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Simulation of Granular Compacts in two dimensions
A. M. Vidales, V. M. Kenkre, A. Hurd

Abstract Simulations of granular packings in 2-D by
throwing disks in a rectangular die are performed.
Different size distributions as bimodal, uniform and
gaussian are used. Once the array of particles is done,
a relaxation process is carried on using a large-amplitude,
low-frequency vertical shaking. This relaxation is
performed a number N of times. Then, we measure the
density of the package, contact distribution, coordination
number distribution, entropy and also the disks size distri-
bution vs. height. The dependence of all these magnitudes
on the number N of “shakings” used to relax the packing
and on the size distribution parameters are explored and
discussed.
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1
Introduction
The characteristics of particle packing are of great inter-
est since the final density obtained upon sintering depends
critically on the initial packing. The results obtained from
computer simulations of packings of spheres and disks in
three and two dimensions, respectively, are important in
many areas of science, from powder technology in ceramics
to pharmacology improvements [1–3].

In the present work we perform simulations of granular
packings in 2-D by throwing disks in a die to represent the
actual experiment of poured grains into a rectangular con-
tainer. There have been previous works where this kind of
packings have been generated [4–6]. Typically, the calcu-
lated geometrical properties were density, average number
of contacts, radial distributions and size distribution of in-
terstices. Other works have dealt with the calculation of
the contact force distributions [7–9]. But a complete study
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of the dependence of all these quantities and others on the
size distribution parameters of the grains is still lacking in
the literature. To know which are these parameters deter-
mining the behavior of the packing when it is put under
stress or compaction would be an important goal in the
characterization of any granular packing to be used in
any technological or industrial application. Here, we will
present the first results of a series of computer simula-
tions of packings of disks using different size distributions
as bimodal, uniform and gaussian.

2
Simulation algorithm
The computer algorithm used in the present simulations
has been programed in a way that allows to generate pac-
kings of disks sampled from any desired size distribution.
The time needed to set a packing of 10,000 disks into
a rectangular die of any size is just a few seconds on a
Pentium PC. Because of round off errors, the optimum
rate between the maximum and minimum disk radii (a =
Rmax/Rmin) is up to 20, i.e., one can generate packings
with particles twenty times greater than the smaller ones
in it.

A radii distribution for the disks is selected and a num-
ber of 10,000 disks are randomly sampled from it. Basi-
cally, disks are thrown one at a time from the top, with
the horizontal position selected at random but keeping
them from overlapping the walls of the container. Each
grain falls down following a steepest descent algorithm.
Once it touches another disks already deposited, it rolls
over them until a stable position is found. By stable we
mean the first time the center of the falling particle is in
between the center of the two first particles it touches.
In the case the stable position is attained where one of
the contacting disks has a vertical coordinate for its cen-
ter that is greater than the corresponding one for the new
disk, a bridge position is defined and registred.

If the falling grain touches particles on the bottom of
the die, these bottom particles roll on the bottom without
friction until the new particle reaches equilibrium on the
bottom itself or on other two particles if there is no enough
place for it. In this way an ordered bottom is obtained.

Once the packing of particles is ready, a relaxation pro-
cess is carried out using a large-amplitude, low-frequency
vertical shaking [10]. The particles are allowed to fall down
again, one at a time. The first to fall are the ones who have
lowest vertical positions in the packing. The rules to at-
tain equilibrium are the same as before. This relaxation
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can be performed a number N of times. Before relaxing
and after each relaxation we measure all the quantities of
interest.

In what follows, results for several measured quantities
as a function of the radii distribution of the disks and the
number of relaxations of the packing are presented.

3
Results and discussion
Three different size distributions are used in the simula-
tions: bimodal, uniform and gaussian. All of them have a
mean radius of 10 units. For the first one, the separation
between the two peaks is symetrically increased respect to
the value of ten and all the data registred for a ranging
from 1.1 to 19. The dispersion of the other two types of
distributions is increased in such a way that a ranged from
1.2 to 19. The total number N of shakings studied is 8 for
each distribution and each a value. The disks fall down
into a die of 2000 units width without any restriction on
the package height, which is determined once the all of
disks are inside the container.

Below is the description of the behavior of the packings
for each type of distribution.

Uniform: the top height of the packings does not
depend on the number of shakings but does depend on
the dispersion of the distribution, as a increases, the top
height increases. The fluctuations of the height are high-
er for small values of a. Consequently, the density of the
package is slightly smaller for increasing a. The number
of particles on the bottom was independent of the shak-
ing number for a ≤ 3 increasing slowly with N for greater
values of the dispersion. The mean number of bottom par-
ticles is greater for greater values of a.

The quantity that is really affected by the relaxation
process is the number of bridges, NB , in the packing.
Figure 1(a) shows the decay of NB with N for different val-
ues of a and different distributions (see below). For high a,
NB only decreases for the first shakings, then fluctuating
its value.

The mean coordination number is 4 for all the packings
independently of N and a. Typical coordination number
distributions, F , are shown in Fig. 2(a).

The orientation of the random packing can be mea-
sured through the expected absolute values of the pro-
jected length of contacts on a given axis. We measure the
projections on the vertical and horizontal axis of the die.
Projections do not change with the dispersion of the radii
distribution and they are always of the same magnitude,
meaning random orientation. There is no dependence on
the shaking relaxation. Concerning the angle distribution
of normal contacts, no changes with N are observed, but
it changes with a. The maximum is more pronounced for
greater dispersions and moves from 45◦–53◦ for a = 1 to
0◦–25◦ for a = 19. The distribution is symetric in the four
quadrants.

An interesting parameter to describe the degree of ran-
domness in the distribution of a random variable is the
entropy S. We define and measure two entropic quanti-
ties associated with the coordinate and angle probability
distributions, Sc = −∑

i

pci ln pci and Sa = −∑

i

pai ln pai,

Fig. 1a,b. Number of bridges NB as a function of the number
of “shakings” N and different a, (a) for uniform distributions,
(b) for gaussian distributions

respectively, where pci and pai are the corresponding prob-
ability functions. Both quantities decrease slightly for the
first relaxation shaking but are insensible to the rest of the
relaxation process. Sc grows continuously with increasing
a while Sa only increases for a changing from 1 to 1.6, be-
coming stable for greater a. Only the packings with a = 19
present a smooth segregation effect due to the shakings
performed.

Gaussian: the top height of the packings increases as a
increases, being 15% greater for a = 19 respect to a = 1.5.
This changes are more pronounced than the correspond-
ing ones for the uniform case. No observable dependence
on N was observed. The behavior of the number of par-
ticles on the bottom is the same as that for the uniform
case. Figure 1(b) shows again the decay of the number of
bridges, NB , with N for different values of a. The number
of bridges for the present distribution is of the order of
40% greater than that for the uniform case for the same
a. As above, the mean coordination number is 4 for all the
packings. Coordination number distributions, F , keep the
same qualitatively shape as for the uniform case, but here
the distributions flatten for all a. See Figure 2(b).

The projections, angle distributions and entropy quan-
tities behave similarly as for the uniform case. No segre-
gation is present even for high a.
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Fig. 2a,b. Typical coordination number distributions, F , for
(a) uniform and (b) gaussian distributions. N does not affect
their shapes

Bimodal: there is a slight trend for the density to grow
with a. This is due to the fact that the smaller disks lie
between the bigger ones, improving the packing efficiency.
Because the mean radius of the packings increases as a in-
creases for this distribution, one expects that the number
of particles on the bottom will decrease with the sepa-
ration between peaks. This effect is just observed when
a ≥ 7 and the same occurs with the relaxation process
which affects the number of bottom particles as we will
see below.

As for the previous distributions, the mean coordina-
tion number is 4 for all the packings with a < 4 and
decreases for greater values of a as we will see below.

Here, the relaxation process also helps to highly de-
crease the number of bridges. For a < 8, the initial num-
ber of bridges is comparable to the corresponding ones
for previous distributions, but for greater values of a it
is considerably higher (almost three times respect to the
uniform case) as can be seen in Figure 3.

The distribution of coordination numbers is close to its
counterparts for a < 4. For a = 4, 7 and 19 there is a peak
in the distribution for n = 3, 2 and 2 respectively. This
may be explained if we think that the small particles per-
colate through the insterticies formed by the bigger ones.

Fig. 3. Number of bridges NB as a function of the number of
“shakings” N for the bimodal distributions and different a

Segregation is observed for a > 7 in coincidence with the
increment in the number of bottom particles cited above.

4
Conclusions
In this paper we presented a simulation algorithm to gen-
erate random packings of disks in 2-D where the radii size
distribution can in principle be any one desired. We got re-
sults for uniform, gaussian and bimodal. After the packing
is ready, a low-frequency high-amplitude relaxation pro-
cess is performed. The algorithm is very fast, consuming
a few seconds of CPU time.

In general, except for high a in the bimodal case, the
mean coordination number is four, independently of dis-
persion and relaxation.

The relaxation process is useful for the rearrangement
of the disks in the packing, lowering considerably the num-
ber of bridges. It does not practically affect the density of
the system and does not cause considerable segregation,
except for the bimodal distribution at high a. The initial
number of bridges is higher for the bimodal distribution
compared with the other distributions.

Distributions with greater a values improve the pack-
ing efficiency for the first two distributions and make it
worse in the bimodal case.

Given the advantages of the present algorithm respect
to CPU time and size distributions possibilities, a wide
variety of experimental set ups can be simulated in order
to predict the force contact distributions before a com-
pressing process is carried on. Present efforts are driven
in that direction.
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