees of freedom. As a guide, a
mesh with 25800 degrees of freedom had elements with edge
lengths down to 0.004 units; a mesh with 69300 degrees of
freedom had edge lengths down to 0.002 units; meshes with
140000, 159300 or 220800 degrees of freedom had edge lengths
down to 0.001 units. Moreover the mesh with 159 300 degrees of
freedom has 77 100 elements in total.

At Pe=100, the mesh with 25800 degrees of freedom gave
mass fraction predictions differing from those of the more refined
meshes only at the fourth significant figure. Moreover finite
element data on the more refined meshes (specifically at 159 300
degrees of freedom) were plotted against the predictions of the
finite difference code for Pe=100 and 1000 at selected spatial
points as a function of time. For Pe=100, finite element and finite
difference data overlay one another. For Pe=1000, the separation
between the finite element and finite difference data was
comparable with the curve thickness on the plot: this corresponds
to a discrepancy in only the third significant figure. All the finite
element data we report in what follows is on meshes of either
140000, 159300 or 220800 degrees of freedom.

Time steps were chosen adaptively by Comsol Multiphysics in
the first instance. However, we also benchmarked the finite
element code with respect to different maximum permitted time
steps of 0.2/Pe vs 0.02/Pe. Time steps were around 10~% units
initially, rising to the maximum permitted values as the
simulation proceeded. Analogous to what was found for the finite
difference code, the difference between predictions with these
two different time steps occurred in the fourth significant figure.

We selected 0.2/Pe as our maximum permitted time step. Run
times on a PC were up to several hours for the largest Peclet
number (i.e. Pe=10000) considered.

4.3. Comparison with predictions of previous models

Our principal aim here is to generate and analyse numerical
results for mass transfer in circulating drops. However, an
additional aim (alluded to in Section 2.3) is to compare the
predictions of the full numerical simulations of the circulating
drop to those from previous models, specifically to those of the
rigid drop and of the Uribe-Ramirez and Korchinsky boundary
layer model (Uribe-Ramirez and Korchinsky, 2000a,b). We give
brief details of how the previous model predictions were
obtained.

Analytic predictions exist for the rigid drop (Negri and
Korchinsky, 1986; Negri et al., 1986). We used the separation of
variables solution (see Section 2.1) with 100 Fourier series
components: choosing 100 Fourier series components ensures a
spatial resolution comparable with that in our finite difference
code (128 radial elements). Of course the higher Fourier
components decay exponentially with time exceedingly rapidly,
so high spatial resolution is only essential at extremely small
times.

We found that the rigid drop was about 90% of the way to
equilibration after 0.3 units of dimensionless time. Since we
anticipate that the circulating drop should equilibrate no slower
than the rigid drop, we decided to simulate the circulating drop
for 0.2 units or 0.3 units of dimensionless time.

The Uribe-Ramirez and Korchinsky (2000a,b) boundary layer
model is described via an analytic or semi-analytic formula,
specifically Eq. (A.18) in Appendix A, or strictly a multi-
component generalisation thereof. The only numerical work
needed is a quadrature over polar angle (see e.g. Egs. (A.14) and
(A.17)), and even quadrature can be dispensed with (in favour of
analytic integration) in certain cases (including the one consid-
ered here).

4.4. Parametric studies

It remains to describe (and justify) the parametric studies we
have done to analyse the circulating drop. We shall consider
parametric runs of the circulating drop numerical simulations
varying Peclet number (from Pe=100 to 1000 to 10000), at fixed
Reynolds number Re=30.

At first sight, this choice of parametric runs seems unusual. For
an actual material, the Reynolds number Re varies proportional to
the Peclet number: indeed the Schmidt number (defined as the
ratio between Peclet and Reynolds numbers) is a material
property, dependent on drop mass fractions, but independent of
drop size and velocity. Experimentally one could only vary Peclet
number at fixed Reynolds number, by performing experiments for
an array of different materials. However, the Schmidt numbers of
materials encountered in liquid-liquid extraction are almost
always on the order of a few hundred (see e.g. Uribe-Ramirez
and Korchinsky, 2000a). It would not be possible to find an
extraction problem with Peclet number as low as Pe=100 (or even
with Pe=1000) and yet simultaneously with Reynolds number as
large as Re=30: ordinarily Re=30 would demand Pe on the order
of 10000. Conversely an extraction problem running at Pe=100
would usually have Re less than unity, and certainly not Re=30.

Nonetheless parametric studies varying Pe at fixed Re are
useful.

There are two reasons for this. Firstly, studies at realistic values
of Pe (e.g. Pe=10000) are necessarily numerically expensive for
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the reason pointed out above (see Section 3): i.e. the large
separation between the circulation time scale, which must be
resolved, and the diffusive time scale, which generally governs
mass transfer. One can consider smaller values of Pe which are
inexpensive to simulate, and compare e.g. Pe=100 and 1000, so as
to gain intuition about how increases in Pe might affect the mass
transfer process.

The second reason concerns the respective influence of Pe and
Re on the advective term in Eq. (14), which actually involves
the product Pe u. Here the role of Pe is straightforward. It governs
(see Eq. (1)) the rate of orbiting streamlines relative to the rate of
mass diffusion.

The role of the Reynolds number Re is more subtle. It appears
in Eq. (14) only implicitly, due to the fact that the drop velocity
field u depends on Re (as well as upon density and viscosity
ratios). Except in cases where density and/or viscosity ratios are
very extreme, u would be expected (for any given Re) to be a field
of order unity (recall that u has already been made dimensionless
with respect to Ugrop Which sets the scale of the circulation speed).
Thus u governs not the circulation rate, but instead the precise
spatial distribution of the velocity field (or equivalently the
spatial layout of the circulation streamlines): this then is what is
sensitive to Reynolds number.

After several circulations around the drop, the mass transfer
field might adopt a configuration which depends on the spatial
layout of the streamlines, but independent of the speed with
which fluid elements circulate around those streamlines. This
would imply that drop mass fractions at different Peclet numbers
would asymptote (after a given number of circulations) onto a
universal curve, independent of Peclet number. If and when such
a configuration is reached, it would be possible to replace
simulations at the actual (large) Peclet number e.g. Pe=10000,
with much less expensive simulations at an artificial (much
smaller) value, e.g. Pe=1000 or even Pe=100. Since the mass
transfer field still depends on the layout of the streamlines, it is
necessary to retain the original Reynolds number (which
determines that layout) even though the Peclet number has been
artificially reduced.

5. Results

Here we present results of the circulating drop numerical
simulations. The initial focus will be on bulk mass fractions
(Section 5.1), but subsequently we consider details of local mass
fractions (at selected points in the drop) vs time (Sections 5.2
and 5.3). The effect of varying Peclet number upon the results is
quantified (Section 5.4). The detailed spatial layout of the
mass fraction fields at selected times will also be examined
(Section 5.5).

5.1. Bulk mass fraction

Bulk mass fractions are the quantities of main importance to
the chemical engineer designing a liquid-liquid extraction
column. Of primary interest is the total mass of the various
components transferred into or out of the drop: details of the
precise spatiotemporal distribution of the solute concentration
field (whilst still interesting and useful to know) are less crucial.
Moreover bulk mass fractions are much easier to measure
experimentally than spatiotemporal variations in the solute
concentration field.

Figs. 4 and 5 show bulk mass fractions vs time, respectively, for
component 1 and component 2. Note the logarithmic scale for
time. Circulating drop numerical simulations are shown for three
Peclet numbers Pe=100, 1000 and 10 000; the Reynolds number is
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Fig. 4. Bulk mass fraction data for component 1 predicted (a) from full numerical
simulations of the circulating drop, and compared to predictions of the rigid drop
model and (b) to predictions of the Uribe-Ramirez and Korchinsky boundary layer
(BL) model.

Re=30 throughout. Computations for the rigid drop model and the
boundary layer model are also shown.

5.1.1. Comparison between circulating drop and rigid drop
predictions

Clearly the circulating drop simulations (at all three Peclet
numbers considered) and the rigid drop simulations all coincide
at sufficiently early times: before the circulation has led to any
significant turnover of the fluid at or near the surface, the system
behaves as a rigid drop. However, at a (dimensionless) time of
around 2/Pe (for each Pe), the circulating drop simulations start to
deviate from the rigid drop predictions: the presence of the
circulation leads to a faster evolution of mass fraction. Around a
time of 10/Pe (again for each Pe) all the circulating drop
simulations appear to come together onto a master curve:
predictions are then independent of the Peclet number. At some
time t beyond this point, one could (without significant loss of
accuracy) artificially change the Peclet number to a lower value,
providing that the new lower Peclet number is at least 10/t,
ensuring that its data have likewise joined the master curve. This
then permits a larger time step in the simulations and thereby
faster simulations overall. A coarser mesh could then also be
utilised, further reducing the computational cost. Note that the
Peclet-number-independent master curve is quite distinct from
the rigid drop predictions. It can be shown that by dimensionless
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Fig. 5. Bulk mass fraction data for component 2 predicted (a) from full numerical
simulations of the circulating drop, and compared to predictions of the rigid drop
model and (b) to predictions of the Uribe-Ramirez and Korchinsky boundary layer
(BL) model.

time t of around 0.03 the simulated circulating drop bulk mass
fractions on the master curve are already half way to equilibrium,
whereas the rigid drop needs a time of around 0.08 to achieve the
same bulk mass fractions. By dimensionless time t of around 0.2,
the master curve has very nearly equilibrated, whereas (at time
0.3) the rigid drop evolution is still some detectable amount away
from equilibrium.

It is possible to quantify the speed up of mass transfer in the
circulating drop compared to the rigid drop by looking at the final
rate of approach to steady state in both cases. We consider
(decoupled) pseudo-component mass fractions (see Section 3.5),
instead of actual component mass fractions (which are coupled).
Using a Fourier analysis (Negri and Korchinsky, 1986; Korchinsky
et al, 2009), the rigid drop mass fractions approach their
equilibrium state exponentially with a (dimensionless) rate
constant 72, where A is the diagonal matrix of eigenvalues of
the dimensionless diffusivity A matrix (see Eq. (17)). Numerically
we find the circulating drop approaches its final equilibrium state
exponentially with a (fitted) rate constant 26 A: see Fig. 6. This
corresponds to nearly a threefold speed up in equilibration rate
for the circulating drop compared to the rigid drop.

Fig. 6 shows a very close correspondence between Pe=1000
and 10000 data (after a brief initial transient), but it also reveals a
slight offset between the Pe=100 data and the data at higher Pe.
Despite the offset, the Pe=100 data are still relatively close to the
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Fig. 6. Circulating drop ratios of pseudo-mass fractions (a) (W5-w;)/(w5-w?) and
(b) (W,-w¥)/w3-w¥) on the approach to the equilibrium, plotted against time.
Here we plot data for pseudo-mass fractions (which evolve independently of one
another) instead of mass fractions (which are coupled). The functions
0.5exp(-264,t) and 0.5exp(-264,t) demonstrate that the final rates of approach
to equilibrium are, respectively, 264; and 2641, for the circulating drop data: the
multiplicative prefactor 0.5 here is arbitrary (and is selected to offset the plotted
function slightly from the circulating drop data to aid clarity). Data for the rigid
drop are also shown, with the functions 1.1exp(-n21;t) and 1.1exp(-m2i,t)
demonstrating the final rates of approach, n24; and n2,. Again the multiplicative
prefactor 1.1 here is arbitrary, offsetting the plotted function from the rigid drop
data for clarity.

higher Pe data (compared to how much they differ from the rigid
drop case). The Pe=100 offset is also substantially smaller for
pseudo-component 2 than for pseudo-component 1: this is
unsurprising, since in Eq. (17), pseudo-component 2 has the
smaller eigenvalue—diffusion is inherently weaker for pseudo-
component 2 (compared to pseudo-component 1) and so, in
relative terms, convective effects are stronger. The slightly larger
offset for pseudo-component 1 does not preclude Pe=100 data for
actual components joining onto a master curve. Indeed by the
time t~ 0.1 at which the Pe=100 data in Figs. 4 and 5 appear to
join a master curve, it turns out that W’f—wl is already negligibly
small compared to WZ—W’;, meaning the values of w§—w; and
wo—w8 are both dominated by contributions from pseudo-
component 2.

5.1.2. Comparison with predictions of the boundary layer model
Also shown in Figs. 4 and 5 are predictions of the Uribe-
Ramirez and Korchinsky boundary layer model, at the three Peclet
numbers in question (Pe=100, 1000 and 10000). Note that the
predictions at different Peclet numbers are all essentially the
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same curve just with the time axis rescaled: t always appears
multiplied by +/Pe in the Uribe-Ramirez and Korchinsky formula
(the formula is essentially a multi-component analogue of single
component Eq. (A.18)).

First we compare predictions of the boundary layer model with
the rigid drop.

Somewhat surprisingly the Pe=100 boundary layer model is
predicted to change more slowly than the rigid drop for much of its
evolution, although its final approach to equilibrium is faster. The
Pe=1000 and 10000 cases also appear to evolve more slowly than
the rigid drop at very early times, but this accounts for only an
extremely small fraction of the overall evolution, and the final
approach to equilibrium is much faster. The slow evolution at early
times is a consequence of the particular way Uribe-Ramirez and
Korchinsky idealised the boundary layer model. They assumed a
steady state boundary layer thickness at all times; strictly speaking
(see Appendix A) the model should allow the boundary layer to start
very thin and grow toward steady state. With that modification (not
implemented here), the boundary layer model should always evolve
at least as rapidly as the rigid drop. The boundary layer should
achieve its steady state thickness increasingly rapidly as Peclet
number grows, which is why the Pe=100 case appears to evolve
more slowly than the rigid drop for a substantial period of time,
whereas the Pe=1000 and 10000 cases only do so very briefly.
Moreover the steady state boundary layer thickness increases as Pe
decreases, and so overestimates the true (time-dependent) layer
thickness to a greater extent at low Pe: the evolution rate of the bulk
mass fraction is thereby underestimated to a greater extent (as well
as for a more substantial period of time) at low Pe. To summarise,
the apparent slow initial evolution of the boundary layer model
compared to the rigid drop is not an inherent feature of the
boundary layer model, but rather an artifact of the way in which
Uribe-Ramirez and Korchinsky idealised it: this artifact becomes less
significant as Pe grows.

As was noted above, the final approach of the mass fractions to
equilibrium predicted by the boundary layer model (with
Pe=100) is faster than what is predicted for a rigid drop, but the
difference is not dramatic. Mathematically mass fractions com-
puted via the boundary layer model have (see Appendix A) an
exponential approach to equilibrium with a (dimensionless) rate
constant 1.50Pe'/?A!/2. The factor 1.50 depends on the set of
Galerkin coefficients used to describe the flow field (and is the
value corresponding to the coefficients given in Eq. (8)-(13)), and
A is (as above) the diagonal matrix of eigenvalues of the
dimensionless diffusivity. Meanwhile, as mentioned previously,
the rigid drop model has a final exponential approach to
equilibrium with a (dimensionless) rate constant 72X (corre-
sponding to the slowest decaying Fourier mode, Negri and
Korchinsky, 1986; Korchinsky et al., 2009), and there are even
faster decaying modes present earlier on. Comparing these two
rate constants, clearly the boundary layer model (assuming a
layer of steady thickness) only equilibrates significantly faster
than the rigid drop if Pe is greater than about 100 (assuming the
eigenvalues in A are near unity). Indeed it is only meaningful to
consider a boundary layer model when the boundary layer is
sufficiently thin (i.e. significantly thinner than the radius of the
drop), and this typically requires Pe to be around 100 or higher.
Moreover when we increase Pe up to 1000 or 10000, the final
approach to equilibrium of the boundary layer model becomes
substantially higher than that of the rigid drop as Figs. 4 and 5
clearly show.

Comparing now the boundary layer predictions and the full
numerical simulations of the circulating drop, it so happens that
the predictions of the boundary layer model with Pe=100 and
1000 straddle the Pe-independent master curve for the full
numerical simulations. However, this is mere coincidence as the

equilibration times in the different models scale differently: the
boundary layer model equilibrates in O(Pe~'/2) units of dimen-
sionless time, whereas the full numerical simulations equilibrate
in O(1) units of time.

Indeed the most appropriate comparison to make is between
the Pe=10000 boundary layer model and the full numerical
simulations: from Section 3, Pe=10000 is a realistic value for
Peclet number (given Reynolds number Re=30).

If we assume Pe=10000 and also specific A values from
Eq. (17), we can compare the rate constants for approach to
equilibrium of pseudo-component mass fractions in the boundary
layer model (1.50Pe'/?).1/?) and the full numerical simulations
(26 ,; see Section 5.1.1). The boundary layer model predicts 6
times speed up for one pseudo-component and 9 times speed up
for the other. Hence, as the Peclet number increases towards the
regime of physical interest (on the order of tens of thousands), the
boundary layer model evolves more rapidly than the circulating
drop numerical simulations, by (in order of magnitude terms) a
factor of approximately 10. The substantially rapid approach to
equilibrium of the boundary layer model is thereby highlighted.

The explanation for the boundary layer model’s more rapid
evolution is that fluid elements are assumed to be well mixed in
the interior of the drop. Fluid elements which pass near the drop
surface, subsequently travel through the interior, and then are re-
injected onto the drop surface, are assumed to arrive at the
surface ready to transfer yet more mass. Good mixing is likely to
occur in a turbulent drop (and a boundary layer model may work
very well under such circumstances), but here (see Section 3.3)
we assume a laminar flow field at Reynolds number Re=30. If
good mixing does not occur, then fluid elements which passed
initially near the drop surface (and transferred mass at that time)
would not gain or lose much mass upon being re-injected (since
they would already be at mass fractions similar to those imposed
on the surface). In order to investigate whether or not there is
good ‘mixing’ (i.e. efficient mass transfer) in the drop interior, we
consider (in the next subsection) mass fractions vs time at various
points along the drop axis: on-axis data are relevant because the
same fluid streamlines which pass close to the drop surface (and
exchange mass there), also pass along the drop axis.

w, vs t: drop axis
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Fig. 7. Data for component 1 mass fraction vs time on the drop axis at various
heights z=rcos 6 with 0 equal to either 0 or 7. The Peclet number is Pe=100. The
inset indicates on a sketch of the drop, the spatial location of the points for which
data are plotted.
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5.2. Mass fraction vs time: on the drop axis

Fig. 7 shows mass fraction data for component 1 at various
heights on the drop axis (the height is z=r cos 0 with 0 either 0 or
1) for Pe=100. Here (see also the definition sketch in Fig. 1) the
location r=1, 6 =0 (and hence z=1) corresponds to the forward
stagnation point, whereas r=1, 0=n (and hence z=-1)
corresponds to the rear stagnation point.

It is clear that at quite early times (i.e. at times much smaller
than those at which the bulk mass fraction equilibrates) w;
migrates from values close to w9 to values near wf¥, e.g. the centre
of the drop undergoes the transition from w? to w¥ in the interval
between times t=0.02 and 0.06 (i.e. between 2/Pe and 6/Pe). This
transition corresponds to fluid elements gaining mass through
close contact with the drop surface, and then being advected
along the drop axis without exchanging much mass axially (and
moreover with diffusion in the direction normal to the drop axis
being quite limited). This also explains why, in Fig. 7, points on
the axis below (above) the equator undergo their transition
sooner (later) than the drop centre does, since fluid elements from
near the surface reach those points sooner (later). Although we do
not present any data here for component 2 (only for component
1), we have found that component 2 shows analogous behaviour:
i.e. a transition from w3 to w5 for each point on the drop axis with
little mass transfer in the drop interior.

There are good reasons to expect comparatively little mass
transfer as fluid elements travel up the drop axis in a steady
laminar flow. Consider first a fluid element migrating along the
drop surface, which is known to be exposed to the surface for a
(dimensionless) time O(1/Pe). During this time, a mass transfer
boundary layer transverse to the surface can grow to a thickness
O(Pe~'/?), the mass fractions changing spatially from wf to wo
across this layer. However, streamlines which are a typical
distance O(Pe~'/?) from the drop surface form (on geometric
grounds) a streamtube along the axis of thickness O(Pe~'/*) which
is considerably larger than O(Pe~'/?) (indeed Fig. 3 gives an
indication of the degree to which streamlines spread out near the
drop axis).

In this axial streamtube, the diffusive term AV?w in Eq. (14)
has an estimated magnitude O(Pe'/? (WR—w?)). This equals the
Lagrangian derivative of the mass fraction Dw/Dt. Since fluid
elements take time O(1/Pe) to migrate up the drop axis (from rear
to forward stagnation point), at most they change their mass
fraction by O(Pe~!/? (wR—w0)): as Pe is considerably larger than
unity, this represents inefficient mass transfer. Mass exchange is
predicted to be suppressed as fluid elements travel up the drop
axis, and is only reactivated as streamline orbits carry elements
away from the axis again.

5.2.1. Mass fraction following fluid elements up the drop axis

The argument just presented suggests comparatively little
diffusive mass transfer to or from fluid elements during their
transit along the drop axis: we now examine the extent to which
the simulation data support this. Fig. 8 shows data at three
locations on the drop axis z=—0.75 (below the centre), z=0 (the
drop centre) and z=0.75 (above the centre). Instead of the current
time t, we choose the abscissa to be a quantity t., defined as the
time at which a fluid element at any of the three locations passes
the drop centre. Clearly for the drop centre, t.=t. Meanwhile for
z=-0.75, t. > t, since the fluid element only reaches the drop
centre after the current time t. Likewise for z=0.75, t. <t, since
the fluid element has already passed through the drop centre
prior to time t. Thus t. labels fluid elements. The ordinate is
the value of w; at whatever time the fluid element needs to pass
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Fig. 8. Mass fractions w, of fluid elements on the drop axis (at positions z= —0.75,
0 and 0.75) vs the time t. at which the given fluid element reaches the drop centre.
The Peclet number is Pe=100. Data (w; vs t) on the equatorial plane (0 =m/2,
r=0.75) are also shown for comparison. The inset indicates the spatial locations for
which data are plotted.

the location in question (z=-0.75, 0 or 0.75), so as to ensure
that the element is at the drop centre at time t,.

In this case Pe=100, for t. values up to nearly 0.05 (i.e. 5/Pe), it
is clear that, on the upper part of the drop axis, while different
fluid elements have different w, values, there is virtually no
change in mass fraction following an element: the w; vs t. plots
for z=0 and 0.75 virtually overlie one another.

The picture along the lower drop axis is rather different.
Somewhat surprisingly, the wy vs t. curve for z= —0.75 underlies
those for z=0 and 0.75. Instead of the mass fraction w; being high
on the drop axis, and fluid elements thereby losing small amounts
of mass diffusively normal to the axis, w; following a fluid
element, actually grows as the element moves. At Pe=100,
streamwise diffusion starting from the drop surface (in the
neighbourhood of the rear stagnation point) can extend along
the axis all the way to z=-0.75, and so a fluid element at
z=—0.75 is still gaining mass diffusively.

Still for the case Pe=100, beyond t, values of about 0.1 (i.e. 10/Pe),
the curves start to level off. It is clear at this point that the value of w,
for a fluid element passing z= — 0.75 is slightly higher than when the
same fluid element passes the drop centre, which is slightly higher
again than when the same fluid element passes z=0.75. Individual
fluid elements therefore lose a small amount of mass during their
transit up the axis, this mass being lost by diffusion normal to the
axis. However, the net change in mass fraction for these fluid
elements is insignificant compared to the spatial differences in mass
fraction which still persist between different parts of the drop. The
figure shows (for comparison) the state of an element at r=0.75 on
the equatorial plane, which has altogether a very different w; value.

5.3. Mass fraction vs time: equatorial plane

The previous subsection treated mass fractions at points along
the drop axis: on-axis mass fractions tended to evolve on an
advective time scale (O(1/Pe) dimensionless units). Here we
consider the evolution of mass fractions at points on the drop
equatorial plane: we will see that, in many cases, evolution is on a
diffusive time scale (O(1) dimensionless units). As in Section 5.2,
the focus is upon component 1, the results for component 2 being
broadly analogous.

Fig. 9 shows data for mass fraction w; vs time on the equatorial
plane for radii r=0 (the drop centre), r=0.25, 0.5, 0.75 and 0.992
for Pe=100. Data for r=0.992 equilibrate very rapidly indeed,
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Fig. 9. Data for component 1 mass fraction vs time in the equatorial plane 0 = 7/2
at various radial positions r=0, 0.25, 0.5, 0.75 and 0.992. The Peclet number is
Pe=100. The inset indicates the spatial locations for which data are plotted.

whilst r=0.75 shows the next most rapid (initial) growth, with
r=0.5 the next most rapid after that. However, the (initial) growth
rate for r=0.75 is considerably less than that for r=0.992, and that
for r=0.5 is considerably less again than what is seen for r=0.75.
These initial growths are diffusive in origin, and this is why the
mass fraction at the points nearer the surface grows faster.

For times greater than about 0.02 (i.e. greater than 2/Pe in this
Pe=100 case) the mass fractions nearer the drop centre (i.e. r=0
and 0.25) begin to increase suddenly and overtake (by t=3/Pe)
those at r=0.5 and 0.75. Indeed by t=5/Pe, mass fractions at r=0
and 0.25 are already 70-80% of the way to equilibrium. As has
been discussed in Section 5.2, this corresponds to material from
extremely close to the surface, travelling into the drop interior
and up the drop axis: remember that any material in a surface
boundary layer of thickness O(Pe~'/?), forms a streamtube of
thickness O(Pe—'/4). At the modest Peclet number Pe=100 in
Fig. 9, it is unlikely that this streamtube will be exceedingly thin.
Indeed given the close agreement between the mass fractions at
r=0 and 0.25 in Fig. 9, it would appear that for Pe=100 the
streamtube extends out to at least r=0.25.

Compared to the sudden increase in mass fractions at r=0 and
0.25 noted above, mass fractions at r=0.5 and 0.75 evolve
comparatively slowly over longer times. This evolution is
consistent with mass fractions being fairly uniform along any
given streamline (see also Section 5.5 later), but being transported
slowly (i.e. diffusively) from one streamline to another: by
definition there is no advection in the cross-stream direction. In
this cross-stream diffusion picture (see Appendix B), the slowest
evolution of all is expected for the internal stagnation point (see
Fig. 10). For the streamfunction described by Eq. (5) with
coefficients in Egs. (8)-(13), the internal stagnation point (see
also Fig. 3) turns out to be at r~0.698 and 0~ 1.38 (i.e. quite
close to the equatorial plane). Thus the points r=0.5 and 0.75 on
the equatorial plane effectively straddle the internal stagnation
point: their evolution will be slightly more rapid than that of the
internal stagnation point, but certainly less rapid than that of
points at r=0 and 0.25 which benefit from advective transport
from the surface to the axis (and its neighbourhood).

5.3.1. Oscillations superposed on the mass transfer rate

In Fig. 9 the mass transfer rate is seen to fluctuate over time: at
a given r value, oscillations are superposed on the general growth
of wy. The time scale of these oscillations correlates with the
characteristic advection time O(1/Pe).
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Fig. 10. Schematic of a cross-stream diffusion picture of mass transfer, with mass
being transported from the drop surface and axis towards the internal stagnation
point.

This makes physical sense: consider an arbitrarily chosen point
e.g. r=0.75, 0 =m/2 in Fig. 9. During the first streamline orbit,
some mass reaches this point diffusively, and so the mass fraction
of w; will grow, as fluid elements have more and more time to
exchange mass. However, there will come a time when fluid
elements arriving at this chosen point originated from locations
deep in the drop interior. All fluid elements originating deep in
the interior are at present essentially equivalent as far as their wy
goes: the only opportunity they have for exchanging mass is the
period of time since they left the deep interior. Thus the growth of
w; at the chosen point r=0.75, § =1/2 is temporarily arrested.
Only when the first streamline orbit is more advanced, so that
fluid elements have been previously at larger r values (near to
r=0.75), have penetrated the deep interior and returned to larger r
values, can w; begin to grow again.

To summarise, the exact growth rate of w; at any given point
in space and time depends on the details of the local concentra-
tion field: the local concentration gradients (which determine this
growth rate) depend on the history of a fluid element and its
neighbours. Different streamlines (corresponding to different r
values in Fig. 9) have different orbit times, meaning that fluid
elements on adjacent streamlines circulate at different rates.
Therefore mass exchange between fluid elements on adjacent
streamlines is complex. Owing to the differential circulation rates,
initially adjacent fluid elements on adjacent streamlines will lose
contact, and be replaced by new neighbouring elements. Over
time (i.e. after a few streamline orbits) a fluid element will have
seen a succession of many neighbours, and will experience only
an average of the state of its adjacent streamlines: oscillations are
then expected to disappear (as indeed is seen in Fig. 9). Moreover
the bulk mass fraction (which is an average of the mass fractions
both along and across many streamlines) smooths out the
oscillatory behaviour: hence no oscillations are seen in Fig. 4 for
instance.

5.4. Comparing Pe=100 and 1000 data

In this subsection we consider data for Pe=1000 and compare
them against Pe=100 data in the previous Sections 5.2 and 5.3.
Again the focus is on component 1, with component 2 behaving
analogously.

Physically we expect an increase in Pe to raise the importance
of advection relative to diffusion, and this is exactly what we shall
see. Remember (see Sections 2.3 and 3) that the problems of
physical interest (at least those with Reynolds number Re=30 as
we assume) actually have Pe in the range of tens of thousands.
However, simulations at Pe=100 and 1000 are numerically
cheaper, and comparing these two different Peclet numbers gives
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us sufficient insight into what will happen as Peclet number is
further increased (see Section 4.4). What we find by comparing
the cases Pe=100 and 1000 is similar to what we would learn by
comparing the cases Pe=1000 and 10000: hence data for
Pe=10000 are not specifically considered here.

5.4.1. Comparison on the drop axis

Data for w, vs t at selected points on the drop axis for Pe=1000
turn out to be qualitatively similar to those for Pe=100 (which are
shown in Fig. 7): increases in mass fraction with time at each
location are associated with advection up the drop axis.
Quantitatively, however, the Pe=1000 data evolve on a time scale
10 times shorter than that for Pe=100: this reflects a nominal 10-
fold speed up in the advection rate from Pe=100 to 1000.

Fig. 11 shows on axis data for Pe=1000 at heights z= +0.75 as
well as at the drop centre. As in Fig. 8, the abscissa is now t. (the
time at which a given fluid element passes the drop centre) rather
than the current time t.

At Pe=1000, for all intents and purposes, the w; vs t. curves (at
different z values) overlie one another up to t.=10/Pe. The
asymptotic arguments presented in Section 5.2, explaining why
fluid elements transfer comparatively little mass as they migrate
up the drop axis, certainly appear valid here. The curves in Fig. 11
at different z values overlie one another, not only for z=0 and 0.75
(as occurred for Fig. 8), but also for z= —0.75 (contrast Fig. 8). In
Fig. 11, diffusion is much weaker at this higher Peclet number
Pe=1000, so there is no longer any possibility of a fluid element at

= —0.75 still growing its mass fraction via diffusion in from the
surface.

Beyond t. values of 10/Pe, again (as was also seen in Fig. 8) the
curves level off, and once again w; decreases very slightly from
z=-0.75 to 0 and again from z=0 to 0.75. However, this slight
difference in mass fraction following a fluid element up the axis is
insignificant (it scales as O(Pe~1/?) via the arguments of Section
5.2): any fluid element on the axis is near to equilibrium, whereas
elsewhere in the drop (e.g. at r=0.75 on the equatorial plane
which is shown in Fig. 11) wy has barely changed from the initial
value.

5.4.2. Comparison on the drop equatorial plane

We turn now from the drop axis to the equatorial plane. Fig. 12
shows Pe=1000 data on the equatorial plane at various radial
positions. Here the scale of the time coordinate is the same as in
Fig. 9 for Pe=100: there is no speed up of the approach to
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Fig. 11. Mass fractions w; of fluid elements on the drop axis (at positions
z=-0.75, 0 and 0.75) vs the time t. at which the given fluid element reaches the
drop centre. The Peclet number is Pe=1000. Data (w; vs t) on the equatorial plane
(0=m/2, r=0.75) are also shown for comparison.

wqvs t:0=n/2

0.3
0.29
0.28 |
0.27
0.26
0.25
0.24
0.23
0.22
0.21

0.2

Wiy

0 0.05 0.1 0.15 0.2 0.25 0.3

Fig. 12. Data for component 1 mass fraction vs time in the equatorial plane
0=m/2 at various radial positions r=0, 0.25, 0.5, 0.75 and 0.992. The Peclet
number is Pe=1000.

equilibrium by a factor of 10, and for the most part (i.e. for most
radial positions), the ultimate rate of achieving equilibrium is
diffusively controlled, depending on diffusion across fluid
streamlines.

Changing the advection rate by a factor of 10 affects, however,
the oscillations superposed on the general diffusive growth of w.
The oscillation time scale correlates with streamline orbit times:
higher frequency oscillations are therefore seen in Fig. 12 than in
Fig. 9 (orbit times scale as O(1/Pe) in our units).

At early times (i.e. well before equilibrium is attained) we can
see the effect of advection being strengthened as Pe increases. In
Fig. 9, the initial (diffusive) growth of w; at r=0.75 and 0.5
managed to exceed the growth of r=0 and 0.25 (which only
exhibit growth once material is advected from the drop surface
into the drop centre). In Fig. 12 by contrast, the growth at r=0 and
0.25 (due to advection) occurs much earlier, at times well before
any significant diffusive growth has occurred at r=0.75 and 0.5.

5.5. Contour plots for mass fraction

Sections 5.2-5.4 all considered details of mass fraction at fixed
spatial locations as a function of time. It is also instructive to
consider mass fraction at fixed values of time as a function of
spatial location. Here we present these data in the form of contour
plots of mass fraction wy. Again (as in Section 5.4) we consider the
particular cases Pe=100 and 1000. Data for Pe=10000 are not
shown here, since the comparison between Pe=100 and 1000 is
adequate to reveal the trends that occur upon increasing Peclet
number.

5.5.1. Contour plots for Pe=100

Fig. 13 shows contour plots for w; for Pe=100 and times
t=0.01, 0.02, 0.05 and 0.1. Streamlines (see also Fig. 3) are
superposed on the plots, allowing us to determine (for each value
of time) whether (or not) contours of the mass fraction match
those of the streamfunction, which is a signature of mass fraction
being uniform along streamlines.

At time t=0.01 (i.e. t=1/Pe) gradients of mass fraction are
confined near the drop surface, and are primarily radial: see
Fig. 13(a). Mass fraction therefore varies quite substantially along
streamlines. It is also easy to see that gradients tend to be sharper
near the forward stagnation point than near the rear stagnation
point. The reason is that advection is towards the drop surface
(competing with diffusion) at the forward stagnation point, and
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Fig. 13. Contours of mass fraction w; for Pe=100 at times (a) t=0.01, (b) t=0.02, (c)
t=0.05, and (d) t=0.1. The drop surface has w;=0.3 always, and the remaining
contours have w;=0.29, 0.28, 0.27, etc. Plots at later times have fewer contours
because w; does not extend all the way down to the initial value 0.2: specifically
the w; values at the internal stagnation point—which exhibits the slowest
evolution—are (a) 0.201, (b) 0.208, (c) 0.230, and (d) 0.262. The streamline pattern
is superposed on each plot.

away from it (cooperating with diffusion) at the rear stagnation
point, which is also in line with predictions of an approximate
analytical solution for the concentration field (Bird et al., 1960)
(which applies locally in the neighbourhoods of the forward and
rear stagnation points, and for times up to one typical streamline
orbit).

At time t=0.02 (i.e. 2/Pe) gradients are still primarily radial, but
penetrate a larger depth into the drop than at t=0.01: this deeper
penetration is marked near the rear stagnation point: see
Fig. 13(b). The neighbourhood of the internal stagnation point is
still virtually untouched by the mass transfer.

As time progresses beyond t=2/Pe we expect to see a change
away from radial gradients: this is in line with the findings of
Figs. 4 and 5 which indicated a clear difference between
circulating and rigid drop data emerging around this time. This
expectation is borne out by data for t=0.05 (i.e. 5/Pe): see
Fig. 13(c). There is clear evidence of advection of mass up the drop
axis: material has certainly been advected as far as the drop
centre. Moreover the contour enclosing the drop centre also
encloses the point r=0.25 in the equatorial plane: there is
therefore evidence for mass being advected along the axis in a

relatively thick streamtube, as was claimed in Section 5.3.
Nevertheless advection has still not reached the neighbourhood
of the forward stagnation point. Strong non-uniformities in mass
fraction w, along streamlines still persist. Significant changes in
mass fraction in the neighbourhood of the internal stagnation
point are also starting to appear.

By time t=0.1 (i.e. 10/Pe) the contours of mass fraction start to
form closed loops indicating that mass has now been advected
along a full streamline orbit: see Fig. 13(d). Moreover to a rough
approximation, the streamlines match with the contours of mass
fraction, with only slight irregularities in the latter. Since all
points along a streamline are now (roughly) equivalent in terms
of mass fraction, the evolution of the system no longer depends on
how quickly fluid elements orbit their streamlines (i.e. upon
Peclet number). It is therefore plausible that for time t=10/Pe
onwards the system evolves onto a master curve independent of
Peclet number, as Figs. 4 and 5 already suggest.

For Pe=100, at the time t=0.1 shown in Fig. 13(d), the mass
fraction at the internal stagnation point is about half-way to
equilibrium. Although not shown in Fig. 13, as time progresses
beyond t=0.1, the aforementioned irregularities in contours of
mass fraction are smoothed out, but the mass fraction also
becomes increasingly uniform over the entire drop.

5.5.2. Contour plots for Pe=1000

Fig. 14 shows data for Pe=1000. Compared to Fig. 13 (with
Pe=100), there is a greater separation in the time scales for
advection (fast) and diffusion (slow). This makes it far easier to
distinguish these effects when considering contour plots. Times
t=0.002, 0.005, 0.01, 0.02, 0.05 and 0.1 are shown.

At time t=0.002 (i.e. 2/Pe), Fig. 14(a) shows similar features to
Fig. 13(a), (b), i.e. gradients primarily in the radial direction
confined near to the drop surface. The actual gradients in
Fig. 14(a) are much larger than in Fig. 13(a), (b), due to the
shorter time t=0.002 to which Fig. 14(a) corresponds.

By time t=0.005 (i.e. 5/Pe), in Fig. 14(b), we see a change away
from wholly radial gradients. Again (compare Fig. 13(c) also at 5/Pe)
material has been advected up the drop axis to the drop centre, but
not all the way to the forward stagnation point. Mass fractions are not
yet uniform along streamlines.

It is clear in Fig. 14(b) that concentration gradients at the drop
surface are substantially larger than those in the vicinity of the
drop axis. We expect gradients to be confined to streamlines that
pass within an extremely small distance O(Pe~'/?) of the surface,
and (see Section 5.2) on geometric grounds, these same
streamlines pass within a somewhat larger distance O(Pe~1/4) of
the axis. Given the small gradients near the axis, individual fluid
elements experience little mass transfer as they migrate along it
(as Fig. 11 also shows).

Another feature of Fig. 14(b) is that mass has travelled slightly
further along streamlines which are adjacent to the axis than
along the axis itself. This is a manifestation of the different orbit
times of different streamlines. The streamlines which carry mass
most rapidly into the drop interior are those passing within
O(Pe~1/2) of the surface (so as to collect material in the first place),
but which simultaneously do not pass too near the rear stagnation
point, where their orbits would otherwise be held up for long
times. Having been carried by streamlines adjacent to the axis,
material cannot readily diffuse across to the axis itself, since (for
Pe=1000) the orbit time is just too short.

Fig. 14(c) shows the mass fraction contours for t=0.01 (i.e. 10/Pe).
As in Fig. 13(d), we now see the contours starting to form closed
loops. To a quite good approximation streamlines and mass fraction
contours match one another (despite some small irregularities in the
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Fig. 14. Contours of mass fraction w, for Pe=1000 at times (a) t=0.002, (b)
t=0.005, (c) t=0.01, (d) t=0.02, (e) t=0.05 and (f) t=0.1. The contours are as per
Fig. 13: the values of w; at the internal stagnation point are (a)-(c) 0.200, (d)
0.204, (e) 0.232, and (f) 0.265. The streamline pattern is superposed on each plot.

latter). Moreover (see Fig. 14(d)) the irregularities are smoothed out
by time t=0.02 (i.e. 20/Pe).

It is apparent from Fig. 14(c) that for t=0.01 and beyond, mass
fraction is effectively uniform along streamlines, and (by

implication) the mass fraction should evolve onto a master curve
independent of Peclet number. Although Figs. 13(d) and 14(c)
show the emergence of closed loop contours, both corresponding
to t=10/Pe for their respective Peclet numbers, there are
differences between the contour patterns due to the different
actual values of t (i.e. 0.1 vs 0.01). In Fig. 13(d), mass fraction at
the internal stagnation point has changed markedly from its
initial value, whereas in Fig. 14(c) the neighbourhood of the
internal stagnation point remains virtually untouched.

For Pe=1000, it is necessary to reach t=0.05 (Fig. 14(e)) to see
significant changes in mass fraction at the internal stagnation
point. By t=0.1 (see Fig. 14(f)), mass fraction at the internal
stagnation point is about halfway to equilibrium. As far as the
mass fraction at the internal stagnation point is concerned, there
is not much difference between Fig. 13(c) (Pe=100) and Fig. 14(e)
(Pe=1000), nor between Fig. 13(d) (Pe=100) and Fig. 14(f)
(Pe=1000). We deduce that mass transfer to the internal
stagnation point is diffusively controlled, and not sensitive to
Peclet number (provided Pe is large enough to establish, in the
first place, a state where mass is advected uniformly along
individual streamlines before the entire drop equilibrates
diffusively).

6. Discussion

Full numerical simulations of the (multi-component) mass
transfer process in a circulating fluid drop have demonstrated that
mass transfer proceeds and equilibrates more rapidly (by a factor
of roughly three) than for a rigid (i.e. non-circulating) drop (Negri
and Korchinsky, 1986; Negri et al., 1986). However, mass transfer
in the simulations proceeds considerably more slowly (by a factor
on the order of roughly 10) than is predicted by boundary layer
mass transfer models (Uribe-Ramirez and Korchinsky, 2000a, b).

The boundary layer models assume the drop interior is well-
mixed (and this keeps concentration gradients sharp near the
surface). Such an assumption might be appropriate for a turbulent
flow within and around the drop, but may be invalid if the local
drop-scale flow is laminar. In fact the full simulations (with
laminar flow) show that material does not exchange mass
efficiently in the interior: as a result, concentration gradients
become less sharp over time.

Typically in liquid-liquid extraction systems of physical
interest, circulation is rapid compared to diffusion. The circulation
time is order R/Ugrop (R is drop radius, and Ugy,p is drop velocity),
while the diffusion time is R?/<D°> (<D°) is the diffusivity
scale). The ratio between the diffusion time and circulation time is
the Peclet number Pe, and is usually large (e.g. in the range of tens
of thousands): fluid elements circulate many times around the
drop before equilibrium is reached. If times are made dimension-
less on the scale R? /<D, then (dimensionless) circulation times
are O(1/Pe), which is a small quantity. Under these conditions, the
evolution of bulk mass fractions (being the quantities of primary
interest to the chemical engineer) becomes, after a (dimension-
less) time of roughly 10/Pe, independent of the speed of the
circulation. From this time onwards, up to a dimensionless time of
around 0.2 (being the time at which mass fractions effectively
equilibrate), Pe is no longer a relevant parameter. For the typical
drop radius R (10~3m), drop velocity Udrop (0.03ms™') and
diffusivity scale <D°» (3.48 x 10~ m2s~1) used here, the droplet
needs on the order of 60s of physical time to equilibrate, but
reaches a Pe-independent state in less than 1 s. It would no longer
be necessary to simulate the mass transfer process at the actual/
original Peclet number of interest. Without loss of accuracy, one
could switch to much cheaper simulations with a substantially
smaller Pe (and a considerably larger simulation time step).
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Switching to simulations with Pe=1000 is certainly possible, with
effectively no change in bulk mass fraction predictions, and even
Pe=100 gives a fair indication of the behaviour on the approach to
equilibration.

A chemical engineer wants to reduce the equilibration time,
e.g. from 60s quoted above to a lesser value e.g. 10's typical of the
contact time between a drop and the surrounding continuous
phase in experiments (Uribe-Ramirez and Korchinsky, 2000a;
Steiner et al., 1990). According to the current calculations, after
10s (corresponding to about 0.03 units of dimensionless time),
the system is only about halfway to equilibrium: up to twice as
much mass transfer can potentially be achieved for the same 10s
experimental contact time, provided the equilibration time can
be reduced. According to the simulations, changing Pe number
(e.g. by changing Ugrp) is not a practical way of reducing
the equilibration time, since much of the equilibration process
is Pe-independent. Instead, reducing drop radius will be more
effective (as time is scaled by R?/({D°> throughout here).

Looking at the details of the mass fraction evolution at specific
spatial locations (instead of merely at bulk mass fractions) helps
to elucidate further what is happening in the circulating drop.
There is a considerable difference in the evolution of mass
fractions on or near the drop axis compared to the evolutions
elsewhere (e.g. in the drop equatorial plane).

Points on or near the drop axis evolve on advective time scales.
Fluid elements that are originally near the drop surface can
exchange mass rapidly there, and then enter the drop interior to
travel up the drop axis with limited further mass exchange (or a
greatly reduced rate thereof).

By contrast, points off the axis (e.g. in the equatorial plane)
evolve much more slowly, i.e. primarily on a diffusive time scale
(although small secondary oscillations can be superposed on this
diffusive evolution on scales that correlate with streamline orbit
times). There is inherently a large separation between the
diffusive and advective time scales, since the Peclet number
(which is large) is (by definition) the ratio of these scales.

Off the drop axis, the locations which evolve slowest are those
which are closest to the drop internal stagnation point, suggesting
that mass transfer proceeds from streamline to streamline, with
the streamline passing along the drop surface and axis responding
first, and those neighbouring the internal stagnation point
responding last. Such cross-stream mass transfer is necessarily
diffusive, since advection is (by definition) in the streamwise
direction only.

Mass fractions should become fairly uniform along a stream-
line once fluid elements have executed one full streamline orbit:
contour plots of mass fraction throughout the drop show that
such a state emerges around time t~ 10/Pe.

Given mass fractions are uniform along streamlines, but vary
from streamline to streamline, a new description of the mass
transfer process is possible (see Appendix B for details of the new
model, although the implementation is left for further work).
Mass transfer can be described via a one-dimensional diffusion
process in a generalised streamfunction space, instead of an
advection-diffusion process in spherical coordinates. An effective
diffusivity appears in the description, varying from streamline to
streamline. The effective diffusivity depends on how streamlines
are laid out in space (and thereby depends on fluid mechanical
parameters e.g. the Reynolds number), but does not depend
directly on the Peclet number, which ceases to be a relevant
parameter. It is no longer necessary for a mass transfer simulation
to resolve motion of individual fluid elements around streamline
orbits: much larger computational time steps become possible
than for a full simulation of the original advection-diffusion
equation, even a full simulation with a modest Peclet number, e.g.
Pe=100. Physically, the time for the drop to equilibrate scales

diffusively, as is also the case for the rigid drop, but the distance
over which diffusion must proceed (from the surface and axis into
the internal stagnation point) is less than what occurs for the rigid
drop (from the surface to the centre): this is what enables the
circulating drop to equilibrate faster than the rigid drop does.

The conclusion that a cross-stream diffusion theory of mass
transfer (as outlined in Appendix B) is feasible, is a general one,
following only from the requirement that the Peclet number be
large. The general conclusion is not sensitive to whether we
describe the streamline pattern approximately (using a truncated
Galerkin expansion for flow within a spherical drop, as has been
done here) or more accurately (using e.g. numerical techniques to
obtain the flow field, Juncu, 1999; Yan et al., 2002). The details of
the cross-stream diffusion theory do, however, depend on how
accurately the streamline pattern is obtained: in particular the
precise value of the effective diffusivity for each streamline
depends on the streamline layout. Nevertheless the general
conclusion regarding the cross-stream diffusion theory does not
even depend on the assumption of drop sphericity (employed
throughout our analysis): one could quite easily apply the
formalism of Appendix B to a steady state, laminar streamline
pattern for a drop of any non-spherical shape.

7. Conclusions

Mass transfer in a circulating drop is challenging to simulate
because the process typically occurs at a large Peclet number Pe,
thereby with an inherently large ratio between the diffusion time
scale (long) and the circulation time scale (short). Insights into the
mass transfer behaviour in the high Peclet number regime can be
gained by studying a sequence of simulations with increasing
Peclet numbers (e.g. Pe=100, 1000 and 10000), but find that a
realistic simulation needs to resolve individual circulations
(rapid), even though equilibration takes place on the diffusion
time scale (slow).

Despite this ultimate diffusive control of the mass transfer, the
circulating drop still equilibrates faster than the rigid drop (which
is by definition wholly diffusive). For the circulating drop,
material is transported rapidly along streamlines, and only needs
to diffuse between the surface and an internal stagnation point of
the streamline pattern. This gives a lesser diffusion distance than
the rigid drop (where material diffuses between the surface and
the centre) and hence a more rapid equilibration time (roughly by
a factor of about three).

The circulating drop numerical simulations likewise do not
agree well with boundary layer models of mass transfer, such as
those of Uribe-Ramirez and Korchinsky (2000a,b), which them-
selves attempt to take account of circulation. Whereas the rigid
drop equilibrated too slowly, the boundary layer models equili-
brate much more rapidly (compared to the circulating drop
simulations). For a typical drop Peclet number of Pe=10000, the
boundary layer models predict higher estimates of the rate of
equilibration by a factor on the order of roughly 10. The reason for
this is that the boundary layer models assume that solute
concentration gradients near the drop surface are kept sharp
owing to perfect mixing in the bulk of the drop. Instead the full
numerical simulation finds that mass transfer in the bulk is far
from perfect: as a result, cross-stream concentration gradients at
the drop surface do not remain sharp. Instead these gradients
decay over time, and mass transfer rates correspondingly decay.

For consistency with previous work (Korchinsky et al., 2009), a
multi-component mass transfer model has been used throughout
here. In fact, the multi-component effects can be shown to be
quite weak: the off-diagonal components of the multi-component
Fick diffusivities are much smaller than the diagonal ones in Eq.
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(15). In these circumstances, the multi-component process will
typically behave like two independent single-component trans-
fers. Inherently multi-component effects only become evident if
the difference imposed between initial and final mass fractions for
one component (e.g. component 1) are much larger than those for
another (e.g. component 2). Then the diffusive flux of component
2 can be affected by the (large) imposed gradient of component 1
multiplied by a (small) off-diagonal Fick diffusivity, in addition to
the (small) imposed gradient of component 2 multiplied by a
(larger) diagonal Fick diffusivity. This inherently multi-compo-
nent case is left for further work.
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Appendix A. The boundary layer mass transfer model

The purpose of this appendix is to explain in detail the boundary
layer mass transfer model of Uribe-Ramirez and Korchinsky
(2000a,b). The discussion given originally by Uribe-Ramirez and
Korchinsky focussed on the mathematical solution of the model, but
offered much less in the way of physical interpretation. Even though,
in the main text, the boundary layer model predictions were found
to differ substantially from those of the full numerical simulations of
mass transfer, an in depth discussion of the Uribe-Ramirez and
Korchinsky model is still warranted here. A detailed physical
understanding of the boundary layer model explains how the
substantial differences (compared to the numerical simulations)
come about. Moreover a deep physical understanding of the model
shows that it is still potentially very useful for describing the mass
transfer process at early times (comparable with the timescale of the
orbit of a typical fluid element around the drop), which are
challenging to simulate numerically (owing to the extremely thin
layers arising at those times). The discrepancies observed in the
main text between the boundary layer model and the full numerical
simulations arise because Uribe-Ramirez and Korchinsky attempted
to utilise the boundary layer model for times far longer than would
be permissible (at least using the set of conditions they assumed).

The notation to be employed here differs slightly from that
originally used by Uribe-Ramirez and Korchinsky (2000a, b). The
additional physical insights to be offered here have enabled us to
simplify a number of terms which were left unsimplified in Uribe-
Ramirez and Korchinsky’s original work, and also to introduce
some a priori simplifications (of expressions which Uribe-Ramirez
and Korchinsky only eliminated after considerable algebraic
effort). Collectively these simplifications have spurred the nota-
tional changes. The development below is equivalent to Uribe-
Ramirez and Korchinsky’s work, even though this is not
immediately obvious by a cursory comparison of the various
formulae derived. Extensive use of trigonometric identities is
actually required to demonstrate formal equivalence between
Uribe-Ramirez and Korchinsky’s formulae (in their unsimplified
form) and those formulae to be presented here.

The rest of this appendix is laid out as follows. Section A.1
develops the equations of the boundary layer model, while
Section A.2 discusses a similarity solution. Section A.3 discusses
a key variable appearing in the solution, to be called the ‘extent of
diffusion’. Sections A.4-A.6 consider formulae for the ‘extent of
diffusion’, in general, as well as in the limit of very early times and
at later times. Section A.7 applies the boundary layer model to
predict the evolution of bulk drop mass fractions: these predic-

tions are the ones compared against the full numerical simula-
tions in the main text. Section A.8 generalises the results from
single-component to multi-component mass transfer.

A.1. Equations of the boundary layer model

Consider in the first instance a single component (mass
fraction wy) being convected around a circulating drop and also
diffusing.

The governing convection-diffusion equation is
owq

—— +Peu - Vw, =A11V2W].

ot AD)

This equation is in dimensionless form, using the same scalings as
in the main text. The value 4¢; is the diffusivity ratio between
solute at the actual mass fraction of interest and at infinite
dilution. In line with the main text, 4;; is assumed constant and
uniform for the purposes of solving Eq. (A.1); it has an O(1) value,
but generally speaking is not precisely unity.

Again as in the main text, the velocity field u in the radial and
axial directions is defined in terms of streamfunction y via
Egs. (6) and (7). Recall that, by convention ¥y =0 on the drop
surface r=1. Remember also the sign convention here: y is
considered to be positive in the interior of the drop (so that, by Eq.
(7), uy is positive on the surface).

Instead of standard spherical coordinates, we choose a co-
ordinate system (i, s, ¢) where  is the streamfunction itself, s is
distance measured along a streamline and ¢ is azimuthal angle
(there is ultimately no dependence on ¢ as the system is
axisymmetric).

In this new coordinate system, the governing convection-
diffusion equation becomes (recognising that convection is, by
definition, solely along streamlines at speed u; say, and also that,
in a boundary layer system, diffusion is primarily across
streamlines, i.e. radially near the drop surface)

owq owq

0 . 0
=1y peu, =1 =A11uﬁw<u9r2 smzea—w1>, (A2)

ot os
where Eq. (7) has been used on the right-hand side.
Recall that, in the above, time has been made dimensionless on
a diffusive scale. It is possible to define a new dimensionless time
variable, denoted T say, which is made dimensionless on a
convective scale. In fact

T=Pet. (A3)

One streamline orbit of a typical streamline corresponds to O(1)
units of convective time T, but much less than one unit of diffusive
time t (remember Pe > 1 here). Moreover within a boundary layer
on the drop surface (r~1), the coordinate s (distance along a
streamline) can be taken to be synonymous with the polar angle
0. Moreover sin 0 and u, vary along (but not across) the boundary
layer, and u, can be approximated by its value on the drop surface
denoted uq,s (a function solely of 0). Hence from Eq. (A.2), we
deduce

owy owy Ay

2 2
aT +u(,|surfw = 5, UpsurSIN 0

82
Pe 5 wi. (A4)

oy
Our aim is to solve this equation for wy in terms of ¥, 6 and T.

A.2. Similarity solution of the boundary layer model

Uribe-Ramirez and Korchinsky proposed that the above
equation could be solved in terms of a similarity solution



S. Ubal et al. / Chemical Engineering Science 65 (2010) 2934-2956 2951

(Uribe-Ramirez and Korchinsky, 2000a),

W~/Pe )
VA4:{T,0))°

where w{ represents an imposed mass fraction on the drop
surface (for convenience here assumed to be fixed in time; Uribe-
Ramirez and Korchinsky considered more general cases), while
wivect (allowed to vary with time) is the mass fraction of material
being injected from the drop interior onto the surface. Meanwhile
T, (the argument of the function wiV") is a so-called retarded
time function: it represents the time at which a fluid element
currently on the drop surface at angular position 6 is considered
to have first reached the surface. Meanwhile ( is a function which
we call the ‘extent of diffusion’: it determines (at any given T and
0) how many streamlines have been affected by the diffusion.
More explanation of the functions T, and { is now given.

A fluid element which is initially on the drop surface, and
which is continuously on the surface for subsequent times, has
(by definition) T; =0. Such elements also have (by definition)
wl]”"’“ =w?, with w? being the uniform initial mass fraction inside
the drop. Meanwhile, for an element injected on to the surface
from the interior after the initial time, the retarded time function
is defined

Wi = W+ (W (T(T, 9))—w’§)erf< (A.5)

0
T, =T— /0 A0/t s, (A6)

where 0; is the angular position at which fluid elements are
considered to be injected onto the surface from the interior (see
Fig. 15). The integral ]g d0/ugss is the transit time along the
surface from angle 0; to hngle 0.

a
injection point 6;
‘extent of diffusion’
initially { = 0
specified
surface flow ug;g,r (0)
initial bulk
mass fraction w
constant imposed
surface mass fraction wf
b mass fraction w?* (T) and

‘extent of diffusion” {iyjeci(T)
at injection point 6;

variable ‘extent of diffusion’
= 4T,6)

Oparyiinis (T) separates
fluid elements

recently injected

onto surface, from
those that have been
continuously on surface

bulk
mass fraction
Wllmlk ( T)

Fig. 15. Definition sketch for Uribe-Ramirez and Korchinsky surface boundary
layer model (a) indicating initial conditions and/or quantities which are held
constant over time, (b) indicating quantities which vary over time.

There are technical mathematical difficulties associated with
choosing 0; =0 (as the poles of the drop are stagnation points—a
boundary layer picture relying on fast circulation along the drop
surface is locally invalid there). However, almost any arbitrary
non-zero value of 0; satisfying 0; <1 can be a sensible choi-
ce—indeed the formulae derived by Uribe-Ramirez and Korch-
insky are insensitive to the choice of 0; (since those formulae are
subsequently applied on time scales much longer than that of a
typical streamline transit/orbit).

Physically Eq. (A.6) says that T, is tied to fluid material
elements. Mathematically this leads to considerable simplifica-
tion and cancellation when a solution of the form of Eq. (A.5) is
substituted into Eq. (A.4).

An equation for the so-called ‘extent of diffusion’ { can now be
derived via Eqgs. (A.4) and (A.5). This is found to be

3L /0T + Upjsurg O /00 = U SIN>0. (A7)

Uribe-Ramirez and Korchinsky analysed this equation math-
ematically, but offered little physical interpretation of either the
equation itself or of the solution {. Understanding these concepts
is key to interpreting their entire boundary layer model, as is
explained in the next section.

A.3. Interpretation of the ‘extent of diffusion’

In their mathematical method, Uribe-Ramirez and Korchinsky
identified (and solved for { along) so-called characteristic curves
in the 6, T plane which had particular well defined values of
d6/dT. However, Uribe-Ramirez and Korchinsky did not point out
that the well defined values of d0/dT were in fact equal to
Ug sy —this means that all points on a given characteristic curve
correspond to a given fluid element/material point. Thus the
values of { which Uribe-Ramirez and Korchinsky determined on
their characteristic curves were in fact values of { following
material points.

Eq. (A.7) written for a material point becomes

D{/DT = uj,,sin®0. (A8)

The physical interpretation is as follows: { is a variable which
accumulates as diffusion proceeds, somewhat like time T.
However, while T is a ‘clock’ that advances at a fixed rate, { is a
‘clock’ that can run either fast or slow depending on circum-
stances (specifically depending on the values of ugy,s—i.e.
kinematics—and sinf0—i.e. geometric location). A very loose
analogy can be drawn with Einstein’s theories of special (Einstein,
1905) and general (Einstein, 1916) relativity, in which clocks run
at different rates depending on kinematics and geometry.

Remembering that (in the vicinity of the drop surface r=1) we
have oy /or = —ugq,rsin 0, we deduce

D{/DT = (8 /or)>*. (A.9)

Thus the rate at which { advances is inversely proportional to the
square of the distance between adjacent streamlines. Diffusion in
the Uribe-Ramirez and Korchinsky boundary layer is from
streamline to streamline, and if streamlines move apart, we
expect the rate of diffusion to fall as the inverse square of the
separation distance (as is standard for diffusive systems).

The streamlines can move apart for either of two reasons as
identified above—a kinematic effect (streamlines move apart near
surface stagnation points where ug,s is small, as there is less
fluid circulation there), and a geometric one (streamlines move
apart near the axis where sin@ is small, as there is less volume
there). These two effects cooperate in the circulating drop, since
there are stagnation points (ugs,,s —0) on the axes (¢ =0 or 0 = 7)
at the poles.
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In summary the rate of advance of { increases and decreases
precisely as the rate of diffusion rises or falls. All the above implies
that { is a ‘diffusive clock’ which keeps track of the accumulated
‘extent of diffusion’.

A4. Formula for the ‘extent of diffusion’

In order to solve Eq. (A.7) for the ‘extent of diffusion’ {, one
needs an initial condition (i.e. { as a function of 0 for T=0; the
function is typically defined from an ‘injection’ angle 6 = 6; < 1 up
to 0 = 7). One also needs a boundary condition (i.e. { at 0 =0; as a
function of T for T > 0).

Fluid elements injected from the interior at time zero will
reach, at time T, an angular position (denoted Opgryinic(T) say)
which satisfies the implicit equation

Obaryjinic(T)
T= /9 d0/Ug sy (0). (A10)
The point Opgryinic(T) separates fluid elements which have been
recently injected onto the surface since time zero, from those
which have been continuously on the surface for all times (see
Fig. 15).

If T <1 (i.e. much less than a typical streamline orbit duration)
then Opgry)inic(T) > 0; < 1: the vast majority of surface elements
have been continuously on the surface at all times. On the other
hand, if T is significantly greater than unity (i.e. greater than a
typical streamline orbit) then Opgpyinie — 7 (assuming there are no
other stagnation points on the surface streamline other than at
the poles): the vast majority of surface fluid elements have been
injected onto the surface since time zero. We consider those two
cases in turn.

A.5. Solution for { at early times

If T <1 then the value of 0 for a given surface fluid element
will not change significantly between time zero and time T.

If we assume that initially no diffusion has taken place (i.e. the
initial condition for { is {=0) then the resulting solution of
Eq. (A.7) for { is
(A (U g SIN*O) T. (A11)

Assuming (as before) the uniform initial mass fraction inside
the drop is denoted w¥, Eq. (A.5) then becomes
Py
Ug‘su,—fsin 04411 T

(1-n)
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wy =wh+ wd—wh)erf

=wi+l—wh)erf

(A12)

where we have used Egs. (7) and (A.3).

Eq. (A.12) corresponds to the boundary layer result (i.e. the
similarity solution alluded to in Section 2.1) for early times for a
rigid (i.e. non-circulating) drop. The reason is that, at the early
times in question, the drop circulation has not yet manifested
itself—surface fluid elements have not moved significantly from
their original positions. There has been so little turnover of
surface fluid that essentially all surface fluid elements have been
continuously on the surface at all times (as is also the case for a
rigid drop).

A.6. Solution for { at longer times
If T>0(1), there has already been considerable turnover of

surface fluid (Opgryjinie(T)— 7). This is the limit studied by Uribe-
Ramirez and Korchinsky.

The initial distribution of { on the drop surface (as a function of
0) is no longer relevant to the solution. However, the time history
of { at the injection point (i.e. the boundary condition for { at
0 = 0;) now is relevant.

Suppose the time history at the injection point is denoted by a
function Cjpjet(T). Then the solution of Eq. (A.7) for {(T, 0) is

0
C = Cinject(Tr)"‘ /6 u9|surf5in20 do. (A-13)

Note that {inje¢ in the above equation is evaluated at the retarded
time T, not at the current time T: here T, depends on T and 0 (see
Eq. (A.6)).

Uribe-Ramirez and Korchinsky were interested in solving
Eq. (A.7) for a particular simple ug,s function obtained from a
drastically truncated Galerkin expansion (see e.g. Eqs. (5)—(7)) of
the Navier-Stokes equations. Analytic integration of Eq. (A.13)
was then possible utilising a well-known substitution technique
(called the t-substitution, Stroud and Booth, 2001; see also Green
et al., 2006; Grassia et al., 2008; Cox et al., 2009 which have
utilised the technique recently): solutions for ( were then
expressed analytically in terms of tanf/2, but were quite
unwieldy.

The formula supplied by Uribe-Ramirez and Korchinsky
(2000a) also contained an analytic expression (in terms of T and
0) for the argument T, of (iec:(Ty). This can be obtained via
Eq. (A.6) again using the t-substitution, although note there is
actually a minor typographical error in the integrated expression
for T, (Eq. (65) in the cited reference).

The analytic forms of the solutions for { and T, whilst
undoubtedly useful, tend to obscure the rather simple origin of
the solutions, namely Eqgs. (A.13) and (A.6), respectively. For any
given flow field ug,ys, the integrals in these equations could easily
be obtained by numerical quadrature rather than analytic
integration. Indeed in some ways using numerical quadrature is
more robust than analytic integration: one is no longer tied to the
surface flow field given by e.g. a Galerkin expansion, but rather
one can use ugg,s values for flow fields computed via more
accurate numerical procedures (see e.g. Juncu, 1999; Yan et al.,
2002).

Uribe-Ramirez and Korchinsky supposed that fluid elements in
the bulk of the drop were well mixed (see Fig. 2), arriving at the
injection point with { = 0. Effectively the ‘diffusive clock’ which {
represents is reset to zero in the drop interior. Since the function
{inject in Eq. (A.13) is now identically zero, the fact (noted above)
that the original reference contained typographical errors in the
argument of this function has no bearing on the predictions.

Time dependence now drops out of Eq. (A.13): { depends solely
on 0,

0
[= / gy Sin20 do. (A14)
0

By contrast with Eq. (A.6) where 6; was necessarily non-zero, it is
permitted in Eq. (A.14) to take 0;—0. The reason for this can be
understood by recalling that { measures the ‘extent of diffusion’.
Diffusion proceeds from streamline to streamline, but streamlines
are so far apart in the vicinity of the poles of the drop (see Section
A.3), that effectively no diffusion occurs for 6 -0 (even though
fluid elements are held up for long times there).

Note that the well-mixed assumption that (i =0 (while
mathematically convenient, and possibly even valid physically for
a turbulent drop) is not an absolutely essential part of the
boundary layer model. For instance, in a drop with laminar flow, it
would be quite possible to impose a boundary condition of { =0
at 0 = 0; for times up to and including one typical streamline orbit,
with the boundary value of { jumping to a non-zero value after
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this. Physically this could imply that fluid elements which pass
along the drop surface, enter the drop interior to migrate up the
axis, and then return to the drop surface, ‘remember’ the value of
{ that they had when they originally left the drop surface. This
means that efficient mass transfer (i.e. ‘mixing’) is not taking place
in the interior (on purely geometric grounds, streamlines
necessarily spread out near the drop axis, limiting their ability
to exchange mass diffusively amongst themselves), and that
actually matches much better with the predictions of the full
numerical simulations than the well-mixed assumption of Uribe-
Ramirez and Korchinsky does.

Employing the well-mixed assumption is what causes the
predictions of mass transfer in the Uribe-Ramirez and Korchinsky
model to evolve (as was seen in the main text) much too quickly
compared to the full numerical simulations. We consider these
mass transfer rate predictions in the next subsection.

A.7. Mass transfer rate from drop and bulk mass fractions within
drop

The mass flux from any point on the drop surface is
—Aq110wy /or|, _ 1. Integrating this over the surface gives the total
mass transfer rate from the drop. Suppose w2 denotes the mass
fraction in the drop averaged over drop volume. Clearly dw?“/dt
depends on the total surface mass transfer rate. Given that the
drop volume is 47/3, and given Eq. (A.5) we find

thlmIk dWﬁ’“”‘
ar ~PeTar
/ T in?
—_ i PEAH / (Wl]njea(Tr(T, 9))—W’f) u@\surfsu1 0 do.
2 JmoJy VT, 0)

(A.15)

Note that the lower integration limit here is the injection point
0 = 0;. We are ignoring a small fraction of the drop surface near
the pole 0 < 0 < 0;. This, however, contributes negligibly to mass
transfer, firstly because there is negligible surface area near the
pole, and secondly because streamlines are far apart there, and so
cross-stream diffusive fluxes are small.

In order to proceed further, it is necessary to find an expression
for wi¥et, If T is up to the duration of a typical streamline orbit (or at
the very least up to the passage time of a typical fluid element up
the drop axis), it should be possible to assume wi¥e(T)=w? (since
any material injected at sufficiently early times must have originally
come from the drop interior and has never been in proximity to the
surface). In that case, Eq. (A.15) (coupled to Egs. (A.6) and (A.14))
should give quite reliable predictions for total mass transfer rates
from the drop. Alternatively if the drop is considered well mixed (as
in the work of Uribe-Ramirez and Korchinsky), we have (for all times
T, including times longer than a typical streamline orbit)
Wit (T) = whilk(T), (A.16)
Again note that the drop being well-mixed is an assumption, not an
essential feature of the boundary layer model. Consider e.g. yet
another alternative of a fluid element which travels along the drop
surface (acquiring a mass fraction near w¥), which then enters the
interior of the drop to travel up the drop axis (without exchanging
much mass with other fluid elements) and which is then reinjected
onto the drop surface at angle 6;. Upon reinjection wi¥* will jump
abruptly with time from a value near the initial mass fraction w9 to a
value much closer to w¥. Clearly from Eq. (A.15), the total mass
transfer rate will dramatically decrease. In the absence of good
mixing, the jump in wi¥¢ will also coincide (see Section A.6) with an
upwards jump in the function ¢, as reinjected fluid elements fail to

reset their ‘diffusive clocks’. This contributes yet further to the decay
in total mass transfer rate in Eq. (A.15).

Suppose now that the well-mixed assumption (i.e. Eq. (A.16))
applies. Strictly speaking Eq. (A.15) then becomes an integro-
differential equation—the rate of change of wi“¥ at time T
depends on the entire time history of w8 (via the retarded time
function T.(T,0) defined in Eq. (A.6)), not merely on the
instantaneous value of w5“¥(T).

Uribe-Ramirez and Korchinsky considered the well-mixed
model in the limit of large times T > 1 (i.e. at times much longer
than those mentioned above for which it would be reasonable to
expect that a boundary layer model would be reliable without the
additional assumption of good mixing). In this case { becomes a
function solely of 0: see Eq. (A.14). It is possible to suppose
moreover that w** evolves on a time scale much greater than
that of a typical streamline orbit. Then the distinction between
the current time T and the retarded time T, becomes irrelevant,
and we obtain a differential equation

dwbulk 3V e [T ue‘surfsinzf)
__3 - Yo SO
= L (whk(T) wl)'/ol i
3 A
= = VA i, (A17)

Eq. (A.14) was used to perform the integral in the argument of the
exponential. It is permitted to take 0; — 0 as the lower integration
limit: both the numerator and denominator of the integrand
vanish as 8—0, but the numerator tends to vanish more rapidly.
The solution of Eq. (A.17) is

wh = wi + W -wiexp (—

3 VAulm .
NEN

:wf+(w?—w’f)exp<—%\/AnPeC(n)t). (A.18)

Eq. (A.18) is the formula (along with Eq. (A.14)) ultimately utilised
by Uribe-Ramirez and Korchinsky (2000a).

Some comments are pertinent: Eq. (A.18) has been obtained on
the basis of a well-mixed model. By continually resetting { to zero in
the bulk of the drop before reinjecting fluid elements onto the surface,
the mass transfer boundary layer (across which mass transfer takes
place) only has an opportunity to grow during the time that fluid
elements sweep around the drop surface. This corresponds to O(1)
units of hydrodynamic time T, but only O(1/Pe) units of diffusive time
t. Boundary layer thicknesses scale as the square root of the (diffusive)
time for which boundary layers are permitted to grow: for O(1/Pe)
growth time, boundary layers are therefore maintained at O(Pe~'/?)
maximum thickness. Concentration gradients are kept sharp and
mass transfer proceeds at a rapid rate, as can be seen by the factor
+/Pe in the argument of the exponential in Eq. (A.18)—the other
factors in the argument /47, and /{(w) (the latter being computed
either via quadrature or analytically) are both order unity. For our
selected flow field, specified by Eq. (5) with Galerkin coefficients (8)-
(13), we can evaluate Eq. (A.18) as

whilk — wWR 1 (w? —wRyexp(—1.501/41, Pet).

The situation described by Eq. (A.18) and/or Eq. (A.19) should be
contrasted with the full numerical simulations during which mass
transfer boundary layers continually thicken over time, and mass
transfer rates fall off more dramatically. The well-mixed boundary
layer model equilibrates in O(Pe~'/?) units of diffusive time
(i.e. O(Pe') streamline orbits). Meanwhile the full numerical
simulations require more time (i.e. up to O(1) units of diffusive
time or O(Pe) streamline orbits) to equilibrate.

(A.19)
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Another comment concerns the behaviour for very small
hydrodynamic times T <1 (i.e. outside the range of times for
which Eq. (A.18) was derived). In this limit, essentially all surface
fluid elements have been continuously on the surface since time
zero, and (by the definition given in Section A.2) have T,=0 and
wivect=yQ. Moreover { should be given by Eq. (A.11) rather than
Eq. (A.13): the latter equation overestimates {, and so over-
estimates boundary layer thicknesses and underestimates mass
transfer rates.

Correcting these estimates, for T < 1, we find instead
whulk ~ 0 % VA WO —wRWE, (A.20)
which can be obtained directly starting from the T <1 mass
fraction profile Eq. (A.12). We already commented that Eq. (A.12)
actually represents the early time concentration profile of a rigid
drop (with which the model under discussion here necessarily
agrees for T < 1, such that no significant turnover of fluid on the
drop surface has yet occurred): thus Eq. (A.20) represents the
early time mass fraction evolution for a rigid drop. On the basis of
this limiting behaviour, we conclude that a boundary layer model
with surface circulation (as we consider here) can evolve at least
as rapidly as a rigid drop, as one would expect physically.

Nevertheless, since all the Uribe-Ramirez and Korchinsky
predictions presented in the main text (see e.g. Section 5.1.2) use
Eq. (A.18), for T < 1 they actually evolve more slowly than Eq. (A.20),
and likewise more slowly than the full numerical simulations (and
indeed than the rigid drop predictions) at these times. We
emphasise that this incorrect early time evolution obtained by
Uribe-Ramirez and Korchinsky is not a feature of the boundary layer
mass transfer model per se, but rather due to employing a functional
form for { which is invalid for T <1 (instead a full solution of
Eq. (A7) is required, with initial condition {=0 and boundary
condition { = {jjecr, typically with (e itself vanishing); moreover
the overall error in drop mass fractions that arises from the early
time behaviour Eq. (A.18) is not usually large (since typically we are
interested in very large Peclet numbers, such that the period when
T < 1 represents only a very tiny fraction of the full evolution). By
contrast, in the long time limit T > 1, the boundary layer mass
transfer model (coupled to a well-mixed assumption in the drop
interior) leads to an evolution that is much more rapid than the full
numerical simulations, and it is this effect which ordinarily leads to
large discrepancies between Uribe-Ramirez and Korchinsky and the
full numerical simulations.

A.8. Multi-component case

All the development of Sections A.1-A.7 has concerned the
single component case: (Uribe-Ramirez and Korchinsky, 2000b)
also considered the full multi-component case. It is clear that
single component Eq. (A.1) is mathematically analogous to multi-
component Eq. (18), provided we replace w; and 4;; in one
equation by w and A in the other. All the development of Sections
A.1-A.7 carries over analogously: details are omitted here.

The main conclusions of Sections A.1-A.7 still apply, i.e. mass
transfer boundary layers are still limited to only O(Pe~'?) in
thickness, so that concentration gradients are still sharp. The
multi-component Uribe-Ramirez and Korchinsky model still
equilibrates in O(Pe'/?) units of hydrodynamic time, or equiva-
lently in O(Pe~'/?) units of diffusive time: this is O(Pe'/?) times
faster than the equilibration of the full numerical simulation of
the circulating drop (which imposes no upper limit on the
thickness of the mass transfer boundary layers, but instead allows
these layers to thicken continually over time).

Appendix B. Cross-stream diffusion theory of mass transfer

In the main text we saw that (for large Peclet numbers) from
times roughly 10/Pe onwards the evolution of the bulk mass
fraction became essentially independent of Peclet number
(Section 5.1). We also saw that points on streamlines passing
near the drop surface and/or the drop axis reached equilibrium
much more quickly than points on streamlines passing close to
the internal stagnation point (Sections 5.2-5.4). Moreover we saw
that mass fractions (from time 10/Pe onwards), tended to be
uniform along streamlines, but varied across them (Section 5.5).
All these indicate that mass is being transferred across stream-
lines from the surface/axis to the internal stagnation point: see
also Fig. 10 showing this process schematically. If mass transfer is
wholly (or largely) in the cross-stream direction, the Peclet
number, governing the rate at which fluid circulates around
streamlines, ceases to be a relevant parameter.

In this appendix we develop equations describing such a cross-
stream diffusive process. One could envisage solving a circulating
drop problem via a full numerical simulation (as in the main text)
and then (from e.g. time 10/Pe onwards) switching to the (far
more economical) cross-stream diffusion model we now describe.
Alternatively one might even be able to dispense with the full
numerical simulation altogether: a boundary layer model (of the
general type described in Appendix A) could be used on the time
scale of an individual streamline orbit, with an immediate switch
for subsequent times to the cross-stream diffusion model to be
derived and described below. We leave the actual implementation
of these ‘hybrid’ models for further work.

We choose as in Section A.1 a coordinate system where V/ is
streamfunction, s is distance along streamlines, and ¢ is
azimuthal angle (and as before we look for axisymmetric
solutions).

The mass transfer Eq. (14) can be written
66—1/: +Pe us%/sv = Au5£ (usrzsinzﬁg—g> +Au5% (%%) (B.1)
This equation is extremely similar to Eq. (A.2) (or at any rate a
multi-component version thereof), but we are no longer solving
for a surface boundary layer, so we are no longer making the
assumption that u is wholly tangential to the drop surface.
Moreover we are recognising that w can (in general) vary along
streamlines, not merely across them. It is clear from Egs. (6)-(7)
that the speed on streamlines u; is

us = (U2 +ud)!2 = | V| /(rsin 0). (B.2)

Since s by definition only varies in the cross-stream direction, it is
simple to determine via Eq. (B.2) that the distance between
adjacent streamlines scales inversely as usrsin @, and it is on this
basis that Eq. (B.1) was derived (starting from Eq. (14)).

Consider an element of length along a streamline ds. The
(convective) time taken for a fluid element to pass along this
element of length is ds/u,. The total time (denoted T,,;) taken to
orbit once around a streamline is

ds
Toric () = f U, s)" (B.3)
We define a streamline-averaged mass fraction W as
1 w(,s, t)ds
W, t) = W,s,0ds (B.4)

Torbit(l//) US(W=S)
If we multiply Eq. (B.1) by ds/us, integrate over a streamline

orbit and then divide through by T, (1) we obtain

w A 0 0

B T )30 (74 (us(lll,S)I’z(l//,S)Sinzg(l/l,S)WW(l/I,S, t)) ds).
(B.5)
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In general w (and hence ow/oy) depends on s as well as y and
t. However, if a fluid element must orbit many times around a
streamline before reaching its equilibrium mass fraction, it is
reasonable to suppose that w might vary only weakly along
streamlines. If we can replace ow/oy on the right-hand side of Eq.
(B.5) by its streamline averaged counterpart oW/oy, further
simplification becomes possible. Specifically
ow A 0 ow
= 1y (P 57 ). (B6)
where we have defined an effective diffusivity Deg(y) for each
streamline via

ds
us(y,s)”

The quantity Dy is the streamline-averaged value of the inverse
square of the distance between adjacent streamlines (see the
discussion following Eq. (B.2)): we have already seen (in Section
A.3) that this inverse square distance controls the rate of diffusion
from one streamline to another.

Eq. (B.6) is essentially a one-dimensional diffusion equation for
W albeit one in a generalised streamfunction space rather than in
physical space. The diffusivity varies from streamline to streamline.

Eq. (B.6) does not depend on the Peclet number, but (via the
functions D,y and T,mi;) does retain dependence on how
streamlines are laid out in space. Dependence on Reynolds
number is thereby maintained: see Section 4.4.

Eq. (B.6) must be solved in a suitable solution domain, with
appropriate boundary/initial conditions (compositions w® and w?,
respectively, as in Section 3.2). Ideally we wish to solve on the
domain t >0 and 0 < ¥/ < Y/;,0y, Where V., is the maximum value
of the streamfunction (occurring at the internal stagnation point).
However, there are technical difficulties with extending the
domain all the way to t—0 and s —» 0. The streamline orbit time
Tombic diverges for Yy — 0 since the poles of the drop are stagnation
points. Moreover as was alluded to in Section A.7, for near surface
streamlines, and times less than a typical orbit time around such
streamlines, replacing the concentration field w(y,s,t) by its
streamline-average W(y,t) will be a poor approximation. On a
given streamline at early times, there are some fluid elements
which have been in close contact with the drop surface (having a
composition near to that on the surface wk), but there are other
fluid elements which have passed their entire life in the drop
interior (with a composition essentially w®). We require therefore
a full numerical simulation (or else a model of the general type
discussed in Appendix A) to run up to a small finite time, after
which Eq. (B.6) is considered to start to apply: Eq. (B.6) inherits
the solute concentration field computed at this small finite time
as its initial condition. Likewise the full simulation and/or
boundary layer model must identify a particular near surface
streamline with a small (but non-zero) ¥ value, which has W
effectively equal to wR from the time when Eq. (B.6) starts to
apply: Eq. (B.6) is then solved with a boundary condition W = wf
on this streamline, and with a regularity condition at the internal
stagnation point y = /., (as Deg vanishes there).

_ 1 2 2 )
Dy = m?{ uz (Y, S)r (Y, s)sin“ 0@y, s) (B.7)
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