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1 Introduction

The best multipoint local approximations of a given data has been studied by several authors.

In [1] Beatson and Chui obtained results for the uniform norm when n = 2. In [5] Marano studied

this problem in Lp, where the same speed at each point was assumed. This problem was also

considered by Chui et al. in [2], and in this case, they introduced the concept of balanced point

in Lp, where a different speed of convergence is considered at each point and where this fact also

depends on p. In [3] Favier studied the best local approximation by polynomials with general

norms in Orlicz spaces. In this paper we study the best local approximations in Orlicz spaces

with a generalized concept of balanced points which depends also in this case, on the function

φ .

We now introduce some notation. Let X be a bounded open set in R and f : X −→ R

be a sufficiently smooth function. We consider a finite measure space (X ,A,m), where m is

the Lebesgue measure and denote M = M(X ,M,m) the system of all equivalence classes of

measurable real valued functions.

For each convex function φ : R+ −→ R+ with φ(x) = 0 if and only if x = 0 define

Lφ (X) = { f ∈ M :
∫

X
φ(α | f (x)|)dx < ∞, for some α > 0}.
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This class of function Lφ is called the Orlicz space determined by φ . The spaces Lφ can be

endowed with the following norm

‖ f‖φ := in f{λ > 0 :
∫

X
φ(

| f (x)|
λ

)dx ≤ 1},

called the Luxemburg norm of Lφ . The spaces (Lφ ,‖.‖φ ) is a Banach spaces (see e.g. [4]).

In this paper we will use the following condition. We say the function φ satisfies the Δ2

condition if there exists a constant M > 0 such that φ(2x) ≤ Mφ(x) for x ≥ 0, and we say φ

satisfies Δ′ condition if there exists a constant C > 0 such that φ(xy) ≤Cφ(x)φ(y) for x,y ≥ 0.

There is some property about these conditions, for example, Δ′ condition imply Δ2 condition,

furthermore it is well known that if φ satisfies Δ2 condition then Lφ space can be defined as

Lφ (X) =
{

f :
∫

X
φ(α | f (x)|)dx < ∞, for any α > 0

}
.

We assume in the sequel that the convex function φ satisfies Δ′ condition. For a detailed study

of Orlicz spaces the reader is referred to [4].

Given n real points {x1, · · · ,xn} we define for δ > 0 a net of measu-rable sets

Vk = Vk(δ ), k = 1, · · · ,n,

where Vk(δ ) = xk + εk(δ ) Ak(δ ) and Ak = Ak(δ ) a measurable set with measure 1 and εk =

εk(δ ) ↘ 0 as δ −→ 0. We point out that the sets Ak are uniformly bounded for all δ > 0.

For each δ > 0 the function f will be approximated on the set V =V (δ ) =
⋃

Vk by a function

from a subspace SN of Lφ . Denote gδ ∈ SN so that∫
V

φ(| f (x)−gδ (x)|)dx ≤
∫

V
φ(| f (x)−h(x)|)dx

for all h ∈ SN . Such a function gδ is called the best φ−approximation of f from SN .

Given f , SN , φ and the n−tuples < xk >:=< x1, · · · ,xn > and < Vk >:=< V1, · · · ,Vn >, if

we consider a net of best φ−approximation functions {gδ} and it has a limit in SN as δ −→ 0,

then this limit is called the best local φ−approximation of f from SN . Under certain conditions

the best local φ−approximation can be obtained by Hermite interpolation. It can be calculated

explicitly without having to find elements of the net {gδ}. The result will be presented in sections

3.
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Now we make an assumption on the n−tuple < εk > which will guarantee that the terms of

the form φ(εα
k )εk can be compared with each other as functions of δ . We will assume a weaker

condition than those in [2] for LP case. However, in our case it depends also on φ . Namely, for

any α ,β ≥ 0 and any j,k such that 1 ≤ j,k ≤ n, we assume that either φ(εβ
j ) ε j = O(φ(εα

k ) εk)

or φ(εα
k ) εk = O(φ(εβ

j ) ε j) or both.

Given an n−tuple of functions < φ(εαk
k ) εk > where αk 0 is a positive real number, φ(εα j

j ) ε j

is said to be maximal if for all k, 1 ≤ k ≤ n, φ(εαk
k ) εk = O(φ(εα j

j ) ε j) . We denote it by

max{φ(εαk
k )εk}.

Remark 1. The assumption over the n−tuple < εk > imply the existence of max{φ(εαk
k )εk}

for any n−tuple < αk > of positive real numbers.

We assume that f and SN lie in PCm(X), where PCm(X) is the class of functions with m−1

continuous derivatives and with piecewise continuous mth derivative. The space SN is assumed

to be fully interpolating at the set < xk >, that is if SN ∈ PCm(X) and i1, · · · , in are nonnegative

integers with ik ≤ m and
n
∑

k=1
ik = N then there is a unique g ∈ SN such that g( j)(xk) = aj,k,

0 ≤ j ≤ ik −1, 1 ≤ k ≤ n, where the aj,k are an arbitrary set of real numbers.

2 Preliminary Results

In this section we prove two Lemmas, which will be used to obtain the main results and

which follow the way used in [2] for Lp case. The following Lemma provides an order of the

error
∫

V φ(| f −g|)dx when g ∈ SN and satisfies f ( j)(xk) = g( j)(xk), 0 ≤ j ≤ ik −1, 1 ≤ k ≤ n.

Lemma 2.1. Let i1, · · · , in be positive integers. Suppose h ∈ PCm(X), where m = max{ik},

and that h( j)(xk) = 0, 0 ≤ j ≤ ik −1, 1 ≤ k ≤ n. Then∫
V

φ(|h|)dx = O(max{φ(ε ik
k )εk}).

Proof. Approximating h by the Taylor polynomial about xk, we have

h(x) =
ik−1

∑
j=0

h( j)(xk)
j!

(x− xk) j + Rk(x),

where Rk(x) =
h(ik)(ξ )

ik!
(x− xk)ik , ξ is between x and xk. It means Rk(x) = O((x− xk)ik). Since

h( j)(xk) = 0, 0 ≤ j ≤ ik −1, we have h(x) = O((x− xk)ik), x ∈Vk. Thus, by the Δ2 condition and
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setting x− xk = εky, we obtain∫
Vk

φ(|h(x)|) dx ≤ M
∫

Vk

φ(|x− xk|ik) dx ≤ M
∫

Ak

εk φ(ε ik
k |y|ik) dy ≤ M′εkφ(ε ik

k ),

since Ak are uniformly bounded for all δ > 0. Finally∫
V

φ(|h|)dx ≤ M
n

∑
k=1

φ(ε ik
k )εk ≤ M′ max{φ(ε ik

k )εk},

or ∫
V

φ(|h|)dx = O(max{φ(ε ik
k )εk}),

as required.

We now cite the Lemma 3 from [2] which will be used in the sequel.

Lemma 2.2. Let Λ be a family of uniformly bounded measurable subsets of the real line

with measure 1. Let P(x) = c0 + c1x+ · · ·+ cmxm be an arbitrary polynomial of degree m. Then

there exists a constant M (depending on m) such that for all P(x) and all A ∈ Λ,

|ck| ≤ M ‖P(x)‖Lp(A) ,

1 ≤ p ≤ ∞, 0 ≤ k ≤ m.

As a consequence of this Lemma we obtain a similar result in Lφ .

Corollary 2.3. Let Λ be a family of uniformly bounded measurable subsets of the real line

with measure 1. Let P(x) = c0 + c1x+ · · ·+ cmxm be an arbitrary polynomial of degree m. Then

there exists a constant M (depending on m) such that for all P(x) and all A ∈ Λ,

φ(|ck|) ≤ M
∫

A
φ(|P(x)|)dx,

for 0 ≤ k ≤ m.

Proof. In the following, the constant M can be different in each occurrence. We know there

is a constant M such that for all P(x) and all A ∈ Λ, |ck| ≤ M
∫

A
|P(x)|dx, 0 ≤ k ≤ m, then

φ(|ck|) ≤ M′φ(M)φ
(∫

A
|P(x)|dx

)
,

since φ is an increasing function which satisfies the Δ′ condition. Now, using the Jensen’s

inequality we obtain

φ(|ck|) ≤ M
∫

A
φ(|P(x)|)dx, 0 ≤ k ≤ m,

for all A ∈ Λ. This completes the proof.
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3 Φ−Balanced Neighborhood in Lφ

The following definition generalizes a concept given in [2] for the Lp space.

Definition 3.1. Given an n−tuple < εk >; an n−tuple < ik > of nonnegative integers is

said to be φ−balanced if for each j such that i j > 0,

φ

(
1

ε i j−1
j

)
max

{
φ(ε ik

k )εk

ε j

}
= o(1).

If < ik > is φ−balanced, then
n

∑
k=1

ik is said to be a φ−balanced integer.

The n−tuple <Vk > is said to be φ−balanced neighborhoods if the dimension N of the space

SN is a φ−balanced integer.

Remark 2. If φ(x) = xp, 1 ≤ p < ∞ the definition of φ−balanced is equivalent to those

considered by Chui et al. in [2].

Example 3.2. Let be φ(x) = x3(1+ | lnx|) with φ(0) = 0 a function that satisfies Δ′ condi-

tion and < ε1,ε2 >=< δ ,e−1/δ >, then each integer N is a φ−balanced integer.

Remark 3. For each φ−balanced integer there corresponds exactly one φ−balanced <

ik >. In fact, since φ satisfies the Δ′ condition and we suppose there is < ik > 	=< i′k > with
n

∑
k=1

ik =
n

∑
k=1

i′k and < ik > φ−balanced, then there exist j, l with i j < i′j and i′l < il, such that

φ

⎛⎝ 1

ε
i′j−1
j

⎞⎠ φ(ε i′l
l )εl

ε j
≥ φ

(
1

ε i j
j

)
φ(ε il−1

l )εl

ε j
≥ M

1

φ
(

1
ε il−1

l

)
φ(ε

i j
j )ε j

εl

,

and the last expression tends to infinite, so < i′k > is not φ−balanced.

In [2] it was given an algorithm which generates all balanced integers in Lp spaces. Now, we

will present an algorithm that inductively generates all the integers m which can be φ−balanced

in Lφ , say, it generates n−tuple < i(m)
k > such that

n

∑
k=1

i(m)
k = m.

Beginning with the φ−balanced n−tuple < i(0)
k >=< 0 > correspon-ding to the φ−balanced

integer 0 and given < i(m)
k >, determine a maximal element of < φ(ε i(m)

k
k )εk >, say φ(ε i(m)

k∗
k∗ )εk∗ =

max{φ(ε i(m)
k

k )εk} and define i(m+1)
k = i(m)

k for k 	= k∗ and i(m+1)
k = i(m)

k + 1 for k = k∗.

Remark 4. The algorithm reduces, at each step, the largest value of φ(ε ik
k ) by incrementing

the exponent by 1.
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Lemma 3.3.

a) The above algorithm generates all φ−balanced < ik >.

b) If a n−tuple < i(m)
k > generated by the algorithm (m ≥ 1) is φ−balanced, then there is a

unique maximal element of < φ(ε i(m−1)
k

k )εk >.

Proof. First we prove a). Suppose that < ik > is φ−balanced with
n

∑
k=1

ik = m and < i(m)
k >

as obtained by the algorithm is not φ−balanced. Then, there exist indices r, s with i(m)
r > ir and

is > i(m)
s such that, using the φ−balanced integer definition,

φ(ε i(m)
r −1

r )εr = O(φ(ε ir
r )εr) = O

(
max{φ(ε ik

k )εk}
)

= o

(
εs

φ( 1
ε is−1

s
)

)
,

and from the Δ′ condition on φ , the last expression is an o(φ(ε is−1
s )εs), so

φ(ε i(m)
r −1

r )εr = o(φ(ε i(m)
s

s )εs).

Since i(m)
r > 0 at some previous step φ(ε i(m)

r −1
r )εr was maximal of < φ(ε i(m

′)
k

k )εk > with m′ < m,

so φ(ε i(m)
r −1

r )εr = max{φ(ε i(m)
k

k )εk} because the exponents are non-decreasing at each step of the

algorithm. Thus for any k

φ(ε i(m)
k

k )εk = O(φ(ε i(m)
r −1

r )εr),

which is a contradiction.

Now we will prove b). If max{φ(ε i(m−1)
k

k )εk} is not unique then < i(m)
k > cannot be φ−balanced

because if the indeces j and s gives a maximal element of < φ(ε i(m−1)
k

k )εk > then there exist two

constants M, N such that

M ≤ φ(ε
i(m−1)

j
j )ε j

φ(ε i(m−1)
s

s )εs

≤ N.

Suppose that i(m)
k = i(m−1)

k for k 	= s and i(m)
k = i(m−1)

k + 1 for k = s, so i(m)
s > 0 and then

φ

(
1

ε i(m)
s −1

s

)
max

⎧⎨⎩φ(ε i(m)
k

k )εk

εs

⎫⎬⎭ = φ

(
1

ε i(m−1)
s

s

)
φ(ε

i(m−1)
j

j )ε j

εs

≥ A
φ(ε

i(m−1)
j

j )ε j

φ(ε i(m−1)
s

s )εs

≥ AM,

by the Δ′ condition. This show that < i(m)
k > cannot be φ−balanced.
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Remark 5. The inverse inequality hand of the Lemma 3.3 does not hold.

For example, if we take φ(x) = x3(| lnx|+ 1) with φ(0) = 0 and < εk >=< δ ,δ 4 >, then

in the first step, the algorithm generate < 1,0 > with a unique corresponding maximal ele-

ment max{φ(ε ik
k )εk} = φ(ε1

1 )ε1, however the bi-tuple < 2,0 > is not φ−balanced. In [2] it is

proved the inverse inequality of this Lemma for the Lp case assuming a stronger condition on

the n−tuple < εk >.

4 Best Local φ−approximation in Orlicz Spaces with
Φ−balanced Neighborhood

We now turn to the main result concerning the behavior of the net {gδ} of best

φ−approximations and for its proof we need the following three Lemmas.

Lemma 4.1. Given < εk > and < ik >, define m = max{ik}. Let f ∈ PCm(X) and SN ⊆
PCm(X). If we consider a net {gδ} of best φ−approximation such that

∫
X

φ(|gδ |)dx −→ ∞, as δ −→ 0, (1)

then the net of functions

hδ =
g−gδ∫

X
|g−gδ |dx

,

where g ∈ SN interpolate f ( j)(xk), 0 ≤ j ≤ ik −1, 1 ≤ k ≤ n, satisfies the following properties

i)
∫

X φ(|hδ |)dx ≥ A > 0;

ii)
∫

V
φ(|hδ |)dx = o

(
max{φ(ε ik

k )εk}
)

.

Proof. Property i) follows by using Jensen’s inequality, and the pro-perty ii) is a conse-

quence of the hypothesis. In fact, since φ satisfies the Δ2 condition

∫
X

φ(|gδ |)dx ≤ M
(∫

X
φ(|gδ −g|)dx+

∫
X

φ(|g|)dx
)

,

so, using (1) we obtain ∫
X

φ(|g−gδ |)dx −→ ∞, (2)

as δ −→ 0, or ∫
X
|g−gδ |dx −→ ∞,
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as δ −→ 0, because if there were a sequence {δs} such that
∫

X
|g−gδs |dx ≤ M for all δs, then

‖g−gδs‖∞ ≤ M for all δs since the norms are equivalent, and so
∫

X
φ(|g−gδs |)dx ≤ M′, which

is a contradiction.

On the other hand, by the Δ2 condition on φ and Lemma ??∫
V

φ(|g−gδ |)dx ≤ M
∫

V
φ(|g− f |)dx+ M

∫
V

φ(| f −gδ |)dx

= O
(

max{φ(ε ik
k )εk}

)
,

then, since φ is a convex function∫
V

φ(|hδ |)dx ≤ 1∫
X
|g−gδ |dx

∫
V

φ(|g−gδ |)dx = o
(

max{φ(ε ik
k )εk}

)
,

as required.

Lemma 4.2. Given < εk >, set a φ−balanced n−tuple < ik > such that N =
n

∑
k=1

ik and

define m = max{ik}. If f ∈ PCm(X), SN ⊆ PCm(X) and {gδ} is a net of best φ−approximation,

then there exists M > 0 such that for all δ > 0,∫
X

φ(|gδ |) dx ≤ M.

Proof. Suppose {δr} is a sequence such that∫
X

φ(|gδr |)dx −→ ∞,

as δr −→ 0. Let g be a fixed function in SN interpolating the derivatives f ( j)(xk), 0 ≤ j ≤
ik −1, 1 ≤ k ≤ n and define

hδr =
g−gδr∫

X
|g−gδr |dx

,

then, using Lemma 3.1, we have

i)
∫

X
φ(|hδr |)dx ≥ A > 0, for all δr.

ii)
∫

V
φ(|hδr |)dx = o

(
max{φ(ε ik

k )εk}
)

.

Expanding hδr by Taylor polynomials we obtain for each k

hδr(x) =
ik−1

∑
j=1

h( j)
δr

(xk)

j!
(x− xk) j + Rδr(x),
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where Rδr(x) = O((x− xk)ik) uniformly in δr. In fact, since
∥∥hδr

∥∥
L1(X) ≤ 1 for all δr and using

the fact that the norms are equivalent in SN , we can choose the norm∥∥hδr

∥∥ := sup
x∈X

{|hδr (x)|+ · · ·+ |h(ik)
δr

(x)|}

to show the statement.

This uniform bound of Rδr(x) leads to∫
Vk

φ(|Rδr(x)|)dx = O(εkφ(ε ik
k )),

for all r, taking x− xk = εky and using that the sets Ak are uniformly bounded. Thus, using

property ii) we obtain

∫
Vk

φ

⎛⎝|
ik−1

∑
j=0

h( j)
δr

(xk)

j!
(x− xk) j|

⎞⎠dx

≤ M
∫

Vk

φ

⎛⎝|
ik−1

∑
j=0

h( j)
δr

(xk)

j!
(x− xk) j + Rδr(x)|

⎞⎠dx+ M
∫

Vk

φ(|Rδr(x)|)dx

= M
∫

Vk

φ(|hδr |)dx+ O(εkφ(ε ik
k )) ≤ M

∫
V

φ(|hδr |)dx+ O(εkφ(ε ik
k ))

= o
(

max{φ(ε il
l )εl}

)
+ O(εkφ(ε ik

k )),

if we substitute x− xk = εky again we obtain

∫
Ak

φ

⎛⎝|
ik−1

∑
j=0

h( j)
δr

(xk)

j!
(εk) jy j|

⎞⎠dy = O

(
max{φ(ε il

l )εl

εk
}
)

,

1 ≤ k ≤ n. From Corollary 2.3

φ

⎛⎝|h
( j)
δr

(xk)

j!
(εk) j|

⎞⎠= O

(
max

{
φ(ε il

l )εl

εk

})
,

j = 0, · · · , ik −1, 1 ≤ k ≤ n, using that φ satisfies the Δ′ condition, for each k we get

φ(|h( j)
δr

(xk)|) ≤ Mφ

(
1

ε ik−1
k

)
O

(
max

{
φ(ε il

l )εl

εk

})
,

j = 0, · · · , ik − 1, finally. Since N is a φ−balanced integer and φ an increasing function, we

obtain

h( j)
δr

(xk) = o(1),
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0 ≤ j ≤ ik −1, 1 ≤ k ≤ n, and when δr −→ 0. Now, since hδr ∈ SN we get for hδr =
N

∑
i=1

aδr ,ih̃i

where {h̃1, · · · , h̃N} is a basis of SN . So hδr is uniquely determined by the N values h( j)
δr

(xk), 0 ≤
j ≤ ik −1, 1 ≤ k ≤ n, using the fixed linear transformation⎛⎜⎜⎜⎜⎜⎜⎜⎝

h̃1(x1) . . h̃N(x1)

. . . .

. . . .

h̃1
(in−1)

(xn) . . h̃N
(in−1)

(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

then hδr −→ 0 as δr −→ 0 and then

lim
δr−→0

∫
X

φ(|hδr |)dx = 0

which contradicts property i). Thus gδ must be bounded for all δ and the proof of the Lemma is

complete.

Lemma 4.3. Given < εk > and a φ−balanced n−tuple < ik > such that N =
n

∑
k=1

ik, define

m = max{ik}. If f ∈ PCm(X), SN ⊆ PCm(X) and {gδ} is a net of best φ−approximation, then

for each k

φ(|( f −gδ )( j)(xk)| ε j
k ) = O

(
max

{
φ(ε il

l )εl

εk

})
,

0 ≤ j ≤ ik −1.

Proof. For each k, expanding f −gδ using Taylor polynomials, we obtain

( f −gδ )(x) =
ik−1

∑
j=1

( f −gδ )( j)(xk)
j!

(x− xk) j + Rδ (x).

We may use the above argument to show that Rδr(x) = O((x− xk)ik) uniformly in δ . In fact, it

follows from Lemma 3.2 that
∫

X
φ(|gδ |)dx ≤ M for all δ , thus ||gδ ||φ ≤ M for all δ and using

that the norms are equi-valent in SN , we can choose again the norm∥∥hδr

∥∥= sup
x∈X

{|hδr (x)|+ · · ·+ |h(ik)
δr

(x)|}

to show the statement.

These uniform bound of Rδr(x) and of the sets Ak, substituting x− xk = εky, leads to∫
Vk

φ(|Rδ (x)|)dx = O(φ(ε ik
k )εk). (3)
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On the other hand, using a fixed g ∈ SN which interpolates the derivatives f ( j)(xk), 0 ≤ j ≤
ik −1, 1 ≤ k ≤ n, from Lemma 1.1 we obtain∫

V
φ(| f −gδ |)dx = O

(
max{φ(ε ik

k )εk}
)

,

thus, using (3) and the Δ2 condition, we obtain for each k∫
Vk

φ

(
|

ik−1

∑
j=0

( f −gδ )( j)(xk)
j!

(x− xk) j|
)

dx ≤ M
∫

Vk

φ(| f −gδ |)dx

+M
∫

Vk

φ(|Rδ (x)|)dx = O
(

max{φ(ε il
l )εl}

)
+ O(εkφ(ε ik

k ))

= O
(

max{φ(ε il
l )εl}

)
,

and finally if we substitute x− xk = εky then for each k∫
Ak

φ

(
|

ik−1

∑
j=0

( f −gδ )( j)(xk)
j!

ε j
k y j|
)

dy = O

(
max

{
φ(ε il

l )εl

εk

})
.

Now we conclude from Corollary 1.3 and the Δ2 condition that

φ(|( f −gδ )( j)(xk)ε j
k |) = O

(
max

{
φ(ε il

l )εl

εk

})
,

0 ≤ j ≤ ik −1, for each k, as we required.

Now we present the following result.

Theorem 4.4. If N is a φ−balanced integer with φ−balanced < ik > and f ∈ PCm(X),

SN ∈ PCm(X), (m = max{ik}), then the best local φ−approximation of f from SN is the unique

g ∈ SN defined by the N interpolation conditions

f ( j)(xk) = g( j)(xk),

0 ≤ j ≤ ik −1, 1 ≤ k ≤ n.

Proof. From Lemma 3.3

φ(|( f −gδ )( j)(xk)ε j
k |) = O

(
max

{
φ(ε il

l )εl

εk

})
for 0 ≤ j ≤ ik −1, 1 ≤ k ≤ n. Using the Δ′ condition and the φ−balanced integer definition we

have for each k

φ(|( f −gδ )( j)(xk)|) = φ

(
1

ε ik−1
k

)
O

(
max

{
φ(ε il

l )εl

εk

})
= o(1)
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for 0 ≤ j ≤ ik −1, thus, since φ is a increasing function with φ(x) = 0 if and only if x = 0

lim
δ−→0

g( j)
δ (xk) = f ( j)(xk)

for 0 ≤ j ≤ ik − 1, 1 ≤ k ≤ n. Now we will do a similar above analysis. As gδ is uniquely

determined via a fixed linear transformation with rank N from the N values g( j)
δ (xk), 0 ≤ j ≤

ik −1, 1 ≤ k ≤ n, then gδ must converge to the unique g satisfying

g( j)(xk) = f ( j)(xk)

for 0 ≤ j ≤ ik −1, 1 ≤ k ≤ n. This g is by definition the best local φ−approximation of f from

SN .
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