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Abstract

In the present paper, we study the influence of surface energetic heterogeneities on the main features of fractal ag-

gregates generated through a diffusional mechanism. The diffusion-limited aggregation (DLA) model was introduced by

Witten and Sander (Phys. Rev. Lett. 47 (1981) 1400) and has stimulated growing interest in the study of a variety of

nucleation and growth processes since then. In the DLA model, growth begins with a seed particle in the center of a

two-dimensional lattice. Then, individual particles are launched uniformly from a launching circle, sufficiently big, and

they perform activated random walk until they stick to the growing cluster. The DLA clusters formed in this way are

fractal objects with a well determined fractal dimension df ¼ 1:72� 0:02. In order to include surface heterogeneities, we

have used a square lattice with two kinds of sites which are assembled in such a way that the resulting structures have

patchwise topography. Lattices formed by collections of orderly localized patches of different sizes are generated. DLA

clusters are clearly affected in their morphology due to the presence of the surface heterogeneities which is analyzed and

explained in terms of the different energetic topographies. � 2001 Published by Elsevier Science B.V.

Keywords: Surface structure, morphology, roughness, and topography; Diffusion and migration; Computer simulations; Monte Carlo

simulations

1. Introduction

In the last years, we have witnessed increasing
activity in the study of formation of fractal struc-
tures [1–11]. In particular, considerable attention
has been paid to the diffusion-limited aggregation
(DLA) model [1,12,13]. This interest is based in the
essential role that this phenomenon play in many

experimental situations, such as electrodeposition,
fluid–fluid displacement (viscous fingering), di-
electric breakdown, chemical dissolution, just to
name a few. As a consequence, an increasing in-
terest has been also devoted to enhance our un-
derstanding of the theoretical basis of growing
processes. The detailed understanding of such
processes is essential for technological improve-
ments but appears to be also very important from
the fundamental aspects of basic science.

It is quite obvious that even single crystal sur-
faces are not perfect and contain structural and
electronic heterogeneities. In general, the real ad-
sorbent solid surfaces are heterogeneous because
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of a large number of contributing factors that can
be sorted into two different classes: geometrical
heterogeneity (cracks, pits, vacancies, etc.) and
chemical heterogeneity (impurities, substitutional
atoms, etc.). These heterogeneities may produce a
complex spatial dependence of the solid–gas in-
teraction potential, which can be denoted as ad-
sorption energy topography [14–17].

The description of thermodynamic phenomena
taking place on a substrate which presents the in-
herent complexity of energetic heterogeneities, is a
challenging topic in the modern surface science. As
a consequence, most of the contributions dealing
with DLA consider the fractal aggregate growing
over an homogeneous surface. In contrast, con-
siderable less attention has been paid to the study
of the influence of heterogeneous substrates on the
formation of DLA clusters [18]. The aim of the
present paper is to study the influence of surface
heterogeneties on the formation of DLA. For that
purpose, aggregates are formed on, perhaps, one
of the simplest disordered surfaces, the patchwise
heterogenous surface (PHS).

In the PHS model, which has been proposed by
Ross and Olivier [19], it is assumed that the surface
is formed by a collection of homogeneous patches.
Every adsorption site within a given patch has the
same adsorption energy. However, different pat-
ches have different adsorption energies. For sim-
plicity, we consider only two kinds of square
patches with different energies, i.e. deep and shal-
low patches, which are arranged in a chessboard-
like ordered structure. In order to characterize the
DLA process by means of Monte Carlo modeling,
we have studied the effect of the patch size and the
energy difference between patches on both the ex-
ponents and the topology of DLA.

The understanding of the effects of such strong
correlated heterogeneities on several surface pro-
cesses is an interesting subject because: (a) it rep-
resents a limiting case of a more general description
of surface heterogeneity [20,21]; (b) the results
obtained for this limit can help us to establish cri-
teria to characterize the surface topography ac-
cording to a well defined correlation length [22]
and (c) it can help to describe experimental find-
ings [23]. Therefore, the present work is an exten-
sion of previous studies in which different surface

processes (such as adsorption [24], percolation
[25], collective surface diffusion [22,26] and multi-
site-occupancy adsorption [27]) taking place on
such chessboard-like ordered surfaces were inves-
tigated.

The paper is organized as follows. In Section 2,
we introduce basic definitions and technical details
involved in our study. In fact, in Section 2.1 a
description of the heterogeneous surface where the
aggregate will be grown is given. Sections 2.2 and
2.3 are devoted to present the Monte Carlo scheme
used for simulating the DLA model and for eval-
uating topological properties of a fractal structure,
respectively. We summarize our results in Section
3. Finally, the conclusions are drawn in Section 4.

2. Basic definitions and simulational details

2.1. The heterogeneous substrate

It is well known that, in addition to an ad-
sorption energy distribution, the energetic topog-
raphy must be also considered in order to obtain a
proper characterization of surface heterogeneity
[14]. Amongst the simplest models describing sur-
face energy topographies are the PHS model and
the independent sites model. In the first one, pro-
posed by Ross and Olivier [19], the surface is
thought as a collection of homogeneous patches,
in such a way that every site within a given patch
has the same adsorption energy but different pat-
ches have different adsorption energies. In the
independent sites model, after Hill [28], each ad-
sorption site has a randomly distributed energy
which is completely independent of the energy of
any other site. In spite of simplicity, these models
have allowed practical interpretations of experi-
mental data for adsorption on a great variety of
real surfaces.

A more general description for heterogeneous
surfaces was introduced through a generalized
gaussian model [20], which is based on the simple
fact that energies of different sites may be cor-
related. This fact is then formulated through a
correlation function defined in terms of a typi-
cal correlation length for a given surface. In the
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generalized gaussian framework, the former mod-
els appear naturally as two limiting topographic
cases. Highly correlated surfaces (very large cor-
relation length) correspond to the Ross and
Olivier’s homotatic patches picture, while uncor-
related or random heterogeneous surfaces (null
correlation length) correspond to the Hill’s inde-
pendent sites description. A great variety of in-
termediate topographies can be obtained by finite
correlation lengths appearing as the most realistic
cases [21,29,30]. These ideas have motivated the
development of an alternative description for het-
erogeneous surfaces, namely, the dual site-bond
model, in which the energy distributions for the
two basic elements of an energetic surface, i.e. sites
(total energy minima) and bonds (energy saddle
points between nearest neighbor sites) are both
taken into account. Remarkable results emerging
from the dual site-bond model are that adsorption
and surface diffusion depend on the bond energy
distribution which induces correlations constrain
on the site energy structure [31]. It has also been
shown that intermediate topographies in the dual
site-bond description can be readily qualified by
means of finite correlation lengths between sites
(or bonds) [32].

The simplest pattern of intermediate topogra-
phy is a finite patch of energetically identical sites.
Accordingly, the energetic correlation length is
intrinsically given by the patch’s size. Let us con-
sider a square lattice with only two kinds of ad-
sorption traps, namely shallow and deep traps,
having adsorption energies eS and eD, respectively.
On the basis of this so-called bivariate trap model,
simple energetic topographies are created by plac-
ing square patches of l� l deep or shallow traps
onto the adsorption lattice, which is represented by
a two-dimensional array of L� L sites with peri-
odic boundary conditions, see Fig. 1(a). Within a
given patch all sites have the same adsorption
energy. The chessboard-like topography can be
easily generated on the computer and it mimics an
experimental situation reported in literature (for a
recent paper on this topic see, for instance, Ref.
[23]). A typical profile of the energetic surface
potential along one of the symmetry axes is shown
in Fig. 1(b). Here, we have assumed, without
loosing generality, that the saddle point energy,
esp, remains constant throughout the whole lattice.

For simplicity, we also assume that (a) the
number of deep traps is equal to the number of
shallow traps; (b) an overlapping between two

Fig. 1. (a) The chessboard-like heterogeneous surface formed by only two kinds of square patches. The lattice size used here is L ¼ 32

and the patch size corresponds to l ¼ 4. (b) A typical profile of the energetic surface potential along one of the symmetry axes for the

surface shown in (a). Deep and shallow patches have adsorption energies eS (white sites) and eD (black sites), respectively. The saddle

point energy, esp, is kept constant throughout the whole lattice. Both types of traps are present with the same concentration.
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different patches is not allowed and (c) multiple
occupation of adsorption sites is excluded in the
present work.

2.2. Computational simulations of diffusion-limited
aggregation

The DLA algorithm is rather simple and has
been discussed in detail in the literature [1,33–37].
Growth begins with a seed particle in the center of
the two-dimensional lattice described above. In-
dividual particles then execute an unbiased ran-
dom walk in the lattice and either reach a site
adjacent to the existing cluster and stop or reach a
distance far enough from the seed that the prob-
ability of a return to the cluster is assumed to be
negligible and is discarded.

Two parameters enter into the algorithm, the
radius Ri at which new particles begin their ran-
dom walk and the distance Ro at which they are
discarded. The former become irrelevant as long as
Ri is enough large in order to prevent the influence
of the energetic topography on the initial condi-
tions of launching. Ri is several times greater than
both (a) the patches sizes and (b) the maximum
extent of the cluster. The ratio between Ro and Ri is
usually a fixed number and in our simulations we
have varied this quantity between 2 and 10.

Each particle launched from the circle of radius
Ri performs jumps to nearest neighbor empty sites
using the following procedure. As in Ref. [38] the
activation energy E for such jumps is taken as the
energy difference between the final and the initial
site energies,

E ¼ �j � �i: ð1Þ

The associated jump probability Wij is given by

Wij ¼
1

j
exp

�
� E
kBT

�
ð2Þ

with j as normalization factor. j essentially de-
termines the time in which an adatom is allowed to
attempt a jump. A suitable choice of j is indis-
pensable in order to optimize the computational
time of the Monte Carlo algorithm. An obvious
choice would be

j ¼ jmax ¼ exp

�
� Emin

kBT

�
: ð3Þ

Here Emin represents the activation energy for
the most favorable physically realizable jump
[39,40]. This choice avoids jump events with
Wij > 1.

The construction of DLA clusters is quite time
consuming and, therefore, many different proce-
dures to speed up the process have been presented
[41]. In our simulations, we have extensively used
the following

(a) the z associated jump probability, Wij are
evaluated. Here, z is the coordination number
of the lattice (in our case z ¼ 4);
(b) a random number n is chosen (0 < n < 1),
(c) the particle jumps to the site j ¼ k if

Xk

j¼1

Wij

W
< n <

X4

j¼kþ1

Wij

W
ð4Þ

being W �
P

j Wij. Of course, the election of Wij

depends of the model of jumps considered.
The quantities reported in the present contri-

bution have been calculated for up to 5� 104-
particles aggregated. In order to obtain accurate
values of the desired quantities averaging up to 25
different aggregates generated in the same condi-
tions have been used.

2.3. Evaluation of the characteristic exponents for
the diffusion-limited aggregation model

In the remaining part of this section we shall
focus on the definitions of the parameters which
have been used in the present paper in order to
characterize the main features of the aggregates
obtained by using the above discussed Monte
Carlo scheme.

Let us suppose the motion of a particle (‘‘an
ant’’) which performs a P�oolya random walk (un-
biased, nearest neighbor random walk) on the
occupied sites of a DLA cluster (‘‘the labyrinth’’).
The root mean square displacement R of the ran-
dom walk is related to time t through the relation
[42]
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R 	 tm; ð5Þ

where m is a constant that depends only on the
dimensionality d of the system. A fractal dimen-
sion dw is defined for the random walk by dw ¼
1=m. In a regular square lattice dw ¼ 2. However,
on fractal structures R grows slower with time and
dw is usually larger than 2.

Another intrinsic property of a fractal aggregate
is the well-known spectral dimension ds. This
quantity can be calculated from Ref. [43,44]

S0ðtÞ 	 tds=2; ð6Þ

where S0ðtÞ is the mean number of distinct sites
visited by the random walks.

Fig. 2. Snapshot of a DLA structure grown on a chessboard-like heterogeneous surface with (a) l ¼ 1; (b) l ¼ 5; (c) l ¼ 10 and (d)

l ¼ 20.
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Typically 104 different random walkers have
been used for averaging the above mentioned
quantities.

The fractal structures are grown up to a maxi-
mum size in steps of 50 particles and the positions
of the stuck particles are recorded. At the end of
such a step, the center of mass of the aggregate rcm

rcmðNÞ ¼ 1

N

XN
i¼1

ri

* +
ð7Þ

is determined and its radius of gyration nðNÞ is
calculated as

n2ðNÞ ¼ 1

N

XN
i¼1

½ri

*
� rcmðNÞ�2

+
; ð8Þ

where the angular brackets denote an average over
the ensemble of different aggregates. It has been
shown that the ‘‘mass’’ N of a fractal structure is
related to its radius of gyration, n, through

N 	 ndf ; ð9Þ

where df is the fractal dimension of the system.

3. Results and discussion

In this section, we show how the surface heter-
ogeneity affects the main features of DLA clusters.
The substrate on which the aggregate is grown has
been modeled by using the bivariate trap model
with a chessboard-like topography. The surface
heterogeneities have been introduced by means of
two different parameters: (a) the patches size l
(which has been ranged between l ¼ 1 and l ¼ 20)
and (b) the adsorption energy difference between a
deep and a shallow patch (expressed throughout
the paper in units of kBT ), De � ðj eD � eS jÞ=kBT .

Fig. 2 shows the DLA clusters obtained for four
different values of l ((a) l ¼ 1; (b) l ¼ 5; (c) l ¼ 10
and (d) l ¼ 20). From a simple inspection of the
figure, it can be concluded that the aggregates
present different structure upon increasing the
patches size. In fact, the cluster become more di-
luted as the patches size, l, is increased. In order to
characterize these qualitatively observed differ-

ences, we shall show how the exponents df , ds and
dw are influenced by changing both l and De.

Fig. 3 illustrates the procedure used to deter-
mine the exponents df , ds and dw according to their
definitions given in Section 2.3. We present here
curves for l ¼ 10 and De ¼ 4 in comparison with
the homogeneous case i.e. De ¼ 0 (solid lines in
Fig. 3). A similar analysis have been done for the
complete range of the studied parameters. Ac-
cording to Eq. (9); df is determined from the slope
of the ‘‘mass’’ of the fractal aggregate as a function
of the gyration radius (note the log–log scale in

Fig. 3. (a) The ‘‘mass’’ (number of particles) of the fractal ag-

gregate as a function of the gyration radius; (b) the mean

number of distinct visited sites for fractal and (c) the root mean

square displacement of a random walker on an aggregate as

function of time, t. Note the log–log scale in all the figures.

From the slopes of these curves the exponents df , ds and dw can

be respectively obtained. The solid lines represent the homo-

geneous case.
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Fig. 3(a)). The mean number of distinct visited
sites, So, for (The root mean square displacement,
R, of) a random walker on the fractal is plotted as
a function of time in Fig. 3(b) (Fig. 3(c)). From the
slopes of these curves, the exponents ds and dw can
be respectively obtained.

A compilation of the exponents df , ds and dw for
all values of the parameters l and De used in the
present work is presented in Fig. 4. Even consid-
ering the error in the measurements, it is not
conceivable to establish a concrete dependence
between this parameters and the energetic topo-
graphy. By the contrary, it can be concluded that
the exponents are not affected by the presence of a
strongly correlated surface in agreement with Ref.
[45]. In particular, it is interesting to note that the
number of particles belonging to a DLA cluster
grown on this simple patchwise surface is not only
a function of a given radius K but also of the
patches size l and the energy difference between a
deep and a shallow patch, De:

N ¼ Cðl;DeÞKdf : ð10Þ

As it was already shown df is independent of the
energetic surface topography. However, C(l;De) is
a non-universal function of the controlling pa-
rameters of the surface heterogeneity. In other

words, this equation establish that, for a given
area, the patch size l (the energetic correlation
length) and De govern the number of particles of
the aggregate. In the same line of thinking, this
equation suggests that experimental measurements
of the mass of the cluster contains information
about the energetic surface heterogeneity. In Fig.
5(a) and (b) is shown that C(l;De) is a monotonic
decreasing function of both l and De. This behav-
ior clearly explains the tendency of DLA clusters
to be more sparse upon increasing the patch size l
as is shown in Fig. 2.

In order to establish some geometrical difference
between the clusters grown on substrates charac-
terized by different correlation length, we have
investigated the behavior of the mean number of
nearest neighbors per occupied site, Ann as a
function of both l and De, see Fig. 6(b) and (c),
respectively. Ann can be evaluated as an average for
all particles belonging to a cluster until a given
radius K. In Fig. 6(a), Ann is plotted as a function
of the radius K. After strong fluctuations for small
values of K, Ann becomes constant. Thus, this
quantity has been evaluated when becomes inde-
pendent of the radius (being K enough large to
consider an appropriate statistics) in order to ne-
glect effects due to borders. There is a striking

Fig. 4. Exponents df , ds and dw for all values of the parameters l and De used in the present work as indicated. The dotted line is only a

guide to the eye.
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dependence of Ann as a function of the lattice size l,
see Fig. 6(b). The curves for different values of De
show a clear minimum around l  3 while an as-
ymptotic tendency towards the homogeneous va-
lue can be seen upon increasing the patches size l
(l ! 1). In order to explain such behavior, it is
interesting to know how the particles are distrib-
uted over the deep and shallow patches. Thus, we
define the site specific surface coverage, hD and hS,
as the fraction of occupied deep and shallow trap
sites, respectively. The dependence of hD and hS as
a function of the patches size, l, shows that the
partial coverage hD (hS) increases (decreases)
monotonically as l ! 1, see Fig. 7(a). For small
patches size (l6 2) the number of occupied sites on

deep and shallow traps is quite similar and, as a
consequence, Ann behaves as in the homogeneous
case. For large values of l, the aggregate can be
described as a collection of fractal structures
(formed on deep patches) linked by few particles
located on shallow patches. These particles have a
less value of Ann and govern the process. The
proportion of these particles reduce as l ! 1 and
Ann goes downwards to the value in the homoge-
neous limit. Such a behavior is enhanced (dimin-
ished) whether the value of De is increased
(decreased), see Figs. 6(c) and 7(b).

Fig. 5. Cðl;DeÞ defined in Eq. (10) as a function of (a) the patch

size l for a fixed value of De ¼ 4; and (b) the energy difference De
for a fixed value of l ¼ 7.

Fig. 6. (a) Ann evaluated as an average for all particles be-

longing to the cluster up to a given radius K. The vertical dotted

line indicates the value of K used for the evaluation of Ann.

Different values of the energy difference between deep and

shallow traps, De, are used for the case when the patch size

l ¼ 7 is kept fixed (b) Ann as a function of the lattice size l for

De ¼ 1; 2 and 4 as indicated; and (c) Ann versus De for several

values of the patch size l as indicated. The dotted line is only a

guide to the eye.
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4. Conclusions

In the present work we have used the bivariate
trap model in order to study how the surface to-
pography affects the formation of aggregates. In
the framework of this model, it is assumed that the
surface is formed by a collection of homogeneous
patches. Every adsorption site within a given patch
has the same adsorption energy. However, differ-
ent patches have different adsorption energies. We
have considered only two kinds of square patches
with different energies, i.e. deep and shallow pat-
ches, which are arranged in a chessboard-like or-
dered structure. In particular, we focus our studies
on the effect of (a) the patches size, (b) their ar-
rangement and (c) the energy difference between

shallow and deep patches, De, on the structure of
DLA clusters.

The Monte Carlo method has been utilized to
(a) simulate the growing process, (b) evaluate the
characteristic parameters and structural features
of the DLA and (c) compare with the same phe-
nomenon taking place on an homogeneous sur-
face. The work presented here has clearly shown
that the growing process termed DLA is affected
by the energetic topography of the bivariate trap
surfaces. The effect is stronger in lattices composed
by small patches of traps, where the importance of
borders become more evident. However, as it is
expected, in the limit l ! 1 the system becomes
independent on the energetic topography.

We have also evaluated the exponents which
characterize the DLA structure, such as the fractal
dimension, df , the fractal dimension of a random
walk on the aggregated, ds, and the spectral di-
mension, dw, by using their own definitions ex-
plained above for different patches size, l, and
different energetic surface topographies. It can be
concluded that the exponents are not affected by
the presence of a strongly correlated surface.
However (from Fig. 2), it seems to be clear that the
aggregates are structurally different. This obser-
vation is in agreement with the behavior observed
for both the mean number of nearest neighbors per
occupied site and the number of sites of the cluster
for a fixed value of the radius K. The former goes
through a minimum when is plotted as a function
of the patch size while recovers the value of the
homogeneous case as l ! 1. The analysis of
NðK; l;DeÞ, Eq. (10), reveals the importance of
both the energetic correlation length and De as the
controlling parameters to describe the influence of
the energetic surface topography on different
processes taking place on such strong correlated
surfaces [22,24–27].
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