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Abstract

Induction motors are critical components in industrial processes. A motor failure may yield an
unexpected interruption at the industrial plant, with consequences in costs, product quality, and safety.
Many of these faulty situations in three phase induction motors have an electrical reason. Among different
detection approaches proposed in the literature, those based on stator current monitoring are advantageous
due to its non-invasive properties. One of these techniques resorts to spectrum analysis of machine line
current. Another non-invasive technique is the Extended Park’s Vector Approach, which allows the
detection of inter-turn short circuits in the stator winding. This article presents the development of an on-
line current monitoring system that uses both techniques for fault detection and diagnosis in the stator and
in the rotor. Based on experimental observations and on the knowledge of the electrical machine, a
knowledge-based system was constructed in order to carry out the diagnosis task from these estimated data.
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1. Introduction

Induction motors are essential components in the vast majority of industrial processes. The
different faults on induction machines may yield drastic consequences for an industrial process.
The main problems are related to increasing costs, and worsening of process safety conditions and
final product quality. Many of these faults show themselves gradually. Then the detection of
incipient faults allows avoiding unexpected factory stops and saving a great deal of money [1,2].
The kind of faults of these machines are varied. However the most frequent are [3]:
(a)
 opening or shorting of one or more of a stator phase winding,

(b)
 broken rotor bar or cracked rotor end-rings,

(c)
 static or dynamic air-gap irregularities, and

(d)
 bearing failures.
These faults may be observed through some of the following symptoms [4]:
(a)
 unbalanced air-gap voltages and line currents,

(b)
 increased torque pulsations,

(c)
 decreased average torque,

(d)
 increased losses and

(e)
 excessive heating.
The reason for such faults may reside in small errors during motor manufacturing, improper
use, high level of requirements in motor start-up, ventilation deficiency, and others. Motors
actuated by pulse width modulation (PWM) voltage source inverters, have greater probabilities to
fail in their bearings [5] and in their stator windings’ insulation [6].
Several diagnosis techniques for the identification and discrimination of the enumerated faults

have been proposed. Temperature measurements, infrared recognition, radio frequency emissions,
noise monitoring or chemical analysis are some of them [4]. References for coils to monitor the
motor axial flux may be found in [7], vibration measurement, in [8,9]. Spectrum analysis of
machine line current (called motor current signature analysis or MCSA) is referred to in [10,11],
Park’s Vector currents (PVC) Monitoring, in [12,13], artificial intelligence based techniques are
used in [14–16].
From all these approaches proposed in the literature, those based on stator current monitoring

are advantageous because of its non-invasive feature. One of these techniques is the MCSA, in
which rotor faults become apparent by harmonic components around the supply frequency. The
amplitude of these lateral bands allows dimensioning the failure’s degree [4]. Also, the Extended
Park’s Vector Approach (EPVA), based on the observation of the Park’s complex vector module,
allows the detection of inter-turn short circuits in the stator winding. This article presents the
development of an on-line current monitoring system (CMS) to perform the diagnosis task in a
supervisory system [17]. This last task employs both techniques (MCSA and EPVA) in an
integrated way, for fault detection and diagnosis in the stator and in the rotor of an induction
motor, respectively. The selection of both techniques, due to MCSA as well as EPVA, shares the
stator current sensing, and then the same information may be used as input for both methods. In
this way, current spectral components convey information about the rotor state, while the EPVA
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is appropriate for the stator windings monitoring, as it will be shown. The proposed CMS uses a
NationalTM data acquisition equipment and is programmed in LabViewTM. From the acquired
current data and the motor features, the CMS estimates the slip and load percentage. Based on
experimental observations and on the knowledge of the electrical machine, a knowledge-based
system (KBS) was constructed in order to carry out the diagnosis task from these estimated data.
The results of each diagnosis are outcomes in the CMS screen in the form of fault modes index. If
necessary, a warning is given to put the motor under new observations (i.e. to measure the rotor
speed or to change the motor load), or even to verify the power distribution net balance.
Experimental results are presented from an induction motor of 380V, 7.5 HP and 1000 rpm,
especially designed for running under different failure circumstances. These results with a high
degree of correct diagnosis show a right direction to explore.
2. Fault detection from stator currents

2.1. Motor current signature analysis

When there are broken or even fissured bars, the rotor’s impedance exhibits an unbalance. The
immediate consequence of such an unbalance is the existence of inverse sequence currents. These
currents have a frequency that is equal to the product of the slip (s) and the supply frequency (f).
They generate a magnetic field that turns counter motor rotation-wise. This magnetic field is
called inverse magnetic field or IMF. The speed of this IMF is given by the expression (1):

or
i ¼ �sos; (1)

where or
i is the speed of IMF, s the slip and os the angular supply frequency.

If translated to stationary co-ordinates, such a speed may be re-written as

os
i ¼ �sos þ or ¼ ð1� 2sÞos; (2)

where or is the rotor speed.
The amplitude of IMF depends on two features. The first is the unbalance degree in the rotor

circuit (number of broken bars), and the second is the value of the current in the rotor bars. This
last depends on the motor’s load state. In this way, the IMF originated in the rotor’s impedance
unbalance produce harmonic currents of frequency ð122sÞf in the stator windings. These currents
interact with the main magnetic field and set a torque over the rotor, which oscillates with a
frequency of 2sf [18]. This pulsating torque provokes an oscillation also in the rotor speed. The
amplitude of this oscillation is a function of the motor’s load inertia. As a reaction of such speed
perturbation, new currents arise in the stator at a frequency (172s)f. The new current component
at frequency (1–2s)f is superimposed with the original, and then modifies its amplitude. In this
way, it is concluded that rotor faults in an induction motor, can be determined from the
observation of the sidebands in the stator current spectrum, in the neighbourhood of both
frequencies given by

f SB ¼ ð1� 2sÞf : (3)

An example of the current spectrum of a motor with this fault is shown in Fig. 1.
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Fig. 1. Frequency spectrum of one phase stator current of a motor with three broken bars and full load.
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As regards the amplitude of these stator current sidebands, they depend on three factors: the
motor’s load inertia, the motor’s load torque, and the severity of the fault. So, the first two factors
must be suppressed in order to analyse, as independently as possible, the one of concern for the
present application.
The motor’s load inertia can be avoided if the sum of both sidebands component are

considered, as proposed in [18]. As regards the motor’s load torque, there is always a relationship
between the amplitude of the sidebands and the amplitude of the fundamental component of the
stator current at the supply frequency. Then, working with normalised amplitude values as
regards this supply frequency component, allows to partially avoid the influence of this second
factor. However, side bands reveal faults more clearly with high values of slip. Then it is
recommended that the diagnosis were carried out with the motor running near its nominal load.
Then, a severity factor can be defined as

SRF ¼
I ð1�2sÞf

I1
100; (4)

where SRF is the severity rotor fault, I(172s)f is the sum of amplitude of sidebands, and I1 is the
amplitude of the fundamental component of the stator current.

2.2. Extended Park’s Vector Approach

The Park’s transform [19], allows the representation of the variables of a three phases machine
through a co-ordinates system with two perpendicular axes. The components of the stator
currents in the direct and quadrature axes (D and Q) are computed by means of the following
expressions:

iD ¼

ffiffiffi
2

3

r
iA �

ffiffiffi
1

6

r
iB �

ffiffiffi
1

6

r
iC ; (5)

iQ ¼

ffiffiffi
1

2

r
iB �

ffiffiffi
1

2

r
iC ; (6)

where iA, iB and iC are the stator currents. Under ideal conditions, that is, when a normal
behaviour motor is fed with a sinusoidal, balanced and positive sequence three-phases current



ARTICLE IN PRESS

G.G. Acosta et al. / Mechanical Systems and Signal Processing 20 (2006) 953–965 957
system, the Park’s components or Park’s Currents Vector (PVC) results in

iD ¼

ffiffiffi
6
p

2
ImaxsinðostÞ; (7)

iQ ¼

ffiffiffi
6
p

2
Imaxsinðost� p=2Þ: (8)

In this expression Imax is the maximum stator current value and t is the time variable. Eqs. (7)
and (8) describe a perfect circle centred in the origin of the plane D–Q , with constant radius equal
to ð

ffiffiffi
6
p

=2Þ: Fig. 2 presents the PCV from a Lab experiment of an induction motor under normal
conditions. The small variations in the vector radius are due to small unbalanced voltages of
distribution system. In the same way, the space and slot harmonics introduce small perturbation
in the vector radius. They are negligible for the present analysis and are then filtered in the data
acquisition stage.
One of the most common faults in induction motors consists of inter-turn short circuits. In this

case, the motor behaves like an unbalanced load, and the stator currents are no longer a balanced
system. This abnormal behaviour causes an oscillation in the PVC radius, turning the original
circle into elliptical shapes, as may be seen in Fig. 3 for a motor with two coils of phase a (over a
total of sixteen) in short circuit. The inclination of the ellipse mayor axis shows the phase in which
the fault was produced [13].
Cruz and Marquez Cardoso [12] propose to observe the radius of the geometric locus of the

PVC along time in order to obtain a fault diagnosis. Effectively, as this radius oscillates between a
maximum and a minimum twice in a supply frequency cycle, it may be decomposed in a Fourier’s
series. This series presents a direct current component plus a component in twice the net frequency
(I2NF). This is shown in Fig. 4 in which it is depicted that a motor with stator coil faults. The
amplitude of I2NF is again related to the dimension of the fault and then a new severity factor may
Fig. 2. Geometric locus for the Park’s Currents Vector for a motor with normal behaviour.
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Fig. 3. Geometric locus for the Park’s Currents Vector for a motor with coils in shortcut.

Fig. 4. Harmonic analysis of the Park’s Vector module.
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be defined as [12]:

SSF ¼
I2NF

Icc

100: (9)

It is important to take into account that this severity factor varies with motor load, decreasing
as the motor approximates to its nominal load.
3. Towards an integrated fault diagnostic system

One aim of the present work was to combine the previous techniques and, in some way, to take
the better of them in a single, integrated diagnostic system.
From the stator spectral analysis (MCSA) it is possible to detect rotor as well as stator winding

faults, as presented in [20]. However, in the last case, the frequency characterising the fault must
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be computed considering the motor poles number, the slip, and the winding features. Also,
another handicap of this approach is that it is not possible to relate the fault severity with the
amplitude of these frequencies characterising the fault. In contrast, in EPVA the frequency to
discriminate a fault is always fixed and twice the supply frequency. Also EPVA only uses the
current fundamental component to draw the Park’s geometric locus. It is then possible to filter
any higher frequency making the procedure more robust in front of noise and perturbations. This
is the reason for selecting this last approach for fault detection and diagnosis in the stator.
To obtain a useful diagnosis for the rotor of the induction motor, some authors describe the

viability of detecting broken bars by means of the PVC [21]. It is not clear yet that one method is
better than the other for this case. However, as the MCSA has been used for so long, giving
enough proofs of utility at industrial environments [20], it is the approach selected in this work for
detecting and diagnosing rotor electrical faults.
In a normal running, the CMS set the state of the rotor and then the state of the stator winding.

It is necessary to determine the frequencies at which harmonic components will appear, because a
torque that oscillates may be confused with a fault mode [22]. In order to achieve this, a motor slip
is estimated from the no-load current, assuming it is in quadrature with the load component. With
both currents a phasorial diagram may be built (as shown in Fig. 5). From the measured stator
current (IS) in Fig. 5, the load component is computed for the present running state. This value is
compared to the load component of the nominal current to obtain a motor load index (MLI).
Then from MLI and the nominal speed, the motor slip is estimated (SE), according to the scheme
of Fig. 6. From SE and Eq. (3), frequencies are computed and the fault components may be
searched around them, as it is shown in Fig. 7. In order to avoid detecting peaks due to
perturbations, components must be symmetrically placed from the fundamental frequency, and
with similar modules.
Once these preliminary computations are done, a severity factor for the rotor (SRF) is computed

from expression (4). Then to obtain a final diagnosis, the CMS resorts to some expertise coded in
a production system format, that is, a rule base. As it may be seen, the diagnostic system is
Fig. 5. Load percentage estimation.
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Fig. 6. Slip’s estimation.

∆

Fig. 7. Identification of the components of harmonic currents.
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symptom driven and uses abduction to give an outcome [23]. In consequence, the working
hypothesis for a successful diagnosis, is to consider a closed cause-symptoms universe, with every
fault mode known beforehand. This strong assumption may be easily surpassed taking into
account the unknown fault as a possible fault mode. Faults are then classified into ‘‘light’’,
‘‘moderate’’ and ‘‘strong’’. It was observed for the SSF that normal induction motors have a value
within 3%. Naturally, as the fault severity increases, the factor must also increase. Effectively, the
fault discrimination in light, moderate and severe, was done based on the short circuit turn
percentage in one phase. In order to be considered as a light fault, it shall allow the motor to keep
on running without the need of an immediate stop. A moderate fault is the one producing
overloads in the remaining phases, such that they push the motor to run in a risky mode. A severe
fault, also produces current overload in the other phases, but in such a level that it causes risky
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mechanical vibrations. The thresholds separating one kind of fault from another were determined
from experimental observations.
In a normal running, the developed CMS may also give some warnings to improve the

diagnosis, such as a repetition of the test with a higher/lower load level. As an example, one of
these rules is presented next:

if SSFX6:5% AND SSFo8% AND Load FactorX0:5

then

Fault : one coil in short circuit ðModerateÞ

Warning : repeat diagnostic procedure with half the load for a better diagnosis:

As regards the stator faults, the CMS computes the geometric locus of the PCV. Then its radius
is decomposed in a Fourier series and a measure is done over the component with twice the supply
frequency, as explained in Section 2.2. The severity factor (SSF) is obtained from Eq. (9). Again,
the knowledge base classifies the fault and may give hints to improve results.
4. Experimental results

4.1. The experimental prototype

The CMS proposed in this work consists of a data acquisition system sampling the stator
currents from current transformers. The test bank is an induction motor dragging a direct current
generator with variable load. The acquisition and human-machine interface tasks were developed
with LabView. In Fig. 8 there is a schematic diagram, and in Fig. 9, a snapshot of the
experimental prototype is used in this research.
The motor under diagnosis for these tests consists of an induction motor of 6 poles and 50Hz

that allows changing rotors with a different number of broken bars and access to diverse points of
the stator winding.

4.2. Case study 1

Two broken bars in rotor and normal stator. The CMS estimates a 65% motor load, the motor
speed yielded 989 rpm, and the slip was of 0.011. As a consequence of this, the frequencies to look
for rotor faults were 48.9 and 51.1 rpm, using Eq. (3). Then the system searches for maximum in a
range near these frequencies, verifying they are approximately at the same distance from the
fundamental component. Components of �140.9 dB at 49.0Hz and of �119.4 dB at 50.9Hz, were
found. As the load factor is between 50 and 75 (%), and the amplitude of these components was in
the range from �100 to �150 dB, the rule base states that ‘‘There is a moderate fault in rotor’’ and
gave a warning ‘‘repeat diagnostic procedure with a higher load for a better diagnosis’’. Also the
CMS computed the stator current components among D and Q axes and obtained the frequency
spectrum of Park’s vector. It rises an average component of 5.93A and a component of 0.12A at
100Hz. With these data, the SSF using Eq. (9) results 2.02%. As this is smaller than the tolerance
threshold of 3%, the CMS gave an outcome of ‘‘No faults observed in the stator’’.
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Fig. 9. A snapshot of the experimental prototype.
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Fig. 8. A diagram of the experimental prototype.
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4.3. Case study 2

Three broken bars in rotor and normal stator. The CMS acquisition performance may be seen
in Fig. 10. The load factor was estimated in 0.93% and the frequencies to look for faults were set
using Eq. (1). As the motor is near its nominal charge the outcome for this case was ‘‘There is a
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Fig. 10. Results from CMS for case study 2.

Fig. 11. Results from CMS for case study 3.
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strong fault in rotor’’. In Fig. 10 harmonic components due to faults were highlighted using a
logarithmic scale. The CMS also states that ‘‘No faults observed in the stator’’. In effect, for the
stator, the SSF is less than 3%, which is considered as normal.

4.4. Case study 3

Normal rotor and short circuit in 12% of stator coils in one phase. The CMS’s human–machine
interface, consisting of the Park’s Current Vector depicted and its decomposition in Fourier’s
series with diagnostic information, is shown in Fig. 11. The SSF was 3.2% with the induction
motor running without load and the knowledge base inference was ‘‘There is a light fault in

stator’’. The CMS also reported ‘‘No faults observed in the rotor’’. In this last case, the SSR could
not be computed because the amplitude of stator current sidebands are small enough to be
confused with the ripple in the acquired signal.
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Laboratory tests of CMS with the prototype of Fig. 10

Number of cases Correct diagnosis Incorrect diagnosis Unknown diagnosis

25 21 3 1
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4.5. General comments

It is important to take into account that the computed fault indexes may have a value different
to zero even with new and without fault motors, as explained in Section 3. This is because the
motor may have little abnormalities in construction (obviously depending on its quality control),
and also because of unbalanced supply network, internal errors in sensors, quantification error,
and others. Then, in order to avoid false positives when diagnosing, a special attention must be
given to detect the threshold determination. The performance of the whole system will depend on
threshold selection and tuning.
Beyond the presented case studies, several laboratory tests were done over the CMS with this

experimental prototype, and obtained results are shown in Table 1. These tests were done with
different kind of faults, different degrees of severity and with the motor in different operating
points.
Another important hint to remark, from these great deal of laboratory tests, is that while the

SSF factor reflects the supply network unbalances, the SRF factor, does not.
5. Conclusions

Based on several techniques for fault detection and diagnosis of induction machines proposed
in the literature, the ones considered most promising were selected. The selection criteria were:
non-invasive technique, minimum number of measured variables, discrimination power, and prior
motor information to yield a diagnosis.
The obtained CMS gives general conclusions about the motor state, in a user-friendly interface.

It was easily developed in Lab with commercial products. The added feature of a knowledge base
confers the possibility of considering sensors fault or even unbalances in the supply network, as
well as a qualitative classification of faults in light, moderate and strong. In cases of insufficient
motor load, the system is able to recommend a warning for a better measure.
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