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MAYTE PÉREZ-LLANOS, JUAN PABLO PINASCO, NICOLAS SAINTIER, AND
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Abstract. In this work an opinion formation model with heteroge-
neous agents is proposed. Each agent is supposed to have different
power of persuasion, and besides its own level of zealotry, that is, an
individual willingness to being convinced by other agent. In addition,
our model includes zealots or stubborn agents, agents that never change
opinions.

We derive a Bolzmann-like equation for the distribution of agents on
the space of opinions, which is approximated by a transport equation
with a nonlocal drift term. We study the long-time asymptotic behavior
of solutions, characterizing the limit distribution of agents, which con-
sists of the distribution of stubborn agents, plus a delta function at the
mean of their opinions, weighted by they power of persuasion.

Moreover, explicit bounds on the rate of convergence are given, and
the time to convergence is shown to decrease when the number of stub-
born agents increases. This is a remarkable fact observed in agent based
simulations in different works.

1. Introduction

In recent years, opinion formation, as well as other sociological and eco-
nomical phenomena, have attracted a considerable attention from physicists
and mathematicians, as it was realized that concepts from statistical me-
chanics could be successfully applied to model them. We refer for instance
to the papers by S. Galam [23, 25], Sznajd and Sznajd-Veron [42], Deffuant
et al. [14, 15], and Slanina [40] among other works. From them, quickly
emerged two very active new fields, usually called sociophysics and econo-
physics, devoted to the description of these phenomena from the physicists
point of view. We underline some recent books [11, 26, 39, 40] for an overview
and up-to-date references.

In the sociophysics community, a customary procedure for modelling the
formation of opinion in a population consists in representing the opinion
of an individual, with respect to certain subject, by a real number. This
number can vary in some discrete set or in a fixed interval, say [−1, 1],
meaning −1 to be completely against the subject. Individual changes of
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opinion are assumed to be a result of binary random interactions between
agents. The opinions w and w∗ of two agents will turn to new opinions w′

and w′∗ as a consequence of the discussion enclosed by the two agents, and
also by the influence of external factors such as media or propaganda, and
spontaneous changes of mind. Denoting by f(t, w) the proportion of agents
in the population with opinion w at time t, it is possible to describe the
time evolution of f(t, .) with a Boltzmann-like equation, whose collision part
reflects the dynamics in the changes of opinion due to encounters. Thus, the
long-time asymptotic behavior of f(t, .) can be analyzed theoretically and/or
numerically.

This procedure, which is by far not the only way of modelling opinion
formation, is strongly inspired by the kinetic theory of rarefied gases and
granular flows. The recent advances in the mathematical foundations of
kinetic theory (see for instance [46, 48]), motivated several mathematicians
to perform a rigorous study of this kind of problems, using tools from par-
tial differential equations, optimal transport, game theory and stochastic
processes. This approach has been successfully implemented by Bellomo,
Pareschi, Toscani and their collaborators in a wide variety of settings, we
refer the interested reader to their works [2, 4, 5, 38] and the surveys in Ref.
[37] for further details.

In this work we introduce a continuous model of opinion formation, where
agents opinions are real numbers in [−1, 1], and agents change their opin-
ions both through binary interactions and random changes due to external
influences as mentioned before.

Most of the agents are assumed to have some propensity to reach an agree-
ment, the so-called compromise hypothesis and hence after each interaction
they tend to get closer positions. However, we introduce a high degree of
heterogeneity among the agents, and each agent i has a priori two individual
characteristics:

• some power of persuasion, represented by a probability pi ∈ [0, 1]
that the agent will convince the other agent involved in the interac-
tion, and
• some willingness to change his/her own opinion, represented by a

probability qi ∈ [0, 1] that the agent is persuaded.

Observe that the assumption that q could be zero introduces zealots or
stubborn individuals, i.e., agents who have strong opinions and they are not
affected by other agents’ opinions, not changing their mind after interactions.
As long as we know, the presence of stubborn agents was studied only in
discrete models of opinion dynamics, related to consensus formation, game
theory models, and diffusion of innovations, among other applications, see
[16, 33, 36, 51, 53, 52, 54].

In these works it is shown, mainly through simulations, how the stub-
born agents affect the process of consensus formation, specially the kind of
expected equilibria that could arise due to their influence, and the time to
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convergence. Let us remark that in [54] and related works, several results
were proved theoretically using probabilistic arguments. Also, a striking fact
was observed in the simulations: the time to convergence decreases when
the number of stubborn agents increases.

Much fewer in number are the works considering continuous opinion mod-
els with zealots or persuasion, see for instance [9, 27]. Let us note that the
presence of leaders and followers as in During et al. [20] has a somewhat sim-
ilar dynamics when a leader and a follower interact, since only the follower
update its opinion. However, the interactions among leaders are allowed,
and hence they can change their opinions.

Our aim in this work is to rigorously show that the long time behavior of
the agent based model can be described with a Boltzmann-like equation sat-
isfied by the distribution of agents f(t, .), and it is properly approximated by
a non-linear non-local transport equation, which is well-posed for measure-
valued functions. We then establish the convergence of the solution to some
limit density, with explicit bounds on the time of convergence.

Essentially, the limit reveals that the part of the population composed by
individuals who are willing to change their opinion tends to share the same
opinion. Furthermore, we find out that this limit opinion is precisely the
mean opinion of the stubborn individuals, those who always keep their own
opinion (q = 0), weighted by their power of persuasion.

Moreover, the bounds for the rates of convergence point out that, the
greater the number of stubborn individuals is, the faster the system reaches
the stationary state. This fact has been observed in our simulations and also
in related discrete opinion models, see for example [33, 35, 36, 52], exhibiting
that the asymptotic distribution of opinions in the population is completely
determined by the stubborn individuals, although their influence take a long
time to be observed when there are just a few of them.

1.1. Notations and definitions. We denote K = [−1, 1] × [0, 1] × [0, 1]
and a generic point of K as $ = (w, p, q). Let P (K) be the convex set
of probability measures on K. Given f ∈ P (K), we write the integral
of a function φ against f as

∫
K φ($) df($) or as

∫
K φ($)f($) d$. The

expression f($) d$ is merely a notation, we are not assuming that f has
a density necessarily. By f(w)dw we understand the marginal of f with
respect to the first variable w, namely∫

A×[0.1]×[0.1]
f($) d$ =

∫
A
f(w)dw for any A ⊂ [−1, 1] Borel.

Here again f(w)dw is merely a notation, we are not assuming in general
that this measure has a density.

M(K) stands for the space of finite measures on K, M+(K) denotes
the cone of nonnegative measures and P (K) the convex cone of probability
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measures. These sets are endowed with the total variation norm, namely

(1) ‖f‖ = sup

{∫
K
φdf : φ ∈ C(K) such that ‖φ‖∞ ≤ 1

}
.

Let us remark that M(K) becomes a Banach space with this norm.

Later on, we will need to endow the set P (K) with the weak convergence
of the measure topology. It will be convenient then, to recall from [47] that
the Wasserstein distances Wp, with p ≥ 1, between two probability measures
µ, ν are defined as

(2) Wp(µ, ν) =

(
inf

α∈Γ(µ,ν)

∫
K×K

|x− y|pdα(x, y)

)1/p

, p ≥ 1,

being Γ(µ, ν) the collection of all measures on K×K with marginal measures
ν and µ on the first and second factor, respectively. When p = 1 the
Kantorovich and Rubinstein Theorem provides a dual representation of W1,
namely

(3) W1(ν, µ) = sup

{∫
K
ϕd(µ− ν) : ϕ is 1- Lipschitz

}
.

1.2. Organization of the paper. The paper is organized as follows.
Section §2 contains a detailed description of the rules governing the up-

dates of the individuals opinions during encounters, determining a Boltzmann-
like equation satisfied by the agent distribution f(t, .). We introduce in
addition the so-called grazing limit that yields a Fokker-Planck equation,
modelling the long-time asymptotic behavior of the density, when the in-
teractions among the agents produce very tiny changes in their opinions,
namely when the parameters σ, γ → 0. This idea of studying Boltzmann-
like equation in the limit of small changes in each interaction comes from the
literature about the Boltzmann equation (see e.g. [16, 17, 18, 49, 50] and
references therein) and was first applied in the context of opinion formation
model by Toscani [44].

Section §3 is devoted to the analysis of the asymptotic behavior as t →
+∞ of the equation arising when in the grazing limit σ2

γ → 0, namely, when

the transport term dominates the diffusive term. In this case, the following
transport equation is obtained

∂tf(w, p, q) + ∂w((mt − w)q〈p〉f(w, p, q)) = 0,

where 〈p〉 is the mean value of the persuasion power p, which remains con-
stant in time, and m(t) =

∫
K

p
〈p〉w dft($) is the weighted mean opinion.

We study the long-time asymptotic behavior of the solutions, charac-
terizing the limit distribution of agents, which consists of the distribution
of stubborn agents, plus a delta function at the mean of their opinions,
weighted by they power of persuasion. We determine explicit bounds on the
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rate of convergence and show that the time to convergence decreases as the
number of stubborn agents increases.

Finally, some computational experiments illustrating our theoretical re-
sults are included in Section §4. We perform an agent based simulation of
the dynamics of our problem without noise.

We conclude the paper including an Appendix, where we prove the exis-
tence and uniqueness of solutions to the Boltzmann equation introduced in
section 2, using the ideas in Chapter 6 of the book of Cercignani, Illner and
Pulvirenti [13]. For the reader’s convenience, also we provide in this Appen-
dix a detailed proof of the approximation of the Boltzmann-like equation
by a diffusion-transport equation, via the grazing limit. This proof is based
mainly on Toscani [44].

2. Description of the model

2.1. Microscopic interaction rules. Let us introduce our model of opin-
ion formation. We consider a population composed by N agents. The
opinion of an agent with respect to certain matter is represented by a real
number w ∈ [−1, 1] (meaning −1 being completely in disagreement with the
subject and 1 in complete agreement). In addition, we take into account
the ability (or difficulty) of an individual to persuade another agent, as well
as his/her reticence (or facility) to change his/her opinion. We denote by
p ∈ [0, 1] the probability of the agent to convince the opponent and by
q ∈ [0, 1] the probability that the agent is persuaded to change his/her own
opinion. Each agent is thus characterized by three parameters (w, p, q).

Agents’ parameters (w, p, q) could be modified during binary encounters.
For simplicity, in this work the parameters (p; q) are assumed to be fixed
and to remain unchanged in time, although there exist models where the
agents’ persuasion also evolve, as in [9, 45].

We now describe the up-dating rules of the opinions. Consider two inter-
acting agents with parameters (w, p, q) and (w∗, p∗, q∗) before the encounter.
Denote by (w′, p′, q′) and (w′∗, p

′
∗, q
′
∗) the new values for the parameters after

the interaction, respectively. As we mentioned before, the parameters (p, q)
will remain unchanged: p′ = p, q′ = q, p′∗ = p∗, q

′
∗ = q∗. Regarding the

up-dating of the opinion, we propose the following rule:

(4)
w′ = w + γqp∗(w∗ − w) + ηqD(|w|),
w′∗ = w∗ + γpq∗(w − w∗) + η∗q∗D(|w∗|).

Observe that the change of opinion w′ − w is the sum of two parts. On the
one hand, the term γqp∗(w∗ − w) reflects the idea that the agents tend to
reach a compromise. This tendency is directly proportional to both his/her
willingness of changing his/her own opinion, q and also the power of persua-
sion of the opponent, p∗. Here γ is a given real number in (0, 1/2) modelling
the strength of the interaction.

On the other hand, the term ηqD(|w|) represents the inclination of an
agent to change his/her opinion due to random external or internal factors.
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Obviously, this term is proportional to the facility q of the agent to modify
his/her opinion. By η and η∗ we denote two independent and identically
distributed random variables, with null expected value and variance σ2.
More precisely, we will write η = σY , being Y a symmetric random variable
such that E[Y ] = 0, V ar[Y ] = 1 and E[|Y |3] <∞, and the same is assumed
for η∗. The function D(|w|) ∈ [0, 1] is supposed to be non-increasing in |w|.
Some typical examples are 1 − w2, 1 − |w| and

√
1− w2. Notice that in

these examples D(±1) = 0. This is in accordance with the fact that the
more extreme an opinion is, the more difficult to be changed.

2.2. Macroscopic kinetic model: Boltzman equation. The set K =
[−1, 1]× [0, 1]× [0, 1] stands for the space of the triple (w, p, q). To simplify
notation, let us denote $ = (w, p, q) and $′ = (w′, p, q).

Let f(t,$) be the distribution of the agent $ at time t ≥ 0, hence
f(t, ·) is a probability measure on K. We usually denote this measure as
dft or ft($)d$ bearing in mind that ft may not necessarily be absolutely
continuous with respect to Lebesgue measure. In fact, ft could be a Dirac
measure.

In case of binary interactions the time evolution of the density f is a bal-
ance between gain and loss of opinion terms through an integro-differential
equation of Boltzmann type:

(5)

d

dt

∫
K
φ($) dft($)

=

∫
B2

∫
K2

β(w,w∗)→(w′,w′∗)
(φ($′)− φ($)) dft($)dft($∗)dηdη∗,

for any φ ∈ C∞(K), see [13]. The kernel β is related to the transition
rate and takes into account the external events acting on the opinion. For
simplicity, we can take

β(w,w∗)→(w′,w′∗)
= θ(η)θ(η∗)χ|w′|≤1χ|w′∗|≤1,

where by χA we understand the indicator function of the set A and θ is
a symmetric probability density with zero mean and variance σ2, charac-
terizing the diffusion of information. To avoid the dependence of β on the
probabilities w, w∗ through the indicator function, we can ensure the bound-
edness of |w′| and |w′∗|, assuming that the support of the random variables
η, η∗ is conveniently delimited. This reckons on the choice of the function
D; for instance, if D(|w|) = 1− |w| it suffices to take B = (−(1− γ), 1− γ)
to obtain |w′| ≤ 1, |w∗| ≤ 1, while if D(|w|) = 1− w2, it is enough to have

|η| ≤ 1−γ
2 since then |η| ≤ 1−γ

1+|w| (see [44]). With these choices, equation (5)

corresponds to a classical Boltzmann equation

(6)
d

dt

∫
K
φ($) dft($) =

∫
B

∫
K2

(φ($′)− φ($)) dft($)dft($∗)dθ(η),

for any φ ∈ C∞(K).
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Taking φ($) = p and φ($) = q as test functions in (6) it is easy to
see that the average of the persuasion ability, 〈p〉, and of the zealotry, 〈q〉,
respectively, are constant in time. We assume that 〈q〉 > 0, otherwise no
opinion will change.

Our first concern is to show the existence of a solution to (6). This is the
purpose of the following Theorem. The proof follows classical ideas and is
detailed thereafter in the Appendix for the reader’s convenience.

Theorem 2.1. Given f0 ∈ P (K), there exists a unique f ∈ C1([0,+∞), P (K)),
where P (K) is endowed with the total variation norm (1), such that
(7)∫

K
φ($)dft($)

=

∫
K
φ($)df0($) +

∫ t

0

∫
K2×B

(φ($′)− φ($)) dfs($)dfs($∗)dθ(η)ds,

for any φ ∈ C(K).

2.3. Grazing Limit. Given some initial condition f0 ∈ P (K), consider the
function f solution to the Boltzmann-like equation (6) given by Theorem
2.1. We will prove that, after an appropriate time rescaling, the asymptotic
behavior of f(t) as t→ +∞ is well-described when γ, σ → 0 by the solution
g ∈ C([0,+∞), P (K)) of some diffusion equation, whose form depends on

the limit of the quotient σ2

γ . Namely, it reckons on the balance between

the diffusion strength, represented by σ and the tendency to an agreement,
measured by the parameter γ. Indeed, we will see that in case they are
proportional, i.e, σ2 = γλ for some λ > 0, then g satisfies

d
dτ

∫
K
φ($)gτ ($) =

∫
K

(
(m(τ)− w)〈p〉q

)
∂wφ($) dgτ ($)

+λ
2

∫
K
q2D2(|w|)∂wwφ($) dgτ ($),

(8)

for any φ ∈ C∞(K). Here m(τ) =
∫
K

p
〈p〉w dgτ ($), where 〈p〉 is the mean

value of p, which remains constant in time. In other words, m is the mean
opinion weighted by the normalized power of persuasion.

Notice that (8) is the weak form of the Fokker-Planck equation

(9) ∂τg + ∂w

(
(m(t)− w)q〈p〉g

)
=
λ

2
∂ww

(
q2D(|w|)2g

)
,

subject to the following boundary conditions satisfied for any τ > 0:
(10)

(m(τ)−w)〈p〉qgτ ($)−λ
2
∂w

(
q2D2(|w|)gτ ($)

)
= 0, w = ±1, (p, q) ∈ [0, 1]2

(11) D(|w|)2

∫ 1

0

∫ 1

0
q2g(τ, w) dpdq = 0, w = ±1.
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These conditions are the result of integrating by parts assuming that gτ is
smooth. In a wide choice of noise terms D(±1) = 0 (e.g. if D(|w|) = 1−w2

or D(|w|) = 1−|w|), thus (11) holds straightforward and (10) simplifies into

(12) (m(τ)− w)〈p〉qgτ ($) = 0, w = ±1, p ∈ [0, 1], q ∈ [0, 1].

The left-hand side of (9) corresponds to a transport equation describing
the tendency to agreement in the interacting rules. It amounts to a transport
towards the mean opinion m with a velocity being proportional to q〈p〉, the
product between the tendency of an agent to change his opinion and the
mean power of persuasion. The right-hand side of (9) is a diffusion term
representing the possibility for an agent of changing his opinion under the
influence of random external factors.

Notice that the limit equation (9) has both a diffusion and a transport

term according to the assumption σ2

γ → λ > 0. If we suppose instead that
σ2

γ → 0 or that σ2

γ → +∞, the limit equation has only the transport term

or the diffusion term, respectively.

Namely, if σ2

γ → 0, the limit equation turns out to be∫
K
φdgτ =

∫
K
φdf0 +

∫ τ

0

∫
K

(m(τ)− w)〈p〉qφw($) dgs($)ds,

whereas if σ2

γ → +∞ the arising equation is given by∫
K
φdgτ =

∫
K
φdf0 +

λ

2

∫ τ

0

∫
K2

φww($)q2D2(|w|) dgτ ($).

Observe that those are the weak formulation to the transport equation

∂tf(w, p, q) + ∂w((mt − w)q〈p〉f(w, p, q)) = 0,

and the diffusion equation

(13) ∂tf =
λ

2
∂ww

(
q2D(|w|)2f

)
,

respectively.

The above mentioned facts regarding the grazing limit are summarized in
the following Theorem.

Theorem 2.2. In the interaction rule (4) admit that σ2 = γλ for some
λ > 0. Given an initial condition f0 ∈ P (K), consider the solution, f , of
the Boltzmann-like equation (6) given by Theorem 2.1. If fγ(τ) := f(t),
stands for the time rescaled probability density according to τ = γt, it holds,
up to subsequences, that fγ → g as γ → 0 in C([0, T ], P (K)) for any T > 0.
Furthermore, the limit g ∈ C([0,+∞), P (K)) satisfies for any τ ≥ 0 and
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any φ ∈ C∞(K),∫
K
φdgτ =

∫
K
φdf0 +

∫ τ

0

∫
K

(m(τ)− w)〈p〉qφw($) dgs($)ds

+
λ

2

∫ τ

0

∫
K
q2D2(|w|)φww($) dgs($)ds.

(14)

Moreover, if σ2

γ = λ → 0, then g ∈ C([0,+∞), P (K)) verifies the transport
equation

(15)

∫
K
φdgτ =

∫
K
φdf0 +

∫ τ

0

∫
K

(m(τ)− w)〈p〉qφw($) dgs($)ds.

If conversely, σ2

γ → +∞, rescaling time as τ := γαt, for some α ∈ (0, 1), it

holds that fγ → g as γ → 0, where g is determined by

(16)

∫
K
φdgτ =

∫
K
φdf0 +

λ

2

∫ τ

0

∫
K2

φww($)q2D2(|w|) dgτ ($),

being λ > 0 now such that σ2 = λγα.

This kind of result is classical in the literature concerning the Boltzmann
equation. We provide in the Appendix a full detailed proof based on the
arguments in [44].

3. Asymptotic behavior of the Fokker-Planck equation
without noise

This section is concerned with the asymptotic behavior as t → +∞ of
solutions to the Fokker-Planck equation

(17) ∂tf(w, p, q) + ∂w((mt − w)q〈p〉f(w, p, q)) = 0,

or its weak form (15). This equation arises when in the grazing limit domi-

nates the transport term, namely σ2

γ → 0, see Theorem 2.2.

Recall that 〈p〉 is the mean value of the persuasion power p, which remains
constant in time and that m(t) =

∫
K

p
〈p〉w dft($) is the weighted mean

opinion.
The following observation ensures the uniqueness of solutions to (15).

Remark 3.1. Given f0 ∈ P (K) and f ∈ C([0,+∞), P (K)), f(0) = f0, it
is easily seen that the vector-field

E(t,$) := v[ft]($) :=
([ ∫ pw

〈p〉
dft($)−w

]
q〈p〉, 0, 0

)
= ((m(t)−w)q〈p〉, 0, 0),

where 〈p〉 =
∫
K p df0($), satisfies the following:

(1) E is continuous in (t,$),
(2) |E(t,$)| ≤ C for any (t,$),
(3) |E(t,$)− E(t,$′)| ≤ C|$ −$′| for any t,$,$′.
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Moreover if g ∈ C([0,+∞), P (K)), g(0) = f0, then

max
$∈K

|v[ft]($)− v[gt]($)| ≤ CW1(ft, gt),

for any t ≥ 0.
Invoking the theory developed in [12] by Cañizo, Carrillo and Rosado ,

we can ensure that the equation ∂tf + div(v[ft]($)ft) = 0, which is exactly
(17), has a unique solution in C([0,+∞), P (K)) with initial condition f0.

The long time behaviour of the solution will be accomplished by rewriting
equation (17) in a simpler form due to Li and Toscani [32]. To apply this
idea we need to bear in mind some facts about the generalized inverse of the
cumulative distribution function of a probability measure. Only measures
supported in [−1, 1] will be considered, since this is the case of interest in
this paper, see the next subsection.

3.1. A change of variable. Let f ∈ P ([−1, 1]). The cumulative distribu-
tion function (cdf) F : R → [0, 1] of f is defined as F (x) = f((−∞, x]).
Notice that F is non-decreasing and right-continuous with left limit.

The generalized inverse of F is defined as F−1 : [0, 1]→ [−1, 1]

(18) F−1(ρ) = inf {x ∈ [−1, 1] s.t. F (x) ≥ ρ}.
Observe that F−1 is non-decreasing, left-continuous with right limit in (0, 1]
and

(19) [F−1(0+), F−1(1)] ⊃ supp f.

Furthermore, for any x ∈ [−1, 1] and any ρ ∈ [0, 1] the following inequalities
hold:

(20) If F (x) > 0 then F−1(F (x)) ≤ x while F (F−1(ρ)) ≥ ρ.
See the note of Embrechts and Hofert [21] for the above (and further) prop-
erties of F−1.

The use of the generalized inverse enables us to rewrite an equation
like (17) in terms of the generalized inverse of the cdf of ft, and the re-
sulting equation is usually much simpler. More precisely, consider f ∈
C([0,∞);P ([−1, 1])) and let Ft be the cdf of ft and Xt = F−1

t its gen-
eralized inverse. Then, it can be proved that

(21)

∫ 1

0
φ(Xt(r)) dr =

∫ 1

−1
φ(w) dft(w),

for any φ integrable (to prove this identity it suffices to check the formula
for φ of the form 1(−∞,a], a ∈ R). This change of variables formula is the
key of the next result.

Proposition 3.1. Let v : [0,+∞)× [−1, 1]→ R be continuous and globally
Lipschitz with respect to the second variable. Then f ∈ C([0,+∞), P ([−1, 1]))
is a weak solution of

(22) ∂tft + ∂x(v(t, x)ft) = 0,
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in the sense that for any φ ∈ C∞([−1, 1]) and any t > 0,

(23)

∫ 1

−1
φ(x) dft(x) =

∫ 1

−1
φ(x) df0(x) +

∫ t

0

∫ 1

−1
φ′(x)v(s, x) dfs(x)ds,

if and only if for any r ∈ (0, 1], Xt(r) is a solution of

(24) ∂tXt(r) = v(t,Xt(r)).

Here X0 is the generalized inverse of F0 (the cdf of f0).

The proof can be found essentially in Theorem 3.1 of Ref. [1]. However,
we rewrite it here under the point of view of the ordinary equation for the
flux (24).

Proof. Assume that Xt satisfies (24). Thanks to (21), for any smooth φ we
have that

d

dt

∫ 1

−1
φ(x) dft(x) =

d

dt

∫ 1

0
φ(Xt(r)) dr =

∫ 1

0
φ′(Xt(r))v(t,Xt(r)) dr

=

∫ 1

−1
φ′(x)v(t, x) dft(x),

which easily implies (23).
Reciprocally, suppose that f solves (22). By Fubini’s theorem,∫ 1

−1
φ(x)Ft(x)dx =

∫ 1

−1
φ(x)

∫
1(−∞,x](y) dft(y)dx

=

∫ 1

−1

(∫ +∞

y
φ(x) dx

)
dft(y).

Differentiating with respect to time and taking into account (22) yield

d

dt

∫ 1

−1
φ(x)Ft(x)dx = −

∫ 1

−1
φ(y)v(t, y) dft(y).

Moreover, ∂xFt = ft in the distributional sense. Thus F is a weak solution
of the transport equation

(25) ∂tFt + v(t, x)∂xFt = 0.

Let φt(x) be the flow of v, i.e. the solution to ∂tφt(x) = v(t, φt(x)), starting
at φ0(x) = x. Then, as usual F is determined by the relation Ft(φt(x)) =
F0(x). It is now simple to conclude that (24) holds i.e. that Xt(r) =
φt(X0(r)).

First Ft(φt(X0(r))) = F0(X0(r)) which is greater than r by (20). Hence
φt(X0(r)) ≥ Xt(r) for any t.

Conversely, for any x < X0(r) we have F0(x) < r so that Ft(φt(x)) < r
and then φt(x) < Xt(r) by definition of Xt(r). Letting x→ X0(r) we obtain
φt(X0(r)) ≤ Xt(r).

The proof is finished. �
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3.2. Conditional distributions. Another useful tool to achieve the as-
ymptotic analysis is the concept of conditional distribution.

Let X,Y be two random variables defined over the same probability space
with values in Rd and Rk, respectively, and denote by PX and P(X,Y ) the

distributions of X and (X,Y ). Then there exists a map ν : (x,B) ∈ Rd ×
F(Rk)→ ν(x,B) ∈ [0, 1] (where F(Rk) is the Borel σ-field) such that:

i) ν(x, .) ∈ P (Rk) for any x ∈ Rd,
ii) ν(., B) is measurable for any B ⊂ Rk Borel,

iii) P (X ∈ A;Y ∈ B) =
∫
A ν(x,B) dPX(x) for any A ⊂ Rd, B ⊂ Rk

Borel.

We write ν(x,B) = P (Y ∈ B|X = x).
The following Fubini formula holds: for any φ : X × Y → R P(X,Y )-

integrable, the function x→
∫
Y φ(x, y)P (dy|X = x) is measurable and

(26)

∫
X×Y

φdP(X,Y ) =

∫
X

(∫
Y
φ(x, y)P (dy|X = x)

)
dPX(x).

Of course the same results can be written in terms of a probability measure
µ ∈ P (Rd×Rk) and its marginal in Rd, µ1. In that case we let µ|x := ν(x, .)
and any µ-integrable φ satisfies

(27)

∫
X×Y

φdµ =

∫
X

(∫
Y
φ(x, y)µ|x(y)

)
dµ1(x).

The existence of ν is guaranteed by Jirina’s theorem. There are several
classical references in this subject, see for details [3, 10, 30, 43].

3.3. The asymptotic behavior of solutions. We are now ready to ana-
lyze how the interaction of stubborn agents with those more likely to change
their opinions affects the population’s opinion dynamics. Indeed, the agents
with fixed opinion will drag the opinion of the rest of the individuals to
certain average of their own initial distribution, no matter the initial dis-
tribution considered for the whole population, see Theorems 3.1 and 3.2
below.

On the contrary, the asymptotic behavior when q > 0 for every agent,
which will be studied in a future work, takes into account the values of the
initial distribution of every individual.

Precisely, we consider an initial distribution f0 ∈ P (K) of the form

(28) f0(w, p, q)dwdpdq = α0f
0
0 (w, p)dwdp⊗ δq=0 + (1− α0)f1

0 ,

for some α0 ∈ (0, 1], where f1
0 ∈ P (K) is supported in {q ≥ ε} for some

ε > 0, and f0
0 is a probability measure on [−1, 1] × [0, 1]. This means

that there exists a positive fraction α0 of stubborn people whose opinion is
distributed according to f0

0 , and that the parameters (w, p, q) of the rest of
the population verify q ≥ ε and are determined by f1

0 .
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Notice that the dynamics described in (4) deny changes in (p, q) for each
agent and in consequence, the solution ft of (15) with initial condition f0

given in (28) will have the form

(29) ft(w, p, q)dwdpdq = α0f
0
0 (w, p)dwdp⊗ δq=0 + (1− α0)f1

t (w, p, q).

We prove that in this case the non-stubborn agents share asymptotically
the same opinion m∞, which is completely determined by the opinion of the
stubborn individuals. Indeed, we shall see that m∞ is the mean opinion of
the stubborn people weighted by their persuasion power.

The occurrence of this fact is specially well observed if we assume that
the marginal in (p, q) of the distribution of the opinion among the non-
stubborn population, f1

0 (p, q)dpdq, is given by a finite convex combination

of Dirac masses
∑N

i=1 αiδp=pi,q=qi . As we will see, the analysis of the asymp-
totic behavior of the opinion distribution f it (w)dw of the population with
(p, q) = (pi, qi) can be conveniently reduced to the study of a linear system
of ordinary equations M ′ = AM +B in RN .

It is known (see [6]) that any probability measure µ ∈ P (Rd) can be ap-

proximated with high probability by the empirical measure µ̂N := 1
N

∑N
i=1 αiδXi ,

being X1, .., XN N random variables identically distributed with law µ.
Then, it is reasonable to think that the results obtained for the discrete
model enlighten the asymptotic behavior of the general case, as it indeed
occurs.

Therefore, we first examine the simplified discrete system to provide us
with some intuition, before accomplishing the proof for any general initial
distribution given by (28). This is the core of the following theorem.

Theorem 3.1. Let f0 ∈ P (K) be an initial distribution defined as in (28),
where the initial distribution f1

0 of the variables (w, p, q) corresponding to
the non-stubborn population has the form

(30) f1
0 =

N∑
i=1

αig
i
0(w)dw ⊗ δp=pi,q=qi ,

being N ∈ N, α1, .., αN > 0 with α1 + .. + αN = 1, q1, .., qN ∈ [ε, 1] all
distinct, p1, .., pN ∈ (0, 1], and g1

0, .., g
N
0 ∈ P ([−1, 1]). Its evolution in time,

f1
t , verifies

(31) W1(f1
t , δm0

0
⊗

N∑
i=1

αiδp=pi,q=qi)→ 0, as t→ +∞.

Here m0
0 denotes the mean opinion of the stubborn people weighted by the

power of persuasion, namely

(32) m0
0 =

1

〈p〉q=0

∫ 1

−1

∫ 1

0
pw df0

0 (w, p).

Remark 3.2. An estimation of the velocity of convergence in (31) will be
determined for the general case in Theorem 3.2.
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Furthermore, for an intuitive explanation for the fact that the opinion of
the non-stubborn agents converges to m0

0, see Remark 3.4 below.

Proof. Observe that the distribution f1
t in (29) has the form:

(33) f1
t =

N∑
i=1

αig
i
t(w)dw ⊗ δp=pi,q=qi ,

with g1
t , .., g

N
t ∈ P ([−1, 1]). Notice that for any i = 1, .., N ,

f1
t|p=pi,q=qi = git

and

(34) ∂tg
i
t(w) + ∂w((mt − w)qi〈p〉git(w)) = 0,

in weak formulation, namely for any φ ∈ C1([−1, 1]),

(35)
d

dt

∫ 1

−1
φ(w) dgit(w) =

∫ 1

−1
(mt − w)qi〈p〉φ′(w) dgit(w).

This follows from (15) extending φ to a smooth function with support in
[−1, 1] × (pi − η, pi + η) × (qi − η, qi + η) with η > 0 small enough so that
(pi − η, pi + η)× (qi − η, qi + η) does not contain any other (pj , qj).

Let us study the behavior of git, i = 1, .., N , as t → +∞. We claim that
for any i = 1, .., N and t > 0,

(36) W1(git, δmi
t
) ≤ 2e−ε〈p〉t,

where

mi
t :=

∫ 1

−1
w dgit(w)

is the mean opinion of agents with (p, q) = (pi, qi). Indeed, according to
Proposition 3.1, it follows from (34) that the generalized inverse Xi

t of the
cumulative distribution function corresponding to git satisfies

∂tX
i
t(r) = (mt −Xi

t(r))qi〈p〉,
for any r ∈ (0, 1]. Then,

∂t(X
i
t(1)−Xi

t(r))
2 = −2qi〈p〉(Xi

t(1)−Xi
t(r))

2,

so that by Gronwall’s Lemma

(37) Xi
t(1)−Xi

t(r) ≤ (Xi
0(1)−Xi

0(r))e−qi〈p〉t ≤ 2e−ε〈p〉t.

On the other hand, since mi
t =

∫ 1
0 X

i
t(r) dr, it holds that Xi

t(0
+) ≤ mi

t ≤
Xi
t(1) for all t. As a result,

W1(git, δmi
t
) ≤

∫ 1

−1
|w −mi

t| dgit(w) =

∫ 1

0
|Xi

t(r)−mi
t| dr

≤ |Xi
t(1)−Xi

t(0
+)|,

which, combined with (37), gives (36).
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In view of (36), it is natural to study the asymptotic behavior of mi
t,

i = 1, .., N . Taking φ(w) = w in (35), we obtain

d

dt
mi
t = (mt −mi

t)qi〈p〉.

According to (29) and (33), we have

〈p〉mt =

∫ 1

−1

∫ 1

0

∫ 1

0
pw dft(w, p, q)

= α0〈p〉|q=0m
0
0 + (1− α0)

N∑
j=1

αjpjm
j
t ,

where m0
0 is defined in (32). Thus for any i = 1, .., N ,

1

qi

d

dt
mi
t =

(
(1− α0)αipi − 〈p〉

)
mi
t

+ (1− α0)
∑

k=1..N, k 6=i
αkpkm

k
t + α0〈p〉|q=0m

0
0.

(38)

Introducing M(t) := (m1
t , ..,m

N
t )T , this can be rewritten as

M ′(t) = AM(t) +B,

with B = α0〈p〉|q=0m
0
0(q1, .., qN )T and A = (aij)ij with

aij =

{
qi

(
(1− α0)αipi − 〈p〉

)
if j = i

(1− α0)qiαjpj if j 6= i.

The solution is explicitly

M(t) = etAM(0) +

∫ t

0
e(t−s)AB ds = etA(M(0) +A−1B)−A−1B.

Notice that for any i = 1, .., N ,

aii = −qi
(
〈p〉|q=0α0 + (1− α0)

∑
j=1,..,N, j 6=i

αjpj

)
.

It is then easily seen that A(1, .., 1)T = −α0〈p〉|q=0(q1, .., qN )T , which yields
that

A−1B = −m0
0(1, . . . , 1)T .

According to Gerschgorin’s disc theorem,

σ(A) ⊂
N⋃
i=1

D
(
aii,

∑
k=1..N,k 6=i

|aik|
)
,

where σ(A) denotes the spectrum of A and D(z, r) the disc in the complex
plane centered at z of radius r. Thus, for any i = 1, .., N ,

(39) aii +
∑

k=1..N,k 6=i
|aik| = −qi〈p〉q=0α0 ≤ −εα0〈p〉q=0,
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which implies that

(40) σ(A) ⊂ {z ∈ C : Re(z) ≤ −εα0〈p〉q=0}.

We thus deduce that as t→ +∞, M(t)→ −A−1B = m0
0(1, .., 1)T exponen-

tially fast. This together with (36) is enough to obtain that W1(git, δm0
0
)→ 0

for any i = 1, . . . , N . We are ready now to show (31). Using that W1 com-
bines properly with convex combinations (see [47]), we have

W1(f1
t ,

N∑
i=1

αiδm0
0
⊗ δp=pi,q=qi) ≤

N∑
i=1

αiW1(git ⊗ δp=pi,q=qi , δm0
0
⊗ δp=pi,q=qi)

≤
N∑
i=1

αiW1(git, δm0
0
),

(41)

which goes to 0 as t→ +∞. This completes the proof. �

Remark 3.3. The problem without the presence of stubborn agents will be
treated in a forthcoming work. Observe that in this case the inequality (39)
is no longer strictly negative. Therefore, this situation requires very different
arguments.

We now study the general case:

Theorem 3.2. Assume that the initial distribution has the form

f0 = α0f
0
0 + (1− α0)f1

0 ,

where f0
0 ∈ P (K) is supported in {q = 0} and f1

0 ∈ P (K) is supported in
{q ≥ ε0}. Admit also that the map

(p, q) ∈ [0, 1]× [0, ε0]→ f1
0|(p,q) ∈ P ([−1, 1])

is globally Lipschitz for the W1-distance: there exists L > 0 such that for
any (p, q), (p′, q′) ∈ [0, 1]× [ε0, 1],

(42) W1(f1
0|(p,q), f

1
0|(p′,q′)) ≤ L(|q − q′|+ |p− p′|).

Then,

(43) W1(f1
t , f

1
0 (p, q)dpdq ⊗ δm0

0
) ≤ 4e−α0ε0〈p〉|q=0t,

where

(44) m0
0 :=

∫
p

〈p〉|q=0
w df0

0 (w, p)

is the mean opinion weighted by the normalized persuasion power within the
group of stubborn agents. Here 〈p〉|q=0 =

∫
p df0

0 (p) stands for the mean
value of p among the stubborn agents.
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Remark 3.4. Let us give an intuitive motivation for the convergence of
the opinion of the non-stubborn agents to m0

0. Suppose we know that there
exists m∞ := limt→+∞mt. In view of equation (17), it seems reasonable to
conjecture that f1

t converges to δm∞(w)⊗ f1
0 (p, q)dpdq so that ft → α0f

0
0 +

(1−α0)δm∞(w)⊗ f1
0 (p, q)dpdq. In particular we can pass to the limit in the

definition of mt to obtain that

〈p〉m∞ = 〈p〉 lim
t→+∞

mt = α0

∫
pw df0

0 + (1− α0)m∞

∫
p df1

0 (p, q).

Moreover,

〈p〉 = α0

∫
p df0

0 (p) + (1− α0)

∫
p df1

0 (p) = α0〈p〉|q=0 + (1− α0)

∫
p df1

0 (p).

Furthermore,

α0〈p〉|q=0m∞ = α0

∫
pw df0

0 ,

which implies that m∞ = m0
0.

Remark 3.5. Sufficient conditions on f1
0 ensuring the regularity assumption

(42) can be easily found. Suppose for instance that f1
0 has a density in the

sense that f1
0 = f1

0 (w, p, q)dwdpdq with f1
0 ∈ L1(K). Then, f1

0|(p,q)(w) =
f10 (w,p,q)

f10 (p,q)
if f1

0 (p, q) 6= 0. Let us assume that

(1) 0 < C ≤ f1
0 (p, q) ≤ C ′ <∞ for any (p, q) such that f1

0 (p, q) 6= 0,
(2) there exists C ′′ > 0 such that

|f1
0 (w, p, q)− f1

0 (w, p′, q′)| ≤ C ′′(|p− p′|+ |q − q′|),
for any w and any (p, q), (p′, q′) with f1

0 (p, q), f1
0 (p′, q′) 6= 0.

In that case f1
0|(p,q) verifies

|f1
0|(p,q)(w)− f1

0|(p′,q′)(w)| ≤ C ′′(|p− p′|+ |q − q′|),

for any w and any (p, q), (p′, q′) with f1
0 (p, q), f1

0 (p′, q′) 6= 0. Consequently,
for any φ : [−1, 1]→ R 1-Lipschitz and any (p, q), (p′, q′) such that f1

0 (p, q), f1
0 (p′, q′) 6=

0, there holds∫ 1

−1
φ(w) (df1

0|(p,q)(w)− df1
0|(p′,q′)(w)) =

∫ 1

−1
φ(w) (f1

0|(p,q)(w)− f1
0|(p′,q′)(w))dw

≤ C ′′(|p− p′|+ |q − q′|)
∫ 1

−1
|φ(w)| dw.

Without loss of generality, it can be assumed that φ(−1) = 0, since the
above inequalities are still valid when adding a constant to φ. Accordingly,
‖φ‖∞ ≤ 2. Taking the supremum over such φ in the above expression gives
(42) with L = 4C ′′.

In the course of the proof we will use the following envelope Theorem due
to Milgrom and Segal in [34]:
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Theorem 3.3. Let X be a set. Consider the function V (t) := maxx∈X h(x, t),
t ∈ [0, 1]. Admit that h is absolutely continuous with respect to t for any x
and there exists b ∈ L1([0, 1]) such that |∂th(x, t)| ≤ b(t) for any x ∈ X and
almost any t ∈ [0, 1]. Then V is absolutely continuous.

Assume in addition that h is differentiable in t for any x ∈ X and that
for any t ∈ [0, 1] the set X(t) := argmax h(., t) is non-empty. In this case,
for any selection of x∗(t) ∈ X(t) we have

V (t) = V (0) +

∫ t

0
∂th(x∗(s), s) ds.

3.4. The proof of Theorem 3.2. We have all of the ingredients to show
the asymptotic behaviour in the general case. For convenience, we divide
the proof in several steps.

Proof of Theorem 3.2. For any t and any p, q ∈ [0, 1] × [ε0, 1] denote by
f1
t|(p,q) ∈ P ([−1, 1]) the conditional distribution of opinion among the agents

with parameter (p, q).

Step 3.1. For any (p, q) ∈ supp (f0(p, q)dpdq), f1
t|(p,q) is the unique solution

to

(45)

{
∂tf

1
t|(p,q) + ∂w((mt − w)q〈p〉f1

t|(p,q)) = 0,

f1
t=0|(p,q) = f0|(p,q),

in C([0,+∞), P ([−1, 1])).
Moreover, the function (p, q) → f1

t|(p,q) is Lipschitz with respect to the

Wasserstein distance W1. Namely, for any (p, q), (p′, q′) ∈ [0, 1]× [ε0, 1],

(46) W1(f1
t|(p,q), f

1
t|(p′,q′)) ≤ Ct(|q − q

′|+ |p− p′|).

Furthermore, it fulfils

(47)

∫
K
φdf1

t =

∫ 1

0

∫ 1

0

(∫ 1

−1
φdf1

t|(p,q)(w)
)
df1

0 (p, q), ∀φ ∈ C(K).

Proof. The existence of a unique solution to (45) is ensured by the results
of Canizo, Carrillo y Rosado [12], see Remark 3.1.

Denote by φt the flow of the vector-field (w, p, q) → (q〈p〉(mt − w), 0, 0).
Since mt is considered to be a known C1 function, this flow can be rewritten
as φt(w, p, q) = (φ1

t (w, p, q), p, q) and f1
t = φt]f

1
0 being the push-forward

measure defined as∫
K
ψ(w, p, q) df1

t (w, p, q) =

∫
K
ψ(φt(w, p, q)) df

1
0 (w, p, q),

for all ψ ∈ C(K).
This implies that for any ψ ∈ C([−1, 1]) and φ ∈ C([0, 1]× [0, 1]),∫

K
ψ(w)φ(p, q) df1

t (w, p, q) =

∫
K
ψ(φ1

t (w, p, q))φ(p, q) df1
0 (w, p, q),
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i.e. ∫ 1

0

∫ 1

0
φ(p, q)

(∫ 1

−1
ψ(w) df1

t|(p,q)(w)
)
df1

0 (p, q)

=

∫ 1

0

∫ 1

0
φ(p, q)

(∫ 1

−1
ψ(φ1

t (w, p, q)) df
1
0|(p,q)(w)

)
df1

0 (p, q).

The arbitrariness of φ ∈ C([0, 1] × [0, 1]) yields, for any t ≥ 0 and any
continuous function ψ, that

(48)

∫ 1

−1
ψ(w) df1

t|(p,q)(w) =

∫ 1

−1
ψ(φ1

t (w, p, q)) df
1
0|(p,q)(w),

for almost any (p, q), except for a f1
0 (p, q)dpdq-null set.

In particular, for any k ∈ N, there exists a f1
0 (p, q)dpdq-null set, denoted

as At,k ⊂ [0, 1]× [0, 1], for which ψ(w) = wk verifies the previous inequality
at any (p, q) ∈ Act,k.

Note that At := ∪k≥0At,k is a f1
0 (p, q)dpdq-null set such that (48) holds

for any polynomial ψ and any (p, q) ∈ Act . The density of the polynomials
in C([−1, 1]) implies that indeed, (48) holds for any ψ ∈ C([−1, 1]) and any
(p, q) ∈ Act with At of f1

0 (p, q)dpdq-null measure. This equality can then also
be expressed as

(49) f1
t|(p,q) = φ1

t (., p, q)]f
1
0|(p,q),

for any (p, q) ∈ Act . We would like this identity is fulfilled for any (p, q) ∈
supp(f1

0 (p, q)dpdq).
Fix certain t ≥ 0 and assume for the moment that there exists a constant

Ct > 0 depending only on t such that for any (p, q), (p′, q′) ∈ [0, 1]× [ε0, 1],

(50) W1(φ1
t (., p, q)]f

1
0|(p,q), φ

1
t (., p

′, q′)]f1
0|(p′,q′)) ≤ Ct(|q − q

′|+ |p− p′|).

Note that this claim also shows the Lipschitz continuity stated in (46).

Using the decomposition f1
0 (p, q)dpdq = f1, non−atom

0 + f1, atom
0 , observe

that (49) is also satisfied for any (p, q) belonging to a larger set, Act ∪
{f1, atom

0 > 0}, since f1, atom
0 gives positive mass to each of its atoms. This

observation and the continuity given in (46) conclude that (49) is satisfied
in Act ∪ supp(f1, atom).

It remains to modify the definition of f1
t|(p,q) at the variables (p, q) ∈

At ∩ supp(f1, non−atom
0 ) in such a way that f1

t|(p,q) preserves its continuity in

t and (49) holds for any (p, q) ∈ supp(f1
0 (p, q)dpdq).

Take first some (p, q) ∈ At∩{f1, non−atom
0 > 0}. Since At has null measure,

there exists a sequence (pk, qk) ∈ Act∩{f
1, non−atom
0 > 0} such that (pk, qk)→

(p, q). As a consequence of (46), (ft|(pk,qk))k is a Cauchy sequence in the
complete space (P ([−1, 1],W1), hence it converges to some limit g(p,q) ∈
P ([−1, 1]). Furthermore, (46) ensures also that this limit does not depend
on the approximating sequence (pk, qk)k.
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We then declare f1
t|(p,q) := g(p,q) on At ∩ {f1, non−atom

0 > 0}. That way

f1
t|(p,q) is continuous and (49) holds for any (p, q) ∈ {f1, non−atom > 0}.

Proceed with (p, q) ∈ supp (f1, non−atom) similarly, taking an approximating
sequence (pk, qk) ∈ {f1, non−atom > 0}.

In conclusion, redefining f1
t|(p,q) on f1

0 (p, q)dpdq-null sets in such a way

that f1
t|(p,q) and the right hand side of (49) are continuous with respect to

(p, q), guarantees that (49) and (48) are satisfied for any t ≥ 0 and any
(p, q) ∈ supp (f1

0 (p, q)dpdq). Moreover, it is clear that this modification is
in accordance with the application of Fubini’s Theorem, thus (47) holds.

To conclude the proof, it remains to prove the claim (50). Let ψ :
[−1, 1]→ R be 1-Lipschitz. Note that∫

ψ d(φ1
t (., p, q)]f

1
0|(p,q) − φ

1
t (., p

′, q′)]f1
0|(p′,q′))

=

∫
ψ(φ1

t (w, p, q)) df
1
0|(p,q)(w)−

∫
ψ(φ1

t (w, p
′, q′)) df1

0|(p′,q′)(w)

=

∫
ψ(φ1

t (w, p, q))− ψ(φ1
t (w, p

′, q′)) df1
0|(p,q)(w)

+

∫
ψ(φ1

t (w, p
′, q′)) d(f1

0|(p′,q′) − f
1
0|(p,q))(w) = I + II.

(51)

The second term can be estimated using the definition of the Wasserstein
distance W1,

II ≤ Lip(ψ(φ1
t (., p

′, q′)))W1(f1
0|(p′,q′), f

1
0|(p,q))

≤ Lip(φ1
t (., p

′, q′))L(|q − q′|+ |p− p′|),
where L is the Lipschitz constant given by the assumption (42). On the
other hand, the first term in (51) can be bounded as

I ≤ max
|w|≤1

|ψ(φ1
t (., p, q))− ψ(φ1

t (., p
′, q′))| ≤ max

|w|≤1
|φ1
t (., p, q)− φ1

t (., p
′, q′)|.

Summarizing,∫
ψ d(φ1

t (., p, q)]f
1
0|(p,q) − φ

1
t (., p

′, q′)]f1
0|(p′,q′))

≤ max
|w|≤1

|φ1
t (w, p, q)− φ1

t (w, p
′, q′)|+ Lip(φ1

t (., p
′, q′))L(|q − q′|+ |p− p′|).

At this stage, recall that

φ1
t (w, p, q) = w + q〈p〉

∫ t

0
(ms − φ1

s(w, p, q)) ds,

therefore,

φ1
t (w, p, q)− φ1

t (w, p
′, q′) = (q − q′) < p >

∫ t

0
(ms − φ1

s(w, p
′, q′)) ds

+q〈p〉
∫ t

0
(φs(w, p

′, q′)− φs(w, p, q)) ds.
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Taking now into account that |φ1
t (w, p, q)| ≤ 1 for any (w, p, q), we infer that

|φt(w, p, q)− φt(w, p′, q′)| ≤ 2t|q − q′|+
∫ t

0
|φs(w, p′, q′)− φs(w, p, q)| ds.

With the use of Gronwall’s lemma this yields

|φ1
t (w, p, q)− φ1

t (w, p
′, q′)| ≤ 2tet|q − q̂|.

Similar arguments prove that for w, w̃ ∈ [−1, 1 and p, q ∈ [0, 1],

|φ1
t (w, p, q)− φ1

t (w̃, p, q)| ≤ et|w − w̃|,
hence Lip(φ1

t (., p, q)) ≤ et. In conclusion, we have shown that∫
ψ d(φ1

t (., p, q)]f
1
0|(p,q) − φ

1
t (., p

′, q′)]f1
0|(p′,q′)) ≤ C(t)(|q − q′|+ |p− p′|).

The desired claim (50) follows now taking the supremum among all functions
ψ 1-Lipschitz. �

Remark 3.6. It would be natural to conjecture that f1
t|(p,q), modified in

f1
0 (p, q)dpdq-null set as in Theorem 3.3, still defines a conditional density.

Indeed, it is straightforward to see that

µw(p, q) := f1
t|(p,q)(w) ∈ P ([0, 1]× [0, 1]) for any w ∈ [−1, 1],

and P (X ∈ A;Y ∈ B) =
∫
A

∫
B dµw(p, q) df1

t|(p,q)(w) for any A ⊂ [−1, 1],

B ⊂ [0, 1] × [0, 1] Borel sets. However, the fact that f1
t (., B) is measurable

for any B ⊂ [0, 1]× [0, 1] Borel, is not so immediate, and nevertheless is out
of the scope of our results. In particular, for our proof it suffices with (47).

We denote by

(52) m(t, p, q) =

∫ 1

−1
w df1

t|(p,q)(w),

the mean opinion among the agents with parameter p, q ∈ [0, 1]× [ε0, 1].

Step 3.2. There holds

(53) W1(f1
t|(p,q), δm(t,p,q)) ≤ 2e−ε0〈p〉t.

Proof. It can be deduced analogously to (36). �

In view of the previous step, it is natural to study the asymptotic behavior
of the function m(t, .) as t→ +∞.

Step 3.3. For any t ≥ 0 and any (p, q) ∈ [0, 1]×[ε0, 1] the function m(t, p, q)
defined in (52) satisfies

∂tm(t, p, q) = qα0〈p〉|q=0

[
m0

0 −m(t, p, q)
]

+ (1− α0)q

∫
K
p′
[
m(t, p′, q′)−m(t, p, q)

]
df1

0 (w, p′, q′).
(54)
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Proof. Given that f1
t|(p,q) fulfills (45) for any (p, q) ∈ [0, 1] × [ε0, 1], in par-

ticular

∂tm(t, p, q) =
d

dt

∫ 1

−1
w df1

t|(p,q)(w) = q〈p〉
∫ 1

−1
(mt − w) df1

t|(p,q)(w)(55)

= q〈p〉(mt −m(t, p, q)).

Moreover according to the definition of mt,

〈p〉mt =

∫
K
pw dft(w, p, q)

= α0

∫ 1

−1

∫ 1

0
pw df0

0 (w, p) + (1− α0)

∫
K
pw df1

t (w, p, q),

being ∫
K
pw df1

t (w, p, q) =

∫ 1

0

∫ 1

0
p
(∫ 1

−1
w df1

t|(p,q)(w)
)
df1

0 (p, q)

=

∫ 1

0

∫ 1

0
pm(t, p, q) df1

0 (p, q).

Denote as 〈p〉|q=0 :=
∫
p df0

0 (p, w), that is, the mean value of p among the
agents with q = 0. We have

〈p〉 =

∫
K
p dft(w, p, q) = α0〈p〉|q=0 + (1− α0)

∫
K
p df1

t (w, p, q).

In terms of 〈p〉 and 〈p〉mt equation (55) is equivalent to

1

q
∂tm(t, p, q) = α0

[ ∫ 1

−1

∫ 1

0
pw df0

0 (w, p)− 〈p〉|q=0m(t, p, q)
]

+(1− α0)

∫
K
p′
[
m(t, p′, q′)−m(t, p, q)

]
df1

0 (w, p′, q′),

which in view of the definition of m0
0 in (44), can be rewritten as (54). �

At this stage, our aim is to determine the behavior as t → +∞ of the
solution m(t, p, q) to the linear system (54), which is exactly the system

appearing in (38), when f1
0 had the special form f1

0 =
∑N

i=1 αig
i
0(w)dw ⊗

δp=pi,q=qi .

The following step proves that m(t, p, q) is Lipschitz continuous in (p, q)
uniformly in t.

Step 3.4. For any ε0 < ε < 2/(L〈p〉) (where L is given in (42)), and for
any (p, q), (p′, q′) ∈ [0, 1]× [ε0, 1], there holds

(56) |m(t, p, q)−m(t, p′, q′)| ≤ 2

ε〈p〉
(|q − q′|+ |p− p′|).
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Proof. Using (54) we have

∂t[m(t, p, q)−m(t, p′, q′)]

= α0〈p〉|q=0m
0
0(q − q′)− α0〈p〉|q=0(q − q′)m(t, p, q)

−α0〈p〉|q=0q
′[m(t, p, q)−m(t, p′, q′)]

+(1− α0)(q − q′)
∫ 1

0

∫ 1

0
p̃[m(t, p̃, q̃)−m(t, p, q)] df1

0 (p̃, q̃)

−(1− α0)q′[m(t, p, q)−m(t, p′, q′)]

∫ 1

0

∫ 1

0
p df1

0 (p, q)

= (q − q′)
{
α0〈p〉|q=0[m0

0 −m(t, p, q)]

+(1− α0)

∫ 1

0

∫ 1

0
p̃[m(t, p̃, q̃)−m(t, p, q)] df1

0 (p̃, q̃)
}

−[m(t, p, q)−m(t, p′, q′)]q′〈p〉.

Consequently,

1

2

∂

∂t
|m(t, p, q)−m(t, p′, q′)|2

= (q − q′)
[
m(t, p, q)−m(t, p′, q′)

]{
α0〈p〉|q=0[m0

0 −m(t, p, q)]

+(1− α0)

∫
p̃[m(t, p̃, q̃)−m(t, p, q)] df1

0 (p̃, q̃)
}

−|m(t, p, q)−m(t, p′, q′)|2q′〈p〉.

Recalling that |m0
0|, |m(t, p, q)| ≤ 1, it is straightforward to see that∣∣∣α0〈p〉|q=0[m0

0−m(t, p, q)]+(1−α0)

∫
p̃[m(t, p̃, q̃)−m(t, p, q)] df1

0 (p̃, q̃)
∣∣∣ ≤ 2.

The fact that q′ ≥ ε0 allows to deduce that

1

2

∂

∂t
|m(t, p, q)−m(t, p′, q′)|2

≤ 2|q − q′|
∣∣∣m(t, p, q)−m(t, p′, q′)

∣∣∣− ε0〈p〉|m(t, p, q)−m(t, p′, q′)|2

≤ 2(|q − q′|+ |p− p′|)
∣∣∣m(t, p, q)−m(t, p′, q′)

∣∣∣
−ε0〈p〉|m(t, p, q)−m(t, p′, q′)|2.

Let u(t) ≥ 0 be the solution to{
u′(t) = 4(|q − q′|+ |p− p′|)

√
u(t)− 2ε0〈p〉u(t),

u(0) = |m(0, p, q)−m(0, p′, q′)|2.

Note that |m(t, p, q) −m(t, p′, q′)|2 ≤ u(t). Moreover, writing the equation
for u as

u′(t) = 2ε0〈p〉
√
u(t)

(
u∗ −

√
u(t)

)
,
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where

u∗ :=
2(|q − q′|+ |p− p′|)|

ε0〈p〉
,

we see that if u(0) ≤ (u∗)2, then u(t) ≤ (u∗)2 for any t and u(t) → (u∗)2.
Observe that in view of the assumption (42),

u(0) = |m(0, p, q)−m(0, p′, q′)|2 =
∣∣∣ ∫ 1

−1
w df1

0|(p,q)(w)−
∫ 1

−1
w df1

0|(p′,q′)(w)
∣∣∣2

≤
(
W1(f1

0|(p,q), f
1
0|(p′,q′))

)2
≤ L2(|q − q′|+ |p− p′|)2.

Taking ε > 0 such that ε0 < ε < 2/(L〈p〉), ensures that u(0) ≤ (u∗)2 and
thus u(t) ≤ (u∗)2 for any t. It follows then |m(t, p, q)−m(t, p′, q′)|2 ≤ u(t) ≤
(u∗)2, which proves (56).

�

We have all of the ingredients to show the convergence of m(t, p, q) to m0
0:

Step 3.5. For any (p, q) ∈ supp (f1
0 (p, q)dpdq) and any t ≥ 0 it holds that

|m(t, p, q)−m0
0| ≤

(
max

(p,q)∈supp(f10 )
|m(0, p, q)−m0

0|
)
e−ε0α0〈p〉|t=0t.

Proof. Relation (54) implies that for any q ∈ [ε0, 1] and t ≥ 0

1

2

∂

∂t
|m(t, p, q)−m0

0|2

= ∂tm(t, p, q)[m(t, p, q)−m0
0]

= −qα0〈p〉|q=0[m0
0 −m(t, p, q)]2

+ q(1− α0)[m(t, p, q)−m0
0]

∫ 1

0

∫ 1

0
p̃
[
m(t, p̃, q̃)−m(t, p, q)

]
df1

0 (p̃, q̃).

(57)

In particular, choosing (p, q) = (p∗, q∗) a maximum point for |m(t, .) −m0
0|

(its existence is ensured since supp(f1
0 (p, q)dpdq) is compact and m(t, .) is
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continuous). Then,

1

2

∂

∂t
|m(t, .)−m0

0|2|(p∗,q∗)
= −q∗α0〈p〉|q=0[m0

0 −m(t, p∗, q∗)]2

+q∗(1− α0)[m(t, p∗, q∗)−m0
0]

∫ 1

0

∫ 1

0
p̃
[
(m(t, p̃, q̃)−m0

0) + (m0
0 −m(t, p∗, q∗))

]
df1

0 (p̃, q̃)

= −q∗α0〈p〉|q=0[m0
0 −m(t, p∗, q∗)]2

+q∗(1− α0)[m(t, p∗, q∗)−m0
0]

∫ 1

0

∫ 1

0
p̃
[
m(t, p̃, q̃)−m0

0

]
df1

0 (p̃, q̃)

−q∗(1− α0)[m(t, p∗, q∗)−m0
0]2
∫ 1

0

∫ 1

0
p̃ df1

0 (p̃, q̃)

= I + II + III.

The choice of q∗ assures that

II ≤ q∗(1− α0)|m(t, p∗, q∗)−m0
0|2
∫ 1

0

∫ 1

0
p̃ df1

0 (p̃, q̃) = −III.

The cancellation of these two terms gives

∂

∂t
|m(t, .)−m0

0|2|(p∗,q∗) ≤ −2ε0α0〈p〉|q=0|m0
0 −m(t, p∗, q∗)|2.(58)

Denote V (t) = max(p,q)∈supp(f10 ) h(t; (p, q)) with h(t; (p, q)) = |m(t, p, q)−
m0

0|2, which in t is a C1 function since m is C1 in t. Moreover, by (57) it
holds that |∂th(t; (p, q))| ≤ C. Now the envelope Theorem 3.3 applies to
obtain that V is absolutely continuous with derivative

V ′(t) = ∂t

(
|m(t, q∗)−m0

0|2
)

a.e..

Thus, in view of (58),

V ′(t) ≤ −2ε0α0〈p〉|q=0V (t)

and as a result
V (t) ≤ V (0)e−2ε0α0〈p〉|q=0t,

which completes the proof. �

We are now in position to accomplish the proof of Theorem 3.2. The
previous Step ensures that for any t ≥ 0 and any (p, q) ∈ supp f1

0 (p, q)dpdq,

W1

(
δm(t,p,q), δm0

0

)
= |m(t, p, q)−m0

0| ≤ 2e−ε0α0〈p〉|q=0t.

According to (53) and noticing that 〈p〉 ≥ α0〈p〉|q=0, we infer that

W1

(
f1
t|(p,q), δm0

0

)
≤ 2e−ε0α0〈p〉|q=0t + 2e−ε0〈p〉t ≤ 4e−ε0α0〈p〉|q=0t.

We now claim that

W1

(
f1
t , δm0

0
⊗ f1

0 (p, q)dpdq
)
≤ 4e−ε0α0〈p〉|q=0t.
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Indeed let ψ : K → R be 1-Lipschitz. Then,∫
K
ψ
(
df1
t − δm0

0
⊗ f1

0 (p, q)dpdq
)

=

∫ 1

0

∫ 1

0

(∫ 1

−1
ψ(w, p, q) (dft|(p,q) − δm0

0
)
)
df0(p, q).

Since ψ(., p, q) es 1-Lipschitz, the inner integral is bounded above byW1(ft|(p,q), δm0
0
),

which implies that∫
K
ψ
(
df1
t − δm0

0
⊗ f1

0 (p, q)dpdq
)
≤ 4e−ε0α0〈p〉|q=0t

∫ 1

0

∫ 1

0
df0(p, q)

= 4e−ε0α0〈p〉|q=0t.

The claim follows taking supremum over all functions ψ 1-Lipschitz. The
proof of the theorem is now complete. �

4. Computational experiments

We close the paper with some agent based simulations.
The numerical experiment considers a population of N = 10000 agents

with α0 = 60% stubborn agents. We take such a high proportion to speed
up the computations in view of (43) whereas it does not change the value
of m∞.

Initially,

• each non-stubborn agent has opinion chosen uniformly at random in
[0.3; 1], parameter q is chosen uniformly at random in [0.2; 1] and we
set p = 1− q,
• one third of the stubborn agents has p = 0.6 and opinion chosen at

random in [−0.8;−0.6] uniformly, whereas the others have p = 0.2
and opinion chosen uniformly at random in [0.4; 0.8].

Notice in particular that

〈p〉q=0 =
1

3
× 0.6 +

2

3
× 0.2 =

1

3
,

〈p〉 = α0〈p〉q=0 + (1− α0)

∫
p df1

0 = 0.6 ∗ 1

3
+ 0.4 ∗ (1− 0.6)

= 0.36,∫
pw df0

0 (w, p) =
1

3
× 0.6× (−0.7) +

2

3
× 0.2× 0.6.

It follows that

m∞ =

∫
pw

〈p〉q=0
df0

0 (w, p) ≈ −0.18.

We then let the agents interact following the rules with γ = 0.01. We
depict in the figures in Table 4 the density of (w, q) parameters among
the non-stubborn population for different times in gray scale (the whiter
is the graphic, the higher is the density). This picture clearly reveals the
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convergence of the density of opinion ft|q(w)dw among the population with
q towards its mean value mq(t) (at a faster pace for higher q as predicted),
and then the displacement of the curve-like density to a vertical segment
located at w ≈ −0.18. This is in complete agreement with the theoretical
value m∞ given above.

DensityEvol_j0.jpg DensityEvol_j37.jpg

DensityEvol_j96.jpg DensityEvol_j700.jpg

Table 1. From left to right and top to bottom, the figures
represent the density of (w, q) parameters among the non-
stubborn population in gray scale (the whiter is the graphic,
the higher is the density) with opinion w in the horizontal
axe, and q in the vertical axe after respectively 0,37,96,700
×50000 interactions. The initial values of (w, p, q) are those
given in the text.



28 M. PÉREZ-LLANOS, J.P. PINASCO, N.SAINTIER, AND A. SILVA

Appendix A. Existence of a unique solution to the Boltzmann
equation. Proof of Theorem 2.1

The existence of a unique solution to the Boltzmann equation results as
an application of the classical Banach Fixed Point Theorem, as it is sketched
in [13]. We provide here a detailed proof, for the reader’s convenience.

Proof. Let us first introduce some notations. If f, g ∈ M(K) are given
measures, we define a finite measure Q(f, g) by

(59)

(Q(f, g), φ) =
1

2

∫
K2×B

(φ($′)− φ($)) df($)dg($∗)dθ(η)

+
1

2

∫
K2×B

(φ($′)− φ($)) dg($)df($∗)dθ(η),

for any φ ∈ C(K). Notice that

|(Q(f, g), φ)| ≤ 2‖φ‖∞‖f‖‖g‖,
where ‖f‖ and ‖g‖ denote the total variation norm (1) of f and g, respec-
tively. Consequently, the total variation norm of the measure Q(f, g) verifies
that

(60) ‖Q(f, g)‖ ≤ 2‖f‖‖g‖.
Observe for future use that Q(f, f)−Q(g, g) = Q(f + g, f − g) which yields

(61) ‖Q(f, f)−Q(g, g)‖ ≤ 2‖f + g‖‖f − g‖.
Fix some T > 0 to be chosen later on. Denote by CT := C([0, T ], P (K))

the space of functions from [0, T ] with values in P (K) being continuous for
the total variation norm. The estimate (60) ensures that for all f, g ∈ CT , it

holds ‖Q(fs, gs)‖ ≤ C for any s ∈ [0, T ]. Thus
∫ t

0 ‖Q(fs, gs)‖ ds is finite and

we can consider the integral
∫ t

0 Q(fs, gs) ds in the Bochner sense. Since P (K)
is separable (because K is compact), the integration is indeed understood
in the Pettis sense. In particular,

(62) (

∫ t

0
Q(fs, gs) ds, φ) =

∫ t

0
(Q(fs, gs), φ) ds, for any φ ∈ C(K).

Under these notations, (7) can be rewritten as∫
K
φdft =

∫
K
φdf0 +

∫ t

0
(Q(fs, fs), φ) ds,

i.e.

(63) ft = f0 +

∫ t

0
Q(fs, fs) ds =: J(f)(t).

Our purpose is to find a fixed point of J in the closed subspace XT of CT
defined as

XT := {f ∈ CT : f(0) = f0 and max
0≤t≤T

‖ft‖ ≤ 2‖f0‖},
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where T is sufficiently small. We endow XT with the sup-norm given by
‖f‖XT

= max0≤t≤T ‖ft‖. For any f ∈ XT , a direct application of the
Dominated Convergence Theorem ensures that J(f) ∈ CT . Moreover, in
view of (60), we get

‖J(f)(t)‖ ≤ ‖f0‖+

∫ t

0
‖Q(fs, fs)‖ ds ≤ ‖f0‖+ 2T max

0≤t≤T
‖fs‖2

≤ ‖f0‖+ 8T‖f0‖2.
Taking T ≤ 1/(8‖f0‖) guarantees that J(f) ∈ XT . Next we prove that J is
in fact a strict contraction. Recall that by (61) we know

‖J(f)(t)− J(g)(t)‖ ≤
∫ t

0
‖Q(fs, fs)−Q(gs, gs)‖ ds

≤ 2

∫ t

0
‖fs + gs‖‖fs − gs‖ ds

≤ 8T‖f0‖‖f − g‖.

The choice e.g. T = 1/(16‖f0‖) provides that ‖J(f) − J(g)‖ ≤ 1
2‖f − g‖.

The existence of a unique fixed point of J in XT consequently follows.

Taking φ = 1 in (7) and recalling that f0 ∈ P (K) shows that
∫
K ft($) =

1. It just remains to see that ft ≥ 0 to infer that ft ∈ P (K) with ‖ft‖ =
‖f0‖ = 1. At this point, we could then repeat the previous argument to
extend ft to [T, 2T ], [2T, 3T ], and so on, and conclude the existence proof.
Proposition A.1 below is devoted to prove the non-negativity of f , which
completes this proof. �

Remark A.1. Bearing in mind that f is continuous in time, it is no difficult
to see that

∫
K φ(w)dft(w) is a C1 function with respect to t, whose derivative

is specified by (6).
Indeed, with the notations introduced in the previous proof, it holds that∥∥∥ft+h − ft

h
−Q(ft, ft)

∥∥∥ =
∥∥∥1

h

∫ t+h

t
Q(fs, fs) ds−Q(ft, ft)

∥∥∥
≤ 1

h

∫ t+h

t

∥∥∥Q(fs, fs)−Q(ft, ft)
∥∥∥ ds.

Thanks to (61) we infer that∥∥∥ft+h − ft
h

−Q(ft, ft)
∥∥∥ ≤ 8‖f0‖

1

h

∫ t+h

t
‖fs − ft‖ ds,

which goes to 0 as h → 0, since f is continuous. Therefore, (7) can be
rewritten as

∂tf = Q(f, f).

We complete the proof of Theorem 2.1 showing the uniqueness and non-
negativity of ft.
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Proposition A.1. Let g0 ∈ P (K) and λ ≥ 1. There exists a unique g ∈
C1([0,+∞),M+(K)) such that g|t=0 = g0 and for t > 0 solving

(64) ∂tgt + λgt = Q(gt, gt) + λgt

∫
K
dgt.

Remark A.2. Notice that ‖ft‖ = 1 guarantees that ft is a solution to (64).
By uniqueness ft must belong to M+(K), hence is nonnegative.

Proof. We begin introducing some definitions. Let Γ : M(K) ×M(K) →
M(K) be a measure determined by Γ(f, g) = Q(f, g)+ λ

2 (g
∫
f +f

∫
g). De-

note Γ(f) := Γ(f, f) and Q(f) = Q(f, f). In view of (61), Γ(f) is continuous
in f with respect to the total variation norm.

Moreover, we claim that Γ(f, g) ≥ 0 if f and g are non-negative. To see
this, note that the measure Q can be represented by Q(f, g) = Q+(f, g) −
Q−(f, g) with

(65) (Q+(f, g), φ) =
1

2

∫
K2×B

φ($′)
(
df($)dg($∗) + dg($)df($∗)

)
dθ(η)

and

Q−(f, g) =
1

2

(
f

∫
K×B

dg($)dθ(η) + g

∫
K×B

df($)dθ(η)

)
,(66)

for any φ ∈ C(K).
Then, Γ can be expressed as

Γ(f, g) = Q+(f, g)+
1

2
(λ−1)

(
f

∫
K×B

dg($)dθ(η) + g

∫
K×B

df($)dθ(η)

)
≥ 0,

because λ ≥ 1 and the claim follows.
Furthermore, whenever g ≥ f ≥ 0,

(67) Γ(g) ≥ Γ(f) ≥ 0.

Indeed, since g + f and g − f are non-negative measures,

Γ(g)− Γ(f) = Γ(g + f, g − f) ≥ 0.

We need to find g ∈ C([0,+∞,M+(K)) such that
∫
g ≤ 1 and

(68) gt = e−µtg0 +

∫ t

0
e−µ(t−s)Γ(gs) ds.

It will be obtained as the limit of the following sequence gn : [0,+∞) →
M(K), n ≥ 0, defined iteratively by g0 = 0 and

(69) gnt = e−λtg0 +

∫ t

0
e−λ(t−s)Γ(gn−1

s ) ds.

Since g0 ≥ 0 and the measure Γ is continuous, non-negative and non-
decreasing, it is easy to see that gnt ≥ gn−1

t ≥ 0 for any n and t > 0.
Clearly, gn ∈ C([0,+∞),M(K)). Even more, by integrating equation (68)
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in K, taking into account that
∫
Q(f) = 0 for any f ∈ M(K), we deduce

that the total mass gnt (K) =
∫
K dg

n
t satisfies

gnt (K) = e−λt + λ

∫ t

0
e−λ(t−s)

(
gn−1
s (K)

)2
ds.

By induction, gnt (K) ≤ 1 for any t. Therefore, for any non-negative φ ∈
C(K), the sequence (

∫
K φdg

n
t )n is non-decreasing and bounded. It ensures

the existence of a limit (gt, φ) := limn→∞
∫
φdgnt .

The estimate (60) yields that ‖Γ(gnt )‖ ≤ 2 +λ uniformly in n, t. Then for
any T > 0, it follows then that

‖gnt − gns ‖ ≤ C(T )|s− t|,

for any s, t ∈ [0, T ] and any n. Applying Arzela-Ascoli theorem, we have,
up to a subsequence, that gn → g in Cloc([0,+∞),M+(K)), which implies
that g ∈ Cloc([0,+∞),M+(K)) and gt(K) ≤ 1. Passing to the limit in (69),
we get that g satisfies (68).

Observe that the continuity of Γ guarantees that g belongs in fact to C1.
Eventually, if g̃ is another solution of (68), then, by (61),

‖gt − g̃t‖ ≤
∫ t

0
e−µ(t−s)‖Γ(gs)− Γ(g̃s)‖ ds ≤ C

∫ t

0
e−µ(t−s)‖gs − g̃s‖ ds,

so that ‖gt− g̃t‖ = 0 by Gronwall’s Lemma. As a result g = g̃ and the proof
is finished. �

Appendix B. Grazing Limit. Proof of Theorem 2.2

We perform exhaustively the passage to the grazing limit, considering all
of the possible balances between the transport and the diffusion terms. Our
proof is based on the arguments given in [44], adapted to our specific model.

Proof. First of all consider the case σ2 = γλ for some λ > 0. Let φ ∈ C3(K).
The rescaled measure fγ(τ) solves

d

dτ

∫
K
φ($)fγ(τ,$)d$

=
1

γ

∫
B

∫
K2

(φ($′)− φ($))fγ(τ,$)fγ(τ,$∗)d$d$∗dθ(η).

Recall that $ = (w, p, q) and $′ = (w′, p, q). We perform a Taylor expansion
of φ (with respect to the w variable) up to second order:

φ($′)− φ($) = φw($)(w′ − w) +
1

2
φww($̃)(w′ − w)2,

with $̃ = (w̃, p, q) being w̃ = θw + (1− θ)w′ for some θ ∈ (0, 1). Note that∫
B ηΘ(η)dη = 0 and

∫
B η

2Θ(η)dη = σ2. Then substituting this expansion
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into the previous equation and using the updating rules (4), it yields

d

dτ

∫
K
φ($)fγ(τ,$)d$

=

∫
K2

φw($)p∗q(w∗ − w)fγ(τ,$)fγ(τ,$∗)d$d$∗

+
σ2

2γ

∫
K
φww($)q2D2(|w|)fγ(τ,$)d$

+
γ

2

∫
K2

φww($)p2
∗q

2(w∗ − w)2fγ(τ,$)fγ(τ,$∗)d$d$∗ +R(τ, γ, σ),

(70)

where

R(τ, γ, σ) =
1

2γ

∫
B

∫
K2

Θ(η)
(
γp∗q(w∗ − w) + ηqD(|w|)

)2

(φww($̃)− φww($))fγ(τ,$)fγ(τ,$∗)d$d$∗dη.

Observe that the first integral in (70) can be written as follows

I =

∫
K
qφw($)fγ(τ,$)d$

∫
K
p∗w∗fγ(τ,$∗)d$∗

−
∫
K
qwφw($)fγ(τ,$)d$

∫
K
p∗fγ(τ,$∗)d$∗

=

∫
K

(〈wp〉 − 〈p〉w)qφw($)fγ(τ,$)d$

=

∫
K

(mγ(τ)− w)〈p〉qφw($)fγ(τ,$)d$,

where mγ(τ) := 1
〈p〉
∫
K wpfγ(τ,$)d$. The previous analysis implies that

d

dτ

∫
K
φ($)fγ(τ,$)d$

=

∫
K

(mγ(τ)− w)〈p〉qφw($)fγ(τ,$)d$

+
σ2

2γ

∫
K
q2D2(|w|)φww($)fγ(τ,$)d$

+
γ

2

∫
K2

φww($)p2
∗q

2(w∗ − w)2fγ(τ,$)fγ(τ,$∗)d$d$∗ +R(τ, γ, σ),
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which integrated in time gives,

(71)

∫
K
φ($)(fγ(τ ′, $)− fγ(τ,$))d$

=

∫ τ ′

τ

∫
K

(mγ(τ)− w)〈p〉qφw($)fγ(s,$)d$ds

+
σ2

2γ

∫ τ ′

τ

∫
K
q2D2(|w|)φww($)fγ(s,$)d$ds

+
γ

2

∫ τ ′

τ

∫
K2

φww($)p2
∗q

2(w∗ − w)2fγ(s,$)fγ(s,$∗)d$d$∗ds

+

∫ τ ′

τ
R(s, γ, σ)ds.

We now show that, whenever σ2/γ remains bounded as γ, σ → 0, then

(72) lim
γ,σ→0

R(τ, γ, σ)→ 0 uniformly in τ ∈ R.

Using that $ = (w, p, q), $′ = (w′, p, q) and |w̃ − w| = (1 − θ)|w′ − w| ≤
|w′ − w|, we easily see that

|φww($̃)− φww($)| ≤ ‖φwww‖∞|w̃ − w| ≤ ‖φwww‖∞|w′ − w|.

As a result,

|R(τ, γ, σ)| ≤ ‖φwww‖∞
2γ

∫
B

∫
K2

Θ(η)
∣∣∣γp∗q(w∗ − w)

+ ηqD(|w|)
∣∣∣3fγ(τ,$)fγ(τ,$∗)d$d$∗dη.

Applying the inequality (a + b)3 ≤ 8(a/2 + b/2)3 ≤ 4(a3 + b3) and taking
into account that p∗, q, γ,D(|w|) ∈ [0, 1] and w,w∗ ∈ [−1, 1], we deduce that

|γp∗q(w∗ − w) + ηqD(|w|)|3 ≤ 4(|γp∗q(w∗−w)|3+|ηqD(|w|)|3) ≤ 32γ3+4η3.

Consequently,

(73) |R(τ, γ, σ)| = ‖φwww‖∞
(

16γ2 +
2σ2

γ
σE[|Y |3]

)
.

and the limit (72) follows since we assumed E[|Y |3] <∞.
We denote X = C3(K) with the usual norm ‖φ‖X =

∑
|α|≤3 ‖∂αφ‖∞.

Recall that p, q, p∗, q∗, D(|w|) ∈ [0, 1], fγ(τ, ·) ∈ P ([−1, 1]) for all τ and
mγ(t), w, w∗ ∈ [−1, 1]. Invoking (71) and (73) it can be inferred that
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∣∣∣∣∫
K
φ($)(fγ(τ,$)− fγ(τ ′, $))d$

∣∣∣∣
≤
[
2‖φw‖∞ + ‖φww‖∞

(
2γ +

σ2

γ

)
+‖φwww‖∞

(
16γ2 +

2σ2

γ
σE[|Y |3]

)]
(τ ′ − τ)

≤ ‖φ‖X
(

2 + 2γ + 16γ2 +
2σ2

γ
σE[|Y |3] +

σ2

γ

)
(τ ′ − τ).

= C‖φ‖X(τ ′ − τ).

Taking supremum gives

(74) sup
φ∈X,‖φ‖X≤1

∣∣∣∣∫
K
φ($)(fγ(τ,$)− fγ(τ ′, $))d$

∣∣∣∣ ≤ C(τ ′ − τ).

Define

(75) ‖µ‖ := sup
φ∈X,‖φ‖X≤1

∫
K
φdµ.

Then, (74) can be read as

‖fγ(τ)− fγ(τ ′)‖ ≤ C|τ ′ − τ |,

for any γ ∈ [0, 1] and any τ, τ ′ ∈ [0,+∞), where the constant C is in-
dependent of γ, τ, τ ′. It can be shown that the norm in (75) induces the
weak topology on P (K) (see Ref.[17], Lemma 5.3 and, Corollary 5.5). We
have thus shown that the sequence of continuous probability measure valued
functions fγ : [0,+∞) → P (K) are uniformly equicontinuous. In addition,
‖fγ(τ)‖ ≤ 1 for any τ and γ, hence Arzela-Ascoli theorem, together with
a diagonal argument, ensure the existence of g ∈ C([0,∞);P (K)) and a
subsequence (γn)n converging to 0 such that fγn → g in C([0, T ];P (K)) for
any T > 0.

It remains to pass to the limit in (71). Since the norm in (75) metrizes
the weak convergence, it is well known (see for example [47]) that

max
τ∈[0,T ]

‖fγn(τ)− g(τ)‖ → 0 as n→∞,

can be expressed in terms of the Wasserstein distance as

(76) lim
n→∞

max
τ∈[0,T ]

W1(fγn(τ), g(τ)) = 0.

We can rewrite (76) as

(77)

∫
K
ϕ($)fγn(τ,$)d$ →

∫
K
ϕ($)g(τ,$)d$,
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uniformly on compacts 0 ≤ τ ≤ T for any T > 0 and for any Lipschitz
function ϕ. As a result we have

mγ(τ) =
1

〈p〉

∫
K
wpfγ(τ,$)d$ → 1

〈p〉

∫
K
wpg(τ,$)d$ =: m(τ),

uniformly for τ ∈ [0, T ], T > 0. Passing to the limit in (71) this shows that
for any φ ∈ C3(K) and any τ ′ ≥ τ ≥ 0,∫

K
φdgτ ′ =

∫
K
φdgτ +

∫ τ ′

τ

∫
K

(m(τ)− w)〈p〉qφw($) dgs($)ds

+
λ

2

∫ τ ′

τ

∫
K
q2D2(|w|)φww($) dgs($)ds,

which proves (14) as desired.

Admit now that σ2

γ → 0. Taking limit as λ→ 0 in (71) shows (15).

Finally, suppose that σ2 = λγα for some λ > 0 and α ∈ (0, 1). In

particular σ2

γ → +∞ as γ → 0, hence the diffusion dominates the transport.

Rescaling time as τ := γαt, (70) now reads as

d

dτ

∫
K
φ($)fγ(τ,$)d$

= γ1−α
∫
K2

φw($)p∗q(w∗ − w)fγ(τ,$)fγ(τ,$∗)d$d$∗

+
λ

2

∫
K
φww($)q2D2(|w|)fγ(τ,$)d$

+
γ2−α

2

∫
K2

φww($)p2
∗q

2(w∗ − w)2fγ(τ,$)fγ(τ,$∗)d$d$∗ + R̃(τ, γ, σ),

where R̃(τ, γ, σ) = γ3−αR(τ, γ, σ). Using (73), we have

|R̃(τ, γ, σ)| ≤ ‖φ‖X(16γ5−α + 2λγ2σE|Y |3) = o(1)‖φ‖X .

Arguing as before it can be shown that the limit g satisfies (16), and the
proof is complete.
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Instituto de Matemática Aplicada San Luis, IMASL.
Universidad Nacional de San Luis and CONICET.
Ejercito de los Andes 950.
D5700HHW San Luis, Argentina.
E-mail address: analia.silva82@gmail.com


