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hotovoltaic systems (PV) are having an increased importance in modern smart grid

stems. Usually, in order to maximize the energy output of the PV arrays a maximum

ower point tracking (MPPT) algorithm is used. However, once deployed, weathe

nditions such as clouds can cause shades in the PV arrays affecting the dynamics of each

anel differently. These conditions directly affect the available energy output of the array

nd in turn make the MPPT task extremely difficult. For these reasons, under partia

ading conditions, it is necessary to have algorithms that are able to learn and adap

nline to the changing state of the system. In this work we propose the use of deep

inforcement learning (DRL) techniques to address the MPPT problem of a PV array

nder partial shading conditions. We develop a model free RL algorithm to maximize the

fficiency in MPPT control. The agent’s policy is parameterized by neural networks, which

ke the sensory information as input and directly output the control signal. Furthermore

 PV environment under shading conditions was developed in the open source OpenA

ym platform and is made available in an open repository. Several tests are performed

sing the developed simulated environment, to test the robustness of the proposed

ntrol strategies to different climate conditions. The obtained results show the feasibility

f our proposal with a successful performance with fast responses and stable behaviors

he best results for the presented methodology show that the maximum operating powe

oint achieved has a deviation less than 1% compared to the theoretical maximum powe

oint. 

eywords: MPPT, Deep RL, PV systems, OpenAI Gym. 
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Journal Pre-proof
he increasing world energy demand together with a growing concern abou

nvironmental issues have generated enormous interest in the use of renewable energy

urces through the development of smart grid systems. Today efforts aim at increasing

e manageability and efficiency of smart grids by turning them into sub-systems called

art microgrids which consist of local energy charges and resources that act as an

dependent entity with respect to the general network. In this manner, they can be

nnected and disconnected from the utility network according to some energy

ptimization strategy. Furthermore, microgrids can integrate distributed energy network

uch as photovoltaic (PV) generation systems- that employ modern information

mmunication and control technologies to enhance economy, efficiency, reliability, and

curity of the electrical grid while allowing active participation of consumers into the

nergy market [1]. This renewable power is clean and free at the point of use but it canno

lways be relied upon due to its uncertain nature, making the need for intelligent real time

anagement to avoid the volatility of the whole power grid [2]. This emphasize

icrogrids as an interesting field for the study and implementation of artificial intelligence

ased solutions. 

icrogrid systems based on PV arrays are considered to be one of the most implemented

nd well accepted distributed generation sources [3]. To be efficient a PV array mus

nstantly transmit the maximum power available to the load, regardless of climatic

nditions, so this control problem is known as Maximum Power Point Tracking (MPPT

–6]. In the case of an MPPT control problem an action is considered as a change of the

utput voltage to affect the produced PV power. However, PV systems suffer from

onlinearity between the output voltage and current especially under partially shaded

nditions (PSC), which can result in significant losses to the PV output power [7,8]. When

V modules belonging to the same string experience different insolation, the resulting

ower-voltage (P–V) relation becomes more complex and exhibits multiple peaks. As mos

nventional MPPT methods are based on the hill-climbing principle, i.e. moving to the

ext operating point in the direction in which power increases, the presence of multiple

eaks reduces their effectiveness [9,10]. To this aim, several modifications of the

aditional MPPT control techniques have been proposed, such as Perturb and Observe

&O) [11–13], hill-climbing [14,15], incremental conductance [16,17], fuzzy-logi
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8,19], and hybrid [20,21]. Also, a number of works have addressed the shading problem 
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Journal Pre-proof
volutionary algorithms [25] and particle swarm optimization techniques [26,27]

otably, the majority of the MPPT control techniques are model-based and thus they make

se of a model of the PV panel. However, obtaining an accurate model of the PV system

nd its parameters can be a burden under dynamic environmental conditions. This is more

allenging when PV panels are interconnected in series and parallel to form large arrays

hich can be exposed to different irradiance conditions. 

einforcement learning (RL) techniques are model-free and in consequence do no

quire system identification. Instead, they can build a closed-loop policy from a set o

ajectories obtained from interactions with the real PV environment or from simulations

he overall objective of the RL agent is to  maximize the accumulated value of the future

wards, where the reward is a numerical value given by the environment to the agen

fter each interaction representing how good, or bad, the action taken is with regards to

e objective [28]. Noticeably, with the expansion of smart meters, data on electricity

eneration and its demand will be readily available making data-driven techniques more

levant. The RL paradigm is an unsupervised learning framework where an artificia

gent continuously learns and adapts its behavior (commonly called policy) directly from

w interactions with its environment, i.e., with the PV system. MPPT control method

sing Reinforcement Learning (RL) techniques have also been proposed for both uniform

radiance [29–31] and PSC [32,33]. In this type of controllers, the MPPT problem is seen

s a Markov Decision Process (MPD) [34]. 

 order to reduce the computational cost of the RL techniques, often the state-action

ace has to be discretized. For example, Hsu et al.  proposes [31] a RL MPPT contro

heme based on only four states and four actions, which are defined according to the side

nd direction of movement of the operating point with respect to the MPP. Similarly

ofinas et al. [29] defines a list of finite and discrete actions including positive and

egative changes in the output voltage of the PV system. Nevertheless, to maximize the

fficiency in MPPT control, it is necessary to work in a continuous state-action space. One

f the main obstacles to RL formulations lies in the management of applications in

ntinuous state and action spaces, thus the use of function approximators is required to

stimate both the control policy and the value function [35,36]. 
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Following the growing popularity of deep neural networks (DNN) [37,38], Mnih et al. [39] 
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troduced the deep Q-Network (DQN) technique that uses convolutional neural network

NN) to approximate the value function for actions, stabilizing the training process

owever, the DQN algorithm can only be applied to discrete systems, that is, systems with

nite and discrete state / action spaces. Later, Lillicrap et al. [40] extended deep RL (DRL

rmulations to continuous state spaces, using the deep deterministic policy gradien

lgorithm (DDPG) that incorporates the ideas of batch normalization [41] and repetition

f experiences [39]. In this way, deep reinforcement learning is a modern subfield o

achine learning which is positioning itself to tackle complex engineering problems

ecently, more approaches to address control problems dealing with continuous space

ave been proposed [42,43]. In addition, deep RL methods are powerful to deal with

mplex systems in a model-free way becoming attractive and advantageous to work with

artial shading PV systems. Nevertheless, into the field of engineering applications severa

eep RL proposals have been developed and tested in applications that somehow involve

age recognition. In particular, during the literature review, no previous works were

und that used deep RL techniques for the management and control of photovoltai

stems, and even less with respect to PSC. 

 this article we propose a deep learning model-free formulation to address the

ntinuous MPPT control problem of PV systems under unpredictable environmenta

nditions, such as shading. The algorithm is based on the deterministic policy gradien

eorem and uses neural networks to parameterize the policy. The state of the agent i

en described directly by the sensor measurements, without the need of any

reprocessing, while the continuous actions selected by the neural agent correspond to

e control actions of the MPPT formulation. Additionally, a PV environment wa

eveloped to evaluate the efficiency of DRL algorithms for MPPT control under differen

perating conditions. In this way, we developed a framework compatible with the open

urce OpenAI Gym platform [44] which provides a standardized and fully

arameterizable computing environment to test both our formulation and future

evelopments coming from the machine learning community for the management of smar

icrogrids. In this way, the concept of environment allows the performance of differen

L-based solutions to be directly compared to each other in a standard, controlled and

ell-defined environment. Also, this assures the reproducibility of the experiment

llowing to further test future improvements in a fast way and in an open source way
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inally, the proposed RL control formulation is evaluated in the developed PV 
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aximum power operating point found is less than 1% compared to the theoretica

aximum power point. These results show that the proposed deep RL algorithm is able to

ccessfully address the MPPT control problem of PV systems under PSC. 

. MPPT for PV arrays 

 typical PV array is made up of several PV modules connected in series and in parallel to

rovide the desired voltage and current. Each PV module is a package that consists of a

nnected assembly of photovoltaic solar cells. The voltage at which a PV cell can generate

s maximum power is called maximum power point (MPP). Notably, the maximum powe

aries with solar radiation, ambient temperature and solar cell temperature. 

hen the PV array operates under uniform insolation, the resulting power-voltage (P–V

rves of the array exhibit a single MPP. However, when some modules of the array are

aded by clouds, for example, non-uniform insolation conditions force shaded modules to

perate with a reverse bias voltage. This reverse voltage leads to modules consuming

ower instead of supplying it to the load and cause hotspots to appear in them [45]. 

he operating point of a PV array is defined as the power produced due to the current    

nd the voltage    . When a load is connected to a PV source, the operating point and the

ower produced are defined by the resistance of the electric load. For example, if the

sistive value of an electrical load is equal to             , then the operating poin

ill coincide with the MPP (    ,     )  and there is no need to track the MPP. When a

ifferent resistive load is connected, the operating point will be different from the MPP

e.,          and         . In this case, the PV source does not produce the maximum

ossible power and control actions must be applied to follow the MPP. 

.1 PV cells modeling 

 PV photovoltaic array can be represented analytically by its electrical characteristic o

rrent     against voltage    . Figure 1 shows the equivalent circuit of a given cell as a p
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Fig. 1. Equivalent circuit for a PV cell 

enoting the number of PV cells in series and in parallel as    and    respectively, the

utput current     is written as the difference between the generated photocurrent    and

at of the diode current   : 

                  
 

   
 
   

  
 

     

  
      

here   is the diode ideal factor,   is the Boltzmann constant,   is the charge of electrons

 is the temperature in Kelvin and    is the equivalent series resistance. In turn, the

hotocurrent    generated by solar irradiance     is: 

        k          
   

    
 

ere     is the short-circuit current at reference temperature and radiation,      is the

ference temperature of the cell and k  is the temperature coefficient for the short-circui

rrent. 

he cell saturation current   , varies with the temperature according to the following

lation: 

       
 

    
 
 

    
   

  
 

 

    
 

 

 
   

here     is the reverse saturation current and    is the energy of the prohibited band o

e semiconductor. Finally, the power     delivered by the panel is calculated as: 
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Journal Pre-proof
nd temperature. From this mathematical representation, the power curve associated

ith a PV module is obtained by expressing the serial and parallel connection of al

hotovoltaic cells. If we consider an arrangement consisting of identical cells unde

niform solar irradiation, the characteristic P-V curve will have a single peak, as shown in

ig. 2a. The figure illustrates the characteristic curve (I-V) for the open circuit voltage

  ), the short-circuit current (   ) and the maximum power operating point of the sola

ll. The MPP is a unique point, as can be seen in Fig. 2a., where the power generated from

e PV source is maximized. Note that, if the power required by the load increases, the

perating point will move to the left of the MPP while if the operating point is reduced i

ill move to the right of the MPP. Therefore, it is necessary to track the MPP continuously.

n the other hand, the I-V curve of the source varies its characteristics according to the

nvironmental conditions. A representation of the operation of a solar cell under differen

radiations is shown in Fig. 2b. It can be seen that the output value corresponding to the

PP at an irradiation of 1000 [W/m2] does not match the MPP at 500 [W/m2]. Similarly, a

ange in temperature will affect the power delivered by the cells. The output voltage also

epends largely on the temperature and an increase in temperature will decrease the

alue of    . Since MPPT control can be achieved by regulating the output voltage of the

   system, this is considered as the optimization variable. Favorably, the MPP coincide

ith the point at which the derivative of the power     with respect to the voltage     i

ero, that is: 
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a) 

 

b) 

Fig. 2. PV Source I-V and P-V curves: a) typical curves of a PV cell; b) curves for 

different solar irradiance. 

.2 PV Arrays under PSC 

 several PV modules are connected in series, they conduct the same current, while the

oltages across these modules are added to determine the resultant output voltage. On the

ther hand, if PV modules are connected in parallel to form a group, the voltage will be the

me in each module, while the output current will be the sum of each individual current.  

hen the PV system is subjected to partial shading, series modules are assembled into

roups having the same shading pattern. As shown in Fig. 3, bypass diodes are connected

 parallel with each PV module to shunt the current around them, thus cells can continue

pplying power at a reduced voltage rather than no power at all. Under normal operation

ach solar cell is forward biased and bypass diodes are open-circuited. Under partially

aded conditions solar cells are reverse biased, and the bypass diode conducts (red path
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Journal Pre-proof
ther than forward biasing each good cell. Also, blocking diodes are connected to the PV

anels to prevent current flowing back into them when the voltage produced by the panel

 lower than that of the battery in the case of dark or shading conditions. 

 

Fig. 3. PV array with bypass diodes under PSC. 

he curves in Fig. 4, represent the I–V and P–V characteristics of the array under uniform

solation; under partially shaded condition and without diodes; and under partially

aded condition but with diodes connected in series with each of the series assemblies

otice that the presence of bypass diodes allows the unshaded modules generate thei

aximum current at a given insolation level. When the bypass diodes are not present, the

aded modules will limit the current output of the series assembly and decrease the

vailable output power from the PV array. The blocking diodes will prevent the reverse

rrent through the series assemblies, which generate lower output voltage as compared

 the others connected in parallel. This reverse current may cause excessive hea

eneration and thermal breakdown of PV modules. 

ecause the effect of diodes, P–V curves exhibit several local peaks and one global MPP

MMP), as shown in the dashed curve in Fig. 4. Unfortunately, presenting multiple maxima

 the P-V characteristic is a crucial issue that most of the conventional MPPT algorithm

ay not be able to deal with. Most traditional MPPT techniques start searching in a

lected region of the P–V curve. If this region is near a local peak, then those technique
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peak is located. Given this situation, conventional local search space MPPT techniques are 
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ot suitable for PV arrays that have PSC. Also, this is aggravated by the fact that the

nvironmental conditions, i.e. temperature, shading and solar irradiance, may change from

me to time during the day and consequently change the shape of the P-V curves. 

 

Fig. 4. Effect of bypass diodes on I-V and P-V curves 

. Deep-RL for MPPT control 

his paper proposes a model-free RL approach to solve the continuous MPPT contro

roblem in a PV array. An RL approach allows one to solve the problem without knowing

e behavior of the PV source or predefine its dynamics. The RL algorithm aims to learn

e behavior of system or its optimal configuration according to the responses of the

teractions with the PV source. The formulation of a reinforcement learning approach fo

e operation of the PV arrangement, must be made in terms of a Markov decision

roblem. 

.1 The RL problem 

einforcement learning assumes that there is an agent located in an environment and in

ach interaction with it, the agent takes an action and acts on the environment receiving a
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reward in the form of a numerical signal. An RL algorithm will then seek to maximize the 
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Journal Pre-proof
tal reward received by the agent, for which the RL problem must be formalized as a

arkov Decision Process (MDP) [28]. 

ommonly, in RL formulations, the control problem is defined by four elements: the state

ace  , the action space  , the probability of state transition   and the reward function  

or the MPPT control problem, in time   an action is taken that corresponds to a value  

r the manipulated variable    . During the learning process, the agent interacts with the

stem by applying an action          and, after that, the system evolves from the

ate          to a successor state      and the agent receives a numerical signal  

lled reward (or punishment) that provides a measure of how good (or bad) the chosen

ction     was. Rewards act as "clues" about achieving goals or optimal behavior

herefore, the objective of the RL methods is to find an optimal policy    that satisfies 

   ma     ma              

here    corresponds to the expected total reward given the control policy  . 

et us assume that under a given policy  , the expected cumulative reward      , or value

nction over a certain time interval, is a function of   , where           
    are the

rresponding state values and           
    defines the policy-specific sequence of the

gent’s actions. The sequence    of state transitions gives rise to rewards        
   . Robo

ntrol is a continuous task without a single final state therefore the discounted sum o

ture rewards                                 
 
    is used to define the

iscounted) expected state-value function for a policy   from the state  :  

                               
 
          

here     ,   is the discount factor which weights future rewards.       is used to

enote the maximum discounted reward obtained when the agent starts in state   and

xecutes the optimal policy   . Thus, the associated optimal state-value function tha

tisfies the Bellman's equation for all state   is: 

        arg ma              
             ,        
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      ,                
             ,       

ch that       ma   
   ,    for all  . Once    is known through interactions, then the

ptimal policy can be obtained directly through: 

       argma    
   ,     (

.2 Deep-RL 

ne of the biggest challenges that RL techniques have faced since its inception has been

ow to deal with spaces of continuous action. If the space of actions is too discretized, i

nds with a dimensionality problem. But insufficient discretization of the space of action

uld disregard valuable information about the geometry of the domain of actions

onsequently, RL algorithms have been limited to small and discrete grid environments

hich detract from their feasibility in their application for most dynamic systems. 

 

Fig. 5. The reinforcement learning framework with a deep network, in which an agent 

takes an action that generates a reward and a new state. 

he success and rapid acceptance of the Deep Q-Networks approach [39], generated an

xpansion of the study and implementation of RL techniques to solve high dimensiona

roblems within the dynamic systems control area [40,46], refer to Fig. 5. 

ased on the previous work presented by Silver et al. [47], in relation to the deterministi
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olicy gradients, Lillicrap et al. [40] developed an actor-critical approach called a deep 



 

deterministic policy gradient (DDPG) that has the characteristic of being off-policy and 
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odel-free. RL approaches based on the policy gradient use an iterative method in which

ey evaluate the policy and then follow its gradient to maximize performance. DDPG use

 stochastic policy to achieve a good exploration but estimates a deterministic objective

olicy that is much simpler to learn. On the other hand, DDPG is based on an actor-critica

pproach, so it uses two deep neural network models. These networks calculate the

rediction of the next action for the current state and generate a time difference (TD

rror signal at each step. The input to the actor network is the current state and the outpu

 a single real value that represents an action chosen from the continuous action space

he output of the network that models the critic is simply the estimated Q value for the

rrent state and the action given by the actor. 

ore recently, Hausknecht et al. [48] proposed the use of deep neural networks in a

ructured (parametrized) space with continuous actions to delimit the gradients of the

ace of action suggested by the critic. This approach focuses on learning a small set o

iscrete actions, each of which is parameterized with continuous variables. This allows the

se of RL to be extended to the Markov Decision Processes (MDP) class with continuou

nd parameterized action spaces. On the other hand, this approach reduces gradients a

yperparameters approach the limits of their ranges and are reversed if they exceed the

nge of values (hence their denomination inverted gradients). This allows the agent to

eep the parameters within the limits, minimizing the problems of overestimation. 

.3 Deep RL tracking control algorithm  

 this section the algorithm proposal for our Deep RL control formulation is introduced

s can be seen in Algorithm 1. As previously stated, the RL agent is based on the DDPG

lgorithm. Thus, the agent consists of a neural network that parameterizes the actor policy

) and a network for the critic (Q). In addition, there are two more networks, called

rgets, that are used for stabilizing the learning procedure. The MMPT control algorithm

arts by initializing those networks, together with the replay buffer R in line 1. The replay

uffer is used for storing experience, and subsequently training the agent with it.  

he algorithm continues in line 2, where the main training loop starts. This loop i
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erformed for the selected numbers of episodes (M). The following line is where the Noise 
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bservation. This gives way to the second loop that starts in line 5 and is performed for a

redefined number of timesteps (T).  In each execution of this loop, the agent selects an

ction based on the current state (line 6) and performs that action in the environment. As

 result, the environment transitions to a new state and a reward is provided based on the

uality of the action taken (line 8).  Finally, the state, action, reward and future state are

ored in the replay buffer as is demonstrated in line 9.  

 the following line of the algorithm, line 10, if enough transitions have been stored

ithin the Buffer, the training process of the agent is started. First, a minibatch of size N

ith random transitions are extracted from the buffer (line 11). With this minibatch o

xperience, the critic network is updated in line 12, followed by an update of the acto

etwork by means of the deterministic policy gradient. The training step is then finished

hen both target networks are updated via a soft update rule.  

 

he algorithm continues in line 16 when the current state of the system is updated

inally, in line 19 the trained networks for the actor and critic are returned together with

e replay buffer. In the following section, results obtained with the proposed algorithm

nd the developed MPPT gym environment are provided.   
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. Results and discussion 

 this section we present and discuss the obtained results when using our proposed

ntrol algorithm for MPPT control of the partial shading PV system. To assess the

erformance of the proposed DRL method to solve the MPPT control problem in the

ntinuous action space, a number of test scenarios have been simulated. Each scenario

presents the behavior of a PV array under different shading conditions. To this end, a

mplete PV environment was developed in the open source OpenAI Gym platform

penAI Gym [44] is an open source platform implemented in Python language where you

n train, test and evaluate RL algorithms under a variety of environments.  

very environment comes with action and observation space that defines the system

ttributes, i.e. describes the format of valid actions and observations, the PV environmen

as implemented in Gym following this guideline and using the model set out in Section 2

he major advantage of using this platform is that it allows to compare the performance o

ifferent control techniques for the problem of maximum power tracking of a photovoltai

stem under different climate conditions. 

 the following subsection, we outline the PV simulation environment as well as the

roblem formulation as a Markov decision problem. Then, we detail the training stage fo

e proposed deep reinforcement learning algorithm for the MPPT control of the partia

ading PV system. After that, we show different testing scenarios and finally a

mparative section is presented aiming to highlight the performance of our proposal. 

.1 PV environment  

 Gym environment basically consists of four functions. The first is the initialization

nction of the “init” class, which also establishes the initial state of our RL problem. The

cond function is that of step “step”, which receives data from the ne t action and return

 list of four elements: the next state, the reward resulting from the last action, a Boolean

alue that informs whether the current episode has ended and extra information about the
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formation about the behavior of our environment so far. Once the MPPT environment i

mplete with the PV information, we can create an instance of it. In this way, thi

nvironment can be easily used to test our control algorithm as well as any other RL

lgorithms developed under this architecture. For further details, the developed

mulation environment is available in the following link

ttps://github.com/loavila/mppt-gym. All indications are given in the corresponding

adme file. 

he special categorization and terminology to model the shading pattern on that array i

iven in Patel [49]. For example, Fig. 6 shows a PV array solar system of 100 module

ivided into ten series assemblies of 10 modules each, connected in parallel. The shading

nfiguration of Fig. 6 gives three groups where the first group containing 40 assemblie

 parallel has six shaded modules; the second group of 38 assemblies in parallel has three

aded modules whereas the series assemblies of the last group of 22 assemblies has no

aded module. 

 

Figure 6. PV array configuration (from Patel [49]). 

o formulate the MPPT control problem as a Markov decision problem into the RL

amework, we must first define its main three elements: 

tate space: in the MPPT control problem, the efficiency of the task is defined according to

ow far from the MPP a PV panel is operating under specific environmental conditions. In
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9,31,50]. These approaches have the advantage of forming a small state space, but are

nable to describe the operation of the PV array under varying operating conditions. In

is work a continuous state space is defined that corresponds to the current values

  ,    ,      . The      value allows on the one hand to determine on which side of the

PP the PV array is working and, on the other hand, it gives a better understanding of the

arkovian return to the system since it allows to define if the algorithm is increasing the

utput voltage or reducing it. 

ction space: the action space applied to the MPPT control problem is continuous, so i

ntains all the actions that can be applied in a PV array to generate a change in system

peration. While this guarantees high precision in the magnitude of the action, it require

owerful learning techniques to make the approach computationally efficient. The action

f the RLMPPT agent here is defined as the desired disturbance      applied to the

ntrollable variable    . 

eward function:  for each action chosen by the agent and applied to the system, it react

nd evolves into a successor state generating a response in the form of a reward that goes

om the environment to the agent. Intuitively, the simplest but most effective reward

erivation could be a type of successful or fail function [31]. Keeping in mind that ou

ntrol formulation is model free, this means that any knowledge about the system

ehavior is given to the deep RL MMPT control algorithm. Thus, the reward function could

e thought proportional to the instantaneous power obtained at each sampling time due to

e applied control action.  A simple reward function should provide a capacity fo

eneralization and adaptability for the model. For this reason, to dispense a prior

formation about the system, and consequently of the region of maximum power, the

llowing reward function is defined: 

    
    ,              if    ,
  ,              if    ,

  (

here   is a normalization factor. To limit the reward signal, unless otherwise stated

ereafter we have taken c = 50000 for all presented experiments. As can be seen, with thi

mple function the reward obtained is directly proportional to the power and no prio

nowledge about the system is needed to define it, which facilitates agent learning. 
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.2 Training setup 

he training of our proposed control algorithm as well as the test trials were carried ou

sing the simulator developed in the Open AI Gym platform, described in the previou

ction. In Fig. 7 the characteristic curves of the model are presented, where the

mperature is set at 25°C and the solar irradiance has been varied from 100 W/m2 to

000 W/m2. The curves show the behavior of the PV system under different shading

nditions. This figure shows the characteristic V-P curves for only ten different partia

ading conditions and, on each of them, the corresponding maximum power point i

dicated with a filled circle. As we can see, each of them has different local maximum and

metimes these local maximums are near the global maximum which increases the

mplexity of the control problem.  

 

Figure 7. V-P characteristic curves for ten different shading conditions. 

aking into account that the partial shading PV system has a configuration as in Fig. 6, i.e

ith three groups where each group can have from one to ten shaded modules, we can

ave up to 1000 different shading configurations for the PV system. It is noteworthy tha

e proposed model-free control algorithm does not receive any additional information to

e system state and the reward signal, as was explained above. Thus, during the training

hase the shaded configuration is randomly selected for each learning epoch and it is kep

ntil each epoch ends. Fig. 8 shows the evolution of a projection of the value function along

000 epochs, each of them with a different initialization seed (random seed). As can be
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nsistent with zones of high power. 

 
Figure 8. Value function evolution during the training phase. 

he algorithm was implemented in Python using Tensorflow and trained during 30000

pisodes. Each training episode consists of a maximum established duration of 100

mples, each sample consisting of one second. For all cases, an ϵ-greedy exploration

rategy was used, with linear decay throughout the episodes. A repeat experience buffe

ith maximum size fixed in 50000 samples (    = 50000) was established with a random

lection lot size of 64 samples (M = 64). The characteristic state vector of the system

nsists of the voltage and power at each sampling moment, as well as the last powe

ariation such that        ,    ,      ; and the reward function that was used is tha

escribed in Eq. (7). The developed deep RL algorithm is fully available in the GitHub

pository https://github.com/marianodepaula/mppt_ddpg and the corresponding

dications are given in the readme file. 

.3 Testing the MPPT control algorithm 

 this section we show a number of cases where the obtained optimal policy, after the

aining stage, is tested under different shading conditions in an off-line way, i.e. the

aining phase is stopped. 

 the first testing case we follow the array configuration given in Fig. 6, here the firs

roup has 8 shaded modules; the second group has 6 shaded modules; whereas the series

Jo
ur

na
l P

re
-p

ro
of
20 



 

assemblies of the last group have 5 shaded modules. Figure 9 shows the theoretical V-P 

p r 

p  

d  

lo

 

F  
P

 

K f 

o  

in  

a l 

o . 

1  

sh  

le , 

F  

o

 

 

 

 

 

 

Journal Pre-proof
rofile for this shading condition and the red filled circle indicates the maximum powe

oint for this case, which is 30784 W. This characteristic V-P profile was obtained with the

eveloped PV environment (Section 2), varying the tension from 0 to 210 volts in an open

op way.  

 
igure 9. V-P curve for a partial shading condition with 8, 6 and 5 shaded modules in the
V system 

eeping the shading conditions of Fig. 9 during 1000 samplings (each sampling time is o

ne second), when the optimal control policy is used to track the MPP the results showed

 Fig. 10 are obtained. In Fig. 10a tension profile is shown, where it can be seen that only

round 100 sampling times were necessary to successfully drive the system to the optima

peration condition. In Fig. 10b the current profile of the PV system is showed whilst Fig

0c shows the power evolution. As can be seen, the operative condition is achieved in a

ort time and, in this case, the obtained maximum power is 30576 W, that is just 0.68%

ss than the maximum achievable power point for the given shading conditions. Finally

ig. 10d shows the V-P profile obtained when the system is controlled by the learned

ptimal policy under the given shading conditions. 
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a)                                                                      b) 

 
c)                                                                         d) 

igure 10. Results obtained when using the trained DDPG algorithm for the partial shading

nditions given for Fig. 9. a) Output Voltage b) Output current c) Output power d) V-P

rve. 

nalogous to the previous testing case, Fig. 11 shows the theoretical V-P profile fo

nother shading pattern, with 5, 10 and 4 shaded modules in the PV system. As can be

en, the behavior of the PV system is completely different to the previous case and the

aximum power point is in a completely different operation zone, being the maximum

chievable power of 24908 W. Thus, when we used the learned optimal control policy to

ntrol the PV system under the previously mentioned shading conditions, the result

owed in Fig. 12 were obtained.  As can be seen, the obtained control policy drives the

stem successfully in a similar smooth behavior pattern as in the previous testing case. In

is case, the maximum operative power point is 24699 W, which is just 0.89 % less than

e theoretical maximum power point. Jo
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igure 11. V-P curve for a partial shading condition with 5, 10 and 4 shaded modules in the

V system. 

 

 
     a)                                                                           b) 

 

 
     c)                                                                           d) 

igure 12. Results obtained when using the trained DDPG algorithm for the partial shading

nditions given for Fig. 11.  a) Output Voltage b) Output current c) Output power d) V-P

rve. Jo
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here the shading conditions are suddenly changed a number of times. We initially set a

ading pattern, with 2, 10 and 7 shaded modules. Then, after the first 1000 seconds, we

ange the shading conditions to another with 9, 3 and 6 shaded modules in the PV

stem. Finally, for the last 1000 seconds we set a shading pattern with 5, 9 and 10 shaded

odules in the PV system. Note that these testing patterns are quite different to those

sed in the previous test cases. Directly, in Fig. 13 are shown the obtained results of thi

ial. As it can be seen the control policy drives the system successfully and, even more

oing it in a fast way achieving a smooth behavior. In addition, it is noteworthy that there

re no significant overshooting and unstable behaviors at the times shading condition

ange. In this case, the mean difference against the theoretical power maximums for each

ading condition is less than 1%. 
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a) 

 
b) 

 
c) 

 

igure 13. Testing scenario for changing partial shading conditions: first with 2, 10 and 7 

haded modules; secondly with 9, 3 and 6 shaded modules; lastly with 5, 9 and 10 shaded

modules. a) Output Voltage b) Output current c) Output power. 

imilar to the previous case, in Fig. 14 are the results obtained when the control policy

as used to control the partial shaded PV system according to the following shading

hedule:  at the beginning 3, 8 and 5 shaded modules are taken into account during 1000

conds; then, for the next 1000 seconds, 1, 5 and 2 shaded modules were considered and

nally, the PV system configuration was with 4, 7 and 10 shaded modules. Note that in thi

se the shading patterns are significantly different to those used in the previous case. A
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olicy timely acts, driving the system in a successful way being the mean difference of the

tal acquired power, regarding the maximum theoretical achievable power, around

.15%. 

 
a) 

 
b) 

 
c) 

igure 14. Testing scenario for the DDPG algorithm with changing partial shading

nditions: first with 3, 8 and 5 shaded modules; second with 1, 5 and 2 shaded modules

stly with 4, 7 and 10 shaded modules. a) Output Voltage b) Output current c) Outpu

ower. 
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.4 Performance comparison 

 order to make a performance comparison with other comparable methodologies, in thi

ction, we present a comparison between the proposed algorithm and the Twin Delayed

DPG (TD3) [51], which has been gaining an important place within the deep RL

mmunity. The TD3 is an algorithm that incorporates three critical modifications with

spect to the DDPG: first, TD3 learns two Q functions instead of one (hence the term

in) and uses the smallest of the two Q values to compute Bellman's function; second

D3 updates the policy less frequently than the Q function (approximately one policy

pdate for every two updates of the Q function); and finally, TD3 adds some noise to the

ction in order to make it difficult for the policy to learn the errors of the Q function. Since

revious works have reported a successful performance of this algorithm, even improving

ose reached by the DDPG, for several applications in different research fields we chose i

 compare our deep RL formulation for the MPPT control of a partial shading PV system

 is noteworthy that for a fair comparison we used the same training conditions, i.e. same

aining epochs, buffer size, exploration rate, learning rate, etc. For further details abou

e TD3 algorithm implementation refers to the following link

ttps://github.com/marianodepaula/mppt_td3. 

igure 15 shows the results when the TD3 algorithm is used to control a partial shading

V system with 8, 6 and 5 shaded modules. In other words, this condition is the same a

ose assumed in the first testing case presented in the previous sections. Keeping in mind

e shading conditions stated in Fig. 9, the results showed in Fig. 10 and the timely

mments, we can see in Fig. 15 that although the TD3 algorithm presents a correc

erformance, the behavior is somewhat degraded, i.e. more rippled in the steady

peration condition. Moreover, in this case the mean difference against the theoretica

ower maximum (showed in Fig. 9) for this shading condition is around 3.7%.  
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     a)                                                                           b) 

 

           c)                                                                              d) 

igure 15. Results obtained when using the trained TD3 algorithm for the partial shading

nditions given in Fig. 9. a) Output Voltage b) Output current c) Output power d) V-P

rve. 

imilar to the previous comparison case, Fig. 16 shows the result obtained when the

ptimal control policy learned by the TD3 algorithm is used to control the PV system

nder the same shading conditions set for Fig. 11. In this way, this result is comparable

ith that showed in Fig. 12. Here, again we can qualitatively see that despite the good

erformance of the TD3 algorithm, our proposal overcomes the performance of it. Also

om a quantitative point of view, our proposal has better performance that the TD3, in

is case, the mean difference against the theoretical power maximum (showed in Fig. 9

r this shading condition is around 2.6%.  
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   a)                                                                          b) 

 

              c)                                                                            d) 

igure 16. Results obtained when using the trained TD3 algorithm for the partial shading

nditions given in Fig. 11. a) Output Voltage b) Output current c) Output power d) V-P

rve. 

lthough, in general terms, the TD3 algorithm shows an acceptable behavior, although

ferior to that obtained using our proposal, we have also tested the TD3 for changing

ading conditions like those given for Fig. 13. Directly, Fig. 17 shows the results obtained

hen the control policy, obtained using the TD3 algorithm, is used to control the PV

stem under these changing shading conditions. Here it is notable the rippling behavio

troduced by the control policy and also the total power obtained is less and also les

able than when using our proposed control algorithm. 
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   a)                                                                         b) 

 

   c)                                                                         d) 

 

igure 17. Results obtained when using the trained TD3 algorithm for the partial shading

nditions given in Fig. 13. 

. Concluding remarks 

his work proposes a deep reinforcement learning formulation to address the MPPT

ntrol problem of a PV array under partial shading conditions in a continuous state

ction domain. An exhaustive performance study was made, and several testing case

ere presented. In addition, a comparative study was carried out between our proposed

lgorithm and comparable methodology with similar features. The obtained result

emonstrated a successful performance of DRL to manage a complex PV system unde

artial shading conditions. 

he proposed algorithms demonstrated high precision to obtain the global maximum

ower value while maintaining the state and action space tractable. Furthermore, the
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n be implemented without any additional configuration and previous knowledge of the

stem. Because of the model-free feature of RL, we rely solely on sampling to estimate the

quired actions, thus we do not need to model the inner operation of the system. This is a

aluable feature since no expert knowledge is required to learn an optimal control policy

y means of the proposed algorithm. The only exception is the reward function, that need

 be defined beforehand, but this is common to all RL formulations. However, we

emonstrated that using a reward function defined in the simplest possible way causes the

lgorithm to converge to an optimal policy, even more, it does it in a successful way

owing outstanding capabilities of generalization and adaptability of such policy. All thi

 of paramount importance and represents a distinctive advantage for the management o

mplex systems operating under uncertain conditions, i.e. like PV systems, especially

hen they are exposed to shading conditions. 

nother valuable contribution of this work is the modeling and development of a partia

ading photovoltaic system as a Gym environment in the wide spread open source

penAI platform.  This environment allows setting shading conditions as well as othe

stem features by setting up its parameters. In this sense, this environment will facilitate

e testing for future developments of MPPT control algorithms mainly those based on

achine learning techniques. 

inally, it is worth noting the lack of bibliography on deep RL formulations for the MPPT

ntrol problem under PSC. The best results show that the maximum operating powe

oint using a continuous control policy is less than 1% compared to the theoretica

aximum power point. Therefore, the obtained results open a promising avenue fo

ture works and developments in the area of machine learning -especially in the modern

eep reinforcement learning community- to address the complex MPPT problem of PV

stems under variable environmental conditions. In a broad sense, our work is a semina

ntribution for the development of artificial intelligence applications in the field of smar

rids. Jo
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esearch highlights for the manuscript:

Deep reinforcement learning approach for MPPT control of partiall
haded PV systems in Smart Grids” 

- Control  method  for  a  partially  shaded photovoltaic  system for  Sm

rids.

- Model free deep RL approach for maximum power point tracking contr

- PV array under partially shaded conditions was modeled as an Ope

ym environment.

- Our  approach  finds  a  control  policy  without  prior  knowledge  of  

ystem behavior.
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