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We investigate the influence of different diffusion mechanisms on the finite-size scaling behavior of the tracer
surface diffusion coefficient in the close vicinity of a second order phase transition. A given diffusion mechanism
emerges from a specific transition algorithm (TA) representing a microscopic model of adatom jumps on the
surface. In this work we apply the Monte Carlo method to investigate a lattice gas model of repulsively
interacting particles on a square lattice. For all diffusion mechanisms and lattice sizes L studied, the measured
tracer surface diffusion coefficient, Dt , is a smooth function of temperature and exhibits an inflexion point at or
near the critical temperature. Its derivative, @Dt/@(1/kBT), exhibits cusp-like maxima which are (a) sharply
pronounced and (b) converge to Tc(L ¼ 1) for large lattice sizes. We have analysed the finite-size behavior of
Dt and obtained its critical exponent, st , for each diffusion mechanism considered. The results show that st is
different for the different diffusion mechanism, i.e. st depends on the choice of the TA.

1 Introduction

Surface diffusion of adsorbates on metal and alloy surfaces has
become an important subject of surface science. The detailed
comprehension of surface diffusion is one of the key steps in
understanding (and controlling) many interesting surface phe-
nomena such as adsorption, desorption, catalytic reactions,
melting, roughening, and crystal and film growth. Despite
the widespread availability of experimental techniques for
the measurement of surface diffusion coefficients, a lot more
work remains to be done for a complete understanding of this
phenomenon. In many cases the interpretation of experimental
surface diffusion data has been rather tedious, especially in het-
erogeneous systems and systems undergoing phase transitions.
Therefore, many different theoretical and numerical methods
such as mean-field,1–4 Bethe–Peierls,5 real-space renormaliza-
tion group (RSRG),6–8 transfer matrix9 and Monte Carlo
(MC)10–14 methods have been used in order to describe the sur-
face diffusion phenomenon.
The MC technique is probably one of the most reliable

methods which can be used to study static and dynamic prop-
erties of adsorbed monolayers on metal surfaces by means of
lattice gas modeling. The widespread availability of powerful
computers and the simplicity to code MC computer algorithms
have led to the success of this method. MC studies of adatom
diffusion on different lattices and for various sets of the inter-
action parameters have been performed during the last two
decades. Many of the earlier Monte Carlo studies of adsorbate
diffusion have been reviewed by Kehr and Binder.15 Lattice gas
models have led to important conclusions about modern the-
ories of phase transitions16–20 and critical phenomena.21,22

Static physical quantities like total energy, susceptibility etc.
are subject to finite-size scaling effects close to a critical point.

2 Basics of surface diffusion

In this section we attempt to provide the basic background
needed to understand both the computational procedures
and the simulation results, which will be described in the fol-
lowing parts of this contribution.

The surface tracer diffusion coefficient

The surface tracer diffusion coefficient, Dt , describes the ran-
dom walk of a tagged single particle. It is probably important
to note that also the notation D* is used for this quantity. Dt is
defined through the generalized definition

Dt ¼ lim
t!1

1

2dt
j~rriðtÞ �~rrið0Þj2

D E� �
ð1Þ

where d is the Euclidean dimension, (in the case of surface dif-
fusion d ¼ 2); the vector r~(t) determines the position of a
tagged particle at time t, and h(r~(t)� r~(0))2i is its mean square
displacement. Assuming that the particle executes jumps in
either the �x, �y or �z directions, we can write

ð~rrðtÞ �~rrð0ÞÞ2
D E

¼ ðDrÞh i2¼ a2xNxðtÞ þ a2yNyðtÞ þ a2zNzðtÞ:

ð2Þ

Here ax,y,z denote the jump lengths for the corresponding
directions, and Nx,y,z(t) denote the corresponding number of
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jumps taken in time t. For a square surface eqn. (1) can be
rewritten as

Dt ¼ lim
t!1

1

4t
ðDrÞ2

D E

¼ lim
t!1

1

4t
a2xNxðtÞ þ a2yNyðtÞ
h i

¼ lim
t!1

1

4t
a2NtotðtÞ; ð3Þ

if ax ¼ ay and Ntot ¼ Nx+Ny . The quantity Ntot/t can be
considered as an effective jump frequency23

lim
t!1

Ntot

t
¼ neff ¼ n exp � Ed

kBT

� �
ð4Þ

with Ed as effective activation energy for adatom jumps. Thus
Dt can be written as

Dt ¼
1

4
a2n exp � Ed

kBT

� �
: ð5Þ

2.2 Simulations of surface diffusion

For the computer simulation of surface diffusion two powerful
methods are frequently used, the molecular dynamics (MD)
scheme (see e.g.refs. 15, 19, 20 and 24–26) and the Monte
Carlo (MC) scheme. Since the study to be discussed in Section
5 is based on a lattice gas model investigated via MC simula-
tions, we will discuss this method in some detail here.
Within the lattice gas scheme the basic steps of surface diffu-

sion are jumps of adatoms from filled initial sites i to adjacent
vacant sites f. The activation energy for such jumps can be cal-
culated as the energy difference between saddle point e�i!f and
single site energy of the initial site ei ,

14

DE ¼ e�i!f � ei: ð6Þ

The associated jump probability PJ is given by

PJ ¼
1

k
exp � DE

kBT

� �
; ð7Þ

with k as a normalization factor. This choice ensures full
microscopic reversibility and fulfils the condition of detailed
balance.27 However, the activation energies DE and the jump
probabilities PJ are partly arbitrary since the detailed balance
condition does not specify these quantities uniquely.15 In order
to optimize the computational time of a Monte Carlo algo-
rithm, a suitable normalization of jump probabilities is indis-
pensable. A natural choice for k would be

k ¼ kmax ¼ exp �DEmin

kBT

� �
: ð8Þ

Here DEmin represents the jump probability for the most favor-
able physically realizable jump.14 This choice of k generates
the highest possible jump probabilities, i.e., minimizes the
number of unsuccessful attempts, while avoiding jump events
with PJ> 1. In some cases this choice of k leads to an imprac-
tically large number of Monte Carlo steps required for the
equilibration of the lattice gas and for the determination of
the desired surface diffusion coefficients. Especially at very
low temperatures and in ordered regions of the relevant phase
diagram, hop events occur very infrequently. Therefore, smal-
ler normalization factors k< kmax can be chosen. However, it
should be verified very carefully that in such cases the fraction
of jumps with jump probabilities PJ> 1 is still negligibly small
(<0.1%).
It is certainly important to note that eqns. (6) and (7) repre-

sent a mathematical recipe (or, in other words, a transition
algorithm (TA)) describing how adatoms travel over a surface
and how new system configurations evolve from preceeding

ones. Different TA’s are conceivable and have been used in
the literature, some of them will be described in Section 4.
The procedure for simulating jumps in the canonical ensem-

ble has been described in some detail in refs. 14 and 28 and,
therefore, we will present only the general schema of the com-
putations. First, for a given lattice gas configuration an initial
site i is randomly picked. If filled, an adjacent final site j is ran-
domly selected. If the destination is vacant, a jump may occur
with probability PJ (eqn. (7)), otherwise, no jump occurs. Ther-
modynamic equilibrium is established before starting a diffu-
sion run at the desired fixed coverage y. Approach to
equilibrium is monitored by following the configurational
energy and in case of ordering by measuring corresponding
order parameters of the system. Equilibrium is assumed to
be established when these quantities fluctuate about their aver-
age values. In a recent publication, we have shown that in
some systems even minute deviations from thermodynamic
equilibrium may substantially influence the surface diffusion
coefficients.29

In the MC method the tracer diffusion coefficient Dt can be
easily determined from measurements of the mean square dis-
placements of N tagged adatoms according to eqn. (1). The
displacements Dri(t) are expressed in units of the lattice con-
stant a0 .

3 Finite-size scaling of surface diffusion coefficients

In a recent Monte Carlo study, the finite-size scaling concept
has been extended to kinetic and dynamic quantities. In ref.
30 we have investigated the tracer diffusion coefficient Dt of
interacting particles in the vicinity of a second order surface
phase transition. The system studied was the square lattice
gas with nearest neighbor repulsive interactions, jNN . Its
interaction dependent part of the Hamiltonian is given by

H ¼ �jNN

X
NN

cicj: ð9Þ

Here the ci,j ¼ 0,1 denote local occupation variables for each
discrete lattice site. This well-known and frequently studied
system exhibits c(2� 2) ordering below the critical temperature
Tc ¼ 0.567jNN/kB .

31–33 Probably the most striking result of
ref. 30 was the observation that Dt depends on the lattice size
L of the lattice near Tc . For all values of L studied, Dt(T)y¼ 0.5

is a smooth function and exhibits an inflexion point at or near
Tc . Its derivative, @Dt/@(1/kBT), exhibits a cusp-like maxi-
mum which is sharply pronounced at least for larger values
of L. The temperatures where these maxima occur converge
to Tc(1) for large L. In refs. 30 and 34 we have analysed
the finite-size scaling behavior of the tracer diffusion coefficient
using the scaling dependence,35,36

Dt ¼ Dcrit
t þ est ~DDtðL1=veÞ þ . . . ð10Þ

where st ¼ 0.665� 0.03 and D~t are the corresponding critical
exponent and scaling function, respectively. e represent the
reduced temperature, 1�T/Tc , and v is the critical exponent
of the correlation length x. Note that the leading term (which
remains present at e ¼ 0) is the regular part (without any sin-
gular behavior) of the corresponding diffusion coefficient. Tak-
ing the derivative of eqn. (10) yields

@Dt

@ðjNN=kBTÞ / est�1 ~DDtðL1=veÞ / L
1�st
v ~DDtðL1=veÞ: ð11Þ

Eqn. (11) is valid for L!1, e! 0 and finite values of L1/ve.
Consequently, the scaling behavior of the maximum of the
derivative, eqn. (11), |@Dt/@(jNN/kBT)|max , should be given by

@Dt

@ðjNN=kBTÞ

����
����
max

/ L
1�st
v : ð12Þ
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4 Does the critical exponent rt depend on the TA?

In this paper we address the important question if the critical
exponent st depends on the transition algorithm (TA). In order
to motivate this issue, we recall that the occupation numbers, ci
in eqn. (9), change in time due to adatom jumps. The statistical
description of the dynamics of adatom migration is defined
through the transition probability wif describing an adatom
jump from an initial site i with energy ei to a final site f with
energy ef ,

wif ¼ nijcið1� cjÞDt: ð13Þ

Here nij is the jump frequency of the corresponding event i! j
and Dt is the time interval of a single MC step. However, eqn.
(13) does not determine transition probabilities unequivocally.
In fact, different choices for the energy and temperature depen-
dences of nij have been used in the literature according to the
underlying microscopic model in the description of adatom
jumps. The first one was inroduced by Metropolis in 195337

nMP
if ¼ min n; n exp

ei � ef
kBT

� �� �
: ð14Þ

The MP algorithm favors those jumps which decrease the free
energy of the system. Thus, the system reaches thermodynamic
equilibruim in a lesser number of MC steps (MCS). A rather
similar form for the transition probability was supposed by
Kawasaki,38–40

nKS
if ¼ n 1þ exp

ef � ei
kBT

� �� ��1

: ð15Þ

Eqn. (15) differs from the Metropolis form only in a narrow
energy interval |ei�ef|� kBT.
Another form of the jump frequency was introduced in ref.

41 taking into account the particular situation encountered in
the case of surface diffusion of classical heavy particles which
do not tunnel through the potential barrier. In such a situa-
tion, the main factor determining the probability of jump, is
whether the adatom has an energy large enough to overcome
the potential barrier DE. This quantity in a first approximation
can be written as the difference of the adatom energies at the
saddle point (esp) and in the initial potential minimum at site
i, DE ¼ esp�ei . The transition probabilities are then given by

nif ¼ n exp
ei � esp
kBT

� �
: ð16Þ

However, in practice one frequently assumes esp as a constant
for all possible adatom jumps, i.e. the associated jump prob-
abilities are given by5

nIVif ¼ n exp
ei

kBT

� �
: ð17Þ

This simplification is the basis of the initial value (IV) transi-
tion algorithm being used in refs. 30 and 42. More realistic
assumptions considering the influence of adatom interactions
at the barrier have been considered for instance in refs. 43
and 44.
Neither the MP nor the KS algorithms do explicitly consider

the influence of the energetic barrier between initial and final
sites. The transition dynamics (TD) algorithm45 is similar to
the MP algorithm, but uses an adjustable parameter D to
account for the diffusion barrier.
It is quite obvious that the transition algorithms discussed so

far can be subdivided in two classes, those which depend on
the energy of the final state ef (MP, KS and TD) and others
which do not (IV). It should be noted that n in eqns. (14)–
(17) is a normalization constant.

5 Results and discussion

In this work we investigate the finite-size scaling behavior of
the tracer surface diffusion coefficient, Dt , using the IV, MP
and KS transition algorithms. For this purpose we applied
the MC algorithm, which is described in detail in refs. 9, 14,
29, 46 and 47. In the present work a fully parallelized version
of our algorithm was run either on the Cray T3E (LC672-128)
operated by the Max-Planck community in Garching/Ger-
many or on the Rutgers Beowulf cluster consisting of 70
low-cost LINUX PC’s.
The temperature dependences of the tracer diffusion coeffi-

cients Dt (calculated directly via eqn. (1)), are presented in
Fig. 1. As in previous studies,19,14 the calculated diffusion coef-
ficients are normalized with respect to Do, the chemical diffu-
sion coefficient of the non-interacting Langmuir gas. It is
important to note, that the diffusion data shown represent true
thermodynamic equilibrium at given values of temperature T
and lattice size L. In Fig. 1 we focus on a relatively narrow
range of temperatures around Tc .

49 Obviously, the general
shape of the Dt vs. 1/T graphs is rather similar for all TA’s
investigated. However, the absolute values of Dt/D

o differ con-

Fig. 1 Normalized tracer surface diffusion coefficient, Dt/D
o, vs. jNN/kBT. As in previous studies,14,48 the tracer diffusion coefficient is normal-

ized with respect to Do, the chemical diffusion coefficient of the Langmuir gas. Results are shown for the IV, MP and KS dynamics. The calculations
are performed at half coverage, y ¼ 0.5, for various lattice sizes L as indicated. The dotted line corresponds to jNN/kBTc ¼ 1.76.
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siderably. The IV TA yields Dt/D
o> 1, i.e. tracer diffusion is

accelerated relative to the noninteracting case, while KS and
MP TA’s indicate the opposite. This striking finding can be
explained by the underlying atomistic picture. The IV algo-
rithm assumes the probability of each jump to depend on the
initial site energy (eqn. (17)). Therefore, at finite coverage
repulsive NN interactions accelerate all jumps, and this causes
DIV

t /Do> 1. In contrast, for the MP and KS algorithms the
jump probabilities depend on ef�ei , i.e. only jumps from
highly coordinated to less coordinated lattice sites are acce-
lareted by the NN repulsions, all other jumps are decelerated.
The net effect for both algorithms is negative, i.e. DKS;MP

t /
Do< 1. The most striking finding of Fig. 1 is clearly the signif-
icant lattice size dependences of Dt near Tc . For a given tem-
perature close to Tc , the values of Dt increase with increasing
L.
Fig. 1 also shows that, regardless of the TA considered,

there are weak turning points near Tc , which are clearly seen
as maxima in the derivatives |@Dt/@(jNN/kBT)| (Fig. 2). The
maxima are very wide for the small lattices, but are drastically
sharpened upon increasing L. In order to describe the finite-
size scaling behavior of Dt , we assume the scaling dependence
of eqn. (10).35,36 Our analysis shown in Fig. 3 yields
sIVt ¼ 0.66� 0.02, sMP

t ¼ 0.59� 0.02 and sKS
t ¼ 0.67� 0.02

for the different TA’s. The critical exponents for the IV and
KS TA’s appear to be identical within statistical limts. How-

ever, the corresponding value for the MP TA is significantly
off. Therefore, our results suggest that the critical approach
to the thermodynamic limit depends to some extent on the
underlying microscopic picture of adatom migration. In other
words, the critical exponents of the tracer diffusion coefficient
may present different values depending of the TA used to
mimic adatom jumps on the surface.
Fig. 2 also shows another interesting feature. The position of

the maxima, Kc(L)�jNN/kBTc(L), depends on lattice size L as
well (Fig. 4). For the description of Kc(L) we assume

KcðLÞ ¼ Kcð1Þ þ AL�1=v; L ! 1: ð18Þ

Here Kc(1) is the critical temperature in the thermodynamic
limit and A is a constant. The extrapolation of Kc(L) for the
IV and KS TA gives a critical temperature Kc(1) ¼ 1.76 in
good agreement with the theory, Fig. 4, while the correspond-
ing value for the MP TA is Kc(1) ¼ 1.78 is slightly higher.
Nevertheless, it is obviously possible to use surface diffusion
data to obtain critical temperatures using finite-size scaling
arguments.
In order to explain the finite-size dependence of the tracer

diffusion coefficient, we note that the tracer diffusion coefficient
can be approximately expressed as a product of a tracer corre-
lation factor f,50,51 a vacancy availability factor V and an aver-
age jump probability hPJi,15,52

D� ¼ fVhPJi: ð19Þ

Fig. 2 Derivative of the normalized tracer diffusion coefficient with respect to |jNN/kBT|. Results are shown for the IV, MP and KS dynamics.
The calculations are performed at half coverage, y ¼ 0.5, for various lattice sizes L as indicated. The vertical line corresponds to jNN/kBTc ¼ 1.76.

Fig. 3 Logarithm of the derivative of Dt vs. logarithm of the lattice
size L. The values shown represent the maxima obtained from corre-
sponding Arrhenius diagrams such as shown in Fig. 2. The solid lines
are least square fits being used to obtain the slope (1� st)/n and the
corresponding critical exponent st .

Fig. 4 Position of the maxima of the derivate of Dt/D
o as shown in

Fig. 2. The temperature of the maxima is plotted in units of
Kc(L)�jNN/kBTc(L) vs. L

�1/v.

Phys. Chem. Chem. Phys., 2002, 4, 1882–1888 1885



It is interesting to realize that V is a purely thermodynamic
quantity, which should not depend on the TA. In Fig. 5 we
show the average coordination number, hcNi ¼ 4(1�V), for
the various TA’s. hcNi exhibits a significant lattice size depen-
dence but, as expected, is independent of the TA chosen.
Therefore, this quantity does not account for the different
finite-size scaling of Dt for the different TA’s. hcNi is propor-
tional to the coordination energy of the lattice gas system.
Its finite-size dependence, therefore, points to the scaling beha-
vior of the specific heat, given by

C ¼ jNN

kBT

� �2

yL2ðhc2Ni � hcNi2Þ: ð20Þ

The behavior of this static quantity, which is shown in Fig. 6,
exhibits similarities with the derivate of Dt shown in Fig. 2.
There are tiny and wide maxima for small lattice sizes L, which
are sharpening and increasing as L is increased. However, the
measured values of the specific heat do not depend on the TA,
in contrast to the intriguing behavior of Dt and its derivative.
In principle, Fig. 6 could be used to investigate the finite-size
scaling behavior of the specific heat, as well. However, this
has been done already a long time ago and is certainly not
on the agenda of this paper. Nevertheless, Figs. 6 and 7 clearly
show that static/thermodynamic and kinetic/dynamic quanti-

ties may exhibit different behavior with respect to finite-size
scaling.
In ref. 30 we have argued that the finite-size dependency of

the tracer diffusion coefficient is largely due to the behavior of
the hPJi, which is different for the three TA’s investigated here.
This is shown in Fig. 7. First thing to note is that the absolute
values |PJ| are substantially different for the three TA’s. How-
ever, it is also quite obvious that near criticality the variation
of PJ with L is different for the various TA’s.

6 Summary

In this work we have investigated the finite-size scaling beha-
vior of the tracer surface diffusion coefficient, Dt , using the
IV, MP and KS transition algorithms. However, one should
have in mind that these TA’s represent different mathematical
recipes how new system configurations evolve from preceeding
ones. Each TA favors a different physical picture of adatom
jumps on a model surface.
We conclude that the finite-size scaling treatment of Dt near

a second order phase transition can be done using the general
scheme presented in ref. 30 regardless of the TA used to mimic
microscopic jumps of adatoms. However, a different diver-

Fig. 5 Average coordination number, hcNi for the IV, MP and KS dynamics. The calculations are performed at half coverage, y ¼ 0.5, for var-
ious lattice sizes L as indicated. The vertical line corresponds to jNN/kBTc ¼ 1.76. Note that hcNi ¼ 4(1�V).

Fig. 6 Specific heat obtained according to eqn. (20) for the IV, MP and KS dynamics. The calculations are performed at half coverage, y ¼ 0.5
for various lattice sizes L as indicated. The vertical line corresponds to jNN/kBTc ¼ 1.76.
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gence of |@Dt/@(jNN/kBT)| towards the thermodynamic limit
is observed according to the TA used. In fact, the critical expo-
nent associated with the tracer diffusion coefficient, st , exhibits
characteristic values (sIVt ¼ 0.66� 0.02, sMP

t ¼ 0.59� 0.02,
sKS
t ¼ 0.67� 0.02), which are identical for the IV and KS

TA’s within error limits but significantly differ for the MP
TA. Therefore, the results presented here suggest that the cri-
tical properties of the tracer diffusion coefficient are influenced
by the choice of the transition algorithm. We hope to investi-
gate different transport/diffusion coefficients and dynamic
properties in order to generalize this idea in the future.
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