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CONVEX ENVELOPES ON TREES

LEANDRO M. DEL PEZZO, NICOLAS FREVENZA AND JULIO D. ROSSI

Abstract. We introduce two notions of convexity for an infinite regular tree. For
these two notions we show that given a continuous boundary datum there exists a
unique convex envelope on the tree and characterize the equation that this envelope
satisfies. We also relate the equation with two versions of the Laplacian on the tree.
Moreover, for a function defined on the tree, the convex envelope turns out to be the
solution to the obstacle problem for this equation.

1. Introduction

In mathematics, a real-valued function defined on an interval is called convex if the
line segment between any two points on the graph of the function lies above or on the
graph. Equivalently, a function is convex if its epigraph (the set of points on or above
the graph of the function) is a convex set. For a twice differentiable function of a single
variable, if the second derivative is always greater than or equal to zero in the entire
interval then the function is convex.

Convex functions play an important role in many areas of mathematics. They are
especially important in the study of optimization problems where they are distinguished
by a number of convenient properties. For instance, a (strictly) convex function has no
more than one minimum. Even in infinite-dimensional spaces, under suitable additional
hypotheses, convex functions continue to satisfy such properties and as a result, they are
the most well-understood functionals in the calculus of variations. In probability theory,
a convex function applied to the expected value of a random variable is always less than
or equal to the expected value of the convex function of the random variable.

On the other hand, linear and nonlinear equations (coming mainly from mean value
properties) on trees are models that are close (and related to) to linear and nonlinear
PDEs in the unit ball of RN , therefore, it seems natural to look for convex functions
on trees. This is our main goal in this paper. For other analytical issues on discrete
structures (including graphs such as trees) we refer to [1, 3, 5, 6, 7, 10, 11, 14, 15, 16]
and references therein.

Let us begin by making precise the well-known notion of convexity in RN . We fix a
bounded smooth domain Ω ⊂ RN . A function u : Ω → R is said to be a convex function
if for any two points x, y ∈ Ω such that the segment [x, y] is contained in Ω, it holds that

u(tx+ (1− t)y) ≤ tu(x) + (1− t)u(y), ∀t ∈ (0, 1).

With this definition one can define the convex envelope of a boundary datum g : ∂Ω → R

as

u∗(x) := sup {u(x) : u is convex and verifies u|∂Ω ≤ g} .
1
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Here by u|∂Ω ≤ g, we understand

lim sup
Ω∋x→z

u(z) ≤ g(z) ∀z ∈ ∂Ω.

This convex envelope turns out to be the largest solution to

λ1(D
2u)(x) = 0 x ∈ Ω,

(the equation has to be interpreted in viscosity sense) with

u(x) ≤ g(x) x ∈ ∂Ω.

Here λ1 ≤ λ2 ≤ · · · ≤ λN are the ordered eigenvalues of the Hessian matrix, D2u. We
refer to [4, 9, 12, 13]. Notice that the equation

λ1(D
2u)(x) = 0

is equivalent to

min
{

〈D2u(x)v, v〉 : v ∈ R
N such that ‖v‖ = 1

}

= 0.

This says that the equation that governs the convex envelope is just the minimum among
all possible directions of the second derivative of the function at x equal to zero. Here
we notice that we have existence of a continuous up to the boundary convex envelope
for every continuous data if and only if the domain is strictly convex, see [4, 9, 12].

In this paper, our main goal is to develop similar ideas and concepts on a tree. When
one wants to expend the notion of convexity to an ambient space beyond the Euclidean
setting the two key ideas are to introduce what is a “segment” in our space and once this
is done, to understand what is a “midpoint” in the segment. We introduce two different
definitions of segments and midpoints and study the associated notion of convexity linked
to each of them. In particular, for both definitions we are able to characterize the related
equation that governs the convex envelope of a given boundary datum.

Closely related to our results is [2] where the authors considered convex functions on
finite trees and showed that some relevant functions that are naturally related to spectral
problems on the tree are convex.

Before starting with our main goal, we need to introduce our ambient space. Given
m ∈ N≥2, a tree Tm with regular m−branching is an infinite graph that consists of the
empty set ∅ and all finite sequences (a1, a2, . . . , ak) with k ∈ N, whose coordinates ai are
chosen from {0, 1, . . . , m− 1}.
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A tree with 3−branching.



CONVEX ENVELOPES ON TREES 3

The elements in Tm are called vertices. Each vertex x has m successors, obtained by
adding another coordinate. We will denote by

S(x) := {(x, i) : i ∈ {0, 1, . . . , m− 1}}

the set of successors of the vertex x. If x is not the root then x has a only an immediate
predecessor, which we will denote x̂. The segment connecting a vertex x with x̂ is called
an edge and denoted by (x̂, x).

A vertex x ∈ Tm has level k ∈ N if x = (a1, a2, . . . , ak). The level of x is denoted by
|x| and the set of all k−level vertices is denoted by Tm

k. We say that the edge e = (x̂, x)
has k−level if x ∈ Tm

k.

A branch of Tm is an infinite sequence of vertices, where each one of them is followed
by one of its immediate successors. The collection of all branches forms the boundary of
Tm, denoted by ∂Tm. Observe that the mapping ψ : ∂Tm → [0, 1] defined as

ψ(π) :=

+∞
∑

k=1

ak

mk

is surjective, where π = (a1, . . . , ak, . . . ) ∈ ∂Tm and ak ∈ {0, 1, . . . , m− 1} for all k ∈ N.

Whenever x = (a1, . . . , ak) is a vertex, we set

ψ(x) := ψ(a1, . . . , ak, 0, . . . , 0, . . . ).

At this point, we just have to recall that as we have mentioned, the definition of a
convex function depends on what we understand by a segment and how to define the
midpoint of the segment.

A path from a vertex x to a vertex y in Tm is a sequence of vertices x0, x1, x2, . . . , xk
such that x0 = x, xk = y0 and for any i = 1, 2, . . . , k we have that either x̂i−1 = xi or
xi ∈ S(xi−1), that is, xi and xi+1 are adjacent (connected) in the graph Tm. A path is
called a minimal path if and only if all the vertices on the path are different. Observe
that for any x, y ∈ Tm there is a unique minimal path from x to y. This minimal path is
denoted by [x, y]. This is our first idea of what is a segment of Tm.
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A path from a vertex x to a vertex y.

In a slight abuse of notation, we say that an edge e belongs to a path γ if there is a
vertex x ∈ γ such that e = (x̂, x). We now define the length of an edge e as follows:

length(e) :=
1

mk
if e has level k.
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With this length we can define the total length of a path γ as the sum of the lengths of
the edges involved in γ, that is,

lenght(γ) :=
∑

e∈γ

length(e).

Now, with this notion of length of an edge and then of a path, let us consider the distance
between nodes given by the length of the minimal path. That is, given two nodes x, y
we let

d(x, y) := lenght([x, y]).

Remark that d is a genuine metric since d(x, y) ≥ 0, d(x, y) = 0 iff x = y and the
triangular inequality holds (since the infimum of the lengths of the paths that joins x
with y is less or equal than the infimum of the length of the paths that joins x with z
plus the infimum of the length of the paths that joins z with y).

We are now ready to introduce our first notion of convex function. We say that a
function u : Tm 7→ R is convex if for any x, y, z ∈ Tm with z ∈ [x, y], it holds that

u(z) ≤
d(y, z)

d(x, y)
u(x) +

d(x, z)

d(x, y)
u(y).

Using this definition, we can look for the convex envelope of a function defined on ∂Tm.
Given a function g : [0, 1] → R, we define the convex envelope of g on Tm as follows

(1.1) u∗g(x) := sup
{

u(x) : u ∈ C(g)
}

,

where

C(g) :=

{

u : Tm → R : u is a convex function and lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π))

}

.

The convex envelope is unique (this follows easily since the maximum of two convex func-
tions is also convex). Moreover, associated to this convex envelope we have a nonlinear
equation that is verified on the whole tree.

Theorem 1.1. The convex envelope of a continuous function g : [0, 1] → R is the largest

solution to

(1.2) u(x) = min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







on Tm,

that verifies

(1.3) lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π)).

Let us clarify that in the case x = ∅, relation (1.2) is understood as

u(x) = min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
,

since ∅ does not have a predecessor because it is the root of Tm.

Notice that (1.2) is a nonlinear mean value property at the nodes of the tree.

Once we have characterized the convex envelope by means of being the largest solution
to (1.2) that is below the datum on ∂Tm, we want to study the associated Dirichlet
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problem, that is, given a datum g on ∂Tm we want to solve the equation in Tm and find
a solution that attains continuously the datum in the sense that

(1.4) lim
x→π∈∂Tm

u(x) = g(ψ(π)).

For this Dirichlet problem, we can show existence and uniqueness for continuous data.

Theorem 1.2. Given a continuos boundary datum g, there is a unique solution to (1.2)
that verifies (1.4).

Therefore, from Theorems 1.1 and 1.2, we have that for every continuous datum on
∂Tm the unique convex envelope attains this datum with continuity, that is, (1.4) holds.
Recall that in the Euclidean case we have to ask the domain Ω to be strictly convex for
the validity of this continuity up to the boundary of the convex envelope.

Notice that the equation (1.2) can be rewritten as

(1.5) 0 = min







min
y,z∈S(x)

y 6=z

u(y) + u(z)− 2u(x)

2
; min
y∈S(x)

u(x̂) +mu(y)− (m+ 1)u(x)

m+ 1
,







and hence we identify one possible analogous to the eigenvalues of the Hessian for the
Euclidean case but in the case of the tree

(1.6)

{

u(x, i) + u(x, j)− 2u(x)

2

}

i<j

and

{

u(x̂) +mu(y)− (m+ 1)u(x)

m+ 1

}

y∈S(x)

.

Recall that for the convex envelope in the Euclidean space the associated equation reads
as

min
1≤j≤N

λj(D
2u) = 0,

and compare it with (1.5). Then, recalling that in the Euclidean setting when we add
the eigenvalues of the Hessian we obtain the Laplacian, we obtain the following versions
of a Laplacian on the tree adding the expressions found in (1.6),

u(x) =
2

(m+ 1)2
u(x̂) +

m2 + 2m− 1

(m+ 1)2
1

m

∑

y∈S(x)

u(y).

Notice that this is a special case of the equations (given by mean value properties) that
we previously studied in [8] showing existence and uniqueness for the Dirichlet problem.

Finally, we also study the convex envelope of a function defined on Tm. That is, given
a bounded function f : Tm 7→ R (not necessarily convex), we look for its convex envelope
that is given by

(1.7) u∗f(x) := sup
{

u(x) : u ∈ C(f)
}

,

where

C(f) :=
{

u : Tm → R : u is a convex function and u(x) ≤ f(x) ∀x ∈ Tm

}

.

The convex envelope is unique (this follows easily since the maximum of two convex
functions is also convex). Notice that when f attains a minimum this minimum coincides
with the minimum of the convex envelope (and it is attained at the same vertices). This
convex envelope turns out to be the solution to the obstacle problem for the equation
(1.2). For the analogous property in the Euclidean setting, we refer to [13]. Recall that
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for the obstacle problem one important set is the coincidence set, that is given by the
set of points where f and its convex envelope u∗f coincide,

CS(f) =
{

x ∈ Tm : f(x) = u∗f(x)
}

.

Theorem 1.3. The convex envelope of a function f : Tm → R is the solution to the

obstacle problem for the equation (1.2). That is, u∗f is the largest solution to

u(x) ≤ min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







on Tm,

that verifies

u(x) ≤ f(x) ∀x ∈ Tm.

In the coincidence set, the function f verifies an inequality

f(x) ≤ min







min
y,z∈S(x)

y 6=z

f(y) + f(z)

2
; min
y∈S(x)

f(x̂) +mf(y)

m+ 1







on CS(f),

while outside the coincidence set the convex envelope, u∗f , is a solution of the equation,

i.e., it holds

u∗f(x) = min







min
y,z∈S(x)

y 6=z

u∗f(y) + u∗f(z)

2
; min
y∈S(x)

u∗f(x̂) +mu∗f(y)

m+ 1







on Tm \ CS(f).

On the other hand, in the arborescence (directed) tree, i.e., the tree defined as before
but adding a direction to the edges in such a way that any two edges are not directed to
the same vertex and the root is the unique vertex that has no edge directed into it), the
Laplacian is defined as the mean value of the successors minus the value at the vertex,
that is,

∆u(x) :=
1

m

∑

y∈S(x)

u(y)− u(x) ∀x ∈ Tm,

see [10]. Now, to obtain an interpretation of this Laplacian as the sum of eigenvalues of
the Hessian as we did before, we just have to change the notion of convexity.

Now we need to introduce extra notations. Given x ∈ Tm, T
x
2 denotes the set of all

subgraphs B that are formed from a finite subset of the vertices of Tm and such that
x ∈ B, S(x) ∩ B has two elements and for any y ∈ B \ {x},

• |y| > |x|;
• either S(y) ∩ B = ∅ or S(y) ∩ B has exactly two elements.

We say that y ∈ B is an endpoint of B if S(y) ∩ B = ∅. The set of all endpoints of B is
denoted E(B). That is, B is just a finite binary subtree of Tm.
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∅
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An element of Tx
2 . Root: x. Endpoints: (x, 1), (x, 2, 0), and (x, 2, 1).

Our second notion of convexity is the following: a function u : Tm → R is called binary
convex if for any x ∈ Tm

u(x) ≤
∑

y∈E(B)

1

2|y|−|x|
u(y) ∀B ∈ T

x
2 .

In this notion of convexity, a segment is B, a finite binary subgraph of Tm; a midpoint
is the root of this subgraph B and the convexity property just says that the value of
the function at the midpoint is less or equal than the mean value of the values at the
endpoints.

Associated to this new version of convexity, we have a convex envelope of a bounded
boundary datum g that is, defined as in (1.1), that is we define the binary convex envelope
of g on Tm as follows

ũg(x) := sup {u(x) : u ∈ B(g)}

where

B(g) :=

{

u : Tm → R : is a binary convex function on Tm, lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π))

}

.

For this notion of binary convex envelope, we also have an equation (simpler than with
the previous notion).

Theorem 1.4. The binary convex envelope of a bounded boundary datum g is the largest

solution to

(1.8) u(x) = min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
on Tm,

that verifies (1.3).

Again, when g is continuous we have a unique solution to the equation that attains
the boundary datum continuously.

Theorem 1.5. Given a continuous boundary datum g, there exists a unique (1.8) that

verifies (1.4).

In this case, written (1.8) as

0 = min
y,z∈S(x)

y 6=z

{

1

2
u(y) +

1

2
u(z)− u(x)

}

,
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we can identify the analogous to the eigenvalues of the Hessian that for this case are
given by,

(1.9)

{

1

2
u(x, i) +

1

2
u(x, j)− u(x)

}

i<j

.

Then, adding the eigenvalues in (1.9), we obtain

(1.10) 0 =
1

m

∑

y∈S(x)

u(y)− u(x).

Notice that this is the usual Laplacian in the arborescence tree studied in [10].

For this notion of convexity we can also deal with the problem of the convex envelope
of a function f : Tm 7→ R defined as in (1.7). In this case we also find that this convex
envelope can be characterized as the solution to the obstacle problem for the associated
equation, (1.8), and prove a theorem analogous to Theorem 1.3 for this case. Once we
have proved Theorem 1.4, the proof of this result is similar to the one of Theorem 1.3
and hence we leave the statement and the proof to the reader.

To end this introduction, let us give a natural generalization of the notion of binary
convexity. Given k ∈ {2, . . . , m − 2} and x ∈ Tm, T

xk
2 denotes the set of all subgraphs

B that are formed from a finite subset of vertices in Tm and such that, x ∈ B, S(x) ∩ B

has exactly k elements and for any y ∈ B \ {x},

• |y| > |x|;
• either S(y) ∩ B = ∅ or S(y) ∩ B has exactly k elements.

Observe that Tx2
2 = Tx

2 . As before we denote by E(B) (the set of endpoints) the set of
points y ∈ B such that S(y) ∩ B = ∅.

A function u : Tm → R is called k−convex if for any x ∈ Tm

u(x) ≤
∑

y∈E(B)

1

k|y|−|x|
u(y) ∀B ∈ T

xk
2 .

As before, associated to this version of convexity, we have a convex envelope of a
bounded boundary datum g that we will call the k−convex envelope of g. Following the
proof of Theorems 1.4 and 1.5, we can show that the k−convex envelope of g is the
largest solution to

(1.11) u(x) = min
x1,...,xk∈S(x)

xi 6=xj

1

k

k
∑

i=1

u(xi) on Tm,

that verifies (1.3). Moreover, if g is a continuous function then the k−convex envelope
of g is the a unique solution to (1.11) that verifies (1.4).

In this case, written (1.11) as

0 = min
x1,...,xk∈S(x)

xi 6=xj

{

1

k

k
∑

i=1

u(xi)− u(x)

}

,
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we identify the analogous to the eigenvalues of the Hessian,

(1.12)

{

1

k

k
∑

i=1

u(x, ji)− u(x),

}

ji<ji+1

.

Adding the eigenvalues in (1.12), we obtain again (1.10), the usual Laplacian on the
arborescence tree.

Organization of the paper. In Section 2, we will prove general results for convex
functions; In Section 3, we prove our main result for the convex envelope; In Sections 4
and 5, we extend the results of previous sections to the notion of binary convexity.

2. Convex functions

We begin this section showing a different characterization of convex functions.

Lemma 2.1. A function u on the tree is convex if and only if u satisfies

(2.13) u(x) ≤ min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







∀x ∈ Tm.

Proof. Let u be a convex function. Our goal is to show that (2.13) holds. Given x for
any y, z ∈ S(x) with y 6= z we have that

u(x) ≤
1

2
u(y) +

1

2
u(z)

due to the fact that u is a convex function (just take x ∈ [y, z], d(y, z) = 2
m|x|+1 , and

d(y, x) = d(z, x) = 1
m|x|+1 in the definition of convexity). Then, we get

u(x) ≤ min
y,z∈S(x)

y 6=z

u(y) + u(z)

2

for any x ∈ Tm.

Now, given x ∈ Tm for any y ∈ S(x)

u(x) ≤
m

m+ 1
u(y) +

1

m+ 1
u(x̂)

again due to the fact that u is a convex function (in this case, take x ∈ [x̂, y], d(x̂, y) =
m+1
m|x|+1 , d(x̂, x) =

1
m|x| , and d(y, x) =

1
m|x|+1 ). Thus

u(x) ≤ min
y∈S(x)

u(x̂) +mu(y)

m+ 1

for any x ∈ Tm. Therefore, we have that if u is a convex function then u satisfies (2.13).

To see the converse, let u be a function defined on the tree that verifies (2.13) at
every node and x, y ∈ Tm. We begin by analyzing the case that [x, y] is a “straight line”,
that is the vertices x0, . . . , xN of [x, y] are such that x0 = x, xN = y, x̂i = xi+1 for any
i ∈ {0, . . . , N − 1}. More precisely, first we show that if [x, y] is a “straight line” then

(2.14) u(xi) ≤
d(xi, x0)

d(xN , x0)
u(xN) +

d(xi, xN)

d(xN , x0)
u(x0) ∀i ∈ {0, . . . , N}.
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We proceed by induction in N . When N = 2, by (2.13), we have

u(x1) ≤
u(x2) +mu(x0)

m+ 1
=
d(x1, x0)

d(x2, x0)
u(x2) +

d(x1, x2)

d(x2, x0)
u(x0)

since d(x1, x2) =
1

m|x1|
, d(x1, x0) =

1
m|x0|

= 1
m|x1|+1 and d(x2, x0) =

m+1
m|x1|+1 .

Suppose now that (2.14) is true for all straight line that have N − 1 vertices, where
N > 2. Then,

u(x1) ≤
d(x1, xN−1)

d(xN−1, x0)
u(x0) +

d(x1, x0)

d(xN−1, x0)
u(xN−1)

and

u(xN−1) ≤
d(x1, xN−1)

d(xN , x1)
u(xN) +

d(xN , xN−1)

d(xN , x1)
u(x1).

Thus,

u(x1) ≤
d(x1, xN−1)

d(xN−1, x0)
u(x0) +

d(x1, x0)

d(xN−1, x0)

d(x1, xN−1)

d(xN , x1)
u(xN)

+
d(x1, x0)

d(xN−1, x0)

d(xN , xN−1)

d(xN , x1)
u(x1).

Therefore,

d(x1, xN−1) [d(x1, xN )u(x0) + d(x1, x0)u(xN)]

≥ [d(xN−1, x0)d(x1, xN )− d(x1, x0)d(xN−1, xN)] u(x1)

≥ [{d(xN , x0)− d(xN , xN−1)} {d(xN , x0)− d(x1, x0)} − d(x1, x0)d(xN−1, xN)] u(x1)

≥ d(xN , x0) [d(xN , x0)− d(xN , xN−1)− d(x1, x0)]u(x1)

≥ d(xN , x0)d(x1, xN−1)u(x1).

Then

u(x1) ≤
d(x1, x0)

d(xN , x0)
u(xN) +

d(x1, xN)

d(xN , x0)
u(xN).

In similar manner, we get

(2.15) u(xN−1) ≤
d(xN−1, x0)

d(xN , x0)
u(xN) +

d(xN−1, xN)

d(xN , x0)
u(xN).
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If z ∈ [x, y] \ {x0, x1, xN−1, xN}, by the inductive hypothesis and (2.15), we have

u(z) ≤
d(z, xN−1)

d(xN−1, x0)
u(x0) +

d(z, x0)

d(xN−1, x0)
u(xN−1)

≤
d(z, x0)

d(xN , x0)
u(xN ) +

d(z, xN−1)d(xN , x0) + d(z, x0)d(xN−1, xN)

d(xN−1, x0)d(xN , x0)
u(x0)

≤
d(z, x0)

d(xN , x0)
u(xN )

+
[d(z, xN)− d(xN−1, xN)] d(xN , x0) + [d(xN , x0)− d(z, xN )] d(xN−1, xN)

d(xN−1, x0)d(xN , x0)
u(x0)

≤
d(z, x0)

d(xN , x0)
u(xN ) + d(z, xN)

d(xN , x0)− d(xN−1, xN )

d(xN−1, x0)d(xN , x0)
u(x0)

≤
d(z, x0)

d(xN , x0)
u(xN ) +

d(z, xN )

d(xN , x0)
u(x0),

showing that indeed (2.14) holds when [x, y] is a straight line.

When [x, y] is not a straight line, there is a z ∈ [x, y] such that [x, z] and [z, y] are
straight lines. Observe that [x, y] = [x, z] ∪ [z, y] and S(z) ∩ [x, y] = {w1, w2}. We can
assume that w1 ∈ [x, z] and w2 ∈ [z, y].

Thus, from (2.14), we have

2u(z) ≤ u(w1) + u(w2)

≤

[

d(w1, x)

d(x, z)
+
d(w2, y)

d(y, z)

]

u(z) +
d(w1, z)

d(x, z)
u(x) +

d(w2, z)

d(y, z)
u(y).

Then,

2d(x, z)d(y, z)− d(w1, x)d(z, y)− d(w2, y)d(z, x)

d(z, x)d(z, y)
u(z) ≤

d(w1, z)

d(x, z)
u(x) +

d(w2, z)

d(y, z)
u(y).

Since d(w1, z) = d(w2, z), we get

d(w1, z) [d(y, z)u(x) + d(x, z)u(y)]

≥ [2d(x, z)d(y, z)− d(w1, x)d(z, y)− d(w2, y)d(z, x)]u(z)

≥ {2d(x, z)d(y, z)− [d(x, z)− d(w1, z)] d(z, y)− [d(y, z)− d(w2, z)] d(z, x)} u(z)

≥ d(w1, z) [d(z, y) + d(z, x)] u(z)

≥ d(w1, z)d(x, y)u(z).

Therefore, we obtain

u(z) ≤
d(x, z)

d(x, y)
u(y) +

d(y, z)

d(x, y)
u(x).
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If w ∈ [x, y] \ {x, z, y} then w ∈ [x, z] or w ∈ [z, y]. In the case that w ∈ [x, z], since
[x, z] is a straight line we have

u(w) ≤
d(x, w)

d(x, z)
u(z) +

d(z, w)

d(x, z)
u(x)

≤
d(x, w)

d(x, y)
u(y) +

[

d(x, w)d(y, z)

d(x, z)d(x, y)
+
d(z, w)

d(x, z)

]

u(x)

≤
d(x, w)

d(x, y)
u(y) +

d(x, w)d(y, z) + d(z, w)d(x, y)

d(x, z)d(x, y)
u(x)

≤
d(x, w)

d(x, y)
u(y) +

[d(x, y)− d(y, w)]d(y, z) + d(z, w)d(x, y)

d(x, z)d(x, y)
u(x)

≤
d(x, w)

d(x, y)
u(y) +

[d(y, z) + d(z, w)] d(x, y)− d(y, w)d(y, z)

d(x, z)d(x, y)
u(x)

≤
d(x, w)

d(x, y)
u(y) +

d(y, w) [d(x, y)− d(y, z)]

d(x, z)d(x, y)
u(x)

≤
d(x, w)

d(x, y)
u(y) +

d(y, w)

d(x, y)
u(x).

In the case that w ∈ [z, y] the proof is similar.

Therefore, we conclude that a function u that verifies (2.13) is a convex function in
Tm. �

Our second result show that the sum of convex function is also a convex function.

Corollary 2.2. Let u, v : Tm → R be convex functions. Then u+ v is a convex function.

Proof. Since u, v are convex function, by Lemma 2.1, for any x ∈ Tm we have that

u(x) + v(x) ≤ min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







+min







min
y,z∈S(x)

y 6=z

v(y) + v(z)

2
; min
y∈S(x)

v(x̂) +mv(y)

m+ 1







≤ min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
+
v(y) + v(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1
+
v(x̂) +mv(y)

m+ 1







.

Therefore, by Lemma 2.1, u+ v is a convex function. �

It is immediate to check that the constant function u = 1 is a convex function such
that

lim
x→π

u(x) = χ[0,1](ψ(π)) ∀π ∈ ∂Tm.
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We now show that for any x0 ∈ Tm \ {∅} there is a convex function u such that

lim sup
x→π

u(x) ≤ χIx0
(ψ(π)) π ∈ ∂Tm.

Here Ix0
is the interval associated to the vertex x0 of length 1

m|x0|
given by

Ix0
:=

[

ψ(x0), ψ(x0) +
1

m|x0|

]

.

Observe that for x0 ∈ Tm, Ix0
∩ ∂Tm is the subset of ∂Tm consisting of all branches that

pass through x0.

To find such a convex function we introduce the following set: given x0 ∈ Tm, let us
consider

T
x0

m := {x ∈ Tm : |x| ≥ |x0|, Ix ⊂ Ix0
}.

Lemma 2.3. Let x0 ∈ Tm \ {∅}. Then the function ux0
: Tm → R

ux0
(x) :=

m− 1

m











0 if x 6∈ Tx0

m ,
|x|−|x0|
∑

i=0

1

mi
if x ∈ Tx0

m ,

is a convex function such that

lim sup
x→π

ux0
(x) ≤ χIx0

(ψ(π)) ∀π ∈ ∂Tm.

Moreover,

ux0
(x) = min







min
y,z∈S(x)

y 6=z

ux0
(y) + ux0

(z)

2
; min
y∈S(x)

ux0
(x̂) +mux0

(y)

m+ 1







∀x ∈ Tm,

and for any π ∈ Tm such that ψ(π) is not one of the two endpoints of Ix0
we have

lim
x→π

ux0
(x) = χIx0

(ψ(π)).

Proof. Let us start by showing that the function ux0
is convex. By Lemma (2.1), it is

enough to show that ux0
satisfies (2.13). If x ∈ Tm \ Tx0

m then there exist y, z ∈ S(x)
such that y 6= z, ux0

(y) = ux0
(z) = 0. So, we have

(2.16) min







min
y,z∈S(x)

y 6=z

ux0
(y) + ux0

(z)

2
; min
y∈S(x)

ux0
(x̂) +mux0

(y)

m+ 1







= 0 = ux0
(x).

If x = x0, then ux0
(x̂0) = 0 and ux0

(y) = m−1
m

(1 + 1
m
) for any y ∈ S(x0). Therefore

(2.17)

min







min
y,z∈S(x0)

y 6=z

ux0
(y) + ux0

(z)

2
; min
y∈S(x0)

ux0
(x̂) +mux0

(y)

m+ 1







=
m− 1

m
min

{

1 +
1

m
; 1

}

=
m− 1

m

= ux0
(x0).
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Now, suppose that x ∈ Tm \ {x0}, and so,

ux0
(x̂) =

m− 1

m

|x|−1−|x0|
∑

i=0

1

mi

and

ux0
(y) =

m− 1

m

|x|+1−|x0|
∑

i=0

1

mi
.

Hence, we obtain

(2.18)

min

{

min
y,z∈S(x0)

y 6=z

ux0
(y) + ux0

(z)

2
; min
y∈S(x0)

ux0
(x̂) +mux0

(y)

m+ 1

}

=
m− 1

m
min







|x|+1−|x0|
∑

i=0

1

mi
;

|x|−|x0|
∑

i=0

1

mi







=
m− 1

m

|x|−|x0|
∑

i=0

1

mi

= ux0
(x).

Therefore, by (2.16), (2.17) and (2.18) we get that

ux0
(x) = min







min
y,z∈S(x)

y 6=z

ux0
(y) + ux0

(z)

2
; min
y∈S(x)

ux0
(x̂) +mux0

(y)

m+ 1







∀x ∈ Tm.

Thus, ux0
is a convex function.

Finally, we have to show that

lim sup
x→π

ux0
(x) ≤ χIx0

(ψ(π)) ∀π ∈ ∂Tm.

Case 1. If π ∈ ∂Tm, ψ(π) ∈ Ix0
and ψ(π) is not an endpoint of Ix0

then for any sequence
{xk}k∈N in Tm such that π = (x1, . . . , xk, . . . ), there is k0 ∈ N such that xk ∈ Tx0

m for all
k ≥ k0. Then

ux0
(xk) =

m− 1

m

|xk|−|x0|
∑

i=0

1

mi
∀k ≤ k0.

Thus, as k → ∞ we have

ux0
(xk) → 1 = χIx0

(ψ(π)).

Case 2. Similarly, if π ∈ ∂Tm, ψ(π) 6∈ Ix0
then for any sequence {xk}k∈N on Tm such

that π = (x1, . . . , xk, . . . ), we get

ux0
(xk) → 0 = χIx0

(ψ(π))

as k → ∞.

Case 3. Finally suppose that π ∈ ∂Tm, ψ(π) ∈ Ix0
and ψ(π) is an endpoint of Ix0

.
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In the case that ψ(π) = 0 or ψ(π) = 1 for any sequence {xk}k∈N on Tm such that
π = (x1, . . . , xk, . . . ), there is k0 ∈ N such that xk ∈ Tx0

m for all k ≥ k0. Therefore

ux0
(xk) → 1 = χIx0

(ψ(π))

as k → ∞.

In the case that ψ(π) 6∈ {0, 1} there exists sequences {xk}k∈N, {yk}k∈N on Tm and
k0 ∈ N such that π = (x1, . . . , xk, . . . ), π = (y1, . . . , yk, . . . ), for all k ≥ k0 we get
xk ∈ Tx0

m and yk ∈ Tx0

m . Therefore,

ux0
(xk) → 1 = χIx0

(ψ(π)),

ux0
(yk) → 0 ≤ χIx0

(ψ(π)).

This fact, together with the previous cases 1 and 2, completes the proof. �

3. Convex envelopes

In this section we deal with convex functions on the tree. Let us start by showing that
the convex envelop u∗g of function g : [0, 1] → R, defined in (1.1), is a convex function.

Lemma 3.1. For any function g : [0, 1] → R, the convex envelop u∗g is a convex function.

Proof. This follows easily from the fact that the supremum of convex functions is also
convex. Given g : [0, 1] → R, for every function u ∈ C(g) it holds that

u(z) ≤
d(y, z)

d(x, y)
u(x) +

d(x, z)

d(x, y)
u(y) ≤

d(y, z)

d(x, y)
u∗g(x) +

d(x, z)

d(x, y)
u∗g(y)

for any x, y, z ∈ Tm with z ∈ [x, y]. Hence we get

u∗g(z) ≤
d(y, z)

d(x, y)
u∗g(x) +

d(x, z)

d(x, y)
u∗g(y)

for any x, y, z ∈ Tm with z ∈ [x, y]. Thus u∗g is a convex function. �

Our second aim is to show that if g is a continuous function then

(3.1) lim
x→π∈∂Tm

u∗g(x) = g(ψ(π)) ∀π ∈ ∂Tm.

To prove this property, we need to show a comparison principle.

Lemma 3.2. Let u and v satisfy

u(x) ≥ min







min
y,z∈S(x0)

y 6=z

u(y) + u(z)

2
; min
y∈S(x0)

u(x̂0) +mu(y)

m+ 1







∀x ∈ Tm,(3.2)

v(x) ≤ min







min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
; min
y∈S(x0)

v(x̂0) +mv(y)

m+ 1







∀x ∈ Tm,(3.3)

with

lim
x→π∈∂Tm

u(x) ≥ lim
x→π∈∂Tm

v(x),

for every π ∈ ∂Tm. Then,

u(x) ≥ v(x) ∀x ∈ Tm.
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Proof. Adding a positive constant c to u, we may assume that

(3.4) lim
x→π∈∂Tm

u(x) > lim
x→z∈∂Tm

v(x).

Our goal is to show that in this case we have

u(x) ≥ v(x) ∀x ∈ Tm

(and then we obtain the result just by letting c→ 0).

We argue by contradiction and assume that

M = max
x∈Tm

(v(x)− u(x)) > 0.

Notice that the maximum is attained thanks to (3.4). Also thanks to (3.4), we have that
M is attained only in a finite set of nodes. Let x be one of such nodes. From (3.2) and
(3.3) we obtain

M = v(x)− u(x) ≤min







min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
; min
y∈S(x0)

v(x̂0) +mv(y)

m+ 1







−min







min
y,z∈S(x0)

y 6=z

u(y) + u(z)

2
; min
y∈S(x0)

u(x̂0) +mu(y)

m+ 1







.

From this inequality, using that

M ≥

(

v(y) + v(z)

2

)

−

(

u(y) + u(z)

2

)

, ∀y, z ∈ S(x0) y 6= z,

and

M ≥

(

v(x̂0) +mv(y)

m+ 1

)

−

(

u(x̂0) +mu(y)

m+ 1

)

, ∀y ∈ S(x0),

we get

M ≤min







min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
; min
y∈S(x0)

v(x̂0) +mv(y)

m+ 1







−min







min
y,z∈S(x0)

y 6=z

u(y) + u(z)

2
; min
y∈S(x0)

u(x̂0) +mu(y)

m+ 1







≤ M.

Hence, we obtain that there are two nodes x1 and x2 connected with x (one of them can
be the predecessor) such that

v(x1)− u(x1) =M, and v(x2)− u(x2) =M.

Since this happens for every x in the set of maximums of v − u and this set is finite, we
obtain a contradiction that shows that

u(x) ≥ v(x),

and proves the result. �

Now we will prove (3.1).
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Theorem 3.3. Let g : [0, 1] → R be a continuous function. Then

lim
x→π∈∂Tm

u∗g(x) = g(ψ(π))

for any π ∈ ∂Tm.

Proof. Let us start by observing that, for any constant c, u ∈ C(g) if only if u+c ∈ C(g+c).
Therefore, without loss of generality, we may assume that g is a nonnegative function.

Let π0 = (y1, . . . , yk, . . . ) ∈ ∂Tm. For any n ∈ Tm, there exist zn ∈ T
n
m and k0 such

that ψ(yk) ∈ Izn for all k ≥ k0. Now taking c = min{g(t) : t ∈ Izn} and wn = cuzn where
uzn is given by Lemma 2.3, we have that wn is a convex function such that

lim
x→π

wn(x) ≤ g(ψ(π)), ∀π ∈ ∂Tm.

Here, we are using that g ≥ 0. Then, wn ∈ C(g), and therefore wn(x) ≤ u∗g(x) for any
x ∈ Tm. In particular, wn(yk) ≤ u∗g(yk) for any k. Therefore,

min{g(t) : t ∈ Izn} = lim
k→∞

wn(yk) ≤ lim inf
k→∞

u∗g(yk).

Taking the limit as n→ ∞, we have

g(ψ(π0)) ≤ lim inf
k→∞

u∗(yk)

since g is a continuous function.

Moreover, taking

wn(x) = a(1− uzn) + buzn = a+ (b− a)wn

where a = 2max{g(t) : t ∈ [0, 1]} and b = max{g(t) : t ∈ Izn}, we have that

wn(x) = a+ (b− a)wn(x)

= a+ (b− a)min







min
y,z∈S(x0)

y 6=z

wn(y) + wn(z)

2
; min
y∈S(x0)

wn(x̂0) +mwn(y)

m+ 1







= max







max
y,z∈S(x0)

y 6=z

a+
(b− a)(wn(y) + wn(z))

2
; max
y∈S(x0)

a+
(b− a)(wn(x̂0) +mwn(y))

m+ 1







= max







max
y,z∈S(x0)

y 6=z

wn(y) + wn(z)

2
; max
y∈S(x0)

wn(x̂) +mwn(y)

m+ 1







≥ min







min
y,z∈S(x0)

y 6=z

wn(y) + wn(z)

2
; min
y∈S(x0)

wn(x̂) +mwn(y)

m+ 1







for any x ∈ Tm and

g(ψ(π)) ≤ lim inf
z→π

wn(xk), ∀π ∈ ∂Tm.

Thus, by Lemma 3.2, for any u ∈ C(g) we have that u(x) ≤ wn(x) for any x ∈ Tm.

Therefore u∗g(x) ≤ wn(x) for any x ∈ Tm. In particular, u∗g(yk) ≤ wn(yk) for any k. Then

lim sup
k→∞

u∗g(yk) ≤ limwn(yk) = max{g(t) : t ∈ Izn}.
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Again, taking the limit as n→ ∞, we have

lim sup
k→∞

u∗g(yk) ≤ g(ψ(π0)).

Therefore, we conclude that

lim
k→∞

u∗(yk) = g(ψ(π0)).

As π0 ∈ ∂Tm was arbitrary, we conclude

lim
x→π0

u∗(x) = g(ψ(π0))

for any π0 ∈ ∂Tm. �

Now our next goal is to find the equation that u∗g verifies on Tm.

Theorem 3.4. Let g : [0, 1] → R be a continuous functions. The convex envelope u∗g is

characterized as the largest solution to

(3.5) u(x) = min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







on Tm,

that verifies

lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π)).

Proof. Given g : [0, 1] → R, by Lemmas 3.1 and 2.1 we get that u∗g verifies (2.13).

Now, to see that we have an equality, we argue by contradiction. Assume that at some
node x0 ∈ Tm, we have

u∗g(x0) < min







min
y,z∈S(x0)

y 6=z

u∗g(y) + u∗g(z)

2
; min
y∈S(x0)

u∗g(x̂0) +mu∗g(y)

m+ 1







Taking δ > 0 such that

u∗g(x0) + δ < min







min
y,z∈S(x)

y 6=z

u∗g(y) + u∗g(z)

2
; min
y∈S(x)

u∗g(x̂) +mu∗g(y)

m+ 1







and consider

v(x) =

{

u∗g(x) if x 6= x0,

u∗g(x0) + δ if x = x0.

Observe that v verifies (2.13). Thus, by Lemma 2.1, v is convex. In addition, we have
that v ∈ C(g). Therefore

v(x) ≤ u∗g(x) ∀x ∈ Tm,

leading to a contradiction. This proves that u∗g is a solution to (3.5).

Finally, to see that u∗g is the largest solution to (3.5) that verifies

lim sup
x→π∈∂Tm

u∗g(x) ≤ g(ψ(π)),
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it is enough to define

u(x) = sup

{

u(x) : u verifies (3.5) and lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π))

}

.

This function u trivially verifies

u(x) ≥ u∗g(x) x ∈ Tm,

just notice that u∗g belongs to the set defining u.

On the other hand, since u is a solution to (3.5), by Lemma 2.1, we have that u is
convex and therefore u ∈ C(g). Then

u(x) ≤ u∗g(x) ∀x ∈ Tm.

We conclude that

u∗g(x) = u(x) = sup

{

v(x) : u verifies (3.5) and lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π))

}

.

�

Observe that by Lemma 3.2 and Theorem 3.4, for any continuous function g : [0, 1] 7→
R, the equation defining the convex envelope has a unique solution that attains the
datum g continuously.

Theorem 3.5. Let g : [0, 1] 7→ R be a continuous function. There exists a unique solution

to (3.5) such that

lim
x→π∈∂Tm

u(x) = g(ψ(π)).

for any π ∈ Tm.

To end this section we prove Theorem 1.3 that deals with the convex envelope of a
function f : Tm 7→ R given by (1.7).

Theorem 3.6. The convex envelope of a function f : Tm → R is the solution to the

obstacle problem for the equation (1.2).

Proof. Let us call v∗ to the largest solution to

(3.6) u(x) ≤ min







min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
; min
y∈S(x)

u(x̂) +mu(y)

m+ 1







on Tm,

that verifies

u(x) ≤ f(x) ∀x ∈ Tm.

We have to prove that the convex enevolpe of f , u∗f , verifies

u∗f(x) = v∗(x), ∀x ∈ Tm.

Since u∗f is convex from Lemma 2.1 we obtain that it is a solution to (3.6) that verifies
u∗f ≤ f on Tm and then we obtain

u∗f(x) ≤ v∗(x), ∀x ∈ Tm.



20 L. M. DEL PEZZO, N. FREVENZA AND J. D. ROSSI

We have also from Lemma 2.1 that v∗ being a solution to (3.6) is a convex function
and it verifies v∗ ≤ f on Tm. Hence,

v∗(x) ≤ u∗f(x), ∀x ∈ Tm.

We conclude that

u∗f(x) = v∗(x), ∀x ∈ Tm.

In the coincidence set, the function f verifies an inequality. From the fact that u∗f is
convex and smaller than f we obtain for x ∈ CS(f),

f(x) = u∗f(x)

≤ min







min
y,z∈S(x)

y 6=z

u∗f(y) + u∗f(z)

2
; min
y∈S(x)

u∗f(x̂) +mu∗f(y)

m+ 1







≤ min







min
y,z∈S(x)

y 6=z

f(y) + f(z)

2
; min
y∈S(x)

f(x̂) +mf(y)

m+ 1







.

Finally, outside of the coincidence set the convex envelope, u∗f , is a solution to the
equation. In fact, arguing by contradiction, assume that for some x0 6∈ CS(f) it holds

(3.7) u∗f(x0) < min







min
y,z∈S(x0)

y 6=z

u∗f(y) + u∗f(z)

2
; min
y∈S(x0)

u∗f(x̂0) +mu∗f(y)

m+ 1







.

Then, since x0 6∈ CS(f) and we have a strict inequality in (3.7) there exists δ > 0 such
that the function

v(x) =

{

u∗f(x) if x 6= x0,

u∗f(x0) + δ if x = x0

is convex and still verifies v ≤ f on Tm contradicting the maximality of the convex
envelope u∗f . This contradiction shows that we have an equality in (3.7). �

4. Binary convex functions

As in Section 2, we begin showing a different characterization of binary convex func-
tions.

Lemma 4.1. A function u on the tree is binary convex if and only if u satisfies

(4.8) u(x) ≤ min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
∀x ∈ Tm.

Proof. Let us start the proof observing that if x ∈ Tm, y, z ∈ S(x) and y 6= z then
[y, z] ∈ Tx

2 and E([y, z]) = {y, z}. Therefore if u is a binary convex function, x ∈ Tm and
y, z ∈ S(x) are such taht y 6= z then

u(x) ≤
u(y) + u(z)

2
.

Thus, u satisfies (4.8) in Tm.
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Now assume that u satisfies (4.8). Our aim is to prove that u is a binary convex
function, that is, we aim to show that

(4.9) u(x) ≤
∑

y∈E(B)

u(y)

2|y|−|x|
∀B ∈ T

x
2 .

Fix x ∈ Tm. Given B ∈ Tx
2 , we define

|B| := max
{

|z| − |x| : z ∈ E(B)
}

∈ N

and

T
xn
2 :=

{

B ∈ T
x
2 : |B| = n

}

⊂ T
x
2 .

The proof of (4.9) runs by induction in n. Observe that in the case |B| = 1 there exist
y, z ∈ S(x) such that B = [y, z] and obviously E(B) = {y, z}. Then, since u satisfies
(4.8), we get

u(x) ≤
u(y) + u(z)

2
=

∑

y∈E(B)

u(y)

2|y|−|x|
.

That is (4.9) holds for any B ∈ T
x1
2 .

Now we assume that (4.9) holds for any B ∈ T
xn
2 , and we will show that it also holds

for any B ∈ T
x(n+1
2 .

If B ∈ T
x(n+1)
2 then B

′ = B \ {y ∈ E(B) : |y| − |x| = n + 1} ∈ T
xn
2 . Then, by the

inductive hypothesis, we get

(4.10) u(x) ≤
∑

y∈E(B′)

u(y)

2|y|−|x|
.

On the other hand, for any y ∈ E(B) we have that y ∈ E(B′) or there are w ∈ E(B′)
and z ∈ E(B) \ {y} such that y, z ∈ S(w). Thus, since u satisfies (4.8), from (4.10), we
have that

u(x) ≤
∑

y∈E(B)

u(y)

2|y|−|x|
.

Finally, since x is arbitrary, we conclude that u is a binary convex function. �

Remark 4.2. Now, by Lemmas 2.1 and 4.1, it is easy to check that a convex function is
also a binary convex function.

Proceeding as in the proof of Corollary 2.2 we can prove the following result.

Corollary 4.3. Let u, v : Tm → R be binary convex functions. Then u + v is a binary

convex function.

Now, we obtain the following result, whose proof is similar to Lemma 2.3.

Lemma 4.4. Let x0 ∈ Tm \ {∅}. Then the function ux0
: Tm → R defined by

ux0
(x) :=

{

0 if x 6∈ T
x0

m ,

1 if x ∈ Tx0

m ,
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is a binary convex function such that

lim sup
x→π

ux0
(x) ≤ χIx0

(ψ(π)) ∀π ∈ ∂Tm.

Moreover,

ux0
(x) = min

y,z∈S(x)
y 6=z

ux0
(y) + ux0

(z)

2
∀x ∈ Tm,

and for any π ∈ Tm such that ψ(π) is not an endpoint of Ix0
we have

lim
x→π

ux0
(x) = χIx0

(ψ(π)).

5. Binary Convex envelopes

Proceeding as in the proof of Lemma 3.1 we can show that the binary convex envelop
is a binary convex function.

Lemma 5.1. For any function g : [0, 1] → R, the binary convex envelop ũg is a binary

convex function.

In a similar way to Section 3, we will show that if g is a continuous function, then

(5.11) lim
x→π∈∂Tm

ũg(x) = g(ψ(π)) ∀π ∈ ∂Tm.

As before, to prove this claim we need a comparison principle.

Lemma 5.2. Let u and v satisfy

u(x) ≥ min
y,z∈S(x0)

y 6=z

u(y) + u(z)

2
∀x ∈ Tm,(5.12)

v(x) ≤ min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
, ∀x ∈ Tm,(5.13)

with

lim
x→π∈∂Tm

u(x) ≥ lim
x→π∈∂Tm

v(x),

for every π ∈ ∂Tm. Then,

u(x) ≥ v(x) ∀x ∈ Tm.

Proof. Adding a positive constant c to u, we may assume that

(5.14) lim
x→π∈∂Tm

u(x) > lim
x→z∈∂Tm

v(x).

We argue by contradiction, so, assume that

M = max
x∈Tm

(v(x)− u(x)) > 0.

Notice that the maximum is attained thanks to (5.14). Also by (5.14), we have that M
is attained only in a finite set of vertices. Let x be one of such vertices. From (5.12) and
(5.13) we obtain

M = v(x)− u(x) ≤ min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
− min

y,z∈S(x0)
y 6=z

u(y) + u(z)

2
.
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Now, using that

M ≥

(

v(y) + v(z)

2

)

−

(

u(y) + u(z)

2

)

, ∀y, z ∈ S(x0) y 6= z,

we get

M ≤ min
y,z∈S(x0)

y 6=z

v(y) + v(z)

2
− min

y,z∈S(x0)
y 6=z

u(y) + u(z)

2
≤M.

Then, there exist two nodes x1, x2 ∈ S(x) such that

v(x1)− u(x1) =M, and v(x2)− u(x2) =M.

Since this happens for every x in the set of maximums of v − u and this set is finite, we
obtain a contradiction that shows that

u(x) ≥ v(x)

and proves the result. �

Now we will show (5.11).

Theorem 5.3. Let g : [0, 1] → R be a continuous function. Then, for any π ∈ ∂Tm

lim
x→π∈∂Tm

ũg(x) = g(ψ(π)).

Proof. Let us start by observing that, for any constant c, u ∈ B(g) if only if u + c ∈
B(g + c). Therefore, without loss of generality, we may assume that g is nonnegative.

Consequently, by Remark 4.2 and Theorem 3.3, we have

lim inf
x→π∈∂Tm

ũg(x) ≥ lim
x→π∈∂Tm

u∗g(x) = g(ψ(π))

for any π ∈ ∂Tm.

To complete the proof, we proceed as in the end of the proof of Theorem 3.3, using
Lemmas 4.4 and 5.2 instead of Lemmas 2.3 and 3.2. �

Finally, with analogous arguments of the Section 3, we get the following results.

Theorem 5.4. Let g : [0, 1] → R be a continuous functions. The binary convex envelope

ũg is characterized as the largest solution to

(5.15) u(x) = min
y,z∈S(x)

y 6=z

u(y) + u(z)

2
on Tm,

that verifies

lim sup
x→π∈∂Tm

u(x) ≤ g(ψ(π)).

Theorem 5.5. Let g : [0, 1] 7→ R be a continuous function. Then, there exists a unique

solution to (5.15) such that for any π ∈ Tm

lim
x→π∈∂Tm

u(x) = g(ψ(π)).
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