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Résumé. Nous étudions l’algèbre des polynômes en une m x n matrice de
variables sur un anneau contenant les rationnels, sujette à la condition que
le produit de deux variables appartenant à une même colonne est nul. Nous
montrons que la sous-algèbre des polynômes invariants sous l’action des n!
permutations des colonnes est un quotient de l’algèbre des polynômes en
m variables; l’application quotient envoie la i-ème variable en la somme
des entrées de la i-ème ligne de la matrice. Une application en géométrie
différentielle synthétique est esquissée.
Abstract. We study the polynomial algebra (over a ring containing the ratio-
nals) in an m by n matrix of variables, and subject to the relation that says that
the product of any two variables in the same column is zero. We show that the
sub-algebra of polynomials, which are invariant under the n! permutations of
the columns, is a quotient of the polynomial algebra in m variables; the quo-
tient map sends the i’th variable to the sum of the entries in the i’th row of the
matrix. An application in synthetic differential geometry is sketched.
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Introduction

Let A be a commutative ring. It is classical how symmetric polynomials in
A[x1, . . . , xn] are uniquely expressible as polynomials in the n elementary
symmetric polynomials, cf. e.g. [4] §29. For instance for n = 2, the two ele-
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mentary polynomials are σ1 := x1 + x2 and σ2 := x1x2; and the symmetric
polynomial x21 + x22 may be expressed as σ2

1 − 2σ2:

x21 + x22 = (x1 + x2)
2 − 2x1x2.

Modulo the ideal I generated by x21 and x22, we therefore also have

x1x2 =
1

2
(x1 + x2)

2,

provided 1
2

exists in the base ring A.
In fact, we have more generally that if A contains the ring Q of ratio-

nals, then, modulo I , any symmetric polynomial in A[x1, . . . , xn] may be
uniquely expressed as a polynomium in the single symmetric polynomium
x1 + . . .+ xn, where I is the ideal generated by the x2i s. This is a well
known and important fact, called “the symmetric functions property” in [2]
Exercise I.3.3.

It is a result in this direction we intend to generalize from dimension 1
to dimension m. We are considering the polynomial ring in m× n variables
xi,j; the kind of symmetry we consider is not with respect to all the mn
variables; we consider these variables organized in an m × n matrix, and
we only consider invariance under the n! permutations of the n columns.
The result refers to what we can assert, modulo the ideal I generated by the
degree 2 monomials {xijxi′j}j=1,...,n, i=1,...,m, i′=1,...,m.

The result asserts that any polynomial, invariant under the n! permuta-
tions of the columns can, modulo I , be expressed uniquely as a polymonial
in the m “row-sums”, {si = xi,1 + xi,2 + . . . + xi,n}i=1,...,m. The classical
“symmetric functions property” is the special case where m = 1.

An application of this Theorem concerns formal exactness of closed dif-
ferential 1-forms is sketched in Section 3 below.

ThroughoutAwill be a commutative ring. It is assumed to contain Q. All
the A-modules which we consider are free. Therefore, we use terminology
from linear algebra, as if A were a field.
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1. Polynomials in a matrix of variables

1.1 The free commutative monoid

The free commutative monoid M(X) on a set X is in a natural way a graded
monoid. We call its elements monomials inX , we callX the set of variables;
we write the monoid structure multiplicatively. We shall give an explicit
presentation of M(X).1

Let k be a positive integer; we let [k] denote the set [k] = {1, 2, . . . , k}.
Then a monomial ω of degree k may be explicitly presented by a
function f : [k] → X; we write the monomium thus presented
ωf := xf(1)xf(2) . . . xf(k). Since the variables commute, it follows that two
functions f and f ′ : [k]→ X present the same monomium iff they differ by
a permutation ε : [k]→ [k] of [k], i.e. f ′ = f ◦ ε.

Later on in the proof of Proposition 1.5, we shall need a finer nota-
tion: We denote by ‖f‖ the set of all functions f ◦ ε for ε ∈ Sk (where
Sk is the group of permutations of [k]). Thus ‖f‖ is the orbit of f un-
der the right action (by precomposition) of Sk. The monomials are actu-
ally indexed by these orbits, we have a well defined monomium ω‖f‖, and
ω‖f‖ = ω‖f ′‖ ⇐⇒ ‖f‖ = ‖f ′‖.

1.2 The polynomial ring in a matrix of variables

If A is any commutative ring, the polynomial ring A[X] with coefficients in
A in a set X of indeterminates is the free commutative A-algebra on the set
X . It may be constructed by a two-stage process: first, construct the free
commutative monoid M(X) on X , and then construct the free A-module on
the setM(X). It inherits its multiplication from that ofM(X). It is a graded
A-algebra, with the degree-k part being the linear submodule with basis the
monomials of degree k.

We shall be interested in some further structure which the alge-
bra A[X] has, in the case where the set X is given as a product
set [m] × [n]. We think of this X as the set of m × n matri-
ces (m rows, n columns) with entries xi,j (i ∈ [m], j ∈ [n]), and write
A[Mm×n] := A[[m]× [n]] = A[x1,1, . . . , xm,n].

1An equivalent description is that M(X) is the set of finite multi-subsets of X .
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A function [k] −→ [m]×[n] is given by a pair (f, g), where f : [k]→ [m]
and g : [k] → [n]. The monomium presented by such function we denote
ω(f,g), or just ωf,g. Thus

ωf,g =
∏
l∈[k]

xf(l),g(l) = xf(1)g(1)xf(2)g(2) . . . xf(k)g(k) (1)

Clearly, when g is monic, then so is any other g′, for any other presentation
(f ′, g′) of the same monomium. Therefore, the following notion is well
defined.

Definition 1.1. The monomial ωf,g is admissible if g : [k]→ [n] is monic. A
polynomium ∈ A[Mm×n] is called admissible if it is a linear combination of
admissible monomials.

So a monomium in the xi,j’s is admissible if it does not contain two fac-
tors from any of the columns, like xi,j ·xi′,j . In particular, it does not contain
any squared factor x2i,j . Clearly, admissible polynomials are of degree ≤ n.

If ω is not admissible, it is called inadmissible. If ω is inadmis-
sible, then so is ω · θ for any monomium θ. It follows that the lin-
ear subspace of A[Mm×n] generated by the inadmissible monomials is
an ideal I ⊆ A[Mm×n]. The quotient algebra A[Mm×n]/I may be identi-
fied with the linear subspace (not a subalgebra) Aa[Mm×n] ⊆ A[Mm×n]
generated by the admissible monomials, with the projection morphism
A[Mm×n] −→ Aa[M

m×n] being the map which discards all terms contain-
ing an inadmissible factor. The algebra structure of Aa[Mm×n] is thus given
by the multiplication table {xi,j · xi′,j = 0}i∈[m], i′∈[m], j∈[n], and no other re-
lations.2 The algebra Aa[Mm×n] inherits a grading from that of A[Mm×n].
Note that in Aa[Mm×n] all non-zero elements are of degree ≤ n.

Among the polynomials in A[Mm×n] we have the m “row-sums” si for
i = 1, . . . ,m (the sum of the entries in the ith row); they are all admissible:

si :=
∑
j∈[n]

xi,j = xi,1 + xi,2, . . . xi,n. (2)

2Aa[M
m×n] is an example of what sometimes is called a Weil-algebra over A; in par-

ticular, it is finite-dimensional as an A-module. Likewise, the algebra A≤n[y1, . . . , ym] to
be considered below, is a Weil-algebra.
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Consider any map f : [k]→ [m]. By the distributive law, i.e. by multiplying
out the product, we have the second equality sign in∏

l∈[k]

sf(l) =
∏
l∈[k]

∑
j∈[n]

xf(l)j =
∑

[k]
g−→[n]

∏
l∈[k]

xf(l)g(l),

where g ranges over the set of all maps [k] → [n]. The admissible terms
here are those where g is injective, so modulo I , equivalently, discarding
inadmissible terms,∏

l∈[k]

sf(l) =
∑

[k]
g
↪→[n]

∏
l∈[k]

xf(l),g(l) in the algebra Aa[Mm×n]. (3)

where g now ranges over the set of monic maps [k] ↪→ [n].

1.3 Column symmetric polynomials

Let σ be a permutation σ : [n] → [n], i.e. σ ∈ Sn. One may permute the n
columns of the matrix X of variables xi,j by σ. More explicitly, σ permutes
the monomials by the recipe:

σ · ωf,g := ωf,σ◦g . (4)

This is well defined with respect to different presentations of the same mono-
mial. Thus, the set of monomials carry a left action by Sn. If g : [k] → [n]
is injective, then so is σ ◦ g, for any permutation σ : [n] → [n], hence the
subset of admissible monomials is stable under the action. The action clearly
extends to an action on the polynomial algebras A[Mm×n] and Aa[Mm×n].
Note that the subspace inclusion as well as the quotient morphism preserve
the action.

The polynomials which are invariant under the action of Sn, we call
column symmetric. These elements form subalgebras of A[Mm×n] and of
Aa[M

m×n]; they deserve the notation sym(A[Mm×n]) and sym(Aa[M
m×n]),

respectively.
In the sequel we study the structure of the elements of the algebra

sym(Aa[M
m×n]) ⊆ Aa[M

m×n].
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This is where we need that the ring A contains Q.
If a finite group S acts on an algebra C over a commutative ring A, the

elements in C invariant under the action of S form a subalgebra symS(C)
of S-symmetric or S-invariant elements. If A contains the field of rational
numbers Q as a subring, we further have that the subalgebra symS(C) ⊆ C,
seen just as a linear subspace, is a retract, with retraction the symmetrization
operator sym given, for a ∈ C, by

sym(a) := p−1 ·
∑
σ∈S

σ · a, (5)

where p is the cardinality of S. And we have

a is invariant ⇐⇒ a = sym(a).

Proposition 1.2. Any two admissible monomials ωf,g , ωf,g′ with the same
f : [k]→ [m] are in the same orbit of the action by Sn. It follows that
sym(ωf,g) = sym(ωf,g′), see (5).

Proof. Recall that if g and g′ : [k] → [n] are monic, then we may find
a permutation [n]

τ−→ [n] with τ ◦ g = g′. There are in fact (n − k)! such
permutations. With such τ , we have τ ·ωf,g = ωf,g′ . It follows that sym(ωf,g)
and sym(ωf,g′) have the same terms but in different order.

The row-sum polynomials si , see (2), are clearly column-symmetric,
and the product

∏
l∈[k] sf(l), as a k-fold product of homogeneous degree 1

polynomials, is a homogeneous degree k polynomial, and likewise column
symmetric.

Proposition 1.3. For any admissible monomium ωf,g of degree k, we have
(discarding inadmissible terms)

sym(ωf,g) =
(n− k)!

n!

∏
l∈[k]

sf(l).

Proof. Any σ ∈ Sn defines, by restriction to the subset [k] ⊆ [n], a monic
map g : [k] ↪→ [n]. Conversely, any monic [k] ↪→ [n] extends to a permu-
tation σ : [n] → [n] in (n − k)! different ways, by simple combinatorics.
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Let C(g) ⊆ Sn be the set of such extensions of g. These subsets of Sn are
clearly disjoint. So we have

Sn =
∐

[k]
g
↪→[n]

C(g).

Therefore, we may rewrite
∑

σ∈Sn
σ · ωf,g as follows∑

[k]
g
↪→[n]

∑
σ∈C(g)

∏
l∈[k]

xf(l)σ(l) =
∑

[k]
g
↪→[n]

∑
σ∈C(g)

∏
l∈[k]

xf(l)g(l)

since for each g and each σ ∈ C(g), σ(l) = g(l), for l ∈ [k] ⊆ [n]. There-
fore, for a given g, the terms in the summation over C(g) are equal, and there
are (n− k)! of them, so the equation continues

=
∑

[k]
g
↪→[n]

(n− k)!
∏
l∈[k]

xf(l)g(l) = (n− k)!
∑

[k]
g
↪→[n]

∏
l∈[k]

xf(l)g(l) ,

and this expression equals (n− k)!
∏
l∈[k]

sf(l) by equation (3). Dividing by n!

now gives the desired equation.

From the Proposition, we may deduce (recall that Q is a subring of A)

Proposition 1.4. Every column symmetric admissible polynomial can be ex-
pressed in Aa[Mm×n] as a polynomial in the si ’s. (This expression can be
interpreted as an expression, modulo the ideal I of inadmissibles, in the
polynomial ring A[Mm×n].)

Proof. Any admissible polynomial h ∈ Aa[Mm×n] is a linear combination
of admissible monomials, and sym is linear; by Proposition 1.3 sym of an
admissible monomium is a polynomial in the si ’s. Therefore also sym(h)
is so. If h is furthermore column symmetric, h = sym(h), then h itself is
expressed as a polynomial of the si ’s, h = G(s1, . . . , sm) for some poly-
nomium G ∈ A([m]) = A[y1, . . . , ym].

We shall formulate the results so far and some of its consequences in the
category A of commutative A-algebras.
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Consider the algebra A[y1, . . . , ym]. Since it is the free algebra in the
generators yi, and si ∈ sym(A[Mm×n]), there is a unique algebra map (pre-
serving degree)

A[y1, . . . , ym]
S−→ sym(A[Mm×n]) ⊆ A[Mm×n]), (6)

namely the one which sends yi ∈ A[y1, . . . , ym] to si.
Let J be the ideal in A[y1, . . . , ym] generated by the monomials of de-

gree n + 1. The quotient algebra A[y1, . . . , ym]/J may be identified with
the linear subspace (not a subalgebra) A≤n[y1, . . . , ym] ⊆ A[y1, . . . , ym] of
polynomials of degree less or equal to n , the algebra structure given by
the multiplication table {yf(1) yf(2) . . . yf(n+1) = 0}f :[n+1]→[m], and no other
relations.

It follows immediately from the respective multiplication tables (alter-
natively since S sends the ideal J into the ideal I) that we have an algebra
map:

A≤n[y1, . . . , ym]
s−→ symAa[M

m×n] (7)

making the diagram below commutative:

A[y1, . . . , ym] S //

����

sym(A[Mm×n])

����

A≤n[y1, . . . , ym] s // sym(Aa[M
m×n])

(8)

The vertical maps are quotient maps which discard terms of degree > n,
respectively inadmissible terms. Thus the map s discards the inadmissible
terms from the values of S.

Proposition 1.5. The algebra map s in (7) is injective.

Proof. (We refer to the last paragraph in Subsection 1.1 for the notation
‖f‖ for the orbit of f under precomposition with permutations.) Clearly the
monomials ω‖f‖ of degree ≤ n make up a vector basis of A≤n[y1, . . . , ym].
We may define an equivalence relation ∼ on the set of monomials of degree
k in Aa[Mm×n], namely ωf,g ∼ ωf ′,g′ iff ‖f‖ = ‖f ′‖. We let B‖f‖ be the
equivalence class defined by ‖f‖. It follows that A≤n[Mm×n] is a direct sum
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of the subspaces V‖f‖ spanned by the B‖f‖. We show that s(ω‖f‖) lies in
V‖f‖; recall equation (3) and note that for any g, ωf,g ∈ B‖f‖:

s(ω‖f‖) =
∏
l∈[k]

sf(l) =
∑

[k]
g
↪→[n]

∏
l∈[k]

xf(l)g(l) =
∑

[k]
g
↪→[n]

ωf,g.

Thus the map s sends a linear base into a set of lineary independent vectors,
and its injectivity follows.

Remark. A similar argument proves that also the map S in (6) is injective.

The surjectivity of the map s is a reformulation of Proposition 1.4. Thus,
combining Propositions 1.4 and 1.5, we have our main result:

Theorem 1.6. The algebra map s in (7) is an isomorphism.

We shall paraphrase this in geometric terms:

2. Geometric interpretation

2.1 The category of A-algebras and its dual

The following Section only is a reminder, to fix notation etc. As above, A
denotes the category of commutative A-algebras (here just called algebras.)

The dual category Aop is essentially the category of affine schemes over
A. The objects, viewed in this category, we here just call spaces, and the
maps in it, we call functions. IfA ∈ A, we denoteA ∈ Aop the correponding
space, and similarly for maps.

A main object inA is the polynomial ringA[x] in one variable; as a space
it is denoted R,

R := A[x].

Because A[x] is the free algebra in one generator x, there is, for any alge-
bra B, a 1-1 correspondence between the set of elements of B and the set
of algebra maps A[x] → B, with dual notation, with the set of functions
B → A[x] = R. Thus, we have the basic fact:

elements of an algebra B correspond to R-valued functions on the space B.
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Since A[x1, . . . , xn] is a coproduct in A of n copies of A[x], it follows
that A[x1, . . . , xn] = Rn, the “n-dimensional vector space over R”, product
of n copies of R. Therefore, the elements of A[x1, . . . , xn] correspond to
functionsRn → R, explaining in tautological terms the relationship between
polynomials in n variables and functions Rn → R; all functions Rn → R in
Aop are polynomial.

Any ideal I in an an algebra B gives quotient map B � B/I , and hence

in Aop defines a monic function B/I �
�

// B .
It is convenient to give names to some standard spaces thus defined. The

space corresponding to A[y1, . . . , ym]/J , where J ⊂ A[y1, . . . , ym] is the
ideal generated by monomials of degree n+ 1, is denoted Dn(m) ⊂ Rm,

Dn(m) = A≤n[y1, . . . , ym],

and deserves the name “the nth infinitesimal neighbourhood of 0 ∈ Rm”. In
the standard description of finite limits with internal variables we have:

Dn(m) = {(x1, . . . . xm) ∈ Rm | ∀ f : [n+1]→ [m] xf(1) . . . xf(n+1) = 0}.

Likewise with the ideal I ⊆ A[Mm×n] described in Section 1.2. In this case
we have

D1(m)n = Aa[Mm×n];

this follows since A[Mm×n]/I is the coproduct in A of n copies of
A[x1, . . . , xm]/J , where J now is the ideal generated by monomials of de-
gree 2.
With internal variables we have the description:

D1(m)n = {(x1,1, . . . xm,n) ∈ Rm×n | xi,j xi′,j = 0}

(where i and i′ range over [m] and j over [n]), which is easily understood by
the isomorphism Rm×n = (Rm)n.

2.2 Orbit space

Let B be an algebra, and let S be a finite group acting on B. The subalgebra
symS(B) ⊆ B of invariant or symmetric elements may be described in cate-
gorical terms, in the categoryA, as the joint equalizer of the automorphisms
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of the form B
σ−→ B over all the σ, σ′ . . . ∈ S,

symS(B) �
�

// B
...
σ
//

σ′
//

B .

In the categoryAop, this becomes a joint coequalizer, thus the orbit object of
the action of S,

B/S oooo B
oo

...
σ

oo σ
′

B .

The isomorphism s in the Theorem 1.6, see diagram (8), is displayed in the
following commutative diagram:

A[y1, . . . , ym] S //

����

sym(A[Mm×n]) �
�

//

����

A[Mm×n]
...
σ
//

σ′
//

����

A[Mm×n]

����

A≤n[y1, . . . , ym] s
∼=
// sym(Aa[M

m×n]) �
�
// Aa[M

m×n]
...
σ
//

σ′
//

Aa[M
m×n]

By a tautological rewriting, this diagram becomes

Rm oo S
OO

� ?

(Rm)n/Sn oooo
OO

� ?

(Rm)n
oo

...
σ

oo σ′

OO

� ?

(Rm)n
OO

� ?

Dn(m) oo s
∼=
D1(m)n/Sn oooo D1(m)n

oo

...
σ

oo σ
′

D1(m)n

(9)

The composite map (Rm)n → Rm in the diagram is, in synthetic terms:
“take an n tuple of vectors in Rm, and add them up”. It is symmetric in the
n arguments; and it restricts to a map

sum : D1(m)n → Dn(m).

Theorem 1.6 then can be expressed as follows:

Theorem 2.1. The addition map sum : D1(m)n → Dn(m) is the quotient
map of D(m)n under permutations of the n factors, i.e. is universal among
Sn-symmetric maps out of D1(m)n.
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The special case wherem = 1 was called “the symmetric functions prop-
erty” in the early days of synthetic differential geometry (see e.g. Exercise
I.4.4 in [2]); in this form, it was used (see e.g. [2] Exercise I.8.3 and I.8.4, or
[1] Proposition 3.4) to establish the Formal Integration for vector fields: ex-
tending a vector field D×M −→M into a “formal flow” D∞×M −→M .

Remark. It is not hard to prove that the constructions and results so far
can be presented in a coordinate-free way, i.e. referring to an abstract m-
dimensional vector space V over R, rather than to Rm, thus replacing e.g.
the subspace Dn(m) ⊆ Rm by a subspace Dn(V ); see e.g. [3] 1.2 for the
definition of this subobject.

3. Primitives for closed differential 1-forms

The following Section is sketchy, and is included to give an indication of
the kind of motivation from synthetic differential geometry that lead to the
algebraic result stated in Theorem 1.6 or Theorem 2.1. Therefore, we do not
attempt to give the reasoning fully explained, or in its full generality (e.g.
replacing the space Rm by an abstract vector space V ∼= Rm, or even by
an arbitrary manifold). Also, some of the structure involved, like the ring
structure on R (= the co-ring structure on A[x]), we shall assume known.
Details may be found in [3], and the references therein.

Two points x and y in Rm are called first order neighbours if
y − x ∈ D1(m). In this case, we write x ∼ y. The relation ∼ is symmetric
and reflexive, but not transitive. A differential 1-form ω on Rm may syn-
thetically be described as an R-valued function ω defined on pairs of 1st
order neighbour points x, y in Rm, with ω(x, x) = 0 for all x. It is closed
if for any three points x, y, z with x ∼ y, y ∼ z and x ∼ z, we have
ω(x, y) +ω(y, z) = ω(x, z). Now, in Rm, the data of a 1-form ω may be en-
coded by giving a function Ω(−;−) : Rm×Rm → R, linear in the argument
after the semicolon, and such that

ω(x, y) = Ω(x; y − x), for x ∼ y.

Closedness of ω implies that the bilinear dΩ(x;−,−) : Rm × Rm → R is
symmetric (see Proposition 2.2.7 in [3]). Hence, by the symmetric functions
property (for the given m, and for n = 2), or by simple polarization, we get
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that the bilinear form dΩ(x;−,−) only depends on the sum of the two argu-
ments. From this, it is easy to conclude (essentially by the Taylor expansion
in the proof of the quoted Proposition) that ω(x, y) + ω(y, z) is independent
of y, even without assuming that x ∼ z.

If f : Rm → R is a function, we get a closed 1-form df on M by
df(x, y) := f(y)−f(x). If ω = df , we say that f is a primitive of ω. We may
attempt to find a primitive f of a given closed 1-form ω, in a neighbourhood
of the form x0 + Dn(m), where x0 ∈ Rm. For a chain x0 ∼ x1 ∼ . . . ∼ xn
(with each xi ∼ xi+1), we want to define f(xn) by the sum

ω(x0, x1) + ω(x1, x2) + . . .+ ω(xn−1, xn); (10)

is this “definition” of f(xn) independent of the “interpolating points”
x1, . . . , . . . , xn−1? We may write xi+1 = xi + di+1 with di ∈ D(V )
(i = 0, . . . , n− 1). In this case, the first question is whether the proposed
value of f(x0 + d1 + . . . + dn) is independent the individual dis (i < n)
and only depends on their sum. By the symmetric functions property, this
will follow if the sum is independent of the order in which we take the in-
crements di. But this independence follows because closedness of ω implies
ω(x, x+ d) + ω(x+ d, x+ d+ d′) = ω(x, x+ d′) + ω(x+ d′, x+ d+ d′),
thus two consecutive summands in the proposed chain of dis may be inter-
changed; and such transpositions generate the whole of Sn. So Theorem 2.1
allows us to define f : x0 +Dn(m)→ R by the formula (10).

It is then easy to conclude that f(y)− f(x) = ω(x, y) for any y ∼ x, for
any x in the “formal neighbourhood of x0” (meaning the set of points which
can be reached by a chain x0 ∼ x1 ∼ . . . ∼ x, starting in x0. So f is a
primitive of ω on this formal neighbourhood.
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