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Abstract
We investigate the behavior of finitely generated projective modules over a down-up algebra. Specifi-
cally, we show that every noetherian down-up algebra A(α, β, γ) has a non-free, stably free right ideal.
Further, we compute the stable rank of these algebras using Stafford’s Stable Range Theorem and Kmax
dimension.
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1 Introduction

The study of finitely projective modules over an arbitrary ring is a classical task in homological algebra.
Investigating whether these modules are free, or at least stably free, has also great interest in geome-
try, topology and K-theory. One of the most well known results in this context is the Quillen-Suslin
theorem about Serre’s problem for the commutative polynomial ring k[x1, . . . , xn], where k is a field.
In this particular situation, Quillen and Suslin proved independently that the finitely generated pro-
jective modules are free, see [11] for a detailed and very clear exposition about this subject. However,
for noncommutative rings of polynomial type it is easy to present examples where the Quillen-Suslin
Theorem fails. For instance, if T is a division ring and S := T [x, y], there is an S-module M such that
M

⊕
S ∼= S2, but M is not free, see [16]. Moreover, Stafford developed conditions in [16, Theorem 1.2]

under which the skew polynomial ring S = R[x;σ, δ], with R a noetherian domain, σ an automorphism
of R and δ a σ-derivation, has a non-trivial stably free right ideal. These ideas have been used in [1] in
order to obtain non-trivial stably free modules over the enveloping algebras of the RIT (relativistic inter-
nal time) Lie algebras. Using similar methods, Iyudu and Wisbauer gave a sufficient condition in [8] for
the existence of projective non-free modules over the class of crossed products of noetherian domains
with universal enveloping algebras of Lie algebras. In the current paper, we will show that there exist
non-free projective modules over down-up algebras too. This fact will allow us to obtain bounds of the
stable rank of these algebras.

Down-up algebras have been introduced by Benkart and Roby in [4] motivated by the study of posets.
Given a field k and constants α, β, γ in k, the down-up algebra A = A(α, β, γ) is the associative algebra
generated over k by U and D, subject to the defining relations:

DU2 =αUDU + βU2D + γU

D2U =αDUD + βUD2 + γD.

∗This work has been supported by the projects UBACYT 20020130 100533BA, PIP-CONICET 11220150100483CO, and PICT
2015-0366. The first named author is a CONICET postdoctoral fellow. The second named author is a research member of CONI-
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As known examples of down-up algebras, we can mention A(2,−1, 0) that turns out to be isomorphic
to the enveloping algebra of the Heisenberg Lie algebra of dimension 3; for the case where γ 6= 0, the
algebra A(2,−1, γ) is isomorphic to the enveloping algebra of sl2(k). For another interesting example,
consider the quantized enveloping algebra Uq(sl3(k)) with generators Ei, Fi, K±1, i = 1, 2 and a non-
zero scalar q in k; the subalgebra of Uq(sl3(k)) generated byE1, E2 is the down-up algebraA([2]q,−1, 0),
where [n]q = qn−q−n

q−q−1 . For γ 6= 0, the down-up algebra A(0, 1, γ) is isomorphic to the enveloping algebra
of the Lie superalgebra osp(1,2).

Kirkman, Musson and Passman proved in [10] that A(α, β, γ) is a noetherian algebra if and only if,
the parameter β is non-zero; the latter is equivalent to saying that A(α, β, γ) is a domain. Furthermore,
for down-up algebras, the Krull, Gelfand-Kirillov, and global dimensions have already been computed,
see [3], [4] and [10]. Additionally, their representation theory, Hochschild homology and cohomology,
as well as several homological and ring theoretical properties have also been studied (e.g., [5], [6], [7],
[9], [20]).

In [4] the task of investigating indecomposable and projective modules for down-up algebras was pro-
posed. We give a partial answer to this subject proving in Theorem 2.1 that all finitely generated pro-
jective modules over a noetherian down-up algebra are stably free. Moreover, we show that the class
of noetherian down-up algebras does not satisfy a noncommutative version of Quillen-Suslin Theorem
in the sense that there exist non-trivial stably free modules over these algebras, see Corollary 3.6 and
Proposition 3.8. In view of the above, we obtain a lower bound of the stable rank of a down-up algebra
and, using the Stafford’s Stable Range Theorem, we achieve in Theorem 4.1 upper bounds of this value.
Finally, under certain conditions, the exact value of stable rank is obtained in Theorem 4.7.

The article is organized as follows: in Section 2 we prove that every finitely generated projective module
over a noetherian down-up algebra is stably free.
Section 3 is devoted to showing that the algebra A = A(α, β, γ), with β 6= 0, always has a non-trivial
stably free right ideal. For this task, we split the problem in two cases: γ 6= 0 and γ = 0 and we use some
techniques from [16] to achieve our goal.
In Section 4, bounds of the stable rank of a down-up algebra are established. Under some conditions
over the roots of the polynomial t2 − αt − β, such bounds are improved. The main tool at this point is
the Kmax dimension of an arbitrary ring.

2 Stability of projective modules

A ring S is called a PSF ring if every finitely generated projective S-module is stably free. In this section
we will show that, for β 6= 0, the algebra A = A(α, β, γ) is a PSF ring. It is important to note that, as β is
non-zero, A is a right (left) noetherian ring [10, Corollary 2.2] and, therefore, the rank of free A-modules
and the rank of stably free A-modules are well defined.

Theorem 2.1. Let A = A(α, β, γ) be a down-up algebra. If β 6= 0, then A is a PSF ring.

Proof. In [10, Section 3.1] it is proved that the collection {Vn}n≥0 given by V0 := k, V1 := k+ku+kd and
Vn := (V1)n, for n ≥ 2, is a filtration of A, and that Gr(A), the associated graded ring, is isomorphic to
the down-up algebra A(α, β, 0). Hence, Gr(A) is a right (left) noetherian ring. It is also known that if A
is noetherian, then gldim(A) = 3 [10, Theorem 4.1]; thus Gr(A) is a right regular ring. Since Gr(A) is a
free V0-module, it follows from [13, Theorem 12.3.2] that A is a PSF ring.

Remark 2.2. Given R =
⊕

i≥0Ri a graded ring, we know that if P is a finitely generated graded pro-
jective R-module, then P is extended from R0; more precisely, there is a graded R-module isomor-
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phism R ⊗R0
P0
∼= P , where P0 is a graded projective R0-module, see [11, Theorem II. 4.6]. Thus, if

A = A(α, β, γ) is a noetherian down-up algebra with γ = 0, every finitely generated graded projective
A-module P is extended from k. Hence, P turns out to be a free A-module.

3 Non-trivial stably free ideals

It is well known that there exist stably free modules which are non-free over U(sl2(k)) and U(h), where
h denotes the Heisenberg Lie algebra of dimension 3 [16]. These algebras are examples of down-up
algebras, so this raises the question whether every down-up algebra has a non-trivial stably free module
or not. The goal of this section is to exhibit examples of such modules. To achieve such objective, we
will distinguish two cases: γ 6= 0 and γ = 0. In the following, we assume that β 6= 0, and that k is a field
of characteristic zero that contains both roots of the polynomial t2 − αt− β.

3.1 Case γ 6= 0

For this case, we will proceed as in [1], [8] and [16]: first, we consider a subalgebra Ã of A for which
there exists a right (left) non-trivial stably free idealK. Afterwards, we extend such idealK to the whole
algebra A using results from [16].
Let λ and µ be the roots of t2−αt−β, so that α = λ+µ and β = −λµ. Since β is non-zero, it follows that
λ and µ are both non-zero. For γ 6= 0, there is an isomorphism A(α, β, γ) ∼= A(α, β, 1), see [5, Lemma 4.1
(ii)], so we assume γ = 1 without loss of generality. Under these conditions, the multiplication rules in
A are given by:

[D, [D,U ]λ]µ = D [[D,U ]λ, U ]µ = U,

where [a, b]η denotes the expression ab − ηba. Let ω := [d, u]λ = du − λud and consider the algebra
Ã := k[u][ω;σ, δ] with σ an automorphism of k[u] such that σ(u) := µ−1u, and δ the σ-derivation defined
by δ(u) := −µ−1u. Let us see that Ã is a subalgebra of A: indeed, let φ : Ã→ A be determined by u 7→ U
and ω 7→ [D,U ]λ; then:

U [D,U ]λ = U(DU − λUD) = UDU − λU2D

= µ−1(µUDU − λµU2D − U) = µ−1(DU2 − λUDU − U)

= µ−1[D,U ]λU − µ−1U,

and therefore, φ turns out to be an algebra homomorphism. The set B1 := {uiωj | i, j ∈ N} is a k-basis
for Ã and φ(B1) = {U j(DU − λUD)j | i, j ∈ N}. Since B := {U i(DU + aUD + b)jDk | i, j, k ∈ N}
is a k-basis of A for any a, b ∈ k [20, Lemma 2.2], then φ(B1) is linearly independent in A and Ã is a
subalgebra of A.

We will strongly use the following remarkable result from [16]:

Lemma 3.1. [16, Corollary 1.6] LetR be a noetherian domain and let S = R[x;σ, δ] be an Ore extension. Suppose
that there exists a non-unit r ∈ R such that

∑
i≥0 δ

i(r)R = R. Then K = rS ∩ xS is a non-trivial, stably free
right ideal of S.

This latter lemma will allow us to carry out the first step to achieve our goal.

Lemma 3.2. The subalgebra Ã has a stably free right ideal that is non-free.
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Proof. In view of the fact that k[u] is a domain and σ is an automorphism, we have that Ã is also a
domain. The element r = 1 + u is non-invertible in k[u], with the property that

r + δ(r)µ = 1 + u+ (−µ−1u)µ = 1 + u− u = 1.

Thus,
∑
i≥0 δ

i(r)k[u] = k[u] and Lemma 3.1 asserts that Ã has a right stably free ideal K which is non-
free. The idealK is defined by {f ∈ Ã | rf ∈ ωÃ} and is isomorphic to rÃ∩ωÃ. Moreover, in the proof of
Lemma 3.1 it is proved that Ã = rÃ+ωÃ; specifically, we have 1 = r(1+µω)+ω(−µσ(r)). This equality
allows us to obtain generators for the right ideal K: in effect, we claim that a = (ω + µ−1)(1 + u)− µ−1

and b = ω2 + µ−1ω are polynomials such that K = aÃ+ bÃ. To show this, we first note that:

ra = (u+ 1)(ω + µ−1)(u+ 1)− µ−1(u+ 1) = uω(u+ 1) + ω(u+ 1) + µ−1(u+ 1)2 − µ−1(u+ 1)

= ω(u+ 1)(µ−1u+ 1)− µ−1((u+ 1)2 − u(u+ 1)− (u+ 1)) = ω(u+ 1)(µ−1u+ 1) ∈ ωÃ,

and,

rb = ω(ω + µ−1) + uω2 + µ−1uω = ω(ω + µ−1) + µ−1ωuω − µ−1uω + µ−1uω

= ω(ω + µ−1uω + µ−1) ∈ ωÃ.

Suppose that B1 is ordered by the deglex order ≺ with u ≺ ω, and let f be a non-zero element in K.
We claim that if lm(f) = uδ1ωδ2 is the leading monomial of f , then δ1 + δ2 ≥ 2 and δ2 ≥ 1: indeed, it
is clear that either δ1 or δ2 is non-zero. If δ1 + δ2 = 1, we have that δ1 = 0 or δ2 = 0. In the first case,
f = c1ω + c2u+ c3 with ci ∈ k for i = 1, 2, 3 and c1 not zero. Then,

rf =(u+ 1)(c1ω + c2u+ c3) = c1uω + c2u
2 + c3u+ c1ω + c2u+ c3

=c1(µ−1ωu− µ−1u) + c2u
2 + (c3 + c2)u+ c1ω + c3

=ω(c1µ
−1u+ c1) + c2u

2 + (c2 + c3 − c1µ−1)u+ c3 ∈ ωÃ.

Therefore, c1 = c2 = c3 = 0 and f = 0, which is a contradiction. A similar result is obtained if we
assume δ1 = 1 and δ2 = 0; hence δ1 + δ2 ≥ 2. Now, suppose δ2 = 0; in such case f = cδu

δ + f1, where
lm(f1) ≺ lm(f), δ ≥ 2 and cδ 6= 0. So,

rf =(u+ 1)(cδu
δ + f1) = cδu

δ+1 + uf1 + f ∈ ωA;

in order that rf ∈ ωA necessarily cδ = 0, but this contradicts our choice of f . Consequently, f =
cδu

δ1ωδ2 + f1 where δ1 + δ2 ≥ 2, δ2 ≥ 1, lm(f1) ≺ lm(f) and cδ is a non-zero scalar. In these conditions,
lm(f) is divisible by lm(a) = uω or lm(b) = ω2. Applying a right division algorithm, we get f =
aq1 + bq2 + h, where h is reduced with respect to a and b. If h 6= 0, we have that lm(h) is not divisible
neither by lm(a) nor lm(b); i.e., if lm(h) = uε1ωε2 , then ε2 = 0 or ε1 + ε2 ≤ 1. But h = f − aq1 − bq2 ∈ K
and we obtain a contradiction. Whence h = 0, f = aq1 + bq2 and K = aÃ+ bÃ.

Remark 3.3. Lemma 3.1 is a corollary of a more general result by Stafford [16, Theorem 1.2]: given a
noetherian domain R and S = R[x;σ, δ], with σ an automorphism of R and δ a σ-derivation, if there
exists a non-unit r in R and some s ∈ R such that S = rS + (x + s)S, then S has a non-trivial stably
free right ideal. This assertion also has a version for Laurent skew polynomial rings and it was used as
a unified way for producing non-trivial stably free right ideals over Weyl algebras, rings of polynomials
with coefficients in a division ring in at least two variables, group rings of poly (infinite cyclic) groups
and enveloping algebras of non-abelian finite dimensional Lie algebras. However, these modules do
not always exist: for example, if R is a division ring, any projective module over S is free (see [13,
Proposition 11.5.3]). Moreover, given S = R[x; δ] with R a commutative local ring with maximal ideal
Q and δ a non-zero derivation of R, it is proved in [16, Corollary 4.6] that every stably free right ideal of
S is free if and only if δ(Q) ⊆ Q and Kdim(R) = 1.
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The second step is extending this right ideal K to A in such a way that we obtain a non-trivial, stably
free right ideal of A. To achieve this, we will use the following fact.

Proposition 3.4. [16, Proposition 2.3] Let A and B be domains such that A ⊂ B and B is faithfully flat as left
A-module, satisfying the following property:

If a and b are non-zero elements of B such that ab ∈ A, then a = a1c (♣)
and b = c−1b1 for some unit c in B and elements a1, b1 ∈ A.

Under these conditions, if P is a projective right ideal of A that is not cyclic, then PB ∼= P ⊗A B is a projective
right ideal of B that is also non-cyclic. Further, if P is stably free then so is PB.

Proposition 3.5. The rings Ã and A are domains such that Ã ⊂ A and they satisfy the hypotheses of Theorem
3.4.
Proof. Since β is non-zero, both A and Ã are domains. Inasmuch as B = {ui(du − λdu)jdk | i, j, k ∈ N}
is a k-basis of A, it follows that B2 := {dk | k ∈ N} is an Ã-basis for A as a left Ã-module: indeed,
it is obvious that B2 generates ÃA. Taking into account that A is a domain, in order to prove linear
independence, it is enough to show that if

∑m
l=1 ald

l = 0, with al ∈ Ã, 1 ≤ l ≤ m, then al = 0 for each l.
However, al =

∑sl
k=1 c

(l)
k u

ilkωj
l
k for certain elements c(l)k ∈ k \ {0}, thus

0 =

m∑
l=1

ald
l =

m∑
l=1

sl∑
k=1

c
(l)
k u

ilkωj
l
kdl.

Since ui
l
kωj

l
kdl ∈ B, we get

∑m
l=1

∑sl
k=1 c

(l)
k u

ilkωj
l
kdl =

∑
t dtx

αt , with xα ∈ B and dt :=
∑
xαt=ui

l
kωj

l
kdl

c
(l)
k .

As a consequence, dt = 0 for all t. Note that, given l and t, there exists just one ui
l
kωj

l
k ∈ B1 such that

xαt = ui
l
kωj

l
kdl, whence the set {dt} coincides with {c(l)k }. Therefore, all c(l)k = 0 and al = 0 for all l.

So, A is Ã-free and, in particular, A turns out to be a faithfully flat left Ã-module. Finally, to prove that
condition (♣) is satisfied, we define the following subsets of A: set F0 := Ã and Fn := F0Un for n ≥ 1,
where Un := k〈dk | k ≤ n〉. It is clear that A =

⋃
n∈N Fn and Fp ⊆ Fq for p < q. Using multiplication

rules inAwe obtain FpFq ⊆ Fp+q , and it follows that {Fn}n∈N is a filtration of the algebraA. Let f, g ∈ A
be non-zero elements such that fg ∈ F0. Since A =

⋃
n∈N Fn, there exist p and q ∈ N with the property

that f ∈ Fp \ Fp−1 and g ∈ Fq \ Fq−1. In this way, f =
∑
δ fδdδ ∈ Fp and g =

∑
ε gεdε ∈ Fq , where

fδ, gε ∈ F0, dδ ∈ Up and dε ∈ Uq . Hence, f = a1x
δ1dδ1 + · · · + arx

δsdδs with xδi ∈ B1 and δi ≤ p for
each i; analogously, g = b1x

ε1dε1 + · · · + btx
εtdεt , with xεj ∈ B1, and εj ≤ q. We can suppose dδ1 = dp

and dε1 = dq , so fg = a1b1x
δ1+ε1dp+q + f0g0, with f0g0 a polynomial in d, both of degree less or equal to

p+ q. But fg ∈ F0, so p+ q = 0 and δi = εj = 0 for all i and j, i.e., f, g ∈ F0. This finishes the proof.

Corollary 3.6. If A = A(α, β, γ) is a down-up algebra with γ 6= 0, then A has a non-trivial, stably free right
ideal.

Proof. By Lemma 3.2, the algebra Ã has a stably free right ideal K that is not free. Since Ã and A satisfy
the hypotheses of Theorem 3.4, the right ideal KA ∼= K ⊗Ã A is a non-trivial stably free right ideal
of A. In the proof of Lemma 3.2, we showed that K = aÃ + bÃ with a = (ω + µ−1)(1 + u) − µ−1 and
b = ω2+µ−1ω; thusKA = (aÃ+bÃ)A. We shall prove thatKA = aA+bA: given a non-zero polynomial
f ∈ aA + bA, there exist f1, f2 ∈ A such that f = af1 + bf2. Writing f1 and f2 in terms of B, we have
f =

∑
ciax

δi +
∑
ejbx

εj . Note that each term in the last expression can be written as (λ1ax
δ′+λ2bx

δ′)xδ ,
where xδ

′ ∈ B1, xδ ∈ B2 and λ1, λ2 are not both zero. Hence, f can be expressed as a sum of elements in
(aÃ+ bÃ)A which implies that f ∈ (aÃ+ bÃ)A. Since KA ⊆ aA+ bA, the equality holds.
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3.2 Case γ = 0

It is known that if γ = 0, the isomorphismA(α, β, 0) ∼= k[u][ω; θ][d;σ, δ] holds, for certain automorphisms
θ, σ and a σ-derivation δ depending on α, β, see [10, Theorem 3.3]. We will present an alternative proof
of the existence of this isomorphism using the universal property of skew polynomial rings that will be
more suitable for our purpose.

Lemma 3.7. For the down-up algebra A = A(α, β, 0), there exist ω and automorphisms θ and σ, together with a
σ-derivation δ, such that A is isomorphic to an iterated skew polynomial ring of the form k[u][ω; θ][d;σ, δ].

Proof. As usual we denote by U and D the obvious generators of A. Let R1 := k[u] and R := k[u][ω; θ],
where θ is the automorphism of R1 given by θ(u) = µ−1u. If φ0 : R1 → A is defined by φ0(u) = U , then
φ0 can be extended to a ring homomorphism with the property that, for a ∈ R1 the following holds:

φ0(u)[D,U ]λ =UDU − λU2D = µ−1(µUDU − λµU2D)

=µ−1(DU − λUD)U = [D,U ]λφ0(θ(u)).

Taking y := [D,U ]λ, in [13, §1.2.5] asserts that there exists a unique ring homomorphism φ1 : R1[ω; θ]→
A such that φ1 ◦ ι = φ0, with ι : R1 → R1[ω; θ] the natural inclusion. Now, consider the ring R[d;σ, δ] =
k[u][ω; θ][d;σ, δ], where σ : R → R is the automorphism σ(u) = λ−1u, σ(ω) = µ−1ω, and δ the σ-
derivation on R determined by δ(u) = −λ−1ω and δ(ω) = 0. For the aforementioned homomorphism
φ1, note that

φ1(u)D = UD =λ−1DU − λ−1[D,U ]λ

=Dφ1(σ(u)) + φ1(δ(u));

φ1(ω)D =DUD − λD2 = µ−1(D2U − λDUD) = µ−1D[D,U ]λ

= Dφ1(σ(ω));

if we set now y := D, again from [13, §1.2.5], we obtain a unique ring homomorphism φ2 : R[d;σ, δ]→ A
such that φ2 ◦ ι′ = φ1, with ι′ : R → R[d;σ, δ] the inclusion. In particular, φ2(u) = U , φ2(ω) = [D,U ]λ
and φ2(d) = D; thus, φ2 is surjective. Since B = {uiωjdk | i, j, k ∈ N} is a k-basis of R[d;σ, δ] and
φ1(B) = {U i(DU −λUD)jDk | i, j, k ∈ N}, we know that φ2 is an isomorphism and we have proved the
statement.

Proposition 3.8. The down-up algebra A(α, β, 0) has a non-trivial, stably free right ideal.

Proof. By Lemma 3.7, the isomorphism A ∼= k[u][ω; θ][d;σ, δ] holds, then it is enough to show that the
latter ring satisfies the statement. Taking r = 1 + uω, we have that

r(1− uω)− δ(r)(µ−2λu2) =(1 + uω)(1− uω)− (−λ−1µ−1ω2)(µ−2λu2)

=1− uωuω + µ−3ω2u2

=1− µ−3ω2u2 + µ−3ω2u2 = 1;

since A is a domain and σ is an automorphism, by Lemma 3.1 the algebra A has a stably free right ideal
K which is non-free. The ideal K is given by {f ∈ A | rf ∈ dA} and turns out to be isomorphic to
rA∩dA. We assert that K is generated by the polynomials a = d2, and b = duω+λ−1µω2 +µ2d: indeed,
we start noting that

ra =(uω + 1)d2 = uwd2 + d2

=µ−2λ−2d2uω − (λ−2µ−2 + λ−1µ−3)dω2 ∈ dA,
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and

rb =(uω + 1)(duω + λ−1µω2 + µ2d)

=(dσ(uω) + δ(uω))uω + λ−1µuω3 + µ2(dσ(uω) + δ(uω)) + duω + λ−1µω2 + µ2d

=(λ−1µ−1duω − λ−1µ−1ω2)uω + λ−1µuω3 + µ2(λ−1µ−1duω − λ−1µ−1ω2) + duω + λ−1µω2 + µ2d

=d(λ−1u2ω2 + (λ−1µ+ 1)uω + µ2)− λ−1µ−1ω2uω + λ−1µuω3 − λ−1µω2 + λ−1µω2

=d(λ−1u2ω2 + (λ−1µ+ 1)uω + µ2) ∈ dA.

In order to prove the claim, we suppose that B is ordered by the deglex order ≺ with u ≺ ω ≺ d. Let f
be a non-zero polynomial in A. We shall show that if f ∈ K, then lm(f) is divisible by lm(a) = d2 or
lm(b) = uωd. Let lm(f) = uδ1ωδ2dδ3 be the leading monomial of f . A straightforward reasoning allows
to derive that if f ∈ K, then necessarily δ3 ≥ 1. We consider the following possibilities:

• δ1 = δ2 = 0: in such case δ3 ≥ 2, since otherwise f = c1d+ c2ω + c3u+ c4 with ci ∈ k, i = 1, 2, 3, 4
and c4 non-zero. So,

(uω + 1)f =d(c1λ
−1µ−1uω + c1) + c2uω

2 + c3µu
2ω − c1λ−1µ−1ω2 + c4uω + c2ω + c3u+ c4 ∈ dA

implies that c1 = c2 = c3 = c4 = 0; i.e., f = 0 which is contrary to our choice of f . Thus, δ3 ≥ 2.

• δ3 = 1: in this situation we must have δ1, δ2 ≥ 1. By the above, we get that either δ1 or δ2 is not
zero. Suppose δ1 6= 0 and δ2 = 0. Thus f = cuδ1d+ f1 with lm(f1) ≺ lm(f) and c 6= 0; then

(uω + 1)f =cµδ1(dσ(uδ1+1ω) + δ(uδ+1ω)) + c(dσ(uδ1) + δ(uδ1)) + uωf1 + f1

=cµδ1(λ−(δ1+1)µ−1duδ1+1ω − λ−1µ−1pδ1+1(λ−1, µ)uδ1ω2) + cλ−δ1duδ1

− cλ−1pδ1(λ−1, µ)uδ1−1ω + uωf1 + f1

=d(cλ−(δ1+1)uδ1+1ω + cλ−δ1uδ1)− cλ−1µδ1−1pδ1+1(λ−1, µ)uδ1ω2

− cλ−1pδ1(λ−1, µ)uδ1−1ω + uωf1 + f1 ∈ dA,

where pt(λ−1, µ) = λ−(t−1)µt−1 + λ−(t−2)µt−2 + · · · + λ−1µ + 1 is the expression that appears
in the calculation of δ(ut) and δ(utω). Specifically, using induction over t ≥ 1, it can be shown
that δ(ut) = −λ−1pt(λ−1, µ)ut−1ω, and δ(utω) = −λ−1µ−1pt(λ−1, µ)ut−1ω2 for t ≥ 1. Let ε1 =
cλ−1µδ1−1pδ1+1(λ−1, µ), ε2 = cλ−1pδ1(λ−1, µ) and c′ ∈ k the coefficient of uδ1−1ω in f1. Thus
µδ1−1c′ − ε1 = 0 and c′ − ε2 = 0. Rewriting these equations, we obtain that cpδ1+1(λ−1, µ) =
cpδ1(λ−1, µ). Hence c(pδ1+1(λ−1, µ) − pδ1(λ−1, µ)) = 0; but pδ1+1(λ−1, µ) − pδ1(λ−1, µ) = λ−δ1µδ1

and, since λ and µ are non-zero, it follows that c = 0. This is a contradiction, therefore δ2 ≥ 1.

• δ3 = 1 and δ2 6= 0. If δ1 = 0, the polynomial f is written as f = cωδ2d + f1 with lm(f1) ≺ lm(f)
and c 6= 0. In this case

(uω + 1)f =c(dσ(uωδ2+1) + δ(uωδ2+1)) + cdσ(ωδ2) + uωf1 + f1

=cλ−(δ2+1)µ−1duωδ2+1 − cλ−1µ−(δ2+1)ωδ2+2 + cµ−δ2dωδ2 + uωf1 + f1

=d(cλ−(δ2+1)µ−1uωδ2+1 + cµ−δ2ωδ2)− cλ−1µ−(δ2+1)ωδ2+2 + uωf1 + f1 ∈ dA.

Since each term in uωf1 is multiplied by u and deg(f1)≤ δ2 + 1, it is necessary that cλ−1µ−(δ2+1) =
0. Thus c = 0, which contradicts our choice of f . Consequently, δ1 ≥ 1 .

Therefore, given a non-zero polynomial f ∈ K and applying a right division algorithm, there exist
q1, q2, h ∈ A such that f = aq1 + bq2 + h, with h reduced with respect to a and b. If h 6= 0, then h is
not divisible neither by lm(a) nor by lm(b). But h = f − aq1 − bq2 ∈ K and we get a contradiction. In
consequence h = 0, f = aq1 + bq2 and K = aA+ bA.
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Remark 3.9. It is proved in [9] that a down-up algebra is isomorphic to an ambiskew ring. Specifically, in
that paper it is showed thatA(α, β, γ) ∼= k[ω][u, σ][d;σ−1, δ], where ω = du−λud, σ is the automorphism
over k[ω] given by σ(ω) = µω + γ extended to k[ω][u;σ] by setting σ(u) = λu, and δ the σ−1-derivation
with δ(k[ω]) = 0 and δ(u) = −λ−1ω. We could have tried to apply directly the results from [16] to this
ring in order to obtain a non-free, stably free right ideal. Nevertheless, despite this isomorphism, the
element r in Lemma 3.1 cannot be attained in a natural way using this approach; for this reason we
decided to consider the cases γ 6= 0 and γ = 0 independently.

4 Stable rank

In this last section we assume additionally that k is an algebraically closed field. Recall that a unimo-
dular row u = (u1, u2, . . . , us) with entries in a ring S is said to be stable if there exist r1, . . . , rs−1 such
that u′ = (u1 + usr1, . . . , us−1 + usrs−1) is also a unimodular row. The stable rank of S is defined as
the least non-negative integer t with the property that every unimodular row of length t + 1 is stable,
see [12], [13, Chapter 11] and references therein for features and interesting examples of stable rank.
Furthermore, if sr(S) denotes the stable rank of S, the Stafford’s Stable Range Theorem states that if S is
right noetherian and rKdim(S) = d <∞, where rKdim(S) denotes the right Krull dimension of S in the
sense of Rentschler and Gabriel, then sr(S) ≤ rKdim(S)+1, see [15].

In [3, Theorem 4.1] Bavula and Lenagan showed that if A = A(α, β, γ) is a down-up algebra with β 6= 0,
then the right Krull dimension ofA is equal to 2 if and only if char(k)= 0, α+β = 1 and γ 6= 0; otherwise,
the right Krull dimension of A is 3. Since A ∼= Aop via the map D 7→ U◦ and U 7→ D◦ [10, §1], we have
that rKdim(A) = lKdim(A) thus we will simply refer to Kdim(A). These values of Kdim(A), combined
with results of the previous section, will allow us to establish bounds of sr(A). Before doing this, recall
that if k is a field, k0 its prime subfield and t the transcendence degree of k over k0, then the Kronecker
dimension of k is defined to be t if char(k) > 0, and t+ 1 if char(k) = 0.

Theorem 4.1. Let A = A(α, β, γ) a noetherian down-up algebra. We have the following bounds of sr(A):

(i) If α+ β = 1 and γ 6= 0 then 2 ≤ sr(A) ≤ 3.

(ii) If α+ β = 1 and γ = 0 then 3 ≤ sr(A) ≤ 4.

(iii) Otherwise, 2 ≤ sr(A) ≤ 4.

Proof. Given an arbitrary ring S, it is well known that if M is a stably free S-module and rank(M ) ≥
sr(S), then M is free with dimension equal to rank(M ), see [13, Theorem 11.3.7 (i)]. In consequence, by
Corollary 3.6 and Proposition 3.8 we get that sr(A) ≥ 2 for any noetherian down-up algebra A. Because
Kdim(A) = 2 for the case (i), the Stable Range Theorem asserts that sr(A) ≤ 3 and the inequality is
obtained.
For (ii), we have that 2 ≤ sr(A)≤ 4; however, in [5, Proposition 4.2] the authors proved that k[x, y] ∼= A/I
for some two-sided ideal I of A when α + β = 1 and γ = 0. Since the stable rank of a quotient is not
bigger than the stable rank of the ring, it follows that sr(k[x, y]) ≤ sr(A). Furthermore, Suslin proved in
[18, Theorem 10] that if l is the Kronecker dimension of k and n ≤ l, then sr(k[x1, . . . , xn]) = n + 1. In
particular, sr(k[x, y]) = 3 and 3 ≤ sr(A) ≤ 4.

Computing the exact value of the stable rank of an arbitrary ring is a very difficult task. However, as
a significant example, the stable rank of commutative polynomial rings over fields was determined by
Suslin [18]. In the noncommutative setting, it is well known that the stable rank of the n-th Weyl algebra
An(k) is 2 when char(k) = 0 [14]. Tintera showed in [19] that if h is the Heisenberg Lie algebra of dimen-
sion n over a field k “large enough”, then sr(U(h)) = n. The Kmax dimension of a ring was the main
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tool used by him in order to obtain this equality. We will use an analogous argument for computing the
exact value of sr(A), when A is a down-up algebra with α+ β = 1 and γ = 0.

In order to recall the definition of the Kmax dimension, we begin by considering the deviation of a
poset [13, Section 6.1]: let P be a poset, a, b ∈ P and a ≥ b. The factor of a and b is the subposet of P
defined as Pa,b = {x ∈ P | a ≥ x ≥ b}. To define the deviation of P , or dev(P) for short, we say that
dev(P) = −∞ if P is trivial. If P is non-trivial but satisfies the d.c.c., then dev (P) = 0. For a general
ordinal α, we define dev(P) = α provided:

(i) dev(P) 6= β < α;

(ii) in any descending chain of elements of P , all but finitely many factors have deviation less than α.

Now, we recall the definition of the Kmax dimension of a ring S.

Definition 4.2. Let S be an associative ring with identity and denote byMS the set of maximal right ideals of S.

(i) A right ideal I of S is called a Jacobson right ideal if I = J(I), where J(I) :=
⋂
{M ∈MS | I ⊆M}.

(ii) Let JL(S) be the set of Jacobson right ideals of S partially ordered by inclusion. The Kmax dimension of
S is defined to be the deviation of the poset (JL(S),⊆) and we denote it by Kmax(S).

Remark 4.3. (i) Let (L(S),⊆) be the poset of right ideals of S. Note that (JL(S),⊆) is a subposet
of (L(S),⊆). So, if rKdim(S) exists, we have that Kmax(S) ≤ rKdim(S). In particular if S is a right
noetherian ring, this inequality always holds.
(ii) There exist rings for which the inequality in (i) is strict: if S = C[x](x)[y], with C[x](x) denoting the
localization of C[x] at powers of x, then Kmax(S) = 1 <Kdim(S) = 2 (see [17], remark to Proposition 1.6).
Furthermore, for h a non-abelian nilpotent Lie algebra of dimension n, Tintera proved in [19, Lemma 3]
that Kmax(U(h)) < Kdim(U(h)) = n.
(iii) It follows from [15] or [17, Theorem B] that if S is a right noetherian ring, a Kmax version of the
Stable Range Theorem holds; i.e., if Kmax(S) exists and is finite, then sr(S) ≤ Kmax(S) +1. The latter
explains the reason leading us to introduce the Kmax dimension.

Below we summarize some important properties satisfied by the Kmax dimension.

Lemma 4.4. [19, Lemmas 1 and 2] (i) Given a ring extension S ⊂ T such that TS is a faithfully flat module, we
have Kmax(S) ≤ Kmax(T ).

(ii) Let S be a domain for which Kmax(S) is defined and let z ∈ S be a normal element. There is an inequality

Kmax(S) ≤ sup{ Kmax(S/zS), Kmax(S(z))},

where S(z) denotes the localization of S at the set of powers of z.

For another features of Kmax, as well as for additional descriptions and remarks, we refer to [17].

Recall that given a k-algebra R, an automorphism σ of R and a central element a of R, the generali-
zed Weyl algebra R(σ, a) is defined as the algebra generated by X+ and X− subject to the relations:
X−X+ = a, X+X− = σ(a), X−σ(b) = bX− and X+b = σ(b)X+ for all b ∈ R. For these algebras,
Bavula and van Oystaeyen established in [2, Theorem 1.2] the following result for computing the Krull
dimension of T = R(σ, a) when R is commutative.

Proposition 4.5. Let R be a commutative noetherian ring with Kdim(R) = m and let T = R(σ, a) be a genera-
lized Weyl algebra. The Krull dimension Kdim(T ) is m unless there is a height m maximal ideal P of R such that
one of the following conditions holds:
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(i) σn(P ) = P , for some n > 0;

(ii) a ∈ σn(P ) for infinitely many n.

If there is an ideal P as above such that (i) or (ii) holds, then Kdim(T ) = m+ 1.

To prove the main result of this section, we develop reasonings inspired into those carried out by
Carvalho and Musson in [6, §5.].

In [10, §2.2] it is showed that an arbitrary noetherian down-up algebra is isomorphic to a generali-
zed Weyl algebra: in fact, taking R = k[x, y], φ the automorphism of R defined by φ(x) = y, φ(y) =
αy+βx+ γ and a = x, the algebra A(α, β, γ) is isomorphic to R(φ, x) under the isomorphism ϕ sending
X+ to D and X− to U ; in particular, x and y correspond to UD and DU , respectively. Additionally, if
α + β = 1, γ = 0 and the roots λ and µ of t2 − αt− β are different, then case 2 of [5, §1.4] holds and we
have that

ω1 = βx+ y
ω2 = −x+ y

are such that {1, ω1, ω2} is a basis of the subspace of k[x, y] generated by 1, x, y, and moreover φ(ω1) = ω1

and φ(ω2) = −βω2. In this case ω2 is identified with ω = DU − UD through ϕ.

Benkart and Roby introduced in [4] (see also [5]) the following recursive relation in order to study
Verma modules of A(α, β, γ):

sn = αsn−1 + βsn−2 + γ. (4.1)

From [5, Lemma 2.3] it follows that for all n ∈ Z, the automorphism φ satisfies

φ−n〈x− s0, y − s1〉 = 〈x− sn, y − sn+1〉,

where 〈x− s0, y − s1〉 denotes the two-sided ideal generated by x− s0 and y − s1. For α2 + 4β 6= 0 (i.e.,
when the roots of polynomial t2−αt−β are different) and α+β = 1, the solution to (4.1) is given by [4,
Proposition 2.12(i)]:

sn = c1λ
n + c2µ

n +
γn

(2− α)
, (necessarily α 6= 2) (4.2)

for certain fixed scalars c1, c2 ∈ k which depend on the established initial conditions.

Lemma 4.6. Let A(α, β, 0) be a down-up algebra with α + β = 1, such that roots 1, µ are different and µ is not
a root of unity. If Q is a maximal ideal of k[x, y] such that x ∈ φn(Q) for infinitely many n, then φn(Q) = Q for
some n ≥ 1.

Proof. Let Q = 〈x− s0, y − s1〉 for certain s0, s1 ∈ k. By hypothesis, we can suppose that x ∈ Q, namely
Q = 〈x, y − s1〉 and s0 = 0. Using the initial conditions s0 = 0 and s1 = s, the equation (4.2) can be
written as

sn =
s

1− µ
− s

1− µ
µn.

If sn = 0 for n ≥ 1, we get s
1−µ (1 − µn) = 0. Since µ is not a root of unity, necessarily s = 0 and sn = 0

for all n. Thus, the proof is obtained.

Theorem 4.7. Let A = A(α, β, 0) be a down-up algebra with α+ β = 1. If one the following conditions holds

(i) λ = µ = 1, or

(ii) µ 6= 1 and it is not a root of unity,
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then sr(A) = 3.

Proof. In the first case α = 2, β = −1 and A(α, β, 0) ∼= U(h), where h denotes the Heisenberg algebra
of dimension 3. The assertion follows from [19, Corollary 1]. Suppose λ = 1, µ 6= 1 and µ is not a root
of unity. Under these conditions ω = DU − UD is a normal element of A and A/ωA is a ring. Since A
is a domain and ω is not zero, then ω is a regular element of A and, therefore, Kdim(A/ωA) < Kdim(A)
= 3, see [13, Lemma 6.3.9]. On the other hand, if Λ = {ωi | i ∈ N}, then Λ is an Ore set and the ring
A(ω) := AΛ−1 exists. Under the isomorphism A ∼= k[x, y](φ, x) described above, the element ω is sent to
ω2 = y − x 6= 0. Thus, A(ω)

∼= k[x, y](ω2)(φ, x) is a generalized Weyl algebra. To prove that Kdim(A(ω))
= Kdim(k[x, y](ω2)) = 2, we must show that neither (i) nor (ii) in Theorem 4.5 is satisfied. By Lemma 4.6
it is enough to demonstrate that for any maximal ideal P of k[x, y](ω2) and n > 0, we have φn(P ) 6= P .
This is equivalent to prove that if Q is a maximal ideal of k[x, y] such that σn(Q) = Q, then ω2 ∈ Q.
Thus, for Q = 〈ω1 − a1, ω2 − a2〉 and, since µ is not a root of unity, from [5, Lemma 2.2(ii)] it follows that
a2 = 0 and we get the statement about Kdim(A(ω)). Hence, by Lemma 4.4(ii), we have Kmax(A)≤ 2 and
the Stable Range Theorem asserts that sr(A) ≤ 3. The equality follows from Proposition 4.1 (ii).

Remark 4.8. In [6, Section 5] it was proved that if A(α, β, γ) is a down-up algebra such that the polyno-
mial t2−αt−β equals (t−µ)2, with µ 6= 1 and µ a primitive n-th root of unity, then ω = DU−µUD+ γ

µ−1
is a normal element of A and Kdim(A(ω)) = 2. From this and Lemma 4.4(ii) we obtain the following.

Corollary 4.9. Let A = A(α, β, γ) a down-up algebra such that α+ β 6= 1. If

(i) t2 − αt− β = (t− µ)2 with µ a primitive n-th root of unity, or

(ii) γ = 0, t2 − αt− β = (t− µ)(t− λ) with λ 6= µ and λ
µ not a root of unity,

then 2 ≤ sr(A) ≤ 3.

Proof. Part (i) follows from Remark 4.8. For (ii), suppose that λ is not a root of unity and set ω =
1

λ2−λ (β(λ− 1)UD + λ(λ− 1)DU). Therefore, ω = DU − µUD and a straightforward calculation shows
that ω is a normal element of A. Thus A(ω) exists and A(ω)

∼= k[x, y](ω′)(φ, x), where ω′ = y − µx. Given
a maximal ideal Q = 〈x − s0, y − s1〉 of k[x, y] such that x ∈ φn(Q) for infinitely many values of n, we
have that φn(Q) = Q for some n ≥ 1: in fact, using the initial conditions s0 = 0 and s1 = s, in this case
the equation (4.2) can be written as sn = s

λ−µ (λn − µn); if sn = 0, necessarily s = 0 since λ
µ is not a root

of unity, and the assertion follows. A similar reasoning to the one in the proof of Proposition 4.7, along
with [5, Lemma 2.2(i)], allow to obtain Kdim(A(ω)) = 2 and from Lemma 4.4(ii) we get the inequality
sr(A) ≤ 3.

Remark 4.10. The stable rank is closely related to the cancellation property for projective modules.
Recall that two finitely generated projective S-modules P and P ′ are called stably isomorphic if P ⊕Sn ∼=
P ′ ⊕ Sn for some n. It is said that P satisfies the cancellation property if any P ′ stably isomorphic to P is
in fact isomorphic to P . Hence, if P is a finitely generated projective module over a down-up algebra A
with rank(P ) ≥ sr(A), a simple reasoning proves that P has the cancellation property.

A table summarizing the stable ranks of some important examples of down-up algebras, and one
related algebra, is included below.
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Algebra A = A(α, β, γ) Parameters Conditions on pa-
rameters

Bounds of sr(A)

U(sl2(k)) α = 2, β = −1, γ = −2 2 ≤ sr(A) ≤ 3
U(osp(1, 2)) α = 0, β = 1, γ = 1

2 2 ≤ sr(A) ≤ 3
U(h), h the Heisenberg alge-
bra of dimension 3

α = 2, β = −1, γ = 0 sr(A) = 3

Smith’s algebras similar to
U(sl2(k)) with deg(f(h)) ≤ 1

α = 2, β = −1 γ = 0 sr(A) = 3
γ 6= 0 2 ≤ sr(A) ≤ 3

Conformal sl2(k) algebras
with c 6= 0, b = 0
xz − azx = x, zy − ayz = y,
yx− cxy = bz2 + z

α = c−1(1 + ac), β =
−ac−1, γ = −c−1

c = 1 or a = 1 2 ≤ sr(A) ≤ 3

a = c−1 6= 1 and a
a primitive root of
unity
Otherwise 2 ≤ sr(A) ≤ 4

Quantum Heisenberg
algebra Hq

∼= U+
q (sl3(k)),

q ∈ K∗.
zx = qxz, zy = q−1yz,
xy − qyx = z

α = q + q−1, β = −1,
γ = 0 and q 6= 1

q = −1 2 ≤ sr(A) ≤ 3

q2 not a root of
unity
Otherwise 2 ≤ sr(A) ≤ 4

q-analog H ′q of U(h), q 6= 0, 1.
xy − qyx = z, xz = qzx and
zy = qyz

α = 2q, β = −q2, γ = 0 q is a primitive root
of unity

2 ≤ sr(A) ≤ 3

Otherwise 2 ≤ sr(A) ≤ 4

m(ξ) the Witten’s
Deformation of U(sl2(k)):
xz − ξ1zx = ξ2x,
zy − ξ3yz = ξ4y,
yx− ξ5xy = ξ6z

2 + ξ7z, with
ξ6 = 0, ξ5ξ7 6= 0, ξ1 = ξ3 and
ξ2 = ξ4

α = 1+ξ1ξ5
ξ5

, β = − ξ1ξ5 ,
γ = − ξ2ξ7ξ5

ξ1 = ξ5 = 1 and
ξ2 = 0

sr(A) = 3

ξ2 = 0, ξ5 = 1, ξ1
not a root of unity
ξ1 = 1, ξ2 = 0, ξ5
not a root of unity
ξ2 6= 0, ξ1 = 1 or
ξ5 = 1

2 ≤ sr(A) ≤ 3

ξ1 6= 1, ξ1 = ξ−15

and ξ1 is a primi-
tive root of unity
ξ2 = 0, ξ1, ξ5 6= 1
and ξ1ξ5 not a root
of unity
Otherwise 2 ≤ sr(A) ≤ 4

Woronowicz’s algebras:
xz − ζ4zx = (1 + ζ2)x,
zy − ζ4yz = (1 + ζ2)y,
xy − ζ2yx = ζz with
ζ 6= ±1, 0

α = ζ2(1 + ζ2), β =
−ζ6, γ = ζ(1 + ζ2)

2 ≤ sr(A) ≤ 4

Universal enveloping of Lie
super algebra sl(1, 1)

U(sl(1, 1)) ∼= A(0,1,0)
〈d2,u2〉 sr(U(sl(1, 1)) = 1

Table 1: Bounds of the stable rank of A(α, β, γ).
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