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1 Introduction

AdS/CFT [1] is mostly developed in Euclidean time [2, 3]. Conceptually, there is no

fundamental principle forcing an Euclidean formulation of the duality. However, a direct

approach to real time holography give raise to subtleties [4]. In particular, real time

evolution demands initial and final conditions which are not immediate to characterize

from both sides of the duality, in conflict with a strict holographic viewpoint.

The Skenderis and van Rees (SvR) prescription [5, 6] provides a completely holographic

real time extension of the GKPW standard prescription [2, 3]. It essentially maps the

initial/final state information, through auxiliary Euclidean regions, to boundary data in

the CFT. The general set-up of the SvR prescription thus deals with manifolds of mixed

signature, the philosophy being to require only holographic/boundary data.

In the SvR framework, sources on the Lorentzian asymptotic boundary are thought of

as devices to obtain n-point correlation functions. On the other hand, Euclidean sources
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play a very different role and prepare the state of the system at a given time. The foun-

dational works [5, 6], for example, showed that turned off Euclidean sources prepare the

vacuum state. Turned on sources, in turn, allow to prepare (holographic) excited states of

the CFT [7], see also [8] for related work.

In [7] we began the study of general non-trivial sources in manifolds with mixed signa-

ture complementing the bulk treatment with the BDHM dictionary [9]. With this machin-

ery we were able to show that, in the large N approximation, the excited states obtained

by turning on Euclidean sources are coherent states. Interacting fields in the bulk lead to

states of a modified nature, which we analyzed in [10]. A more systematic understanding

of these excitations is under development. These holographic excited states have been of

interest in recent literature [11]–[16].

In a recent work [17], we presented a novel geometry dual to a Schwinger-Keldysh

(SK) contour [18, 19] describing real time evolution of a finite temperature CFT in which

standard Thermo Field Dynamics (TFD) [20] computations can be carried holographically.

We studied the geometry, its two-point functions and its role in the context of the Hawking-

Page (HP) transition. For comparison, in this same work we studied the real time extension

of Thermal-AdS. The main objective of the present work is to study holographic excited

states on these finite temperature geometries.

We will provide a review of the formalism developed in [7] and derive its extension to

the finite temperature set-up. The most relevant result of [7] that we will exploit in the

present paper is the In-Out formulation, that allowed to split and interpret the Euclidean

and Lorentzian path integral pieces as initial/final states and real time evolution of the

system respectively. This splitting permitted us to study of the excited states as objects

(kets) independently of the precise SK path it is glued to, e.g. a semi-infinite Euclidean

path integral with non-zero sources corresponded to a precise holographic state, coherent

in the large-N limit. In this work we pursue an analogous objective for the geometry we

built in [17]. Its TFD interpretation will provide the required In-Out structure. Previous

thermal geometries [6, 22, 23] were not suitable for this interpretation.

We will compute inner products and matrix elements of CFT local operators for holo-

graphic excited states, the latter directly related to linear response quantities in standard

TFD formalism. The inner products, which require collapsing the real time segments, can

be understood as a reinterpretation of standard Euclidean result with non-zero sources.

The kernels in these objects, due to the coherent nature of the excited states, define Kähler

potential in the space of states which may be of interest for the developments in [24]. The

matrix elements on their own help to recognize the thermal coherent character of the states

and to determine its eigenvalues.

The path integral approach demands finding a general solution to the equations of

motion with non-trivial Euclidean and Lorentzian sources turned on. We will build it in

detail, checking that CFT information is enough to give a unique analytic solution inside

the bulk. This result is non-trivial once we notice that the Lorentzian Rindler-like patches,

dual to real time evolutions, end up being glued analytically through an Einstein-Rosen

(ER) wormhole. We will show that this property relies on the Euclidean sections of the

SK path having identical extensions.
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We will also work with the BDHM formalism at finite temperature, this is the natural

framework both to demonstrate the coherent nature and to compute the eigenvalues of the

holographic excited states. The bulk field will be quantized on a patch covering only the

exterior of a maximally extended AdS black hole (AdSBH) and Unruh-like global modes

over the wormhole will be obtained by demanding analyticity on the radial ER coordinate.

In the end, the excitations over the TFD vacuum state turn out to be thermal coherent

states [25].

The paper is organized as follows. In section 2 we review the SvR prescription in a

general path integral formulation and the rules to construct a TFD double. Specifically,

section 2.2 contains new results: excited states are constructed in terms of evolution op-

erators on the Euclidean pieces of a symmetric closed SK contour, whereas the evolution

operators that arise from the two real segments in the complex t-plane are combined and

identified with that of the TFD double, allowing to interpret the field theory SK path

integral as In-Out scattering process at finite temperature.1 In section 3 excited states are

studied from the path integral SvR approach in the semi-classical limit. We pay particular

attention to the construction of the bulk field solution with general sources and study its

analytical properties. We then compute inner products between our states and matrix

elements of boundary local operators. This will make manifest the fact that initial/final

excitations are not defined in a single Hilbert space but rather in a doubled space. The

details of the computations for the low temperature regime, i.e. Thermal AdS, are rele-

gated to appendix A. In section 4 we complement the study of the states incorporating the

BDHM viewpoint into the analysis. This allows to precisely identify them as coherent in

terms of the Bogoliubov rotated operators, predicting also its eigenvalues. Finally, section 5

summarizes the results and discusses possible future applications.

2 The SvR approach, excited states, and In-Out formalism

In this section we define holographic excited states at finite temperature and focus on its

field theory description. We start by reviewing the SvR construction [5] and its extension,

developed in [7], to consider excited states in open complex contours. The open path

scenario motivates a splitting of the standard GKPW formula into a piecewise holographic

prescription. We then clarify some aspects of our results concerning the definition of the

excited states. Using TFD language, we then reinterpret closed Schwinger-Keldysh paths

as finite temperature scattering processes and characterize the structure of the holographic

excited states using the TFD formalism. Finally, we write a piecewise holographic map

which links Euclidean sections to initial/final excited states and Lorentzian ones to (boost-

like) time evolution in the black hole (BH) geometry.

2.1 Brief review of the In-Out formalism: open paths

The SvR holographic prescription can be summarized in the following formula

ZCFT [φ(C)] = Zgrav [Φ|∂ = φ (C)] (2.1)

1To avoid confusion T will always refer to time. Temperature will solely be denoted by β.
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Figure 1. (a) In-Out SK path representing a scattering experiment. The (horizontal) Lorentzian

piece describes the system evolution while the (vertical) Euclidean I/F pieces, with blue crosses

denoting local operator insertions, prepare excited initial and final states at times TI/F . (b) The

semi-classical bulk dual description of the same problem fills the time contour with Euclidean and

Lorentzian AdS manifolds. Sources on the Euclidean segments generate holographic excited states.

where the l.h.s. is the generating function for correlation functions of CFT operators O with

the sources φ(C) having support on a specific continuous path C in the complex t-plane.

The r.h.s. is the partition function for the bulk field Φ, dual to O, on an aAdS spacetime

with asymptotic boundary conditions φ(C). This general path integral expression applies

to all contours C, concomitantly the dual spacetimes combine both signatures [5, 6], and

in particular reduces to the purely Euclidean set up [2, 3] as the real-time intervals are

removed, or Wick-rotated.

In the so-called In-Out formalism, investigated in [5, 6], one considers open contours,

let us refer to them as CO. The curve CO ≡ {t− iτ ∈ C} = CI ∪CL∪CF in the time complex

plane is divided in three pieces as depicted in figure 1(a), and the path ordering P follows

the arrowed lines in each subset. Then, the prescription above takes the explicit form

〈0|U |0〉 =

∫
Φ|∂=φ(CO)

[DΦ] eiS [Φ] , (2.2)

where U is the evolution operator given by the CFT Hamiltonian deformed with a single-

trace operator O ≡ O(x), multiplied by an arbitrary time dependent source2 φ(x, θ):

U ≡ P e−i
∫
CO

dθ (H+O φ(θ))
(2.3)

The state |0〉 is the CFT vacuum expressed in the Schrödinger picture and the curve CO is

parameterized so that dθ = −idτ on CI,F , and dθ = dt on CL.

2To simplify notation, the x-integration is left implicit.
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In its original form, the above proposal was studied in the semi-classical limit of the

gravitational side, which corresponds to the large N limit in the standard AdS/CFT ex-

ample [5]:

ZCFT[φ(CO)] = 〈0| P e−i
∫
L dt (H+O φ(t)) |0〉 ≈ e−iS0[φ(CO)] (2.4)

with the boundary conditions Φ|CI,F ≡ 0, although, it was also claimed that by imposing

non vanishing asymptotic boundary conditions in the Euclidean regions φI,F = Φ|CI,F 6= 0,

this formula should generalize to account for excited in/out states. This statement was

explicitly verified in [7], splitting (2.3) as U = UF UL UI one gets an explicit formula for

the holographic excitations

|Ψφ〉 = Uφ|0〉 = P e−
∫
τ<0 dτ (H+O φ(τ))|0〉 (2.5)

which become parametrized by the arbitrary source φ(x, τ) with compact support on the

interval τ ∈ (−∞, 0) [7]. In the interaction picture this state can be written as

|Ψφ〉 = P e−
∫
τ<0 dτ O(x,τ)φ(x,τ)|0〉 (2.6)

where O(x, τ) ≡ eτHO(x)e−τH , and |0〉I = e−τH |0〉 = |0〉. The corresponding duals

(“bra”) of these kets, are built by taking the Hermitian conjugate of the Euclidean evolution

operator: Uφ → U †φ ≡ Uφ∗ in (2.5). This operation defines the source φ∗ ≡ φ(x,−τ) , τ ∈
(−∞, 0) on the interval τ ∈ (0,∞), see [7, 26]. Thus, in the interaction picture reads

〈Ψφ| = 〈0| P e−
∫
τ>0 dτ O

†(x,τ)φ∗(x,τ) . (2.7)

It has been stressed that states of this form are holographic in the sense that correspond

to well defined geometric duals [27–30].

From the bulk perspective, one can consider a co-dimension one, spacelike hypersurface

Σ in the bulk, whose boundary intersects the contour CO at the point τ = 0 (∂Σ = Sd). An

arbitrary initial data φΣ := {φ(x) , x ∈ Σ} , representing the eigenvalue of the quantized

bulk local field operator Φ̂(x), can be inserted in both sides of the path integral (2.2)

at τ = 0, and then summing over, one obtains a piece-wise version of this prescription,

see [7] for more details. The state (2.5) projected on this basis provides the gravity wave

functional on the right hand side [5–7],

〈φΣ|Uφ|0〉 ≡ 〈φΣ|Ψφ〉 = Ψφ(φΣ) =

∫
[DΦ](φΣ, φ) e

−SE [Φ] , (2.8)

which, by virtue of the asymptotic boundary condition (source) φ 6= 0, generalizes the

Hartle-Hawking quantum gravity wave functionals, to excited states [7, 31]. Recall that this

path integral implicitly includes the (formal) sum over the gravitational degrees of freedoms.

One of the most interesting features of (2.6) is that, by canonically quantizing a (nearly)

free non-back reacting field Φ in the bulk, these states become coherent in the large N

Hilbert space [7]

|Ψφ〉 ∝ e
∫
dk λka

†
k |0〉 . (2.9)

Here ak (a†k ) are the annihilation (creation) operators associated to the canonically quan-

tized bulk field Φ̂ and λk are eigenvalues of ak, given by the Laplace transform of the
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Figure 2. (a) Closed Schwinger-Keldysh path in the complex t-plane. The horizontal lines repre-

sent real time evolution. The vertical lines give imaginary time evolution, and the regions I and F

have identical lengths equal to β/2. The insertion of sources in the vertical lines generate excitations

over the (vacuum) thermal state. (b) Dual bulk geometry filling the path in figure (a): the semi-

circular pieces represent the Euclidean sections. The horizontal plane depicts the (static) AdSBH

exterior represented as triangular wedges L and R. The angular coordinate has been suppressed.

Euclidean sources. This result is obtained by using the so-called BDHM prescription that

relates CFT local operators with quantized bulk field operators, i.e, the operators O of (2.6)

are linearly expanded in terms of ak , a
†
k, see [7, 9, 32].

Below, by working with the TFD formalism, we will see how the In-Out formalism can

be extended to the case of closed paths

2.2 Closed paths: the Schwinger-Keldysh contour and TFD

Let us now apply the construction discussed above to a CFT defined on a closed time

contour C in the complex plane. The symmetric Schwinger-Keldysh path involving two

imaginary-time intervals (of equal length β/2) [18, 19, 33], shown in figure 2(a), was inves-

tigated in [17] in the holographic context.

For a closed path, the l.h.s. of (2.1) is expressed as follows

ZCFT = Tr U U ≡ P e−i
∫
C dθ (H+O φ(θ)) (2.10)

The evolution operator in this case factorizes as U = URUFULUI , where UL/R are ordinary

real time evolution operators with the CFT Hamiltonian H deformed by external (local)

sources φ(x, t). The operators UI,F on both imaginary time intervals, univocally describe

the initial/final excited states in terms of the local sources φ(x, τ) [17]:

Uφ ≡ P e−
∫
dτ (H+O φ(τ)) . (2.11)
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where the Euclidean time τ runs on the intervals (−β/2, 0) and (0, β/2) on I and F respec-

tively. In fact, in the TFD context these operators are equivalent to pure states, rearranged

as kets in the duplicated states space [17].

Let us consider a conformal field theory, whose states belong to the Hilbert space H.

In the TFD formalism, one constructs a second copy of the system, namely H̃, so that the

total new system consist of the original CFT and its TFD copy, living on disconnected

asymptotic boundaries of the gravity dual, with H ⊗ H̃ total states space [20, 21]. Thus,

for any given operator A, acting on H, one builds the corresponding operator Ã on H̃ using

the so-called “tilde” conjugating map [20, 25],

[A, B̃] = 0 (AB)̃ = ÃB̃ (c1A+ c2B)̃ = c∗1Ã+ c∗2B̃ (A†)̃ = Ã† . (2.12)

Alternatively, one can denote the extended operators as AL and AR respectively:

A⊗ 1 =: AL , (̃A⊗ 1) = 1⊗ Ã =: AR , (2.13)

The connection between the operators in (2.11) and a pure state |Ψφ〉〉 in the TFD

framework, arises from the identification of the Uφ matrix elements in a single Hilbert

space, with the components of the state in the doubled Hilbert space [17]

Ψφ(n, m̃) = (〈n| ⊗ 〈m̃|) |Ψφ〉〉 ≡ 〈n|Uφ|m〉 (2.14)

where |n〉, |m̃〉 are orthonormal basis of H and H̃ respectively. This expression is schemat-

ically represented in figure 3: Uφ is depicted on the left as an evolution operator on a

single Hilbert space, the corresponding TFD-ket |Ψφ〉〉 is illustrated on the right with the

two cylinder’s ends now representing the d.o.f. of the TFD double intersected at some

spacelike surface at a fixed time t.

The corresponding bra state is defined naturally in terms of the adjoint of the opera-

tor Uφ

Ψ∗φ(n, m̃) = Ψφ∗(n, m̃) ≡ 〈〈Ψφ| (|n〉 ⊗ |m̃〉) = 〈m|(Uφ)†|n〉 = 〈m|(Uφ∗)|n〉 , (2.15)

where: φ∗(τ) ≡ φ(−τ) , τ ∈ (−β/2 , 0).

The explicit solution to (2.14) is

|Ψφ〉〉 = (Uφ ⊗ I)|1〉〉 = Uφ |1〉〉 , (2.16)

where

|1〉〉 ≡
∑
n

|n〉 ⊗ |ñ〉 . (2.17)

To show that (2.16) satisfies (2.14) we partially project using 〈m̃|(Uφ⊗ I)|1〉〉 = Uφ〈m̃|1〉〉 =

Uφ|m〉. In the absence of sources, the state (2.16) becomes the TFD vacuum |Ψ0〉〉. A

useful property of (2.17) that will be used in what follows is that

Tr A =
∑
n

〈n|A|n〉 〈ñ|ñ〉 = 〈〈1|A|1〉〉 , (2.18)

for any operator A acting only on H.

– 7 –
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Figure 3. (a) A piece of Euclidean evolution depicted as the matrix element 〈n|ρφ|m〉 of the

density matrix ρφ. (b) The same object can be also understood as the coefficient (〈n| ⊗ 〈m̃|) |Ψφ〉〉
of a ket |Ψφ〉〉 defined in the TFD Hilbert space H

⊗
H̃.

2.2.1 TFD evolution and transition amplitudes

In order to complete our claim that the TFD construction allows to interpret the SK path

integral as an In-Out process, we will show that the transition amplitude from the initial

state |ΨI〉〉 to the final state |ΨF 〉〉 is equivalently described by the Schwinger-Keldysh path

integral C, such as in the l.h.s. of eq. (2.1):

ZCFT(C) = 〈〈ΨF |U(∆T = TF − TI) |ΨI〉〉 . (2.19)

We prove this assuming that there is no source in the real time interval, such that the

evolution operator of the original system is given by U0(t) = e−itH . The l.h.s. of eq. (2.1)

is, by definition,

ZCFT(C) ≡ Tr U = Tr UF (β/2)U0(∆T )UI(β/2)U0(−∆T ) (2.20)

where the reversed time evolution U0(−∆T ) comes from the path ordering.

Therefore, introducing the TFD double and using (2.18) we substitute the trace by the

expectation value in the unit state, |n〉 stands for the energy basis. Notice that, according

to the second and third rule of eq. (2.12)

U0(−∆T )|1〉〉 =
∑
n

ei∆T En |n, ñ〉〉 = Ũ0(∆T )|1〉〉 , (2.21)

explicitly Ũ0(∆T ) = ei∆T H̃ . Using also the definition of the initial and final excited

states (2.16) for generic sources φI,F

UI,F (β/2)|1〉〉 ≡ |ΨI,F 〉〉 , (2.22)

– 8 –
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we can express finally (2.20) as

ZCFT(C) = Tr UF (β/2)U0(∆T )UI(β/2)U0(−∆T )

= 〈〈1|UF (β/2)U0(∆T )UI(β/2)U0(−∆T )|1〉〉
= 〈〈1|UF (β/2)U0(∆T ) Ũ0(∆T )UI(β/2)|1〉〉 (2.23)

= 〈〈ΨF |
(
U0(∆T )Ũ0(∆T )

)
|ΨI〉〉

= 〈〈ΨF |U0(∆T )|ΨI〉〉;

where in the second line, we have used the first rule (2.12): [Ũ0(∆T ) , UI(β/2)] = 0. In

the last line, the evolution operator of the TFD double (in absence of sources) has been

defined as

U0(t) ≡ e−i t H = e−i t (H⊗1−1⊗H) = U0(t)⊗ Ũ0(t) , (2.24)

where the second term of the extended Hamiltonian is nothing but the operator H̃. This

manifestly shows that the Schwinger-Keldysh CFT partition function expresses a transition

amplitude in TFD formalism.

A remarkable conclusion arises from this analysis: the operator (2.24) represents the

dual of the Lorentzian part of the geometry shown in figure 4(b). Notice finally that the

vacuum state |Ψ0〉〉 is preserved by the operator (2.24). In other words, the time evolution

generated by the Hamiltonian H is a symmetry for this state.3 Nevertheless, we will see later

that the gravity dual of the in/out states are coherent, and that an arbitrary coherent state

|Ψφ 〉〉 is not invariant but remarkably, the coherence property shall be preserved, namely:

|Ψφ ′ 〉〉 = U0(t) |Ψφ 〉〉 (2.25)

where φ ′ = φ ′(φ; t).

2.2.2 Piecewise holographic map

In this subsection we briefly discuss the structure described above from the bulk perspec-

tive, interpreting the different pieces of the geometry of figure 2(b) as states and propaga-

tors. A well known fact is that there are two dual geometries to figure 2(a), namely those

shown in 2(b) and 7(b), which dominate at high and low temperature respectively. We will

focus on the former and refer the reader to appendix A for the computations in the low

temperature regime.

Equation (2.19) from the bulk perspective takes the form

〈〈ΨF |U(∆T )|ΨI〉〉 ≡
∫
D[Φ]φ(C)e

−iS[Φ] . (2.26)

At high temperature, the two Lorentzian pieces of figure 2 belong to a single black hole,

so that we can split∫
D[Φ]φ(C)e

−iS[Φ] =
∑

φΣ(TI) ,φΣ(TF )

(∫
φΣ(TF )

D[Φ]φF e
−S[Φ]

)

×

(∫ φΣ(TF )

φΣ(TI)
D[Φ]φL,φRe

−iS[Φ]

)(∫ φΣ(TI)

D[Φ]φIe
−S[Φ]

)
(2.27)

3On the other hand, time evolution given by H = (H ⊗ 1 + 1⊗H) will not leave the TFD vaccum

invariant, see [34, 35].
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Figure 4. The complex-signature manifolds can be split and studied piecewise. Each Euclidean

piece corresponds to a state preparation, while the Lorentzian pieces describe the real-time evolution

of the system. (a) shows the map at zero temperature, while (b) represents the map at finite

temperature.

where the subindex in D[Φ]φ stand for asymptotic sources. We have also denoted by

φΣ(TI) := {Φ(x) , x ∈ Σ(TI)} the (complete) Φ̂ configuration basis for a smooth hy-

persurface Σ at TI intersecting the asymptotic boundary in two disconnected spheres

∂Σ = Sd−1 + Sd−1 [22]. The topology of Σ, homologous to the (Euclidean) asymptotic

boundary [24, 36], is that of the Einstein-Rosen bridge Σ = Sd−1 × I, with I the interval

for the holographic coordinate.4 From the CFT viewpoint there is a similar decomposition

〈〈ΨF |U(∆T ) |ΨI〉〉 =
∑

φΣ(TI),φΣ(TF )

〈〈ΨF |φΣ(TF )〉〉〈〈φΣ(TF )|U(∆t)|φΣ(TI)〉〉 〈〈φΣ(TI)|ΨI〉〉 .

(2.28)

Comparing the equations above it is natural to identify bulk path integrals with CFT

expressions as:

〈〈φΣ(TF )|U(∆T )|φΣ(TI)〉〉 ≡
∫ φΣ(TF )

φΣ(TI)
D[Φ]φL,φRe

−iS[Φ] , (2.29)

while the states are prepared by

〈〈φΣ(TI)|ΨI〉〉 ≡
∫ φΣ(TI)

D[Φ]φe
−S[Φ] 〈〈ΨF |φΣ(TF )〉〉 ≡

∫
φΣ(TF )

D[Φ]φe
−S[Φ] .

(2.30)

This map is illustrated in figures 4 in complete analogy with the zero-temperature sce-

nario [7].

4At low temperatures, there is no bulk connection between the boundaries and the path integral is

performed over two separate AdS geometries. In that set-up, see figure 7, the dofs naturally split.

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
8

In our previous work [17] we gave a dual description of the Lorentzian operator U(∆T )

in terms of bulk boost-like evolution of two exterior wedges of a single black hole. Regarding

the states, it is well known that in the absence of sources they correspond to TFD vacuum

states [22]. Turning on sources will create excitations over these backgrounds which we

will study holographically in the forthcoming sections.

We would like to conclude this section by writing the resulting holographic prescription

in the semi-classical limit of gravity. From (2.26) and (2.27), we have

〈〈ΨF |e
i
∫ TF
TI

(OLφL−ORφR)|ΨI〉〉 ≈ e−iS
0[φ(C)] (2.31)

where, for consistency with previous literature [5] we have expressed the evolution operator

U(∆T ) in the l.h.s. in the interaction picture. This is the relation we will work with in the

rest of the paper.

3 Excited states from the bulk perspective

The aim of this section is to compute matrix elements of local operators O, with mass

dimension ∆, between excited states obtained from non-zero sources in the Euclidean

sections, and inner products between excited states in the geometry shown in figure 2(b).

This is achieved in a standard semi-classical approach by solving the bulk EOMs for general

sources and evaluating the on-shell action. The results represents the CFT behavior for

high temperature. The low temperature CFT behavior is obtained from Thermal-AdS

geometry. We relegate its study to appendix A.

3.1 Bulk geometry and gluing conditions

The geometry is built from a static Lorentzian AdS-BH exterior and an Euclidean BH

manifold halved in two pieces, see figure 5. The two Euclidean pieces are glued along

constant t-hypersurfaces located at t = TI and t = TF shown as red lines in figure 5(a). We

work with a 3d bulk, nevertheless our ideas extend straightforwardly to higher dimensions.

The Lorentzian and Euclidean metrics are [37]

ds2 = −(r2 − 1)dt2 +
dr2

(r2 − 1)
+ r2dϕ2 ds2 = (r2 − 1)dτ2 +

dr2

(r2 − 1)
+ r2dϕ2 (3.1)

with τ ∼ τ + 2π. We have mapped the BH temperature parameter into the angular

periodicity ϕ ∼ ϕ+ 2πrS .

Without loss of generality we take the Lorentzian time extension t ∈ [TI , TF ] =

[−T/2, T/2] (cf. complex path in figure 2(a)). Notice that the path ordering and the

time coordinate run in opposite directions in the R-wedge, consistent with the TFD inter-

pretation [38]. For the Euclidean regions we choose τ ∈ [−π, 0] in region I and τ ∈ [0, π] in

region F.

The gluing conditions between the regions follow from a saddle point approximation

of eq. (2.1), which demand C1 continuity of the fields across the gluing regions. The

– 11 –
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T

T

I

F T

T

I

F

t

r r

t

R

L

(a)

F

I

τ

τ

r

r

(b)

Figure 5. (a) Static patches of the AdS-BH with constant t, r surfaces depicted. Time runs upward

in the left wedge (L) and downward in the right wedge (R). The angular variable ϕ in (3.1) has

been suppressed. (b) Euclidean AdS-BH: time becomes an angular variable τ ∼ τ + 2π. The two

pieces are identical and their temporal extension is β/2.

conditions are

ΦL = ΦI , −i∂tΦL = ∂τΦI , on t = TI , τ = 0

ΦL = ΦF , −i∂tΦL = ∂τΦF , on t = TF , τ = 0

ΦR = ΦI , −i∂tΦR = ∂τΦI , on t = TI , τ = −π
ΦR = ΦF , −i∂tΦR = ∂τΦF , on t = TF , τ = π . (3.2)

A detailed discussion on the gluing of the geometry pieces themselves was presented in [17].

3.2 Scalar field solution

We will now find the classical solution for a free real massive scalar field subject to arbitrary

boundary conditions on the asymptotic region of the manifold depicted in figure 2(b).

The resulting solution will show up a non-trivial feature: only the choice of identical

β/2 Euclidean pieces guarantee the analyticity of the solution through the wormhole in

the complex r-plane when general sources are turned on. This was stated in [17], we

demonstrate it below and further discuss its consequences in section 3.2.3.

The linearity of the problem allows to build the general solution out of a linear combi-

nations of solutions with non-zero sources on a single region. Thus, we begin by building

the solution for a Lorentzian source. We then build the solution with non-zero Euclidean

sources highlighting the relevant differences with the Lorentzian case. We will also show

that our solution can be easily related to the standard Unruh-like basis φ±± discussed

in [6, 39].
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3.2.1 Lorentzian sources

The action and equations of motion for the L-region are

S[Φ] = −1

2

∫
dtdrdϕ

√
|g|
(
∂µΦ∂µΦ +m2Φ2

)
,
(
�−m2

)
Φ = 0 , m2 = ∆(∆− 2)

(3.3)

in the metric (3.1). Expanding in plane waves as Φ = e−iωt+ilϕf(ω, l, r), where l ∈ Z/rS
one obtains

1

r
∂r
[
r(r2 − 1)∂r

]
f(ω, l, r) =

[
m2 +

l2

r2
− ω2

r2 − 1

]
f(ω, l, r) . (3.4)

The two linearly independent solutions are f(±ω, l, r), where

f(ω, l, r) ≡ Cωl∆ r−∆

(
1− 1

r2

)iω
2

2F1

(
∆

2
+

1

2
i(ω − l), ∆

2
+

1

2
i(ω + l); iω + 1; 1− 1

r2

)
,

Cωl∆ ≡
Γ
(

∆
2 + 1

2 i(ω − l)
)

Γ
(

∆
2 + 1

2 i(ω + l)
)

Γ(∆− 1)Γ(iω + 1)
. (3.5)

The normalization factor is set so that5

f(ω, l, r) ≈ r∆−2 + · · ·+ αωl∆r
−∆
[
ln(r2) + βωl∆ + . . .

]
, r →∞ (3.6)

αωl∆ ≡ (−1)∆−1

(
2−∆

2 + i
2(ω − l)

)
∆−1

(
2−∆

2 + i
2(ω + l)

)
∆−1

(∆− 2)!(∆− 1)!
, (3.7)

βωl∆ ≡ − ψ
(

∆

2
+
i

2
(ω − l)

)
− ψ

(
∆

2
+
i

2
(ω + l)

)
, (3.8)

where (x)y stands for Pochhammer symbols and ψ(x) for Digamma functions. The analytic

structure of the solutions show simple poles at ω = ±l + i(2n + ∆), with n ∈ N arising

from Cωl∆, see figure 6(a).

In the BH context one thus finds two linearly independent regular NN solutions:

e−iωt+ilϕf(±ω, l, r). They correspond to purely outgoing and infalling modes at the hori-

zon, respectively. The general solution on the L-region is then,

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω e−iωt+ilϕ φ̄L(ω, l)

[
L+
ωlf(ω, l, r) + L−ωlf(−ω, l, r)

]
, (3.9)

where ω ∈ R, the sum is implicit over l ∈ Z/rS , φ̄L(ω, l) is the Fourier transform of the

source φL(t, ϕ) and

L+
ωl + L−ωl = 1 . (3.10)

This last condition is required to meet the asymptotic boundary condition ΦL(r, t, ϕ) →
r∆−2φ(t, ϕ) + . . . as r → ∞ . Introducing L±ωl becomes handy for gluing the complete

solution. To gain some more physical intuition, we notice that the quotient L+
ωl/L

−
ωl gives

the relative weight of outgoing and infalling modes through the horizon in the NN solution.

5The ln(r2) term in (3.6) appears only for ∆ ∈ N and becomes relevant in KK compactifications. This

will not be relevant for our discussion. We refer the interested reader to [40] and appendices in [10].
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The N modes are built from the combination e−iωt+ilϕ [f(ω, l, r)− f(−ω, l, r)] as can

be seen from (3.6).6 One can then think of L+
ωl − L

−
ωl as defining the N modes content

of the solution on the L-region. The solutions for Φ on regions R-, I- and F-regions are

expanded in N modes as

ΦR(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω e−iωt+ilϕRωl [f(ω, l, r)− f(−ω, l, r)] , (3.11)

ΦI(r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ Iωl [f(ω, l, r)− f(−ω, l, r)] , (3.12)

ΦF (r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ Fωl [f(ω, l, r)− f(−ω, l, r)] . (3.13)

The ω-integrals in the last two expressions look divergent at its endpoints, but it turns out

that the final coefficients Iωl and Fωl keep them regular.

The gluing is now performed profiting from the analytic structure of (3.5) in the

complex ω-plane. As illustrated in figure 6(a) by Residues Theorem one has∫
dω e−iω∆tf(ω, l, r) = 0 , ∆t > 0 . (3.14)

Consider the gluing between regions L and F at t ∼ T/2: the source φL(t′, ϕ′) has support

to the past of the gluing surface thus making ∆t = t− t′ > 0 in (3.9). Inserting (3.10) and

using (3.14) one finds

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω e−iωt+ilϕ

(
−φ̄L(ω, l) L−ωl

)
[f(ω, l, r)−f(−ω, l, r)] , t ∼ T/2

(3.15)

with φ̄L the Fourier transform of the source. Analogously, for the gluing of L and I at

t ∼ −T/2 one finds

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dω e−iωt+ilϕ

(
φ̄L(ω, l) L+

ωl

)
[f(ω, l, r)−f(−ω, l, r)] , t ∼ −T/2

(3.16)

It is worth mentioning two important features: (i) (3.15) and (3.16) show that the field

consists solely of N-modes at the gluing surfaces, and (ii) the quotient L+
ωl/L

−
ωl determines

the causal properties of the solution, e.g. the case L+
ωl = 0 and L−ωl = 1 gives the retarded

solution discussed in [39, 41, 42].

Using (3.11)–(3.13), (3.15) and (3.16) the gluing conditions (3.2) give

−L−ωl φ̄L(ω, l) e−iωT/2 = Fωl , Fωl e
−πω = Rωl e

−iωT/2 ,

Rωle
iωT/2 = Iωl e

πω , Iωl = L+
ωle

iωT/2 φ̄L(ω, l) (3.17)

6See [49] for a discussion of normalizable modes in BTZ geometry.
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yielding via (3.10)

L+
ωl =

−1

e2πω − 1
, L−ωl =

e2πω

e2πω − 1
. (3.18)

This expressions were used in [17] to study correlators in the geometry. From the above

equations one can also extract the relations between the coefficients in the L and R regions,

Rωl = φ̄L(ω, l) L+
ωl e

ωπ = − φ̄L(ω, l) L−ωl e
−ωπ . (3.19)

which we will analyze more in depth after we build the solution with non-zero Eu-

clidean sources.

The study of excited states will require the expressions for the bulk field in the Eu-

clidean sections,

ΦI(r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ

(
−φ̄L(ω, l) e+iωT/2 1

e2πω − 1

)
× [f(ω, l, r)− f(−ω, l, r)] , τ ∈ (−π, 0)

ΦF (r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω e−ωτ+ilϕ

(
−φ̄L(ω, l) e−iωT/2

e2πω

e2πω − 1

)
× [f(ω, l, r)− f(−ω, l, r)] , τ ∈ (0, π)

As anticipated, the Boltzmann factors in the resulting coefficients adequately regulate the

ω integrals, thus validating our procedure.

3.2.2 Euclidean sources

In this section we consider a non-zero source on the asymptotic boundary of region F.

The bulk field consists of N-modes in the R, I and L regions. Then, in addition to (3.11)

and (3.13) we now have

ΦL(r, t, ϕ) =
1

4π2rS

∑
l

∫
dωe−iωt+ilϕLωl [f(ω, l, r)− f(−ω, l, r)] . (3.20)

The solution in region F is written as

ΦF (r, τ, ϕ) =
i

4π2rS

∑
l

∫
dω e−ωτ+ilϕφ̄F (−iω, l)

[
F+
ωlf(ω, l, r) + F−ωlf(−ω, l, r)

]
, (3.21)

with F+
ωl + F−ωl = 1. This ansatz appropriately meets the asymptotic boundary condition.

To see this, deform the ω-contour clockwise encircling some poles in the procedure. One is

left with

ΦF (r, τ, ϕ) =
1

4π2rS

∑
l

∫
dω eiωτ+ilϕφ̄F (−ω, l)

×
[
F+
−iωlf(−iω, l, r) + F−−iωlf(iω, l, r)

]
+ QN(r, τ, ϕ) , (3.22)

where QN collects the residues from the poles depicted in figure 6(b) and correspond to

quasi-normal modes [43]. These contributions decay asymptotically as r−∆, so the terms

in brackets guarantee the bc provided F+
−iωl + F−−iωl = 1.
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Figure 6. (a) Crosses show the location of the poles of f(ω, l, r) while circles those of f(−ω, l, r).
The blue line denotes the ω-integration contour in (3.9). (b) Location of the poles of f(±iω, l, r)
for the treatment of Euclidean sources. The contour runs along the real axis and the QN(r, τ, ϕ)

contribution in (3.22) arise from the encircled poles. Crosses denote poles of f(−iω, lr) while circles

denotes those of f(iω, lr). Rotating the contour in figure (b) to the imaginary axis counterclockwise

reduces (3.22) to (3.21), recovering figure (a).

The parametrization (3.21) can be easily glued to solutions (3.20) and (3.11). Pro-

ceeding as above, the complete gluing leads to

F+
ωl =

e2πω

e2πω − 1
, F−ωl =

−1

e2πω − 1
, eiωT/2Lωl = Iωl = i φ̄F (−iω, l) eiωT

e2πω − 1
(3.23)

and

Rωl = eωπLωl . (3.24)

Again, Boltzmann factors in the coefficients make the the ω-integral in (3.21) convergent.

Moreover, each mode in (3.21) is regular at the horizon.

The general solution with non-zero sources in all regions can be straightforwardly built

from the cases studied above by superposition. Before studying the on shell action, we make

some comments on the analytic properties of the solution.

3.2.3 Analyticity through the wormhole

So far we have built the solutions by gluing Rindler-like modes across spacelike regions of

alternating Euclidean and Lorentzian signatures, see (3.2). As an outcome, the procedure

has given a precise connection between the coefficients in the L- and R-regions, this is,

through the wormhole.

We would like to stress that the β/2 lengths of the Euclidean regions turn out to

relate the Lorentzian pieces coefficients L and R by e±ωπ factors, see (3.19) and (3.24).

These are precisely the standard relations that make the combination of L and R Rindler
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modes become Unruh-like, i.e. global analytic [38, 44, 50]. Had we chosen σ 6= β/2 this

would no longer hold. We follow the notation in [6, 39] where the Unruh modes were

denoted as φ±±. The first ± denote pure infalling/outgoing modes in the L quadrant

while the second ± refers to whether the mode is analytic in the lower/upper U -complex

plane. The ‘box’ character of AdS makes each of these four modes φ±± divergent at the

asymptotic boundary. Then, the N-modes in Lorentzian signature arise from adequate

linear combinations.7

From (3.24) we see that turning on sources on F awakens φ±,+ modes. It is important

to stress that the relation (3.24) follows solely from the gluing of the three sourceless pieces

I, L, R. Conversely, it is easy to see that I-sources turn on φ±,− modes. Crucially, the

resulting combination of (Lorentzian) Rindler modes awakened across the Einstein-Rosen

bridge become global N modes. Furthermore the combination is the one related with

positive energy Unruh-like particles. We thus recover the intuition that Euclidean sources

explore excited Hilbert space states and provide a concrete description of them. We will

deepen this analysis in sections to come. For completeness, from (3.19) we quote that

L-sources turn on φ+,+ and φ−,− modes while R-sources excite φ+,− and φ−,+. However,

these (NN) modes are not associated with particle excitations.

The bottom line is: equal β/2 Euclidean pieces imply that the Lorentzian regions of the

geometry should be understood as the L and R wedges of a single maximally extended BH.

Within this framework, the study of a finite temperature CFT requires only holographic

(boundary) data. The observation that the maximally extended BH is related to identical

β/2 Euclidean segments in the CFT computations was noticed in [39].

3.3 Results from bulk analysis

From the results in our previous sections one can obtain the full on-shell action

iS0 [φ] = − i
2

∫
∂

√
γ Φ nµ∂µΦ = − i

2
r∆

∫
∂
φ(C) [r∂rΦ]r→∞ . (3.25)

In the following we will present the results for the high and low temperature limit. The

computations for the Thermal geometry (low temperature) are straightforward and for

completeness we have relegated them to appendix A.

We start computing the inner product between the excited states. In the high temper-

ature regime taking ∆T → 0 in (2.19) gives a BTZ BH with non-zero Euclidean sources.

The inner product results

ln〈〈ΨF |ΨI〉〉
∣∣∣
BH
≡ lim

∆T→0
iS0 (3.26)

=

∫
∂
φE(τ ′, ϕ′)

∑
j∈Z

(∆− 1)2

2∆−1π
[cosh(∆ϕ+ 2πrSj)− cos(∆τ)]−∆ φE(τ, ϕ) ,

where φE(τ, ϕ) ≡ φI(τ, ϕ)Θ(−τ) + φF (τ, ϕ)Θ(τ), with Θ the step function. We have

incorporated the appropriate two point function normalization according to [46].

7As this work was near completion, we became aware of [45], which also stresses the analytical properties

of the field on the radial holographic coordinate.
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In the low temperature limit, the result is

ln〈〈ΨF |ΨI〉〉
∣∣∣
Th
≡ lim

∆T→0
iS0

=

∫
∂
φE(τ ′, ϕ′)

∑
j∈Z

(∆− 1)2

2∆−1π
[cosh(∆τ + βj)− cos(∆ϕ)]−∆ φE(τ, ϕ) .

(3.27)

As expected from [47], the kernels in (3.26) and (3.27) are connected via a double Wick

rotation. By extending this computation for a complex field ΦE and source φE we can

identify these kernels as the Kähler potentials in the space of states, as observed in [16, 24].

In this sense (3.26) and (3.27), as well as the ones in [7, 10], provide explicit non-trivial

examples. Notice also that the states |ΨI,F 〉〉 are not normalized nor orthogonal.

Taking single derivatives of (3.25) with respect to φL/R at high temperature, we get

〈〈ΨF |OL(t, ϕ)|ΨI〉〉
〈〈ΨF |ΨI〉〉

∣∣∣
BH

=
(∆− 1)

2π2irS

∑
l

∫
dω e−iωt+ilϕ

(
φ̄F (−iω, l)eiωT/2 + φ̄I(−iω, l)e−iωT/2

)
× αωl∆βωl∆ − α−ωl∆β−ωl∆

e2πω − 1
(3.28)

〈〈ΨF |OR(t, ϕ)|ΨI〉〉
〈〈ΨF |ΨI〉〉

∣∣∣
BH

=
(∆− 1)

2π2irS

∑
l

∫
dω e−iωt+ilϕ

(
eπωφ̄F (−iω, l)eiωT/2 + e−πωφ̄I(−iω, l)e−iωT/2

)
× αωl∆βωl∆ − α−ωl∆β−ωl∆

e2πω − 1
(3.29)

We would like to highlight some aspects of these results. The e±iωT/2 factors can

be understood as arising from the distance between the location of the sources in the

complex t-plane. Keep in mind that OL/R matrix elements are obtained by taking T →
0 limit. A second observation is that φI/F contribute with both positive and negative

frequencies, contrary to the zero temperature case [7]. This is an expected result related

to the entanglement between L and R dofs and will be thoroughly discussed in the next

section. Along these same lines, entanglement can readily be seen by noting that (3.28)

and (3.29) differ by e±πω = e±βω/2 factors.

In the low temperature regime the relevant geometry is depicted in figure 7. The

result is

δS0
Th

δφL

∣∣∣∣
φL=0

=
∆− 1

2π2

∑
nl

[∑
±
e∓iωnlt+ilϕ

(
φ̄F (∓iωnl, l)eiωnlT/2

+ φ̄I(∓iωnl, l)e−iωnlT/2
)] snl(r)

eβωnl − 1
(3.30)
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δS0
Th

δφR

∣∣∣∣
φR=0

=
∆− 1

2π2

∑
nl

[∑
±
e∓iωnlt+ilϕ

(
e∓ωnl(σ−β)φ̄F (∓iωnl, l)eiωnlT/2

+ e∓ωnlσφ̄I(∓iωnl, l)e−iωnlT/2
)] snl(r)

eβωnl − 1

(3.31)

where ωnl and snl, defined in appendix A, are the standard frequencies and normal modes

in global AdS geometry and

φ̄I(−iωnl, l) ≡
∫ 0

σ−β
dτdϕ eωnlτ−ilϕφI(τ, ϕ) , φ̄F (−iωnl, l) ≡

∫ σ

0
dτdϕ eωnlτ−ilϕφF (τ, ϕ) .

Notice that for general σ the l.h.s. of (3.30) and (3.31) do not refer to any bra/ket notation.

This interpretation only appears at σ = β/2, where time reflection symmetry between the

Euclidean pieces arises.

4 Canonical quantization of the bulk fields and BDHM dictionary

In this section we will study the excited states (2.16) from the BDHM perspective [9]. We

will work in the large N regime with free AdS fields in the probe limit. For completeness,

we will review some relevant considerations on field quantization in BH geometries. Via

the BDHM map, we will build the CFT OR,OL operators from quantized bulk fields.

The coherent nature of the excited states will be demonstrated upon confronting with the

outcome of the previous section. As a result, the excitations obtained by turning on sources

in the Euclidean sections correspond to thermal coherent states [25].

4.1 Canonical quantization of scalar fields in a BH geometry

Quantization of fields in a BH geometry gives rise to two sets of ladder operators. These

can be seen to arise from the possibility of independent excitations in the L and R patches

or, alternatively, from the two possible analytic extensions of the L-mode solutions to the

R-patch when solving the problem in Einstein-Rosen coordinates. As well known, the

corresponding vacuum states turn out to be non-equivalent. Here we follow the analytic

approach. The outcome makes contact with the TFD dual theory discussed in section 2.2.

We start quantizing the scalar field theory (3.3) on the BTZ metric in Einstein-Rosen

coordinates. Writing u2 = r2 − 1 [48], the metric (3.1) turns into

ds2 = −u2dt2 +
du2

u2 + 1
+ (u2 + 1)dϕ2 . (4.1)

The u ≷ 0 regions correspond to the L and R patches respectively, and the t-coordinate

coincides with that of the previous section. See figure 5(a) for a representation of the
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geometry.8 The KG field (3.3) on the ER geometry is expanded as

Φ̂(u, t, ϕ) =
∑
l

∫ ∞
0

dω d̂
(1)
ωl h

(1)
ωl (u, t, ϕ) + d̂

(2)
ωl h

(2)
ωl (u, t, ϕ) + h.c. . (4.2)

The positive energy modes h
(1,2)
ωl are defined from the L and R modes which have support

on their respective patches (aka Rindler-like modes). Explicitly, the L modes are defined as(
�−m2

)
gL;ωl = 0 ∂tgL;ωl = −iωgL;ωl

gL;ωl ≡ Nωl e−iωt+ilϕ [fωl(r)− f−ωl(r)] , ω > 0 (4.3)

whereas the R modes are given by

gR;ωl ≡ g∗L;ωl. (4.4)

The u-analytic h-modes are [49, 50]

h
(1)
ωl (u, t, ϕ) =

1√
2 sinh(πω)

{
eπω/2 gL;ωl on L

e−πω/2 g∗R;ωl on R

h
(2)
ωl (u, t, ϕ) =

1√
2 sinh(πω)

{
e−πω/2 g∗L;ωl on L

eπω/2 gR;ωl on R
(4.5)

c-numbers Nωl guarantee that g-modes are orthonormal on their respective Rindler-like

patches.9 The vacuum state defined as

d̂
(1)
ωl |Ψ0〉〉 = d̂

(2)
ωl |Ψ0〉〉 = 0 , (4.6)

corresponds to the so-called TFD vacuum state defined below (2.17).

The h-modes presented in this section are Unruh-like, we have built them from: ER

coordinates, which cover the exterior of the BH, and by demanding analyticity in the

radial coordinate across the wormhole. Our viewpoint aims at studying CFT information

attainable holographically from the BH exterior.

4.2 BDHM at finite temperature, TFD doubling and coherence

In this section we review the BDHM dictionary [9] at finite temperature. The standard pre-

scription defines quantum local CFT operators Ô(t, ϕ) from AdS quantized fields Φ̂(r, t, ϕ)

via the map

Ô(t, ϕ) ≡ 2(∆− d) lim
r→∞

r∆ Φ̂(r, t, ϕ) , (4.7)

8It is important to stress that t has a boost-like character across the ER bridge. This can be seen when

mapping the metric to Kruskal coordinates. Alternatively, one can resort to analyticity of the metric in the

complex u plane: for fixed ∆t > 0, proper time ∆t(u) =
∫
u dt > 0 at fixed u > 0 flips sign when moving

from L (u > 0) to R (u < 0).
9The scalar product is defined in standard fashion

〈φ1, φ2〉 = −i
∫

Σ

(φ1∂µφ
∗
2 − φ∗2∂µφ1)nµ

√
γdudϕ ,

with nµ the unit normal to the constant t-hypersurface Σ and γij its induced metric. A sign change in nµ

between L and R patches (u ≷ 0) arises from the boost character of t depicted in figure 5(a).
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where r →∞ defines the unique asymptotic boundary of the bulk theory at zero tempera-

ture. The coordinate dependent r∆ factor conspires to give a finite limit and the 2(∆− d)

factor is required to have a precise matching with the GKPW prescription results [7, 51]. At

finite temperature, in agreement with the TFD approach described in section 2.2, dof’s get

duplicated in the gravity theory, this manifests in two disconnected asymptotic boundaries.

Hence, from (4.2) we define

ÔL(t, ϕ) ≡ (2∆− d) lim
u→∞

Φ̂(u, t, ϕ)

=
∑
l

∫ ∞
0

dω d̂
(1)
ωl e

πω/2e−iωt+ilϕOωl + d̂
(2)
ωl e

−πω/2e+iωt−ilϕO∗ωl + h.c. , (4.8)

ÔR(t, ϕ) ≡ (2∆− d) lim
u→−∞

Φ̂(u, t, ϕ)

=
∑
l

∫ ∞
0

dω d̂
(1)
ωl e

−πω/2e−iωt+ilϕOωl + d̂
(2)
ωl e

πω/2e+iωt−ilϕO∗ωl + h.c. , (4.9)

where the c-numbers

Oωl ≡
(2∆− d)√
2 sinh(πω)

Nωl [αωlβωl − α−ωlβ−ωl] , (4.10)

are inherited from the modes normalization.

The excited state (2.16) in the Interaction Picture, built from (4.9) becomes10

|ΨI〉〉 ≡ P
{
e−

∫ 0
−π dτ ÔR(τ)φI(τ)

}
|Ψ0〉〉 ∝ exp

{∑
l

∫ ∞
0

dω λ
(1)
I;ωld̂

(1)†
ωl + λ

(2)
I;ωld̂

(2)†
ωl

}
|Ψ0〉〉 .

(4.11)

where

λ
(1)
I;ωl = −e−ωπ/2φ̄I(−iω, l) O∗ωl λ

(2)
I;ωl = −eωπ/2φ̄I(+iω, l) Oωl . (4.12)

In obtaining these expressions we exploited standard disentangling theorems [52]. Notice

the similarity of the r.h.s. of (4.11) with the zero temperature expression (2.9). Notice

that the operator multiplying |Ψ0〉〉 on the r.h.s. of (4.11) is nothing but the form of the

(sourced) evolution operator (2.11), represented in the Interaction Picture in the bulk field

theory, and by virtue of (4.6), this can then be rewritten as a unitary displacement operator

up to a constant factor.

Results (4.11) and (4.12), which are the main result of this work, demonstrate that

the states obtained by turning on sources in the Euclidean sections are thermal coher-

ent states. We conclude that the coherent/ semi-classical character of the states (2.16),

originally developed at zero temperature in [7, 10], remains valid at finite temperature, as

claimed in [17]. In order to put this result into the more familiar finite temperature lan-

guage [25], the corresponding (unnormalized) density matrix for the excited states (2.16)

using (2.11) is,

ρφ ≡ TrH̃ |Ψφ〉〉〈〈Ψφ| = Uφ U
†
φ

10As can be seen from (4.6), the actions of OL and OR on the TFD vacuum are related. As a consequence,

one can pick any of them to build (2.16) and the excitations over |Ψ0〉〉 are physically equivalent. This issue

will be further elucidated in the upcoming section.
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that is manifestly hermitian (see [17]). Thus, by interpreting this expression in the bulk

(free-field) theory, one can express it in the Interaction Picture as ρφ ∝ Uφ e
−βH U †φ, where

Uφ is a displacement operator, consistently with (4.11). This is the standard density matrix

of a thermal coherent state.

Direct computation using (4.8), (4.9) and (4.11) leads to

〈〈ΨF |ÔL(t, ϕ)|ΨI〉〉
〈〈ΨF |ΨI〉〉

= −
∑
l

∫ ∞
−∞

dω e−iωt+ilϕ
(
φ̄F (−iω, l) + φ̄I(−iω, l)

)
|Oωl|2 (4.13)

〈〈ΨF |ÔR(t, ϕ)|ΨI〉〉
〈〈ΨF |ΨI〉〉

= −
∑
l

∫ ∞
−∞

dω e−iωt+ilϕ
(
eπωφ̄F (−iω, l) + e−πωφ̄I(−iω, l)

)
|Oωl|2

(4.14)

where one can immediately recognize the (3.28) and (3.29) structure among the sources.

Further comparison of these expressions provides an analytic expression for |Oωl|2, de-

termining in turn Nωl, which to the author’s knowledge is not present in the literature.

See [49] for an integral expression of Nωl where the need for a careful computation in-

volving regulators is emphasized. One can check that in the zero temperature limit, as

in the Thermal-AdS regime presented here, where the normalization factors are known,

the corresponding expressions exactly match [7]. Similar observations were made recently

in [53].11 The precise expression for the eigenvalues (4.12) is obtained by comparing the

path integral and BDHM approaches.

4.3 On the Unruh’s trick in the TFD formulation

This section is devoted to show how Unruh’s trick [44, 54], manifestly realized in our

geometry through identical Euclidean sections, plays a crucial role in the field quantization

by defining the vacuum state through a quantum constraint and, moreover, how it naturally

generalizes for excited states. This could also be seen as an alternative formulation of the

Unruh-Hawking effect.

First, recall that in the TFD context Φ̂R and Φ̂L, the quantized counterparts of (3.11)

and (3.20), map into each other by the tilde conjugation rules (2.12), and although they

are independent dof’s, their action on the TFD vacuum state is not. In fact, the TFD

vacuum is completely determined by the constraint,[
Φ̂L(|u|, t = TI , ϕ)− Φ̂R(−|u|, t = TI − iπ, ϕ)

]
|Ψ0〉〉 = 0 , ∀u, ϕ , (4.15)

complemented with a similar equation for the canonically conjugated momentum fields.

The physical meaning of this is that the vacuum state, whose wave functional is described

by the Euclidean geometry of figure 5(b), is such that acting with an L-operator on it at

TI , is the same as acting with the R-operator at TI but evolved −iπ in imaginary time.

Inserting (4.2) and (4.5) above and using orthonormality of the modes one gets

d̂
(1)
ωl |Ψ0〉〉 ∝

(
L̂ωl − e−ωβ/2R̂†ωl

)
|Ψ0〉〉 = 0 d̂

(2)
ωl |Ψ0〉〉 ∝

(
L̂†ωl − e

+ωβ/2R̂ωl

)
|Ψ0〉〉 = 0 ,

(4.16)

11We thank Raúl Arias for pointing out this reference to us.

– 22 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
8

where L̂†ωl and R̂†ωl create excitations with support on L and R wedges respectively, and

d̂
(1,2)
ωl are defined so that they anihilate the state |Ψ0〉〉. These relations are known as

thermal state conditions and define the Bogoliubov transformation between both sets of

ladder operators.12 Notice that in (4.16) we have reintroduced the explicit dependence on

the temperature β.

An important consequence of this formulation is that the modes associated to operators

d̂
(1,2)
ωl are precisely the linear combinations (4.5) of the L,R solutions, which are analytic

through the throat u = 0. This captures the features discussed in section 3.2.3. It is also

worth noticing that this is consistent with the fact that the points on the throat of the

wormhole, i.e. u = 0, are fixed points of the evolution operator U0(τ) of the bulk quantum

theory, whose Hamiltonian is the boost generator, and its analytic extension to imaginary

times evolves the hipersurfaces depicted as red lines in figure 5(b). In this sense, |Ψ0〉〉 is

the thermal KMS state with respect to the generator of the Lorentz boosts [57, 58].

A novel remarkable fact is that by performing an imaginary −iπ time translation with

the sourced evolution operator (2.11) in place of U0, one gets

Φ̂R(TI − iπ) ≡ Uφ(π) Φ̂R(TI) U
†
φ(π) .

Recall that in this formulation all the fields are represented in the Interaction Picture. This

can be used to define an (initial) excited state since the constraint (4.15) now becomes[
Φ̂L(|u|, t = TI , ϕ) − Uφ(π) Φ̂R(−|u|, t = TI , ϕ)U †φ(π)

]
|Ψφ〉〉 = 0 , ∀u, ϕ ,

(4.17)

complemented also with the corresponding equation for the canonically conjugated mo-

mentum. The frequency decomposition of these equations now yields(
d̂

(1,2)
ω,l − λ

(1,2)
ω,l

)
|Ψφ 〉〉 = 0 (4.18)

where we have used that the (adequately normalized) operator Uφ acts on ladder operators

of the bulk theory as a displacement, i.e.

Uφ(π) d̂
(1,2)
ωl U †φ(π) = d̂

(1,2)
ωl + λ

(1,2)
ωl

according to the arguments below (4.11).

Thus, the solution of (4.18) is clearly the state (4.11). This presents an alternative

perspective on our prescription of section 2.2 for the excited initial/final states in the

boundary field theory.

5 Discussion and conclusions

In a previous article [17], we presented the gravity dual of a finite temperature real time

CFT, casted in TFD formulation, and computed real time two-point functions. The

Schwinger-Keldysh path on which the CFT was defined has two possible dual geome-

tries: a real time extension of Thermal-AdS and a novel geometry consisting of glued

12Similar formulations in the string context can be found in refs. [55, 56].
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Euclidean and Lorentzian AdS-BH pieces, see figure 2(b), which dominate below and over

the critical Hawking-Page temperature respectively. Both geometries contain two equal

length Euclidean pieces that within the TFD formalism are naturally associated with ini-

tial and final states of the system. The geometries also contain two causally disconnected

Lorentzian regions, L and R, which correspond to the two TFD copies of the system.

In this work, following ideas in [7, 17], we have studied holographic excited states by

turning on asymptotic sources on the Euclidean regions. The resulting states were shown

to be coherent states w.r.t. the TFD vacuum, i.e. the excitations are not described in terms

of either the L or R dofs but rather Bogoliubov transformed counterparts. Such excitations

are known as thermal coherent states. A precise expression for the eigenvalues was also

given in terms of the Euclidean sources profile. These results extend the work in [7] to

the case of finite temperature systems. We stress that our main objective here was to

characterize these holographic excited states and not the mixed signature manifold, which

was merely a device to study their properties. For example, we can now consider them as

initial states to study evolution of information in geometries that consider the BH interior

as in the toy model considered in [22].

Our study revealed itself to be particularly interesting in the high temperature limit

where bulk real time regions L and R get connected though an ER wormhole. For this

geometry, we found that the analyticity of the field through the spacelike gluing surfaces,

imposed by construction, extends to the radial coordinate connecting the L and R regions

across the wormhole. As a consequence, the field solution to the equations of motion on the

mixed signature geometry encapsulates Bogoliubov coefficients between the L and R degrees

of freedom. In this sense, our bulk can be interpreted as the geometrical embodiment of the

standard Unruh trick. For the BDHM approach, Unruh-like modes were built solely from

the exterior of the BH and analyticity on the radial ER coordinate across the wormhole.

This is an interesting result for the study of CFT information accessible from the outside

of event horizons.

Two objects were of interest in characterizing our states: inner products and matrix

elements of local single trace operators. The latter, computed with two equivalent prescrip-

tions, was key to determine the eigenvalues of the coherent states. From a path integral

formulation a complete field solution with sources turned on was built, which required the

study of N and NN modes in half Euclidean BTZ geometries. BDHM approach requires

positive energy eigenstates normalization factors, for which we didn’t find an analytic ex-

pression in the literature. Thus, by comparing the path integral and BDHM results we

were able to give a closed expression for the eigenvalues and the normalization factors.

The inner product, on the other hand, can be thought as a reinterpretation of the free

energy of the geometry configuration with sources turned on. On that regard, one expects

on general grounds that our results should be valid away from the Hawking-Page critical

temperature. The kernels on the inner product of these holographic excited states for

complex bulk fields has been recently recognized in [16, 24] as the Kähler potential in the

space of states. Though presented for real scalars, our results here as well as in [7, 10] are

immediately extended to the complex scenario.

A number of trails open up for future work. We are currently working on holographic

computations of relative and entanglement entropies using these holographic excited states.
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We leave generalizations of our geometry to future works: Euclidean pieces with unequal

lengths might be related to some type of back-reaction, and may play a role in the study of

traversable wormholes [59, 60] and out of equilibrium systems [61]. We also plan to consider

special SK paths in order to compute OTOC’s [62] relevant to the chaos context. Related to

this, it would be interesting to understand the role of multiple Euclidean pieces in relation

to the analyticity of the fields through the wormhole and whether the TFD interpretation

still holds. Further studies on the nature of these holographic excited states are also already

under development. We would also like to explore our coherent states as as a generating

base of the complete Fock space, which should require careful backreaction treatment.
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A Low temperature excited states: thermal AdS

In this appendix we summarize the computations in the low temperature geometry dual

to the path in figure 2(a). This geometry is built by inserting two Lorentzian pure AdS

segments in the standard Euclidean Thermal AdS geometry. These Lorentzian segments

however evolve in opposite directions. This construction results in figure 7. The Lorentzian

sections L and R are still entangled in this regime though not topologically connected. As

a consequence, analyticity inside the bulk does not restrict the lengths of the Euclidean

sections which we take to be β − σ and σ respectively for I and F. The σ = β/2 path is

still preferred as it recovers the natural map between vectors in the Hilbert space and its

dual. From the CFT point of view, this is a well known result [20] that privileges the TFD

interpretation/framework above other SK paths.

One needs to build a field solution for general sources and obtain inner product and

matrix elements. The computations in this geometry are mostly direct from the zero

temperature case. For the Lorentzian regions, we have the action and EOM (3.3) over the

pure AdS3 metric

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dϕ2 .

A plane wave expansion Φ ∝ e−iωt+ilϕs(ω, l, r) leads to a differential equation for s(ω, l, r).

Regularity in the bulk fixes

s(ω, l, r) =
Γ
(

1
2(|l|+ ∆− ω)

)
Γ
(

1
2(|l|+ ∆ + ω)

)
Γ(∆− 1)Γ(|l|+ 1)

(
1 + r2

)ω/2
r|l|

× 2F1

(
ω + |l|+ ∆

2
,
ω + |l| −∆ + 2

2
; 1 + |l|;−r2

)
, (A.1)

with the overall constant fixed so s(ω, l, r) ∼ r∆ + . . . for generic {ω, l}. This normalization

puts singularities on the real ω axis. The residues of these poles ωnl = 2n+ ∆ + |l| can be
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used to define the N modes

snl(r) ≡
∮
ω=−ωnl

dω s(ω, l, r) , ωnl = 2n+ ∆ + |l| .

The most general solution on L is

ΦL(r, t, ϕ) =
1

4π2

∑
l∈Z

∫
F
dωe−iωt+ilϕφ̄L(ω, l)s(ω, l, r)

+
∑
n∈N
l∈Z

(
L+
nl e
−iωnlt + L−nl e

+iωnlt
)
eilϕsnl(r) ,

where the Feynman path F was chosen in the first term and the arbitrary coefficients L±nl
will be determined once we impose boundary conditions (3.2). An analogous expression

for R can be written and we explicitly present the Euclidean solution in I,

ΦI(r, τ, ϕ) =
1

4π2

∑
l∈Z

∫
dωeiωτ+ilϕφ̄I(−ω, l)s(−iω, l, r)

+
∑
n∈N
l∈Z

(
I+
nl e
−ωnlτ + I−nl e

ωnlτ
)
eilϕsnl(r) ,

to fix notation and conventions. Notice that the subindex F is no longer required as the

poles of s(−iω, l, r) lie away from the real axis. Following analogous steps as in [7], one can

use the gluing conditions (3.2) to uniquely fix the coefficients L±nl, I
±
nl as well as their R

and II counterparts. The computations are more tedious than pedagogical, one essentially

reduces the problem to a set of lineal equations with a unique solution for the coefficients.

As an example, we present the coefficients I±nl, F
±
nl , R

±
nl due to a source on L which is

related to the eigenvalues of the initial excited states on the OL operator:

L±nl =
1

4π2

φL(±ωnl, l)
eωnlβ − 1

I±nl = e±iωT/2L±nl R±nl = e∓ωσL±nl F±nl = e∓iωT/2L±nl ,

which are to be compared to (3.19). Solving for a source on every region leads to the

complete on shell action and from there get the inner product and matrix elements, shown

in (3.27), (3.30) and (3.31).

Regarding the BDHM computations carried on in section 4 for the BH, the analogous

Thermal scenario is much simpler and less rich. The throat is absent and the real time

theories are entirely disconnected if not through the Euclidean regions, cf. figures 2(b)

and 7(b). Each Lorentzian segment has an independent quantization which is the standard

zero temperature computation carried in [7]. Only the σ = β/2 path leads to sensible

Hermitian conjugation rules [20, 33], otherwise ad-hoc factors must be added to successfully

go back and forth. In this set-up, the excited state mimics the structure of (4.11), but the

basis is discreet in Global AdS coordinates,

|ΨI〉〉 ≡ P
{
e−

∫ 0
−π dτ OR(τ)φI(τ)

}
|Ψ0〉〉 ∝ exp

{∑
nl

λ
(1)
I;nld

(1)†
nl + λ

(2)
I;nld

(2)†
nl

}
|Ψ0〉〉
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Figure 7. (a) Variation on the closed Schwinger-Keldysh path of figure 2(a) with Euclidean

segments of lengths σ and β − σ (b) Real time extension of the Thermal-AdS geometry dual of

the path. Contrary to figure 2(b), the Lorentzian pieces are disconnected and thus admit arbitrary

lengths of the Euclidean pieces.

where d(i)†, i = 1, 2 combines positive and negative energy excitations of the L and R

regions mixed by the standard Bogoliubov transformation,

λ
(1)
I;nl = −e−ωnlπ/2φ̄I(−iωnl, l) O∗nl λ

(2)
I;nl = −eωnlπ/2φ̄I(+iωnl, l) Onl .

and Onl the zero temperature inherited operator coefficients discussed in [7].
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[16] A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a New York time

story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

[17] M. Botta-Cantcheff, P.J. Mart́ınez and G.A. Silva, The gravity dual of real-time CFT at

finite temperature, JHEP 11 (2018) 129 [arXiv:1808.10306] [INSPIRE].

[18] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407

[INSPIRE].

[19] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47

(1964) 1515 [INSPIRE].

[20] H. Umezawa, Advanced field theory: Micro, macro, and thermal physics, AIP, New York

U.S.A. (1993).

[21] Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755

[INSPIRE].

[22] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021

[hep-th/0106112] [INSPIRE].

[23] B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys.

Proc. Suppl. 192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
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