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Abstract

A complete and exact characterization of the con$guration space of 2-D ±J Ising lattices is
performed. A new algorithm is introduced here representing advantages for reaching all states
for small samples and doing a non-biased sampling of ground states for larger samples. We
report e4cient procedures to $nd all ground states grouped in local ensembles of ground states
(LEGs) and also a convenient way of storing and comparing states. Properties of such LEGs
di7er from some approximate descriptions reported in the literature. The onset of lattice size
dependence of properties is discussed. Four di7erent ways of performing ergodic separation are
used to calculate order parameters. The most signi$cant way of doing ergodic separation requires
previous classi$cation of states in LEGs. c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 05.50.+q; 75.10.Nr; 75.50.Lk
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1. Introduction

The problem of ±J Ising lattices simulating spin glasses has been around for many
years [1]. In spite of the simplicity of its formulation, serious di4culties arise when
trying to achieve, even numerically, a description of all ground states [2,3]. Moreover,
the interpretation of some results is subject of controversy and discussion, leaving
several open questions [4,5]. Large e7orts are put on algorithms attempting to provide
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an approximate description of the con$guration space. Some examples are genetic
algorithms [6], cluster-exact approximation [7], ballistic search [8], and Hat histogram
method [9].
Very recently [10], an application of some of these ideas has been done attempting

to relate properties of 3-D real lattices to the hierarchical structure of the con$guration
space by means of sampling of ground states. In the present paper we want to apply
a new method to go beyond aiming at a complete description of the con$guration
space, namely, including all ground states. We pay the price of limiting ourselves to
square lattices (2-D). The exact description of the ground manifold leads us to the
calculation of some known parameters as well as to the introduction of some new
parameters whose importance is discussed below. Our results lead to di7erences with
respect to some assumptions usually done with respect to the way ground states are
interconnected. We argue that such di7erences may a7ect results of physical parameters.
We also $nd that ground states group themselves in a way that allows di7erent ways
of performing ergodic separation, leading to ranges of values for any given parameter
as it is shown below. In fact, in previous works [11–14] two of such separations were
de$ned leading to di7erent numerical evaluations of magnetic memory associated with
spins. These two topology based methods are recovered here from the perspective of
the structure of the con$guration space. Additionally, we include two new ways of
performing ergodic separation to set a lower bound for the range of parameters and
also to look at the case of extremely low temperature when the system is trapped in a
portion of the con$guration space only. This approach based on four di7erent ergodic
separations will be applied to two di7erent site-order parameters.
The systems under study consist of square lattices with L× L= N spins interacting

via nearest neighbor interactions Jij that can be either ferromagnetic (Jij =−J =−1)
or antiferromagnetic (Jij = J = 1), randomly distributed in equal abundance over $xed
positions through the lattice. An example of an 8 × 8 sample is presented in Fig. 1a.
Each distribution of interactions is called a sample and we use 500 of them for sizes
N =16; 25; 36; 49; 64; 81, and 100. Such system is modeled by an Ising Hamiltonian of
the form

H =
N∑

i¡j

JijSiSj (1)

using periodic boundary conditions. This Hamiltonian is invariant under the simultane-
ous inversion of all spins (Si → −Si; ∀i), yielding an overall degeneracy factor of 2.
For any given sample we $nd all possible ground states by two di7erent and inde-

pendent methods: a version of the well-known exact branch and bound (BB) algorithm
for enumerating all low-energy states [11,17] and a new computer algorithm which
we call “expansion-fall-invasion-spring” (EFIS) to be brieHy presented in Section 2.
We begin Section 3 by testing the new numerical method to calculate ground-state
energy as a function of size, extrapolating these results toward the thermodynamic
limit. Ground states are found in clusters or local ensembles of ground states (LEGs)
in such a way that they are connected in pairs by single spin Hips at no energy cost.
Properties of LEGs are then established reporting new results concerning sizes as well
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Fig. 1. (a) Sample # 40 from a set of 500 samples 8 × 8; ferromagnetic (antiferromagnetic) interactions
are indicated by single (double) bars. This sample has 42 ground states (plus 42 mirror states) that can
be grouped in two LEGs. (b) Six states belonging to LEG # 1 shown as spheres in the 3-D space de$ned
by magnetization, and the leading two neighbor coordinations. (c) Thirty-six states belonging to LEG # 2
(notice that $ve spheres represent two di7erent states). LEG # 1 (2) is obtained by alternating spins marked
by 1 (2) in the lattice illustrated in (a).

as distances among LEGs. Next we examine the internal structure of LEGs report-
ing for the $rst time connectivity among states of the same LEG and the way this
novel property scales with size. Finally, we examine four di7erent ways of performing
ergodic separation, discussing the implications of this point on the numerical calculation
of physical parameters. Section 4 is devoted to conclusions.

2. Numerical calculations

Results reported in the next section were obtained by two di7erent methods. On
the one side the already mentioned method BB [11,17] and EFIS are used here for
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the $rst time. BB is an exact method based on an “intelligent” way of scanning all
low-energy states; we will not give here further descriptions of the method referring
the interested reader to the literature. EFIS will be presented here in a general way,
avoiding technical computational details to be published elsewhere. The idea is to use
results obtained by the exact method to tune EFIS to produce the same results after
an appropriate number of iterations.
We next brieHy describe the four steps of EFIS algorithm. As we do so, we also

describe the way in which physical parameters are calculated. De$nitions of new
parameters are also included here.
Expansion: A seed state is randomly generated. Then (N −2)=2 additional states are

generated from the seed state in predetermined ways, so each seed state expands to a
total of N=2 expanded states. The expansion algorithm is designed so that the Haming
distances among these expanded states are between N=4 and N=2, to ensure that such
initializations are started far from each other in con$guration space. A total of ns seed
states are prepared so that a total of (Nns)=2 initial states are started for each sample.
Values for optimal ns are size dependent as will be discussed below.
Fall: From each initial state a steepest descent procedure is applied minimizing

energy by Hipping spins sequentially and randomly in turns; when no further mini-
mization is possible, energy is compared with a previously stored minimum energy;
eventually a ground energy Eg (lower energy) is reached and previous false ground
states are discarded. On the other hand, if the found energy coincides with Eg, an
e4cient comparison procedure is started to see if the state is new, in which case, next
step is invoked, otherwise fall is initialized with next expanded state. After all these
additional initial states are exhausted, a new seed generated by expansion is started.
Invasion: When a new ground state is reached, all spins are Hipped testing for free

spins (subject to zero $eld); when they are found they are marked and counted. Such
number represents the connectivity C of that state, namely, the number of ground states
that can be reached by a single spin Hip at no energy cost. Each new ground state
is subject to the same procedure in such a way that all ground states interconnected
by single spin Hips are generated. Such set of interconnected ground states has been
called “valley” [18], “funnel or cluster” [8,10] and “local ensemble of ground states
(LEG)” [19]. We will stick to the last denomination. For each state of a LEG we
measure connectivity C, ground energy per bond �g = Eg=(2N ), magnetization per site
((� =

∑N
i Si)=N ), site order parameters q and p (de$ned below), nearest-neighbor

correlation c1, and second-nearest-neighbor correlation c2 [11].
Spring: Once a LEG is exhausted, we go over each of its w states simultaneously

Hipping sets of spins according to predetermined patterns. If after the simultaneous
inversion of the set of spins the same Eg is obtained, a di7erent LEG has been reached
(if new energy is lower than Eg all counters are reset, false ground states erased and the
process starts all over). Such process of changing to another ground state by Hipping
several spins at a time is a jump or spring in the con$guration space. Occasionally,
such spring leads to landing on a LEG which has not been characterized yet. If that
is so, such state is stored. Once spring is over, invasion is invoked for each of these
stored states. Procedure spring is invoked from each new LEG until no new LEGs
are generated. The number of spins to be Hipped in each jump and their geometrical
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distribution are determined by the preferred shapes and sizes present in the diluted
lattice obtained after removing all bonds that frustrate in any ground state [14,19,20].
Special cellular automata are prepared to handle this process in a fast and e4cient
way. For results reported below, we considered one shape for cellular automata of
2–5 spins and two shapes for cellular automata of 6–8 spins in all possible orienta-
tions. Once spring is fully exploited, a new initial state is considered until reaching ns
runs.
ns is increased until all results obtained by EFIS exactly agree with results obtained

by BB. This procedure was done up to N6 64. Beyond this point computer times
needed by BB are extremely large. However, an extrapolation was done to estimate
the appropriate values of ns for N=81 and 100. In any case, we did more initializations
than indicated by such estimates to make sure that all true ground states are reported.
Thus, for N =100, we used ns=106. Beyond this point, storage capabilities for LEGs
and computer time needed grow beyond our present computer capabilities (cluster of
Pentium III).

3. Results and discussion

Before going into the properties of the ground manifold (main aim of this paper),
let us test the merits of EFIS by measuring �g(N ) and comparing these results with
those obtained by BB and also with the results available in the literature including
scaling toward thermodynamic limit (N → ∞). Circles in Fig. 2 represent values for
〈�g(N )〉 obtained by EFIS; they fully coincide with the results obtained by BB up to
N = 64. So EFIS is able to give exact results for small systems using far less time
than BB. (Technical points concerning algorithm structure and performance will not be
discussed here.)

Fig. 2. Average ground state energy per bond 〈�g(N )〉 obtained by EFIS. Curve with short dashes corresponds
to the exponential $t of these points as discussed in the text. Line with long dashes represents the asymptotic
value for the exponential $t in good agreement with Ref. [18]. The inset illustrates the relative distribution
of energies among the set of samples for N = 81.
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Short-dashed curve in Fig. 2 represents an exponential $t for the seven points
calculated by EFIS, by means of the expression

�g(N ) =−0:700845 + 3:52606 exp (−N=2:88887) : (2)

The long-dashed horizontal line corresponds to the asymptotic value of previous
expression as N → ∞. Namely, �g(∞) ≈ −0:701. It is interesting to compare this
value with the recently reported extrapolation yielding −0:70097 obtained by means
of faster computers applied to larger lattices [21]. This agreement, including points
N = 81 and 100 not previously validated by BB, indicate that EFIS leads to reliable
extrapolations for larger systems.
However, ground manifold energy is the less-sensitive parameter since it is enough

to hit just one (any) ground state per sample to build a curve like Fig. 2. Calculation
of other physical parameters requires the knowledge and storage of all ground states.
So we now turn our attention to the entire ground manifold.
All ground states obtained by simultaneously reversing all spins in each ground state

of a LEG form its mirror LEG. The number of ground states forming the ‘th LEG is
the size of the LEG and will be denoted by w‘. Let us denote the number of pairs of
mirror LEGs by v. Then, the total degeneracy of such disjoint ground manifold can be
written as

2W = 2
v∑

‘=1

w‘ : (3)

This characterization is done for each sample. Thus, for the particular sample illus-
trated in Fig. 1a we found 2 pairs of LEGs (v = 2). Fig. 1b illustrates the $rst LEG,
with w1 = 6, states are represented by spheres; connections among them are indicated
by lines. Fig. 1c shows LEG #2, with w2 = 36 and a few connections among states;
16 states have C = 4 (such as state 12), 16 states have C = 5 (such as state 8),
and four states have C = 6 (such as state 24). Notice that states are spread in a 3-D
representation using �; c1, and c2 as axes. We developed an e4cient way of compar-
ing states saving considerable computer time when looking for new ground states; the
actual comparison of individual spins is left for those few cases where states coincide
in their “coordinates”, as shown in Fig. 1c where $ve pairs of states share coordinates.
By using EFIS we calculated 〈w(N )〉, the average size of a LEG over all LEGs

in the 500 samples for size N . These results match exactly those obtained by BB up
to N = 64. Fig. 3 shows that 〈w〉 grows exponentially with N , which is an expected
result. Sizes of LEGs follow a distribution F(w) which is far from trivial as shown
in the upper inset, where sizes that are multiples of four and three dominate. We also
measured D, the distance between pairs of LEGs de$ned as the minimum number of
spins to be overturned to connect any state of the $rst LEG to any state of the second
LEG. In the lower inset of Fig. 3, we present normalized abundance of distances f(D)
after considering all possible pairs of LEGs through 500 samples of all sizes reported
here; this result is new and has interesting implications for EFIS. In fact, this backs the
strategy used in spring where particular combination of spins is overturned to attempt
jumping to a neighboring LEG. Very clearly some distances are more common than
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Fig. 3. Average size of LEGs (through logarithmic function) as function of lattice size N ; dashed straight
line justi$es an exponential growth of 〈w(N )〉. Upper inset shows the spectral distribution of LEGs sizes
(N = 81). Lower inset present the distribution of distances among LEGs (N = 81).

others. Several abundant distances coincide with sizes for cellular automata included in
the spring process. Although illustrated here for the case N = 81, the general fashion
of distributions shown in the insets is the same for all sizes.
We also investigated 〈v(N )〉 (not shown). It is found that 〈v〉 grows with N in a

less pronounced way than 〈w〉 as shown in Fig. 3. Further investigation increasing N is
needed to establish whether such growing can be better explained by a weak exponential
or a power law. For the time being, we can say that the exponential growth of the total
degeneracy W is mainly due to the exponential growth of LEGs sizes. This is very
important since computer times could be lowered substantially if e7ort is concentrated
in $nding the $rst state of a LEG followed by the generation of all remaining states
by means of invasion or any other similar deterministic algorithm.
An important new result reported here is presented in Fig. 4 where normalized distri-

butions of connectivities g(C) are plotted for di7erent N values. To build this graphic
every single state of all LEGs has been considered exhausting all possible connections.
Several comments are in order. First, for each N the distribution of connectivities fol-
lows a Gaussian as represented by dashed lines. Second, size e7ects are noticed for
N6 25. Third, the $rst momentum (average) of g(C) follows a linear behavior with
N as shown in the inset. Fourth, width of the Gaussian growths initially with size
with a prompt tendency to stability. Previous properties are very important to consider
when sampling states of a LEG. If this is done by just “visiting” states [10], it is
inevitable that states with larger connectivity will appear more often than those poorly
connected. One immediate e7ect of such biased sampling can be the underestimation
of w. From a thermodynamic point of view, all interconnected degenerate states are
equivalent; highly connected states are visited more times but they are also exited the
same number of times thus establishing equilibrium. Poorly connected states cannot
be ignored on the basis that are less visited; once the system reaches one of them, it
is likely to remain in that state longer than in the more connected states.
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Fig. 4. Distribution of connectivities among states of all LEGs for each lattice size N . Dashed lines represent
the best Gaussian $t for each distribution. Inset shows the linear increase of 〈C〉 with N .

EFIS produces an interesting byproduct: it is enough to store one ground state per
LEG after solving for each sample in a $rst run. To calculate properties and parameters,
all states of each LEG may be generated by means of invasion in little time.
Once all ground states are known physical properties can be calculated. However,

as we will prove, results are not unique and depend on the way ergodic separation is
done. We concentrate here on zero-temperature order parameters q [22] and p [11,14],
which are de$ned as

q=
2

W (W + 1)N

W∑

�

W∑

�¿�

N∑

i=1

Si(�)Si(�) ; (4)

p=
1
N

N∑

i=1

∣∣∣∣∣

W∑

�

Si(�)

∣∣∣∣∣ divW ; (5)

where � and � are two ground states that are connected according to the ergodic
separation done on the con$guration space; div is the integer division operator. Edwards–
Anderson parameter q ponders the orientation of each spin through the W ground states
of half the con$guration space. On the other hand, parameter p measures the fraction
of spins that never Hip as going over the same W ground states. Notice that p6 q.
Any complete ergodic separation considers W ground states formed by leaving v

LEGs on half of the con$guration space used for further calculations. Such process
of forming a basin of W states can be done in 2v ways, leading to similar number
of calculations for p; q and any other physical parameters, thus leading to ranges of
values for each of them. Large di7erences may arise depending on whether a LEG or its
mirror are left in the basin. We consider here three complete ergodic separations and
one incomplete one. They are selected according to the following criteria. Random
is the simplest case which happens to come out naturally if no thought is given to
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the importance of ergodic separation. Maximum is the method we consider as truly
representative of the physical properties of the system and also is the upper bound for
numerical values of parameters. Minimum is the less physical ergodic separation but
it is included here since values calculated in this way represent the lower bound for
parameters. Frozen is an incomplete method representing the situation when the system
is con$ned to a portion of the con$guration space at extremely low temperatures. We
present now how these four methods are technically carried out.
For convenience, we begin by sorting pair of LEGs (LEG and mirror LEG) according

to size from larger to smaller; if two or more pairs of LEGs share the same size, an
arbitrary order is established among them. First step is to decide whether the largest
LEG or its mirror LEG remains in the basin; this decision is arbitrary and the results
do not depend on it in any way. One of them is kept while the other is discarded.
From this point on ergodic methods di7er from each other as we describe next.
Random: Second pair is considered and either LEG or mirror LEG is left in the

basin in a completely random way. The same procedure is repeated until the vth pair
of LEGs is reached. This procedure is not reproducible since there is no correlation
among LEGs left in the basin.
Maximum: Distances between each of the two LEGs forming the second pair and

the $rst LEG in the basin is measured. The one with the shortest distance is left in
the basin while the other is discarded. This process is continued through all remaining
pairs of LEGs. This procedure is reproducible. Moreover, it is quite physical since the
basin is formed by the largest LEG plus neighboring smaller LEGs.
Minimum: Just the opposite to previous one. LEG with the largest distance to the

$rst LEG are kept in the basin. Although reproducible, it is basically no physical since
large number of spins must be simultaneously overturned when scanning the basin. We
include it here to set lower bounds to calculation of parameters as discussed above.
Frozen: It is an incomplete ergodic separation that considers the $rst (larger) LEG

only. All other 2(v − 1) pairs of LEGs are discarded. This ergodic separation can
be very useful at zero temperature, when the system cannot abandon the LEG where
it sits. This can be any LEG, of course, but when we consider the largest one we
obtain the least possible value for a parameter as the limit of zero temperature is
approached.
Fig. 5 shows size dependence for 〈p〉 and 〈q〉 according to the four ergodic

separations where averages are taken over the set of 500 samples for each N . Large
di7erences are found depending on the way ergodic separation is performed. More-
over, general tendencies point to di7erent interpretations. Thus, if frozen separation
is performed both p and q tend to increase as size growths, speaking of a group of
solidary spins, which is close to the droplet-scaling picture [16]. Maximum separa-
tion tends to give size-independent values for both parameters. On the other hand, if
random or minimum separation are used, both p and q tend to diminish steadily with
size, speaking of almost free spins all overturning if enough time is allowed, thus
favoring nil site order parameters in the thermodynamic limit, which is close to the
replica-symmetry-breaking mean-$eld approach model [15].
Next we review the way two separations based on the real lattice are recovered from

the point of view of the con$guration space developed here. Let us concentrate $rst in
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Fig. 5. Lattice size dependence of site order parameters p (a) and q (b) calculated after six di7erent ways
of performing ergodic separation. Four of these methods, based on properties of the con$guration space, are
discussed in the text. Results for two other methods, based on topological properties of the lattice, are taken
from the literature (Ref. [14]). The dashed area corresponds to the possible values that each parameter can take
depending on the way total ergodic separation is performed (limiting lines are only to guide the eye). “Maximum”
and “minimum” act as limits for the allowed range; any other ergodic separations (like “random” or “pivot” for
instance) lay inside the range. Partial ergodic separation “frozen” is notoriously out of such range since it does
not include all LEGs in its formulation. Results by “maximum” and “diluted lattice” overlap completely.

maximum ergodic separation, which it turns out to be equivalent to a previous ergodic
separation based on the diluted lattice (the lattice left after removing all frustrated
interactions after scanning all ground states) [12–14]. The topological ergodic separation
considered all W states that leave frozen spins on the largest island in the diluted lattice.
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The other W states are obtained upon simultaneously Hipping all spins on the largest
island of the diluted lattice. Values for parameters obtained by these two methods (one
based on the real lattice while the other works in the con$guration space) agree sample
to sample. This equivalence between maximum and previous topological method speaks
of the true physical grounds of this ergodic separation. In Fig. 5 such identical results
overlap completely.
If no attention is paid to the way ergodic separation is performed, results are likely

to agree in the long run with those given by random separation. One possible way
of doing this is that we look for a spin with all four surrounding bonds satis$ed in
all ground states; such strongly attached spin acts as a pivot [11,14]. Then W ground
states are obtained with this Ising spin pointing up while the other W ground states
correspond to states with this spin pointing down. If by chance such strongly attached
spin happens to belong to the largest unfrustrated island we obtain the same value
as in maximum. However, such strongly attached spin can also occur at smaller is-
lands in the diluted lattice in which case smaller values for the parameters are reached.
When an average over a large number of samples is considered, results obtained by
this method are similar to those given by random separation. It is very likely that
some of the reported values in the literature correspond to this method in one way or
another [11].
The dashed sectors in Fig. 5 illustrate the range of values that can be expected

for di7erent ergodic separations. Namely, maximum and minimum lead to upper and
lower bounds for any calculated parameter, respectively. Clearly, tendencies toward
thermodynamic limit are also a7ected by this growing range as N → ∞. However, if
we stick to maximum only as the most representative way of doing ergodic separation
from a physical point of view, almost constant values for order parameters are obtained
as size grows.

4. Conclusions

The ground manifold of con$guration space can be understood as a collection
of W (plus W ) ground states grouped in v LEGs. Sizes w of such LEGs follow
extended irregular distributions presenting one dominant or largest LEG for each sample
(Fig. 3). As lattice size N increases, 〈w〉 grows exponentially. The number of pairs of
LEGs v also grows with N ; larger samples should be solved before deciding whether
this growth is exponential or just polynomial.
Distances among LEGs prefer certain number of spins in particular geometric dis-

tributions. This encourages the development of algorithms (such as EFIS) which can
connect most of the LEGs of a system by overturning predetermined patterns of spins
in the way de$ned for stage spring above.
EFIS was able to reproduce the con$guration space found by exact method BB up

to N = 64. From there on a reliable way of extrapolating for the necessary number of
runs ns was found. In this way lattices of larger sizes can be tackled much faster than
using BB.
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Within a LEG, states present di7erent values for connectivity C. The distribution
of C can be $tted according to Gaussian curves whose centers increase linearly with
lattice size N (Fig. 4). Several important consequences arise from this fact. First,
connectivity tend to increase linearly with lattice size. Second, size e7ects in the shape
of the distribution seem to disappear for N¿ 36. Third, the distribution does not
spread signi$cantly; independent of lattice size there are about 12 relevant C values
approximately described by a Gaussian distribution. Fourth, care must be taken in
the way a LEG is sampled since highly connected states can show more than less
connected states; a biased sampling can lead to wrong description of con$guration
space.
The complete knowledge of the con$guration space achieved here allows di7erent

ergodic separations. If no attention is paid to the structure of the ground manifold,
equivalent to random ergodic separation, site-order parameters tends to diminish with
size, so no order parameter should prevail in the thermodynamic limit. This is even
more so if minimum ergodic separation is invoked; this is rather unphysical. If physical
considerations are taken into account to decide ergodic separation, like in maximum
separation, site order parameters show a more stable tendency with size. However,
larger lattice sizes would be needed to decide whether this is a property that can still
hold toward the thermodynamic limit. Alternatively, if the system is getting trapped
in one LEG as temperature approaches zero, strong and growing site order parameters
are found; this is so even if the largest LEG is invoked to do this frozen ergodic
separation.
The complete knowledge of the con$guration space is needed to perform proper

ergodic separation. Then, each sample has to be solved twice: the $rst instance is
for getting all LEGs and doing ergodic separation; the second time to go over states
to actually calculate properties. If this is not done, results for any sample could not
be even reproducible, since values of parameters depend strongly on the way ergodic
separation is performed as presented in Fig. 5. From physical consideration maximum
ergodic separation should be done at any temperature, eventually turning to frozen
ergodic separation for very low temperatures.
Finally, we want to stress that EFIS was fully tested as an exact algorithm up to

N =64. A reliable way of extrapolating this algorithm to get an accurate description of
the con$guration space of larger systems was indicated; this was applied to the cases
of N = 81 and 100. By means of faster computers further extrapolations should be
possible. In any case, EFIS can also be used as an unbiased approximate method to
explore con$guration space.
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