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On Sparse Methods for Array Signal Processing
in the Presence of Interference
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Abstract—We analyze the performance of several algorithms de-
signed to solve the inverse sparse problem when they are applied to
array signal processing. Specifically we study the error on the esti-
mation of the complex envelope and the direction of arrival of sig-
nals of interest in the presence of interference sources using a uni-
form linear array. In particular, we compare the performance of
the Enhanced Sparse Bayesian Learning (ESBL) algorithm against
different algorithms tailored to this scenario. Since the former ex-
ploits interference information to diminish its unwanted effects, we
find that it provides a reasonable tradeoff between runtime and es-
timation error.
Index Terms—Estimation, interference, sensor arrays, sparse

models, sparsity.

I. INTRODUCTION

I N SEVERAL signal processing problems, observed data
can be represented as the contribution of three phenomena,

signal of interest, interference and noise. Given their often
random nature, statistical tools and methods are required to
remove interferences and noise. Different applications, from
radar [1], through communications [2], to brain source local-
ization [3] or in the present case of sensor arrays, data can be
described using sparse linear models [4], [5]. This means that
there exists a representation of the data wherein the signal of
interest consists of a linear combination of a few components
of an over-complete dictionary. The use of these models allows
us to achieve better array resolution [6].
Looking for a sparse solution to a linear model is a non

convex optimization problem, restricted to minimize the
number of nonzero components, i.e., its -norm. A common
procedure to avoid this difficulty consists of using the -norm
for as an alternate measure of sparsity. Examples of
this type of algorithms are focal undetermined system solver
(FOCUSS) [7], basis pursuit denoising (BPDN) [8], Dantzig
Selector [9] and -SVD [6]. Another class of algorithms use
greedy pursuit, which iteratively approximate the support of
the solution, such as orthogonal matching pursuit (OMP) [10],
and its variants [11], [12]. Additionally, there exists another
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Fig. 1. -element sensor array in the presence of signals of interest and
interference signals.

kind of methods to solve the inverse problem that exploit
statistical models and tools, such as Sparse Bayesian Learning
(SBL) [13]. In a previous work we introduced a variant of the
latter, named Enhanced Sparse Bayesian Learning (ESBL) [14].
This algorithm was originally designed to solve the radar
problem of target detection in the presence of strong clutter. In
this letter we analyze its performance when applied to general
sensor arrays, comparing it to similar algorithms.
In the present array sensor application we wish to estimate the

complex envelope of a signal and its direction of arrival (DOA).
Unfortunately, there usually exist interfering signals impinging
on the array resulting in erroneous estimation of the signal of
interest. Assuming that there are few sources of signals, thus
having signal energy in only a few directions of the space of
possible DOAs, this scenario corresponds to signal estimation
with spatial sparsity.

II. PROBLEM FORMULATION

A. Sensor arrays

We consider a uniform linear array (ULA) as depicted in
Fig. 1, that consists of collinear sensors separated by a
distance . There are impinging narrow band signals, from
which are of interest, with DOAs , and
interfering signals, with DOAs . The latter are
assumed to arrive from directions within the range from to

. The output signal of the array is [15]

(1)

where is the -vector of the complex envelope measure-
ments, and are the steering -vectors corre-
sponding to directions and , and are the complex
amplitudes (scalars) containing the information transmitted by
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the signal of interest and the interference source, and
is Gaussian white noise. The structure of each ULA steering

vector component for an angle is

(2)

The measurements at the output of the sensors (1) can also be
expressed in matrix form

(3)

where is a matrix whose columns correspond to
the steering vectors for each signal’s DOA, is the -vector
with the transmitted information by all signals of interest, is
the matrix of steering vectors for the interference, and
the -vector contains the interference information.
Finally, when several snapshots of the measurement vector

are available, the array output becomes

(4)

where matrices , , , and are built using the respective
vectors from (3) as their columns. Note that a row of corre-
sponds to time samples of the source signal’s complex envelope.

B. Sparse Model
The sensor array scenario can be casted as a sparse model.

We first discretize the space of angles of arrival in compo-
nents, . This results in a matrix whose
columns correspond to steering vectors of the array for each
angle which are the atoms of the dictionary [8]

(5)

The steering vectors for the interference range correspond to
some columns of matrix , those representing directions
such that , forming the matrix

(6)

We note that this matrix represents all possible interferences
DOAs, since it contains the steering vectors of all the dis-
cretized angles within the range. However, the actual number
of interference sources is lower. In the proposed scenario
the estimation algorithm distinguishes the signal from the inter-
ference using DOA information. Thus, the interference angle
range, which we assume to be known, does not include the
signal’s DOA. Other problems may consider different features
in order to separate the interference from the signal of interest,
such as polarization or Doppler information, but that scenario
exceeds the scope of this letter.
When we take snapshots of the measurement vector, and

they can be represented by the same atoms of the dictionary
sharing a common sparsity profile, we have a sparse represen-
tation of multiple measurements vectors (MMV) [16]. Then,
the matrix has a small number of nonzero rows. This for-
mulation is a realistic representation of multiple realizations of
a signal contaminated by noise. The transmitted information is
contained in the matrix whose row is nonzero if .
The goal is to estimate under the condition of common spar-
sity profile.

C. Algorithms for Sparse Models
We provide a brief description of the ESBL algorithm whose

details can be found in [14]. This is an iterative algorithm that
solves the previously described sparse inverse problem, where
the algorithm not only computes a point estimate of through
the posterior mean, but also estimates the statistical parameters
of the model. Each iteration of the algorithm consists of two
steps. In the first step the EM algorithm is used to find estimates
of the model parameters, the covariances of the source signals,
the interferences and the white noise. These results are then used
to compute a point estimate of through the posterior mean
which results in a non-sparse matrix. However, few of its com-
ponents will be statistically significant. Thus, the second step of
the algorithm implements a decision test to prune the spurious
coefficients. The pruning threshold for the test is determined by
a desired false alarm probability .
Some of the previously mentioned algorithms have exten-

sions to handle multiple snapshots and are used to compare
against ESBL. These are MOMP [17], MFOCUSS [18] and
MSBL [19].We remark that the ESBL algorithm does not need a
priori information of the number of present signals, i.e. the spar-
sity profile of . Furthermore, this algorithm is the only one that
considers the effect of the interference in the model and in the
estimation process.

III. PERFORMANCE ANALYSIS

We illustrate the performance of the scenario described by
Eq. (1) through the following example. The sensor array has

elements and inter-element distance . We
set a grid of possible angles of arrival between 0 and
180 degrees. We use snapshots where the vector
has a sparsity with two arriving signals at
and degrees. There are 10 interference sources ar-
riving from random angles in the range to
degrees, resulting in a range with possible angles.
This implies that one of the signals is close to the interferers
and the other is practically clean. The power of the signals is

and the interference power is . The noise power is
. We run Monte Carlo simulations and

estimate for different signal to interference ratios defined as
SIR . We applied the following algorithms,
ESBL (for a false alarm rate of ), MSBL, MFOCUSS,
MOMP, -SVD and MUSIC. The last two cannot estimate by
themselves the amplitude of the signal, only its spatial spec-
trum (and consequently its direction of arrival), thus we com-
bine them with the Minimum Variance Distortionless Response
(MVDR) estimator [15] to perform the estimation of the signal.
Fig. 2 shows the spatial spectrum for the 500 Monte Carlo

runs with a dB for the mentioned algorithms.
Fig. 2(a) shows the original signals at 120 and 160 degrees and
the randomly selected interference sources within the range
20 to 100 degrees. Fig. 2(b) shows the reconstruction using
the ESBL algorithm which exploits the interference structure
information and previous knowledge of its possible range of
arrival. The rest of the methods cannot effectively reject the
interference which affects the correct estimation of the signals
of interest.
Fig. 3 shows a typical normalized spatial spectrum for some

of the analyzed algorithms (ESBL,MSBL,MFOCUSS, -SVD
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Fig. 2. 500 Monte Carlo runs of the spatial spectrum for two sources with DOA 120 and 160 immersed in 10 interference sources. (a) true value (b) ESBL,
(c) MSBL (d) MFOCUSS (e) MOMP, (f) -SVD and (g) MUSIC. ( dB, ).

Fig. 3. Typical spatial spectrum for two sources (blue arrows) with DOAs of
120 and 160 degrees and 10 interference sources (red arrows) in the range 20
to 100 degrees using MUSIC, ESBL, MSBL, -SVD and MFOCUSS with

dB.

and MUSIC) in the proposed scenario. The blue thick arrows
denote the arrival directions of the signals of interest and the
interferences are denoted by red thin arrows. We can clearly ap-
preciate that the ESBL spectrum is null for all angles except
those of the signals of interest, where achieves its maximum.
MSBL also has maximums at these angles but the interference
rejection is not as good. Similar behavior is obtained by MFO-
CUSS and -SVD.
We analyze two ways of evaluating the performance of the al-

gorithms. On one hand wewant to asses the capacity of the algo-
rithms to correctly recover the spatial spectrum. This is equiv-
alent to computing the average over 500 runs of the estimation
error of the matrix , i.e.,

(7)

Fig. 4 shows that using this measure, the ESBL algorithm out-
performs the others. This result implies that the algorithm cor-
rectly recovers the direction of arrivals from the signals of in-
terest, without interferences. For most applications this would
be the most important and decisive measure of comparison.
In the present sensor array application we are interested in the

behavior at the specific direction of arrival of each signal of in-
terest, and in correctly recovering the information transmitted.
Therefore, we also analyze the error in each of these directions.
Fig. 5 shows the estimation error for the signal arriving from 120
degrees, , and Fig. 6 shows the
one from 160 degrees, . The

Fig. 4. Estimation error of the whole spatial spectrum.

Fig. 5. Estimation error for the 120 degrees signal.

Fig. 6. Estimation error for the 160 degrees signal.

behavior of ESBL algorithm regarding the signal closer to the
interference is similar to other algorithms, indicating that in this
case there is no performance gain by ESBL. On the other hand,
for the clean signal arriving from 160 degrees, the estimation
error is much smaller for this algorithm. The performance of
ESBL in these last two figures is closer to other algorithms be-
cause this performance measure does not show the error by se-
lecting spurious components. Fig. 2 and 3 illustrate that ESBL
has very low rate of falsely selected components.
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Fig. 7. Estimation error for the 120 degrees signal DOA.

Fig. 8. Estimation error for the 160 degrees signal DOA.

Fig. 9. Run time for the algorithms.

Another important measure is the estimation error in the di-
rection of arrival of each signal of interest, . To eval-
uate this measure, we take the mean of error of 500Monte Carlo
runs. The result is shown in Fig. 7 and 8 for signals from 120
and 160 degrees respectively. For SIR values larger than 15 dB,
the angles of arrival are detected without error, indicated by a
virtual 0 in the logarithmic scales, by almost all algorithms ex-
cept MUSIC. It can be appreciated that the -SVD algorithm
needs a smaller SIR to correctly estimate the directions of ar-
rival, unfortunately its signal estimation is not reliable as shown
previously.
We also evaluate the computing time for each algorithm for

this sensor array application in particular. Their performance
can be appreciated in Fig. 9. The MOMP algorithm is fastest but
its performance in parameter estimation is not reliable. ESBL
runtime is similar to MSBL, MFOCUSS and MUSIC. -SVD
has a larger computational complexity and is not viable for this
application.

IV. CONCLUSION

We studied the performance of several sparse methods algo-
rithms for sensor array applications. The goal is to estimate the

signal’s complex envelope and its DOA, when immersed in in-
terference. In particular, we analyzed the ESBL algorithm in-
troduced in a previous work. This algorithm does not require
information on the number of present sources since it nulls the
directions where it considers no signals of interest present. In
contrast, the other algorithms seek for peaks but they need to
know a priori the number of sources, since they generate a sig-
nificant number of small, spurious components. Using different
performancemeasures we find that the ESBL algorithm has sim-
ilar or better performance than the rest in several conditions, and
uses same or less computing time.
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