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a b s t r a c t

In the presence of analyte–background interactions and a significant background signal, both second-
order multivariate calibration and standard addition are required for successful analyte quantitation
achieving the second-order advantage. This report discusses a modified second-order standard addition
method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation
proceeds via the classical external calibration procedure. It is shown that this novel data processing
method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-
alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-
squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant
N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a
set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate
in human serum in the presence of naproxen as an additional interferent, and the second one devoted to
the analysis of danofloxacin in human serum in the presence of salicylate.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Calibration by standard addition is employed to cope with
background effects, which are usually due to a change in analyte
response brought about by interactions with the background, i.e.,
a change in the slope of the univariate signal–concentration rela-
tionship. Univariate standard addition is designed to circumvent
this phenomenon [1]. More generally, an interfering background
signal may be overlapped with that from the analyte. This problem
can only be solved by univariate standard addition when the back-
ground response arises from the chemical treatment of the sample
rather than from the sample itself. This allows one to adequately
subtract it from the analyte signal (for example, by carrying out two
standard additions on different sample amounts, or by combining
standard addition with Youden calibration) [2]. This latter situa-
tion is not the most common one, however, and does not include
the analysis of natural or biological samples containing a variety
of responsive non-analytes. A background signal stemming from
responsive non-analytes constitutes an interference in univariate
analysis, and cannot be corrected by means of standard addition.

∗ Corresponding author. Tel.: +54 341 4372704; fax: +54 341 4372704.
E-mail addresses: olivieri@iquir-conicet.gov.ar, aolivier@fbioyf.unr.edu.ar (A.C.

Olivieri).

In the first-order multivariate calibration scenario, a general-
ized version of univariate standard addition method (the so-called
GSAM) is available [3,4], which implies measuring first-order data
(i.e., spectra) for various overlapping analytes embedded in a sam-
ple background. Generalized standard addition not only demands
knowledge of the number and identity of the analytes, but also
that standards of each of them are available, in order to be added
in perfectly known amounts to each sample. The limitations of this
method regarding the background effects are analogous to those
for the univariate standard addition mode.

The presence of a responsive background, which does also affect
the analyte response in a sample (for example, through inner filter
effects or analyte–background interactions such as complex forma-
tion or protein binding) requires second-order standard addition
for analyte quantitation [5]. This ubiquitous analytical problem can
also be solved by second-order external calibration in the presence
of background, provided the latter is available to be spiked with the
analyte [6]. In general, however, this approach is not experimen-
tally feasible.

Only a few references exist in the literature on this interesting
standard addition multi-way research field [7–11]. The algorithm
of choice for obtaining the second-order advantage from standard
addition data is parallel factor analysis (PARAFAC) [12], although
a recent report prefers the PARALIND variant [9] (a PARAFAC ver-
sion adapted to linearly dependent systems, as described in Ref.
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[13]). This is because of the presence of linear dependencies in
standard addition data when more than one interferent occurs in
the test sample. In certain cases, standard addition PARAFAC could
not be employed because of serious profile overlapping in one of
the data dimensions, in which case multivariate curve resolution-
alternating least-squares (MCR-ALS) [14] was successfully applied
[11]. It should be noticed that linear dependency is a general phe-
nomenon, which is not only present in standard addition data, but
also in pH-gradient [14] or kinetic-modulated spectral experiments
[15,16].

Recently, attention has been focused on alternative second-
order multivariate calibration algorithms achieving the second-
order advantage, which are based on powerful latent-structured
methodologies. Pertinent examples are unfolded partial least-
squares/residual bilinearization (U-PLS/RBL) [17] and multidimen-
sional partial least-squares/residual bilinearization (N-PLS/RBL)
[18]. These methods cannot be directly applied in the standard
addition mode, because they include a calibration step in which
nominal analyte concentrations are required, and these are neither
available for test samples nor for those obtained after the addition
of standards. This is somewhat deceptive, since PLS-based methods
are more flexible and have been recently shown to provide better
figures of merit than their competitors [6,19–22]. In some cases,
they have even been found to be the only possible choice among
the available second-order methodologies [19].

Interestingly, these second-order PLS/RBL methods can be
applied to standard addition data, provided a recently discussed
modification is incorporated, which consists of subtracting the test
data matrix from the standard addition matrices, with quantita-
tion proceeding by a classical external calibration procedure [11].
The purpose of the present work is to compare the performances
of these new standard addition U-PLS/RBL and N-PLS/RBL algo-
rithms with those based on PARAFAC, PARALIND and MCR-ALS
analyses. Both simulated and experimental results indicate similar
prediction abilities of the new models, suggesting that the methods
herein described deserve to be added to the analyst resources for
tacking complex samples with both a responsive background and
analyte–background interactions.

2. Experimental

2.1. Equipment

Fluorescence excitation–emission matrices were measured
with a PerkinElmer LS 55 luminescence spectrometer equipped
with a xenon discharge lamp (equivalent to 20 kW for 8 �s dura-
tion) and connected to a PC microcomputer, using 1.00 cm quartz
cells. Instrumental parameters were: excitation and emission slits,
5 nm, photomultiplier voltage 650, scan rate 1500 nm min−1. For
the experimental system 1 (analyte salicylate in serum in the pres-
ence of naproxen), excitation was scanned in the range 260–320 nm
(each 0.5 nm), and emission in the range 330–494 nm (each 2 nm),
producing matrices of size 121 × 83 data points. For the experi-
mental system 2 (analyte danofloxacin in serum in the presence
of salicylate), the corresponding ranges were 272–321 nm (each
0.5 nm) and 400–500 nm (each 2 nm) respectively, yielding matri-
ces of size 99 × 51.

Data were saved in ASCII format, and transferred to a PC Sem-
pron AMD microcomputer for subsequent manipulation by the
multivariate programs.

2.2. Reagents

All chemicals used were of analytical reagent grade. For the
experimental system 1, the following solutions were employed:
NH3 0.1 mol L−1, prepared from commercial NH3 (Merck, Darm-

stadt, Germany), stock solutions of sodium salicylate 1000 mg L−1

(Merck, Darmstadt, Germany) and of sodium naproxenate
1000 mg L−1 (Sigma, St. Louis, MO, USA), both prepared weighting
the required amount of the corresponding compounds and dissolv-
ing it in doubly distilled water.

For the experimental system 2, a sodium acetate/acetic acid
buffer (1.00 mol L−1, pH 4.00) was used. Stock solutions of
danofloxacin 100 mg L−1 (Riedel-de Haën, Sigma–Aldrich, Stein-
heim, Germany) in acetic acid 5 × 10−2 M, sodium salicylate
1000 mg L−1 (Merck, Darmstadt, Germany) were also prepared,
weighting the required amount of the corresponding compound
and dissolving it in doubly distilled water.

2.3. Procedure

For the determination of salicylate in serum in the presence of
naproxen, appropriate aliquots of the corresponding stock solu-
tions and 4.00 �L of serum were placed in a 2.00 mL volumetric flask
and completion to the mark was achieved with NH3 0.1 mol L−1.
The solution was placed in the measuring cell and the fluores-
cence excitation–emission matrix was measured. Three successive
additions of analyte stock solution (1.4 �L) were then carried out,
in such a way that the analyte concentrations were respectively
increased by (1) 0.07, 0.14 and 0.21 mg L−1 for salicylate (concen-
tration changes by dilution were considered negligible). After each
addition, the samples were homogenized. The final concentration
ranges for the analyzed drug was as follows (values refer to the
measuring cell): salicylate, from 0.00 to 0.60 mg L−1. We estimate
the uncertainties in all these analyte concentrations to be of the
order of ± 0.01 mg L−1. The degree of serum dilution (1:500) was
such that the maximum serum concentration of the studied drug
was 300 mg L−1 for the salicylate, and ca. 100 mg L−1 for naproxen.
All these concentration ranges are within the therapeutic values of
the studied drugs in human serum.

For the determination of danofloxacin in serum in the pres-
ence of salicylate, appropriate aliquots of the corresponding stock
solutions, 200 �L of acetic/acetate buffer and 13 �L of serum were
placed in a 2.00 mL volumetric flask and completion to the mark
was achieved with distilled water. The solution was placed in the
cuvette and the matrix was measured. Three successive additions of
analyte stock solution (1.0 �L) were then carried out, in such a way
that the analyte concentrations were respectively increased by (1)
5.0, 10.0 and 15.0 ng L−1 for danofloxacin (concentration changes
by dilution were considered negligible). After each addition, the
samples were homogenized. The final concentration ranges for
the analyzed drug was as follows (values refer to the measur-
ing cell): danofloxacin, from 0.00 to 55.0 ng L−1. We estimate the
uncertainties in all these analyte concentrations to be of the order
of ± 0.01 mg L−1. The degree of serum dilution (1:150) was such
that the maximum serum concentration of the studied drug was
5.00 mg L−1 for danofloxacin and ca. 200 mg L−1 for salicylate. All
these concentration ranges are within the therapeutic values of the
studied drugs in human serum.

3. Simulations

Data were simulated for multi-component mixtures having a
single analyte and two potential interferents appearing in the test
samples, and for the corresponding standard additions of pure ana-
lyte at known concentrations. Noiseless profiles for the analyte and
for the potential interferents are shown in Fig. 1A and B in both data
dimensions, leading to data matrices of size 50 × 40 data points.
Using the analyte profiles shown in Fig. 1, 1000 test samples were
created in which the analyte was considered to be present at con-
centrations which were taken at random from the range 0–1. These
test samples did also contain both potential interferents, at con-



Author's personal copy

V.A. Lozano et al. / Analytica Chimica Acta 651 (2009) 165–172 167

Fig. 1. Noiseless profiles employed for the simulations, in the first (A) and second
dimension (B). In both cases, the solid line corresponds to the analyte, the dashed
and dotted lines to the potential interferents.

centrations taken at random from the range 0.5–1.5 (to ensure that
they always contain a significant amount of interferent). The matrix
signal X for a typical test sample was given by:

X = y1b1cT
1 + y2b2cT

2 + y3b3cT
3 (1)

where the concentration of the analyte is y1 and those for the inter-
ferents are y2 and y3, bn and cn (n = 1, 2, 3) are the (J × 1) and (K × 1)
component profiles in dimensions 1 and 2 respectively, (J and K are
the number of channels in each dimension) and the superscript ‘T’
indicates matrix transposition. The profiles bn and cn are shown in
Fig. 1A and B, all normalized to unit length.

To give an idea of the spectral overlapping in this simulated
three-component system, the selectivity parameter defined by
Messick, Kalivas and Lang (MKL) [23] can be employed, as described
in Ref. [24]. The corresponding value, calculated from the profiles
shown in Fig. 1, is 0.89 (this can be compared below with both of
the studied experimental systems).

For each of the test samples, three standard addition samples
were built, having the analyte at concentrations which were 1, 2 and
3 units larger than the analyte concentration in the test samples.
The interferent concentrations were kept constant in all these latter
samples. Once the noiseless matrices were built, gaussian noise was
added to all signals. The standard deviation of the added noise was
0.01 units, representing ca. 5% of the maximum signal for a typical
test data matrix. Uncertainty in concentrations (with a standard
deviation of 0.01 units) was also introduced both in the nominal
analyte concentrations and in the nominal concentrations added
to each sample.

The simulated data matrices, i.e., test data matrices and the
corresponding standard additions matrices were processed with
the following second-order multivariate calibration models: (1)

PARAFAC, (2) PARALIND, (3) MCR-ALS, (4) U-PLS/RBL and (5) N-
PLS/RBL, in a manner which will be described in detail below.

4. Theory

4.1. Algorithms

The theory of the second-order multivariate calibration algo-
rithms applied in the present work is now well established and can
be found in the relevant references: PARAFAC, Ref. [12], PARALIND,
Ref. [13], MCR-ALS, Ref. [14], U-PLS/RBL, Ref. [17] and N-PLS/RBL,
Ref. [18].

In the case of PARAFAC as applied in the usual standard addi-
tion mode 1, a three-way array is built with matrix data for a
given test sample and the corresponding standard additions. Fig. 2A
shows a scheme of the data matrices which are joined for PARAFAC
analysis. The decomposition renders the so-called scores or rel-
ative concentrations (usually contained in the score matrix A, of
size I × N, where I is the number of samples and N the number of
responsive components). The decomposition is accomplished by
initializing the algorithm with scores and loadings provided by:
(1) direct trilinear decomposition (DTLD) [25], (2) the best results
of a set of a small number of runs, including DTLD results and
vectors composed of random numbers. The possibility exists of
applying non-negativity restrictions to all three modes during the
least-squares fitting phase.

In the calibration mode 1, the analyte scores are employed
to build a pseudo-univariate standard addition calibration graph
against added analyte concentrations, predicting the concentration
in the test samples in the usual univariate manner, i.e. [26]:

[a(1, n)|a(2, n)| . . . |a(I, n)] = m1[0|yT ] + n1 (2)

yu = n1

m1
(3)

where n indicates the analyte, yu is the predicted concentration, and
y the vector [size (I − 1) × 1] of nominal concentrations added to the
sample. It is assumed that sample no. 1 is the test sample and sam-
ples 2 . . . I are the standard additions. As recently pointed out, in
this case the scores for the interferents are constant in all samples,
and hence the corresponding columns of the A matrix are linearly
dependent [9]. One of the purposes of this simulated work was
to investigate the limits in the applicability of standard PARAFAC
to this analytical problem, probing different initialization condi-
tions, and non-negativity restrictions during the least-squares fit.
It should be noticed that PARALIND was recommended for this
second-order standard addition mode [9]. We have applied this lat-
ter model to the simulated data, in a manner similar to PARAFAC,
except that correlations between the scores of both interferents
are taken into consideration, as described in Ref. [13]. The analyti-
cal phase which follows PARALIND decomposition is analogous to
that discussed above for PARAFAC.

In the modified standard addition mode 2, the test data matrix
is digitally subtracted from each of the standard addition matri-
ces, creating a new data set comprised of the unknown matrix and
data matrices representing the contribution of the pure analyte,
embedded in the background of the test sample. The correspond-
ing matrices are schematically shown in Fig. 2B. A new three-way
array is created with these matrices, and subjected to PARAFAC
decomposition. Quantitation is then possible using the standard
calibration mode, i.e.:

[a(2, n)|a(3, n)| . . . |a(I, n)] = m2yT + n2 (4)

yu = [a(1, n) − n2]
m2

(5)
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Fig. 2. Schematic representation of both standard addition modes. (A) The usual mode 1, where the matrices to be analyzed are the test sample data matrix and the standard
addition matrices. The blue, red and green lines represent the profiles in both data dimensions of the analyte and two interferents, respectively. Thus, all matrices contain
the same amount of interferents (red and green), whereas the analyte signal (blue) increases from left to right. (B) The modified mode 2, where the test sample data matrix
is analyzed together with artificial pure analyte matrices. Here, only the test matrix contains all three components. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

In this mode, the scores for the interferents are no longer linearly
dependent, since they are absent in the artificial pure analyte matri-
ces. However, when a single test sample having more than one
interferent occurs, the PARAFAC fitting may lead to linear combina-
tions of the interferent scores and loadings. This does not imply that
analyte quantitation is not possible, provided the analyte profiles
are correctly retrieved, which can be achieved via proper initializ-
ing conditions and non-negativity restrictions in all three PARAFAC
modes.

When applying MCR-ALS to this type of problems, the imple-
mentation of both standard addition modes is analogous to
PARAFAC, as previously described in detail [11]. In the case
of MCR-ALS, matrix augmentation was performed in the first
dimension, initialization was made by resorting to the so-called
purest variables found by SIMPLISMA (simple interactive self-
modelling mixture analysis) [27], and restrictions were imposed
during the least-squares phase (non-negativity in both concen-
tration and spectral profiles). In the new standard addition mode
2, an additional restriction can be applied: the correspondence
among components and samples, which involves information as
to whether a given component is present or absent in certain sam-
ples. In this case, the interferent is only present in the test sample,
information which is valuable during the decomposition of the aug-
mented data matrix.

Finally, in applying the new standard addition U-PLS/RBL and
N-PLS/RBL models, only the calibration mode 2 is possible. The
implementation is thus analogous to that described in detail in the
relevant references [17,18].

4.2. Software

All simulations were done using MATLAB [28]. PARAFAC, PAR-
ALIND and N-PLS were implemented with the codes provided
by Bro in his webpage: http://www.models.kvl.dk/source/. The
latter were incorporated into the useful MATLAB graphical inter-
face MVC2 [29], available at http://www.chemometry.com/Index/
Links%20and%20downloads/Programs.html. The MVC2 program
does also implement the N-PLS/RBL and U-PLS/RBL combinations.
MCR-ALS was applied with the graphical interface maintained by
Tauler in http://www.ub.es/gesq/mcr/mcr.htm.

5. Results and discussion

5.1. Simulated data

The results of the analysis of a typical simulated test sample by
different methods are now reported. PARAFAC was first applied
considering three responsive components. In general, when the
PARAFAC standard addition mode 1 is employed with no restric-
tions imposed, and starting the least-squares fit from the scores
and profiles given by DTLD, the final profiles are not physically rea-
sonable, i.e., some of the values are negative. However, as can be
seen in Fig. 3, the analyte profiles and scores are correctly retrieved,
permitting accurate quantitation of the analyte. The application of
non-negativity restrictions leads to reasonable interferent profiles,
rendering in this case reasonable scores not only for the analyte (i.e.,
values which increase with the addition of the analyte standard),
but also for the interferents (approximately constant scores in all
samples). It thus appears that non-negativity constrained PARAFAC
is enough to allow for a qualitative analysis of the component pro-
files, and also to quantitate the analyte by standard addition, even in
the presence of more than one interferent. Hence, especial variants
such as PARALIND do not appear to be required.

However, when the above process was repeated for 1000 dif-
ferent samples, ca. 10% of the cases yielded significantly inaccurate
results, even after applying non-negativity restrictions. Table 1 col-
lects the results for the first 10 test samples, and Fig. 4 shows
a box and whisker plot summarizing the complete 1000 results
(algorithm 1). The results yielding predictions which are signifi-
cantly different than the nominal values corresponded to PARAFAC
solutions which are linear combinations of the known component
profiles. The results were, however, correct when PARAFAC was ini-
tialized with scores and loadings provided by the best results of a
set of 10 small runs, which included DTLD and vectors composed of
random numbers (Fig. 4, algorithm 2). Table 1 collects the results
for the first 10 samples using this strategy, which leaded to an over-
all root mean square error (RMSE) of 0.04 units (ca. 8% with respect
to the mean test concentration for the analyte).

The same set of 1000 samples was studied using PARAFAC in
the modified standard addition mode 2. The application of DTLD
initialization and non-negativity constraints was enough to yield
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Fig. 3. Profiles retrieved when PARAFAC was applied with no restrictions, initialized
with DTLD values, on a typical simulated sample using the classical standard addition
mode 1. (A) Profiles in the first dimension, with the solid line corresponding to the
analyte, and the dashed and dotted lines to the potential interferents. (B) Profiles in
the second dimension. Lines are as in plot (A).

prediction results with an accuracy comparable to that reached by
mode 1 (see Table 1 for specific results for the first 10 samples).
However, Fig. 4 (algorithm 3) implies slightly poorer prediction
results in comparison with the former alternative.

PARALIND was then applied considering three components. The
model was initialized with the best profiles retrieved for a set of 20
calculations, run with a few iterations each. Non-negativity restric-
tions were imposed on all three modes. The results, in terms of
predictive ability of the model, were very similar to those obtained
for the best PARAFAC model, i.e., the one including non-negativity
constraints and initialization with the best of 10 small runs (see

Fig. 4. Box and whisker plot of the complete 1000 prediction results corresponding
to the simulated study. Algorithms are numbered in the horizontal axis as follows:
(1) PARAFAC in mode 1, initialized with DTLD, (2) PARAFAC in mode 1, initialized
with the best of 10 small runs, (3) PARAFAC in mode 2 initialized with DTLD, (4)
PARALIND in mode 1, (5) MCR-ALS in mode 1, (6) MCR-ALS in mode 2, and (7) N-
PLS/RBL in mode 2. For each algorithm, the gray boxes are bounded by the 25%
and 75% quartiles with the median inside, whereas the extreme levels correspond
to 5% and 95% quartiles. PARAFAC, PARALIND and MCR-ALS were all applied using
non-negativity restrictions.

Table 1 for the results corresponding to the first 10 samples, and
Fig. 4 for the full predictions on the 1000 simulated test samples).

As recently discussed, MCR-ALS is another second-order mul-
tivariate calibration strategy which could in principle be applied
to standard addition analytical problems in either of the presently
discussed modes 1 or 2. Details are provided above and in Ref. [11].
As with PARAFAC, three components were considered to be present
in all samples. The prediction results for the first 10 samples show
RMSE which are comparable to the PARAFAC alternatives, as clearly
displayed in Table 1. However, inspection of Fig. 4 reveals a bias
in the complete results using mode 1, with a significant improve-
ment on employment of mode 2 (in fact, the small remaining bias
is comparable to the uncertainty in nominal concentrations, i.e.,
0.01 units). The origin of the bias in the former case is unclear, but
may be related to the strong correlations when mode 1 is used.

Finally, the latent variable structured models U-PLS/RBL and N-
PLS/RBL models were applied to the 1000 sample test set, using
the only possible standard addition strategy, i.e., mode 2. Cali-
bration was performed using a single latent variable, while two
components were included in the RBL phase. It should be noticed

Table 1
Prediction results in the first 10 samples of the simulated data set.

Nominal PARAFACa PARALINDa MCR-ALSa N-PLS/RBL

Mode 1b Mode 1c Mode 2b Mode 1 Mode 1 Mode 2 Mode 2

0.49 0.48 0.43 0.45 0.45 0.53 0.48 0.46
0.15 0.18 0.22 0.20 0.21 0.19 0.14 0.21
0.78 0.68 0.71 0.73 0.73 0.82 0.77 0.74
0.07 0.03 0.04 0.03 0.04 0.11 0.06 0.06
0.11 0.46 0.08 0.09 0.09 0.15 0.10 0.10
0.76 1.20 0.75 0.75 0.74 0.80 0.75 0.77
0.50 0.52 0.51 0.50 0.50 0.54 0.49 0.52
0.55 1.09 0.47 0.49 0.48 0.59 0.54 0.51
0.05 0.70 0.04 0.05 0.05 0.09 0.04 0.07
0.13 0.12 0.11 0.12 0.12 0.17 0.18 0.13
RMSEd 0.32 0.05 0.04 0.04 0.04 0.02 0.03
REP%d 64 10.0 8.0 8.0 8.0 4.0 6.0

a Mode 1 is the usual standard addition mode, mode 2 is the modified standard addition strategy described in the present work.
b Initialized using the DTLD algorithm, and fitted by applying non-negativity restrictions during the least-squares phase.
c Initialized using the best of 10 small runs, and fitted by applying non-negativity restrictions during the least-squares phase.
d RMSE: root mean square error; REP%: relative error of prediction.
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that in the case of two interferents in the test samples, the pro-
files retrieved by U-PLS/RBL and N-PLS/RBL do not resemble true
component profiles, because they are obtained through princi-
pal component analysis [17]. The results using U-PLS/RBL were
rather discouraging, since for some of the studied samples sig-
nificantly inaccurate predictions were obtained. However, the use
of the multidimensional variant N-PLS/RBL achieving the second-
order advantage provided results with comparable accuracy to the
PARAFAC and MCR-ALS alternatives. Table 1 demonstrates that the
RMSE for N-PLS/RBL for the first 10 test samples is comparable
to the remaining algorithms. Fig. 4 also shows that the complete
results are of a quality comparable to the best PARAFAC/PARALIND
results. It appears that the multidimensional variant of PLS, which
maintains the matrix data structure rather than unfolding it as in
the case of U-PLS, is able to better handling the analytical informa-
tion in order to achieve the second-order advantage in the presently
discussed systems.

5.2. Experimental data

5.2.1. Experimental system 1
The determination of salicylate in serum requires standard addi-

tion, due to changes in the analyte spectrum by interactions with
the serum background [7]. When PARAFAC analysis of the differ-
ent experimental data sets was attempted, the first step was the
estimation of the number of responsive components. This can in
principle be assessed using the diagnostic tool known as core con-
sistency test [30], or the consideration of the residual fit of the
PARAFAC model as the number of components is increased [20].
We applied this second-order method in the above discussed mode
2, with non-negativity restrictions and initialization with the best
results for a set of 10 small runs. During the analysis of the exper-
imental system 1, after PARAFAC processing of a three-way array
composed of a typical spiked test serum sample and the set of stan-
dard addition samples, the progression of core consistency values
was 100, 99.7, 99.5, 99.8 and 74.5 for 1–5 components respectively,
while the residuals of the PARAFAC fit decreased as follows: 25,
3.5, 2.6, 2.5 and 2.4 arbitrary fluorescence units. This suggests that
core consistency does not allow to firmly establish the number of
responsive components, while three components appear to be opti-
mum when analyzing the residual fit, which seemed to be a more
reasonable choice.

It is interesting to inspect the three spectral profiles retrieved
by PARAFAC when processing typical standard addition data in
mode 2, which are shown in Fig. 5. The analyte salicylate shows
excitation and emission maxima at 300 and 410 nm respectively,
while the interferents can be identified as naproxen (excitation at
265 nm with a shoulder at 320 nm, and emission at 355 nm) and
serum (excitation at 280 and emission at 340 nm, most probably
corresponding to the fluorescence of tryptophan). When four com-
ponents were extracted by PARAFAC, the fourth profile was similar
to one of the first three, confirming that three components is a
good choice for this type of samples. For comparison with the sim-
ulated system, the MKL selectivity in this experimental system is
computed to be 0.92.

The prediction results for the set of spiked test samples are
shown in Table 2, leading to a reasonably low root mean square
error for the prediction of the analyte in this set of spiked samples,
consistent with the high analyte selectivity. Application of PAR-
ALIND to this set of experimental data led to analogous results to
those obtained from PARAFAC (Table 2).

When applying MCR-ALS, the processing of the data was similar
to that already described in Ref. [11]. Three responsive components
were included in the study, as confirmed by principal component
analysis. The initial profiles employed to start the MCR-ALS fitting
were estimated by SIMPLISMA, as discussed above in relation to

Fig. 5. Profiles retrieved when PARAFAC was applied in mode 2 with non-negativity
restrictions, initialized with the best of 10 small runs, on a typical experimental
sample of serum containing salicylate and naproxen. (A) Emission profiles, with the
solid line corresponding to the analyte salicylate, and the dashed and dotted lines
to the potential interferents. (B) Excitation profiles. Lines are as in plot (A).

the simulated data. The predictions concerning the experimental
system 1 were of the same quality as PARAFAC (Table 2).

When applying U-PLS/RBL and N-PLS/RBL to this set of sam-
ples, the best result was obtained using the latter methodology. As
in the case of the simulated data, highly inaccurate results were
obtained for one of the samples, while N-PLS/RBL furnished an
RMSE value comparable to those for PARAFAC, PARALIND and MCR-
ALS (Table 2).

5.2.2. Experimental system 2
The determination of fluoroquinolone antibiotics in serum, such

as danofloxacin, requires standard addition due to changes in the
analyte spectrum by interactions with the serum background [11].
As in the previous system, PARAFAC was applied in mode 2, and was
initialized with profiles obtained after a small set of trial runs, with
non-negativity ensured in all three modes during the least-squares
fit. In this case, decomposition of a three-way array composed of
a typical spiked sample and the standard addition samples led to
the following core consistency values: 100, 94.7, 89.9, 80.5 and 58.5
for 1–5 components respectively. The residuals of the PARAFAC fit,
in turn, were estimated as 9.7, 4.7, 3.6, 3.5 and 3.5 arbitrary fluo-
rescence units. Again, this suggests that three components appear
to be optimum, a conclusion which can only be reached from the
residual fit and not from core consistency diagnostics.

The three spectral profiles retrieved by PARAFAC are shown
in Fig. 6 for a typical analysis. The one ascribed to the analyte
danofloxacin shows excitation maxima at 280 and 320 nm and
emission at 450 nm, while the interferents can be identified as
salicylate (excitation at 300 nm emission at 410 nm) and serum
(excitation at 280–290 nm and emission as a decreasing band which
could be due to the one centred at 350 nm, which may correspond
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Table 2
Prediction results in the experimental data sets.

Experimental system 1a

Salicylate nominal PARAFACb PARALINDb MCR-ALSb U-PLS/RBLc N-PLS/RBLc

0.20 0.20 0.20 0.20 0.20 0.20
0.50 0.51 0.51 0.51 –d 0.50
0.05 0.06 0.06 0.06 0.06 0.06
0.00 0.02 0.02 0.01 0.01 0.01
0.03 0.03 0.03 0.04 0.04 0.04
RMSEe 0.01 0.01 0.01 0.01 0.01

Experimental system 2f

Danofloxacin nominal PARAFACb PARALINDb MCR-ALSb U-PLS/RBLc N-PLS/RBLc

10 18 18 21 7 7
40 55 55 107 41 31
0 6 6 5 0 0
5 12 12 19 2 3
25 15 15 18 13 13
RMSEe 10 10 30 6 7

a Values in mg mL−1. All samples contain serum and naproxen 0.20 mg mL−1.
b PARAFAC, PARALIND and MCR-ALS were applied with three components in both data sets.
c U-PLS/RBL and N-PLS/RBL were applied with one latent variable for calibration and two interferents in both data sets.
d Highly inaccurate result. The RMSE is reported excluding this sample.
e RMSE: root mean square error.
f Values in ng mL−1. All samples contain serum and salicylate (0.50 mg mL−1 in the first three samples and 0.30 mg mL−1 in the remaining two).

to tryptophan). In this case the MKL selectivity is lower than in the
previous system, and is computed as 0.74.

Specific prediction results for the set of spiked test samples are
shown in Table 2. In this case, where lower sensitivity towards

Fig. 6. Profiles retrieved when PARAFAC was applied in mode 2 with non-negativity
restrictions, initialized with the best of 10 small runs, on a typical experimental
sample of serum containing danofloxacin and salicylate. (A) Emission profiles, with
the solid line corresponding to the analyte danofloxacin, and the dashed and dotted
lines to the potential interferents. (B) Excitation profiles. Lines are as in plot (A).

the analyte is attained, and heavy spectral overlapping occurs in
both data dimensions, the RMSE is rather high in comparison with
the mean analyte concentration across the set of samples. As with
the previous experimental system, the prediction results obtained
from PARALIND were identical to those corresponding to PARAFAC
(Table 2).

When applying MCR-ALS, the predictions were clearly worse,
indicating that the combination of low analyte signal and spec-
tral overlapping have a stronger effect on this algorithm than on
PARAFAC decomposition.

U-PLS/RBL and N-PLS/RBL, on the other hand, led to significantly
better predictions (Table 2). This may be an indication that these
latent structure methods may be better prepared to cope with the
problems of severe spectral overlapping when analyzing standard
addition data.

6. Conclusions

This work shows that partial least-squares models, both in
the unfolded and multidimensional versions, can be applied to
standard addition calibration of second-order instrumental data,
provided the following operations are carried out: (1) they are cou-
pled with residual bilinearization, which allows them to achieve
the second-order advantage, and (2) the matrix data are modified,
subtracting the test data matrix from all standard addition matrices.
Both simulations and experiments indicate that multidimensional
partial least-squares/residual bilinearization is able to render the
best analytical results, comparable to those furnished by the clas-
sical algorithms parallel factor analysis (either in the usual version
or by taking care of linear dependencies) and multivariate curve
resolution-alternating least-squares.
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