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Jamming and percolation of linear k-mers on honeycomb lattices
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Numerical simulations and finite-size scaling analysis have been performed to study the jamming and percola-
tion behavior of elongated objects deposited on two-dimensional honeycomb lattices. The depositing particle is
modeled as a linear array of length k (so-called k-mer), maximizing the distance between first and last monomers
in the chain. The separation between k-mer units is equal to the lattice constant. Hence, k sites are occupied by
a k-mer when adsorbed onto the surface. The adsorption process starts with an initial configuration, where all
lattice sites are empty. Then, the sites are occupied following a random sequential adsorption mechanism. The
process finishes when the jamming state is reached and no more objects can be deposited due to the absence
of empty site clusters of appropriate size and shape. Jamming coverage θ j,k and percolation threshold θc,k were
determined for a wide range of values of k (2 � k � 128). The obtained results shows that (i) θ j,k is a decreasing
function with increasing k, being θ j,k→∞ = 0.6007(6) the limit value for infinitely long k-mers; and (ii) θc,k has
a strong dependence on k. It decreases in the range 2 � k < 48, goes through a minimum around k = 48, and
increases smoothly from k = 48 up to the largest studied value of k = 128. Finally, the precise determination of
the critical exponents ν, β, and γ indicates that the model belongs to the same universality class as 2D standard
percolation regardless of the value of k considered.
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I. INTRODUCTION

Irreversible adsorption of extended objects is currently a
very active field of research in surface science and statistical
mechanics. The model appears to offer a good description of
a great variety of complex surface processes such as adsorp-
tion of large molecules on solid substrates [1–3], particles
deposited on cell membranes [4], latex spheres on a silica
surface [5,6], etc. However, phenomena associated to irre-
versible adsorption, such as jamming and percolation, have
been attractive and important topics in statistical physics for a
long time [7–20]. In the case of percolation theory, the phase
transition involved in the process can be described in terms
of an usual second-order phase transition. This mapping to
critical phenomena made percolation a full part of the theoreti-
cal framework of collective phenomena and statistical physics
[21–24].

In the simplest case of irreversible adsorption, objects are
deposited sequentially at random positions onto a lattice. Any
trial leading to overlap with a previously placed object is
rejected; and this process continues until no further particles
may be placed due to the absence of free space of appropriate
size and shape. Such processes are called random sequen-
tial adsorption (RSA) processes [7,25–28], and a quantity of
central interest in RSA studies is the maximum fraction of
extended objects that can be deposited on the lattice (jamming
coverage).
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However, one of the first results in percolation theory is
that, depending on the lattice, there exists a minimum con-
centration of elements (sites or bonds) above which a cluster
of occupied elements spans from one side of the lattice to
the other. This minimum concentration of elements is named
percolation threshold and determines a second-order phase
transition in the system.

In some applications one may want that percolation dom-
inates (i.e., communications), in others one may prefer that
jamming dominates and percolation is suppressed at an
early stage (i.e., forest fires). Thus, the competition between
percolation threshold and jamming coverage is a field of
great interest that has been addressed by various authors.
In the case of linear k-mers on 2D lattices, which is the
topic of this paper, the problem has been widely studied
in the literature for square [8–14] and triangular [15–20]
geometries.

In the case of straight rigid k-mers on square lattices, it was
found that: (i) the limit coverage θ j,k monotonically decreases
with k, following a function θ j,k = 0.660(2) + 1.071/k −
3.47/k2, where 0.660(2) represents the jamming concentra-
tion by infinitely long k-mers [8]; (ii) the percolation threshold
is a nonmonotonic function of the size k: it decreases for
small k sizes, goes through a minimum around k = 13, and
finally increases slowly with k. For long k-mers, the critical
threshold tends to 0.615(1) [9–12]; (iii) as results from (i)
and (ii), percolation always occurs before jamming; (iv) the
last statement was corroborated by Kondrat et al. [13], who
demonstrated that any jammed configuration is a percolating
state; and (iv) the problem belongs to the standard 2D random
percolation universality class regardless of the size of k [14].
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With respect to triangular lattices, Budinski-Petković and
Kozmidis-Luburić [15] studied the RSA kinetics of objects
of various sizes and shapes deposited on a triangular array.
In all cases, and by using numerical simulations for values
of k ranging between 1 and 11, the authors reported an
exponential decrease in θ j,k with k. In Ref. [20], the calcu-
lations for straight rigid k-mers were extended up to k = 128.
From k � 12, the jamming curve was successfully fitted by
the function θ j,k = 0.5976(5) + 1.268(30)/k − 3.61(34)/k2,
being 0.5976(5) the limit coverage by very long depositing
objects.

In Ref. [20], the percolation problem of irreversibly
deposited linear k-mers on triangular lattices was also investi-
gated. Using values of k between 2 and 256, the authors found
that the percolation threshold θc,k shows a nonmonotonic
behavior, with a minimum around k = 13. The decreasing ten-
dency observed for shorter k-mers had already been described
by Budinski-Petković et al. [16], who studied the problem
for linear segments with values of k up to 20. Finally, in the
range of k between 13 and 256, Perino et al. [20] reported
an increasing trend in the percolation threshold. A similar be-
havior was observed for square lattices and k-mer size ranging
between k = 13 and k ≈ 1024. However, as mentioned above,
extensive numerical simulations (up to k = 217) showed that
the percolation threshold for linear k-mers on square lattices
tends to a saturation value as k → ∞ [12]. Accordingly, more
simulations are necessary to obtain a definitive conclusion on
the value of θc,k→∞ for triangular lattices.

Despite over two decades of intensive research on jam-
ming and percolation phenomena in 2D substrates, most
studies have focused in the case of square [8–14] and trian-
gular [15–20] lattices, and the problem of elongated k-mers
irreversibly adsorbed on honeycomb lattices has not been
investigated yet. In this context, the main objective of the
present work is to study the jamming and percolation prop-
erties of linear rods on 2D honeycomb lattices. In the case
of square and triangular lattices, the concept of straight rigid
rod is trivial. Here, the depositing particle is a linear array
of length k, maximizing the distance between first and last
monomers in the chain. Extensive computer simulations (with
2 � k � 128 and 24 � L/k � 80), supplemented by finite-
size scaling analysis, were carried out. The study allowed
us to obtain the dependencies of the jamming coverage and
percolation threshold on the size k. In addition, an exhaustive
analysis of critical exponents and universality was performed.
All of these quantities were reported for the first time in this
paper.

This study is a natural continuation of earlier work on
jamming and percolation in 2D lattices. In this framework,
the structure of lattice space plays a fundamental role in de-
termining the statistics of RSA states. Then, it is of theoretical
interest to extend the existing research to systems with hon-
eycomb symmetry. In addition, there is another reason why
honeycomb lattices might be particularly interesting. From an
experimental point of view, honeycomb lattices are intriguing
systems, forming the structure of many natural and artificial
objects [29–48]. Honeycomb lattices composed of carbon
atoms form graphene sheets and carbon nanotubes [31–37].
The spontaneous formation of honeycomb structures has been
observed in self-assembled layers of anthraquinone molecules

FIG. 1. Schematic representation of a rhombus-shaped honey-
comb lattice with L = 7. Solid and open circles represent a and b
sites, respectively.

on a Cu(111) surface [38,39]. Cells in epithelial sheets ar-
range themselves into honeycomb lattices [40]. Artificial
honeycomb films have also been realized with different prop-
erties, such as photoelectric conversion [41], photocatalysis
[42], antireflection [43], hydrophobicity [44], high mechani-
cal strength [45], and cell adhesion [46–48].

The paper is organized as follows. The model and depo-
sition kinetics are described in Sec. II. Percolation properties
are studied in Sec. III. Finally, the conclusions are drawn in
Sec. IV.

II. MODEL AND JAMMING PROPERTIES

Linear k-mers are deposited randomly, sequentially, and
irreversibly on a 2D honeycomb lattice. In the computer sim-
ulations, a rhombus-shaped system of M = 2 × L × L sites
is used. As it is well-known, the honeycomb lattice is not
a Bravais lattice and two types of sites (a and b) can be
distinguished. See Fig. 1, where a rhombus-shaped honey-
comb lattice with L = 7 is shown. Each a site (solid circle
in Fig. 1) is connected to three b sites and each b site (open
circle in Fig. 1) is connected to three a sites. In addition, the
total number of a(b) sites in the lattice is Ma(Mb) = L × L.
Accordingly, Ma = Mb = M/2.

The filling of the lattice with k-mers is carried out follow-
ing the conventional RSA process [7]. It is performed with the
following restrictions: (1) the k-mers contain k identical units
and each one occupies a lattice site. Small adsorbates with
spherical symmetry would correspond to the monomer limit
(k = 1); (2) the distance between k-mer units is assumed in
registry with the lattice constant l , and hence exactly k sites
are occupied by a k-mer when deposited; (3) the incoming
particles must not overlap with previously added objects; and
(4) open boundary conditions are considered in both x and
y directions. Under these conditions, the k-mers are forced to
deposit inside the lattice (they are forbidden to cross the lattice
edges).
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FIG. 2. (a) Linear tetramer adsorbed on a honeycomb lattice.
Solid spheres represent tetramer units. (b) Available configurations
for linear tetramers deposited on honeycomb lattices. In each case,
an arrow denotes the initial site. As in Fig. 1, solid and open circles
represent a and b sites, respectively.

The concept of linear or straight rigid k-mer is trivial for
square and triangular lattices [8–20], respectively. However,
in a honeycomb lattice, the geometry does not allow the ex-
istence of a straight array of monomers. In this case, we call
linear k-mer to a chain of adjacent monomers with the fol-
lowing sequence: once the first monomer is in place, the
second monomer occupies one of the three nearest-neighbor
of the first monomer. Third monomer occupies one of the two
nearest-neighbor of the second monomer. i-esime monomer
(for i � 4) occupies one of the two nearest-neighbor of the
preceding monomer, which maximizes the distance between
first monomer and i-esime monomer. This procedure allow us
to place k monomers on a honeycomb lattice without creating
an overlap.

Figure 2(a) illustrates the deposition process for a linear
tetramer (k = 4) on a honeycomb lattice. Once first, second
and third monomers were adsorbed in positions denoted as i,
j, and o, respectively, there exist two possible positions for
depositing the fourth monomer, p and q. To maximize the dis-
tance between the position of first and fourth monomers, site
p is selected and site q is discarded. Following this procedure,
12 different configurations can be obtained for a linear k-mer
with k > 2: 6 configurations have a type a site as the initial
site, and 6 configurations have a type b site as the initial site.
The 12 available sequences for linear tetramers on honeycomb
lattices are shown in Fig. 2(b).

Then, the deposition process consists of the following
steps, namely, (i) starting from an initially empty lattice; (ii)
a given i site is randomly chosen; i site is the initial site
[see Fig. 2(b)]; (iii) if the i site is empty, one of the six
possible sequences for the linear k-mer is randomly chosen;
(iv) if the (k − 1) selected sites in step (iii) are empty, then,
a linear k-mer is deposited onto the lattice. Otherwise, the
attempt is rejected. The procedure is repeated until a desired
concentration θ = kN/M is reached (N is the number of the
deposited k-mers).

FIG. 3. Curves of WL,k (θ ) as a function of the fraction of occu-
pied sites θ for k = 48 and different lattice sizes as indicated. Vertical
dashed line denotes the jamming threshold in the thermodynamic
limit: θ j,k=48 = 0.63601(7).

The irreversible deposition of objects larger than a simple
monomer (particle occupying one lattice site) involves the
possibility of jamming. Namely, due to the blocking of the
lattice by the already randomly adsorbed elements, the lim-
iting or jamming coverage, θ j = θ (t → ∞) is less than that
corresponding to the close packing (θ j < 1). Note that θ (t )
represents the fraction of lattice sites covered at time t by the
deposited objects. Consequently, θ ranges from 0 to θ j for
objects occupying more than one site [7]. Our interest is in
determining how the limiting concentration is modified when
the size of the k-mer is increased.

To calculate the jamming coverage, it is useful to define the
probability WL,k (θ ) that an L × L lattice reaches a coverage
θ [49]. The subindex k in the probability function indicates
that the coverage θ was reached after depositing objects of
size k. In the simulations, the procedure to determine WL,k (θ )
consists of the following steps: (a) the construction of the L-
lattice (initially empty) and (b) the deposition of objects on
the lattice up to reach a particular jammed state at coverage
θi. In the late step, the quantity mi(θ ) is calculated as

mi(θ ) =
{

1 for θ � θi,

0 for θ > θi.
(1)

n runs of such two steps (a) and (b) are carried out for ob-
taining the number m(θ ) of them for which a lattice reaches a
coverage θ ,

m(θ ) =
n∑

i=1

mi(θ ). (2)

Then, WL,k (θ ) = m(θ )/n is defined and the procedure is re-
peated for different values of L and k. A set of n = 105

independent samples is numerically prepared for several val-
ues of the lattice size (L/k = 24, 32, 40, 48, 56). The L/k
ratio is kept constant to prevent spurious effects due to the
size k in comparison with the lattice linear size L.

In Fig. 3, the curves of probability for the different L/k
values are shown for a typical case, k = 48. As mentioned in
the previous paragraph, the simulations were performed for

032123-3



G. A. IGLESIAS PANUSKA et al. PHYSICAL REVIEW E 102, 032123 (2020)

FIG. 4. Jamming coverage θ j,k as a function of k for linear
k-mers on honeycomb lattices with k between 2 and 128. Solid
hexagons represent simulation results (the size of the points is larger
than the corresponding error bars). The solid line corresponds to the
fitting function as discussed in the text. Inset: The main curve in the
figure is shown in comparison with the data of jamming coverage
as a function of size k corresponding to (i) straight rigid k-mers on
2D square lattices (solid squares, Refs. [8,54]); and (ii) straight rigid
k-mers on 2D triangular lattices (solid triangles, Ref. [20]).

lattice sizes ranging between L/k = 24 and L/k = 56. The
curves WL,k (θ ) approach to the step function as L grows to
infinity. Alternatively, for a finite value of L, the probability
WL,k (θ ) varies continuously from 1 to 0, with a sharp fall
around θ j,k . Even when the probabilities show a dependence
on the system size, WL,k (θ ) is independent of the system size
for θ = θ j,k [49]. Thus, the value of θ j,k can be obtained from
the crossing point of the curves of WL,k (θ ) for different lattice
sizes. In the case of the figure, θ j,k=48 = 0.63601(7).

As has already been discussed in the literature [50,51], the
use of different boundary conditions influences the behavior
of the jamming properties. In this case, the use of open bound-
ary conditions is responsible for the height of the crossing
point WL,k (θ j,k ) ≈ 0.75 observed in Fig. 3. As periodic bound-
ary conditions are used, the value of the intersection point of
the jamming probability curves is WL,k (θ j,k ) ≈ 0.5 [49,52,53].
However, and independently of the considered boundary con-
ditions (open or periodic), the methodology shown in Fig. 3
provides very accurate values of the jamming thresholds.

The procedure of Fig. 3 was repeated for k from 2 to 128,
the results are presented in Fig. 4 and collected in Table I.
From k � 16 the data have been fitted by the function θ j,k =
A + B/k + C/k2, as proposed in Refs. [8,20]; it is found
that A = 0.6007(6), B = 1.84(5) and C = −8.36(70). The
fitting curve is included in Fig. 4 (solid line). The value of
A represents the limit concentration by infinitely long k-mers:
A = θ j,k→∞ = 0.6007(6).

The decreasing behavior of the jamming coverage with the
size k towards an asymptotic limit value has been already
observed in numerous systems. The cases of linear k-mers
on 2D square [8], 2D triangular [20], and 3D cubic lattices
[49], k × k tiles on 2D square [55] and 3D cubic lattices
[53], and k × k × k cubic objects on 3D cubic lattices [56],

TABLE I. Jamming coverages for different values of k.

k θ j,k

2 0.87900(20)
4 0.81419(6)
6 0.76600(5)
8 0.73666(10)
10 0.71699(2)
12 0.70286(3)
16 0.68373(5)
20 0.67122(3)
24 0.66220(6)
32 0.64989(5)
40 0.64178(2)
48 0.63601(7)
56 0.63156(8)
64 0.62804(10)
80 0.62270(6)
96 0.61897(15)
112 0.61600(12)
128 0.61378(22)

are examples of this. However, to the best of our knowledge,
the case corresponding to honeycomb lattices has not been
reported up to now.

In the inset of Fig. 4, the jamming curve corresponding
to linear k-mers on honeycomb lattices is compared with
similar data obtained previously for (i) straight rigid k-mers
on 2D square lattices (solid squares, Refs. [8,54]); and (ii)
straight rigid k-mers on 2D triangular lattices (solid triangles,
Ref. [20]).

Two main conclusions can be drawn from the comparison
in Fig. 4. First, the results obtained for honeycomb lattices are
close to those reported for triangular lattices. This finding can
be understood with the help of Fig. 2(b). There, it is possible
to observe that, once a given site is chosen as an initial site,
there are six k-tuples of adjacent sites available for deposition
(k > 2). The same occurs for straight rigid k-mers on 2D
triangular lattices, where the lattice connectivity is c = 6 (see
Fig. 5). Then, for the case of linear k-mers deposited under
the conditions described at the beginning of this section, the
honeycomb lattices can be thought as lattices with an effec-
tive connectivity ceff = 6. This property is responsible for the
small differences observed between the jamming curves for
honeycomb and triangular lattices.

FIG. 5. Available configurations for straight rigid tetramers on
triangular lattices (open circles joined by thick lines). The initial site
is indicated by a solid circle.
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Second, the saturation value θ j,k→∞ = 0.6007(6) for hon-
eycomb lattices is less than the value θ j,k→∞ = 0.660(2)
reported for linear k-mers on square lattices [8]. As dis-
cussed in the previous paragraph, the honeycomb lattice can
be characterized by an effective connectivity ceff = 6. Then,
the obtained result indicates that the limiting coverage for
infinitely long k-mers diminishes with increasing the lattice
connectivity. A similar scenario has already been observed in
previous work. Thus, θ j,k→∞ ≈ 0.7475979 (1D lattice, c = 2)
[27]; θ j,k→∞ = 0.660(2) (2D square lattice, c = 4) [8,54];
and θ j,k→∞ = 0.5976(5) (2D triangular lattice, c = 6) [20].

III. PERCOLATION

Once the limiting concentrations θ j,k are determined, the
percolation properties are calculated using an standard simu-
lation scheme [20,55]. An elemental simulation step consists
of the following stages:

(1) We set L, k and a given lattice coverage θ .
(2) The sites are arranged in an L × L honeycomb lattice.

At the starting configuration, all lattice sites are empty. Then,
applying the filling process described in Sec. II, the lattice is
covered up to the desired concentration θ is reached.

(3) The cluster analysis of the sample generated in stage
(2) is performed. By employing the Hoshen-Kopelman al-
gorithm [57] with open boundary conditions, the size of the
largest cluster SL is determined. In addition, the existence (or
not) of a percolating cluster is established, according to the
following criteria:

(a) X (along the x direction): the percolating cluster
connects the left side to the right side of the lattice. See
Fig. 1, and

(b) Y (along the y direction): the percolating cluster
connects the bottom side to the top side of the lattice. See
Fig. 1.
Other useful definitions for the finite-size analysis are:

(a) U (union): the percolating cluster spans from left to
right or from bottom to top of the lattice, and

(b) I (intersection): the percolating cluster spans from
left to right and from bottom to top of the lattice.
A total of m independent runs of (1)–(3) stages were car-

ried out for each lattice side L, object size k, and concentration
θ (ranging between 0 and θ j,k). A number mi of samples (out
of the total number m) presents a percolating cluster according
to the i ≡ {X,Y,U, I} criterion. Then, the corresponding per-
colation probability Ri

L,k (θ ) = mi/m can be defined. Ri
L,k (θ )

(i ≡ {X,Y,U, I}) represents the probability that a lattice com-
posed of 2L2 sites percolates at the concentration θ , according
to the i criterion. It is also convenient to define the average
probability RA

L,k (θ ) = [RU
L,k (θ ) + RI

L,k (θ )]/2.
The quantities related with the size of the largest cluster

SL, such as the order parameter P, the susceptibility χ and the
reduced fourth-order cumulant UL introduced by Binder [58],
were also calculated:

P = 〈SL〉/M, (3)

χ = [〈
S2

L

〉 − 〈SL〉2
]/

M, (4)

and

UL = 1 −
〈
S4

L

〉
3
〈
S2

L

〉2 , (5)

where 〈...〉 means an average over the m simulation runs. In
the present work, we used m = 105 independent samples. In
addition, for each value of L, k and θ , the effect of finite
size was investigated by examining honeycomb lattices with
L/k = 48, 56, 64, 72, 80. From this, finite-scaling theory can
be used to determine the percolation threshold and the critical
exponents with excellent accuracy.

The standard finite-size scaling theory [22,58–60] al-
lows for various efficient routes to estimate the percolation
threshold from simulation data. In the present paper, three
procedures were applied, as described next.

Method I: The percolation thresholds are obtained from
the crossing point of the curves of Ri

L,k (θ ) for different values
of L. These percolation probabilities, introduced by Yonezawa
et al. [59,60], have been widely used in the literature. Percola-
tion thresholds determined by Method I (and i criterion) will
be denoted by θ I,i

c,k .
Method II: A well-known property of the fourth-order

Binder cumulants [Eq. (5)] is their independence on the sys-
tem size at the critical point [58], in this case as θ = θc,k . Thus,
plotting UL for different linear lattice dimensions L yields
an intersection point, which gives an accurate estimation of
the percolation threshold in the infinite system. Percolation
thresholds determined by Method II will be denoted by θ II

c,k .
Method III: The positions of the inflection points of the

probabilities functions Ri
L,k (θ )’s allow to obtain the effective

percolation thresholds θ i
c,k (L)’s. Once the values of θ i

c,k (L) are
determined for all lattice sizes, a scaling analysis can be done
to calculate the percolation threshold in the thermodynamic
limit θ i

c,k (∞) [22,58–60]:

θ i
c,k (L) = θ i

c,k (∞) + AiL−1/ν, i ≡ {X,Y,U, I, A}, (6)

where Ai is a nonuniversal constant and ν is the critical ex-
ponent of the correlation length. Some authors [61,62] have
shown that even at the critical point (critical concentration
when discussing percolation) there is a second length-scale.
Within the precision of our simulation results, this second
length-scale is not observed. From extrapolations it is possible
to obtain θ i

c,k (∞) for the criteria I , A and U . Combining the
three estimates for each case, the final values of θc,k (∞) can
be obtained. Additionally, the maximum of the differences
between |θU

c,k (∞) − θA
c,k (∞)| and |θ I

c,k (∞) − θA
c,k (∞)| gives

the error bar for each determination of θc,k (∞). Percolation
thresholds determined by Method III will be denoted by θ III

c,k
[for simplicity we will drop the “(∞)”].

For a more precise application of Method III, it is useful
to fit Ri

L,k (θ ) with some approximating function. This pro-
cedure allows us to write the probability functions in terms
of continuous values of concentration. Around the inflection
point, Ri

L,k (θ ) can be fitted by the error function because
dRi

L,k (θ )/dθ is approximately a Gaussian function near the
peak [59,60]. Then, fitting dRi

L,k (θ )/dθ with a Gaussian func-
tion is a good approximation for the purpose of locating its
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FIG. 6. (a) Method I. Fraction of percolating lattices Ri
L,k (θ )

(i ≡ {U, I, A}) as a function of the concentration θ for k = 48 and
different values of L/k: L/k = 48, squares; L/k = 56, circles; L/k =
64, triangles; L/k = 72, pentagons and L/k = 80, stars. The statis-
tical errors are smaller than the symbol sizes. For each criterion,
the curves cross each other in a very well-defined interval in the
θ axis, which allows for a precise determination of the percolation
threshold. In this case, θ I,A

c,k=48 = 0.50968(38); θ I,I
c,k=48 = 0.50970(30)

and θ I,U
c,k=48 = 0.50960(20). (b) Method II. Curves of UL vs. θ for

k = 48 and different values of L/k [symbols are as in part (a)]. From
their intersections one obtained θ II

c,k . In this case, θ II
c,k=48 = 0.5096(2).

maximum [63],

dRi
L,k (θ )

dθ
= 1√

2π�i
L,k

exp

{
−1

2

[
θ − θ i

c,k (L)

�i
L,k

]2}
,

i ≡ {X,Y,U, I, A}, (7)

where the effective threshold θ i
c,k (L) is the concentration at

which the slope of dRi
L,k/dθ is the largest and �i

L,k is the
standard deviation from θ i

L,k (L).
For each value of k, Methods I–III were applied for ob-

taining the percolation threshold. A typical case is shown in
Figs. 6(a) (Method I), 6(b) (Method II), and 7 (Method III).
The data correspond to k = 48 and different values of L/k:

FIG. 7. Method III. Extrapolation of θ i
c,k (L) towards the thermo-

dynamic limit according to the theoretical prediction given by Eq. (6)
with ν = 4/3 (see discussion in the text). Triangles, squares and
circles denote the values of θ i

c,k (L) obtained by using the criteria
I , A, and U , respectively. The resulting percolation threshold is
θ III

c,k=48 = 0.50964(2).

L/k = 48, squares; L/k = 56, circles; L/k = 64, triangles;
L/k = 72, pentagons and L/k = 80, stars.

In Fig. 6(a), the percolation probabilities Ri
L,k (θ ) (i ≡

{U, I, A}) are plotted as a function of coverage θ . Ri
L,k (θ )

curves vary between 0 and 1, and show an intersection point
around the critical concentration. Even though the transition
is never sharp for finite systems, the excellent quality of the
simulation data allows for a very precise determination of the
percolation threshold. In fact, the curves cross each other in a
very well-defined interval in the θ axis. The center of this in-
terval represents the percolation threshold (θ i

c,k) and the width
of the interval is the error in the determination of θ i

c,k . In the

case of Fig. 6, θ I,A
c,k=48 = 0.50968(38); θ I,I

c,k=48 = 0.50970(30);

and θ I,U
c,k=48 = 0.50960(20).

Following a similar procedure as in Fig. 6(a), the percola-
tion threshold can also be determined from the crossing point
of the cumulant curves for different values of L. See Fig. 6(b).
In this case, the value obtained is θ II

c,k=48 = 0.5096(2).
The application of Method III is depicted in Fig. 7. The

figure shows the plots towards the thermodynamic limit of
θ i

c,k (L) according to Eq. (6) for k = 48. The critical exponent
ν is taken equal to 4/3 for this analysis, since, as it will be
shown below, the present model belongs to the 2D random
percolation universality [22]. In this case, the value obtained
was θ III

c,k=48 = 0.50964(2) [for simplicity we will drop the
“(∞)”].

As it can be observed from Figs. 6 and 7, the five values
obtained for the percolation threshold coincide within statisti-
cal errors. The procedure was repeated for k ranging between
2 and 128. The obtained results are compiled in Table II.
Clearly, Method III (sixth column in Table II) provides the
most accurate results for all values of k. Accordingly, for the
rest of the paper we will use just one percolation threshold for
each k-mer size θc,k , being θc,k = θ III

c,k .
The behavior of the percolation threshold as a function of

k is shown in Fig. 8 (solid hexagons). As can be observed,
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TABLE II. Percolation thresholds for different values of k.

k θ I,A
c,k θ I,I

c,k θ I,U
c,k θ II

c,k θ III
c,k

2 0.69079(51) 0.69080(20) 0.69094(66) 0.6914(10) 0.69052(20)
4 0.63070(65) 0.63050(50) 0.63060(30) 0.6310(5) 0.63046(6)
6 0.59009(22) 0.59006(10) 0.59020(50) 0.5905(4) 0.59008(10)
8 0.56510(30) 0.56510(20) 0.56510(40) 0.5653(4) 0.56511(3)
10 0.54921(20) 0.54920(30) 0.54940(30) 0.5496(6) 0.54925(10)
12 0.53861(45) 0.53860(50) 0.53870(40) 0.5387(4) 0.53860(7)
16 0.52595(11) 0.52600(20) 0.52590(30) 0.5260(1) 0.52597(9)
20 0.51902(42) 0.51910(60) 0.51910(50) 0.5192(6) 0.51911(10)
24 0.51498(20) 0.51500(20) 0.51500(30) 0.5150(8) 0.51496(7)
32 0.51116(21) 0.51110(20) 0.51120(40) 0.5111(4) 0.51116(10)
40 0.50986(4) 0.50980(30) 0.50990(10) 0.5098(4) 0.50984(5)
48 0.50968(38) 0.50970(30) 0.50960(20) 0.5096(2) 0.50964(2)
56 0.50998(12) 0.51000(20) 0.51000(20) 0.5098(2) 0.50993(6)
64 0.51038(25) 0.51036(36) 0.51041(40) 0.5103(3) 0.51037(8)
80 0.51186(6) 0.51180(20) 0.51190(18) 0.5115(4) 0.51178(3)
96 0.51338(18) 0.51333(20) 0.51342(28) 0.5132(3) 0.51337(15)
112 0.51470(50) 0.51433(27) 0.51444(22) 0.5145(5) 0.51472(11)
128 0.51623(5) 0.51625(18) 0.51637(17) 0.5160(6) 0.51618(4)

a nonmonotonic size dependence is found for θc,k , which
decreases in the range 2 � k < 48, goes through a minimum
around k = 48, and increases smoothly from k = 48 up to
the largest studied value of k = 128. In the inset of Fig. 8,
the curve in the main figure (solid hexagons), is compared
with the data of percolation threshold as a function of size k
corresponding to (i) straight rigid k-mers on 2D square lattices
(solid squares, Ref. [12]); and (ii) straight rigid k-mers on 2D
triangular lattices (solid triangles, Ref. [20]).

In the case of honeycomb lattices, the minimum ob-
served in the percolation curve is less pronounced and shifted

FIG. 8. Percolation threshold as a function of k for linear k-mers
on honeycomb lattices. Inset: The main curve is shown in compar-
ison with the data of percolation threshold as a function of size k
corresponding to (i) straight rigid k-mers on 2D square lattices (solid
squares) [12]; and (ii) straight rigid k-mers on 2D triangular lattices
(solid triangles) [20]. Short-dashed lines are included as a guide to
the eye.

towards higher values of the size k, with respect to the minima
obtained for square and triangular lattices. In addition, in the
range of values studied (2 � k � 128), the percolation curve
of honeycomb lattices remains above the percolation curves
corresponding to square and triangular lattices. This behavior
is expected given the coordination number of the three lattices.
As has been demonstrated in numerous studies [22,64–67],
percolation threshold varies inversely with the number of
connections per site (bond). A prototype lattice is a Cayley
tree (Bethe lattice), where the percolation threshold has been
solved exactly to yield pc = 1/(z − 1) with z neighbours for
every site [22,64].

As mentioned in Sec. I, a saturation value of the percolation
threshold was found for infinitely long k-mers deposited on
square lattices. Based in a very efficient parallel algorithm,
Slutskii et al. [12] studied the problem of large linear k-mers
(up to k = 217) on a square lattice. The authors reported that
θc,k = 0.615(1) as k tends to infinite. This finding, along with
the very slow increase of θc,k with k (k > 48) observed for
honeycomb lattices, would indicate that square and honey-
comb percolation curves intersect at some point k > 128.
However, more extensive simulations are necessary to con-
firm this observation, and to obtain direct confirmation of the
behavior of θc,k for infinitely long k-mers. This is beyond our
current computational capabilities.

In the case of percolation of straight rigid k-mers on square
and triangular lattices, it was found that the phase transition
occurring in the system belongs to the 2D random percolation
universality class theory [14,20]. Since there is no similar
report for the case of honeycomb lattices, the main objective
in what follows is to perform a detailed study of the critical
exponents ν, β, and γ to determine the universality class
of the percolation problem of linear k-mers on honeycomb
lattices.

The analysis will be carried out by means of finite-
size scaling theory [22,58–60]. The technique implies the
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FIG. 9. Log-log plot of [dRA
L,k (θ )/dθ ]

max
as a function of L/k for

different values of k as indicated. According to Eq. (12) the slope of
each line corresponds to 1/ν = 3/4.

following behavior of Ri
L,k (θ ), UL(θ ), P(θ ) and χ (θ ) at criti-

cality,

Ri
L,k (θ ) = Ri

k[(θ − θc,k )L1/ν], (8)

UL(θ ) = U [(θ − θc,k )L1/ν], (9)

P(θ ) = L−β/νP[|θ − θc,k|L1/ν], (10)

and

χ (θ ) = Lγ /νχ [(θ − θc,k )L1/ν], (11)

where Ri
k , U , χ , and P are the corresponding scaling

functions.
We start with the calculation of the critical exponent ν.

This quantity can be determined from the maximum of the
derivatives of the function in Eqs. (8) and (9). Thus,[

dRi
L,k (θ )

dθ

]
max

∝ L1/ν, and

[
dUL(θ )

dθ

]
max

∝ L1/ν . (12)

FIG. 10. Log-log plot of [dP(θ )/dθ ]max as a function of L/k for
the same cases reported in Fig. 9. According to Eq. (13), the slope of
each curve corresponds to (1 − β )/ν = 31/48.

FIG. 11. Log-log plot of χmax as a function of L/k for the same
cases reported in Fig. 9. According to Eq. (14), the slope of each
curve corresponds to γ /ν = 43/24.

By plotting [dRi
L,k (θ )/dθ ]

max
and [dUL(θ )/dθ ]max as a

function of L/k in log-log scale, the slopes of the curves will
correspond to 1/ν. As an example, Fig. 9 shows the results
obtained for [dRA

L,k (θ )/dθ ]
max

and 2 � k � 32. The slopes
of the curves corresponds to 1/ν and, as can be observed,
remain constant (and close to 3/4) for all studied cases. The
procedure was performed for Ri

L,k (θ ) (i ≡ {U, I, A}), UL(θ )
P(θ ), and k ranging between 2 and 128. The results are shown
in Fig. 12 (solid triangles) and compiled in Table III. The value
of ν in each point (corresponding to a given value of k) was
calculated by combining the four estimates from RA, RI , RU ,
and UL.

However, a standard way to extract the critical ratios β/ν

and γ /ν is to study the scaling behavior of the maximum
of the derivative of P(θ ) [Eq. (10)] and the maximum of the
susceptibility χ (θ ) [Eq. (11)],[

dP(θ )

dθ

]
max

∝ L(1−β )/ν, (13)

FIG. 12. Critical exponents ν (triangles), β (squares), and γ (cir-
cles) as a function of k. The reference values corresponding to 2D
random percolation are shown as solid horizontal lines.
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TABLE III. Critical exponents ν, β, and γ for different values of k.

k ν β γ

2 1.304(22) 0.127(13) 2.432(8)
4 1.304(36) 0.133(12) 2.421(5)
6 1.317(17) 0.140(7) 2.416(9)
8 1.332(16) 0.139(17) 2.403(7)
10 1.330(16) 0.141(19) 2.418(13)
12 1.334(30) 0.140(24) 2.378(11)
16 1.362(34) 0.140(16) 2.382(8)
20 1.323(11) 0.140(24) 2.383(9)
24 1.359(32) 0.139(12) 2.356(13)
32 1.381(49) 0.140(5) 2.349(9)
40 1.335(25) 0.142(8) 2.320(13)
48 1.357(28) 0.147(13) 2.338(7)
56 1.354(27) 0.149(13) 2.300(11)
64 1.339(27) 0.143(17) 2.318(13)
80 1.325(23) 0.145(8) 2.288(13)
96 1.335(34) 0.141(13) 2.314(13)
112 1.339(20) 0.140(11) 2.304(12)
128 1.335(28) 0.138(8) 2.277(12)

and

χmax ∝ Lγ /ν. (14)

When Eqs. (13) and (14) are represented in a log-log scale,
the slopes of the corresponding curves are (1 − β )/ν and
γ /ν, respectively. This procedure is shown in Figs. 10 and
11 for the same cases studied in Fig. 9. The obtained values
of the slopes are consistent with (1 − β )/ν = 31/48 (Fig. 10)
and γ /ν = 43/24 (Fig. 11). A similar study was done for k
ranging between 2 and 128. The results are shown in Fig. 12
[β (squares) and γ (circles)] and collected in Table III.

Figure 12 summarizes the results given in Figs. 9–11 (and
data not shown for brevity). In all cases, the values obtained
for ν, β, and γ coincide, within numerical errors, with the

FIG. 13. Data collapse of the order parameter, P(θ )Lβ/ν vs.
|θ − θc,k |L1/ν , and of the percolation probabilities, Ri

L,k (θ ) vs. (θ −
θc,k )L1/ν (inset) for the case k = 48. The plots were made using
θc,k=48 = 0.50964(2) (see Table II, sixth column) and exact 2D ran-
dom percolation exponents ν = 4/3 and β = 5/36.

FIG. 14. Data collapse of the cumulant, UL (θ ) vs. (θ − θc,k )L1/ν ,
and of the susceptibility, χ (θ )L−γ /ν vs. (θ − θc,k )L1/ν (inset) for the
case k = 48. The plots were made using θc,k=48 = 0.50964(2) (see
Table II, sixth column) and exact 2D random percolation exponents
ν = 4/3 and γ = 43/18.

exact values of the critical exponents for the 2D ordinary per-
colation, namely, ν = 4/3, β = 5/36, and γ = 43/18 [22]. In
the figure, these reference values are shown as solid horizontal
lines. By averaging on all the k studied sizes, the following
values were obtained: ν = 1.337(17), β = 0.140(5), and γ =
2.36(5).

It is also interesting to test the data collapse scaling of
Ri

L,k (θ ), UL(θ ), P(θ ), and χ (θ ). This can be carried out by
plotting Ri

L,k (θ ) vs. (θ − θc,k )L1/ν , UL(θ ) vs. (θ − θc,k )L1/ν ,
P(θ )Lβ/ν vs. |θ − θc,k|L1/ν , and χ (θ )L−γ /ν vs. (θ − θc,k )L1/ν ,
with an adequate choice of the critical parameters ν, β, γ , and
θc,k . An example is shown in Figs. 13 and 14, where the case
k = 48 is analyzed. Excellent collapses were achieved using
the exact 2D random percolation critical exponents (ν = 4/3,
β = 5/36, and γ = 43/18) and θc,k=48 = 0.50964(2) (see
Table II, sixth column).

The study in Figs. 13 and 14 was successfully repeated
for all the studied values of k. Our findings confirm that this
percolation phase transition, occurring on honeycomb lattices,
belongs to the same universality class as the 2D random per-
colation, regardless of the size k considered.

IV. CONCLUSIONS

Jamming and percolation behavior of linear k-mers de-
posited onto a honeycomb lattice have been studied by
extensive numerical simulations supplemented by finite-size
scaling theory. The linear k-mer is modeled as k interaction
centers at a fixed separation, which is equal to the lattice
constant. Thus, k sites are occupied by a k-mer when ad-
sorbed onto the surface. Since the geometry of the honeycomb
lattice does not allow the existence of a straight rigid chain
of monomers, we call linear k-mer to an array of k adjacent
monomers, maximizing the distance between first and last
monomers in the array. The elongated objects are deposited by
following the standard random sequential adsorption (RSA)
process.
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The simulations were performed for k-mer sizes ranging
between 2 and 128, and L × L lattices with 24 � L/k � 80.
According to the present study, the critical behavior of the
system is characterized by the following properties:

(1) The jamming coverage dependence on the particle size
k follows a decreasing law: θ j,k = 0.6007(6) + 1.84(5)/k −
8.36(70)/k2, being θ j,k→∞ = 0.6007(6) the limit value for
infinitely long k-mers.

(2) According to the proposed deposition mechanism,
once a given site is chosen as an initial site, there are six
k-tuples (with k > 2) of adjacent sites available for deposition.
This fact allows us to define an effective connectivity ceff = 6,
characterizing the jamming properties of the present model.
Then, the comparison with previous research indicates that
the limiting coverage for infinitely long k-mers diminishes
with increasing the lattice connectivity: θ j,k→∞ ≈ 0.7475979
(1D lattice, c = 2) [27]; θ j,k→∞ = 0.660(2) (2D square lat-
tice, c = 4) [8,54]; θ j,k→∞ = 0.5976(5) (2D triangular lattice,
c = 6) [20] and θ j,k→∞ = 0.6007(6) (2D honeycomb lattice,
ce f f = 6) in this work. The observed similarities between
triangular and honeycomb symmetries can also be understood
from the concept of effective connectivity.

(3) The percolation threshold exhibits a nonmonotonous
behavior as a function of the k: θc,k decreases for small par-
ticles sizes, passes through a minimum around k = 48, and
finally increases slowly for large segments. A similar non-
monotonic dependence with k had already been reported for
square [12] and triangular [20] lattices. However, the func-
tionality of θc,k with k is reported here for the first time in a
honeycomb geometry.

(4) The comparison with previous studies for percola-
tion of straight rigid k-mers on square [12]) and triangular
[20] lattices indicates that: (i) in the range 2 � k � 128, the
percolation curve of honeycomb lattices remains above the

percolation curves corresponding to square and triangular lat-
tices; and (ii) in the case of honeycomb lattices, the minimum
observed in the percolation curve is less pronounced and
shifted towards higher values of the size k, with respect to
the minima obtained for square and triangular lattices. More
simulations are required to establish the definitive tendency of
θc,k for straight rigid k-mers.

(5) Given a fixed value of k, percolation always occurs
before jamming (θc,k < θ j,k) and, consequently, the model
presents percolation phase transition in all the k-space.

(6) The obtained values of the critical exponents ν =
1.337(17), β = 0.140(5) and γ = 2.36(5) clearly indicate
that the observed percolation phase transition belongs to the
universality class of the 2D standard percolation regardless of
the value of k considered.

(7) Very recent studies from our group, still in progress
[68], indicate that θc,k + θ i

c,k = 1 for triangular lattices, where
θc,k and θ i

c,k represent the standard [20] and inverse [69] per-
colation thresholds for straight rigid k-mers, respectively. The
observed complementarity between standard and inverse per-
colation thresholds is a distinctive footprint of the triangular
geometry, and is not valid for honeycomb lattices [71]. This
finding shows clearly that jamming and percolation problems
on honeycomb lattices provide nontrivial physics, and their
results cannot be derived from those previously obtained for
triangular lattices.
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