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Abstract

The localized monolayer adsorption of homonuclear dimers on heterogeneous surfaces with
simple topographies is analyzed by combining theoretical modeling and Monte Carlo (MC)
simulations. The heterogeneous surfaces are represented by lattices with two kinds of sites,
the so-called bivariate heterogeneous surface. Shallow and deep sites with energies �S and �D,
respectively, form l× l patches distributed at random or in chessboard-like ordered domains on
two-dimensional square, honeycomb and triangular lattices. The adsorption process is monitored
by following the adsorption isotherms. The scope of the present work is to determine, via MC
simulation and a theoretical model, the general properties of the adsorption of non-interacting
dimers on bivariate surfaces with a characteristic correlation length, l. These 6ndings are dis-
cussed for the determination of the energetic topography of the surface, from adsorption mea-
surements. c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 68.43.−h; 82.65.+r; 34.50.Dy; 02.70.Uu

Keywords: Adsorption; Multisite occupancy; Heterogeneous surfaces; Monte Carlo simulations

1. Introduction

The problem of calculating the multiplicity of arrangements of indistinguishable
dimers distributed on a lattice [1–3] has its origin in the statistical treatment of
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phenomena as adsorption and diFusion of diatomic molecules [4], magnetism [5,6], etc.
The occupational degeneracies obtained provide the information to construct the parti-
tion function that permits the calculation of the thermodynamic quantities of
interest.
The diGculty in treating such systems is that there is statistical correlations in the

sense that if a site is occupied, then, at least one of its nearest-neighbor sites must
also be occupied. Consequently, there is a distribution of pair of occupied sites. Exact
solutions have been found for the one-dimensional case [7–9]. For higher dimension-
ality, exact solutions have been obtained for special cases, using PfaGans [10,11] and
the matrix transfer method [12,13]. In other words, from a analytical point of view,
either the space have been restricted or approximated methods have been utilized to
solve this problem.
On the other hand, computer simulations through Monte Carlo (MC) [14–16]

oFer a powerful way to analyze and interpretate dimer adsorption data. MC simulation
has been used mostly by employing the lattice gas model for the adsorbed mono-
layers. Among these studies, the structural ordering of interacting dimers has been
recently analyzed by Rom(a et al. [14]. The authors concluded that there are a 6nite
number of ordered structures for dimers with repulsive nearest-neighbor interactions.
These ordered structures had been predicted in Ref. [15], where the phase diagram
for interacting (attractive and repulsive) dimers on a square lattice was reported. The
thermodynamic implications of such structural ordering was demonstrated through the
analysis of the adsorption isotherm and the collective diFusion coeGcient of dimers
with nearest neighbor repulsion [16].
In all previously mentioned cases, the surface is considered to be chemically homo-

geneous and smooth. However, in contrast to the statistic for the simple particles, the
degeneracy of arrangements of dimers is strongly inIuenced by the structure of the
lattice space. Although the structure of lattice space plays such a fundamental role in
determining the statistics of dimers, there exist very few theories on dimer adsorption
on heterogeneous adsorbents [17–22] with: (i) diFerent number of nearest-neighbor
sites (diFerent geometries), or (ii) diFerent topographies. Among these theories, one
of the most widely used is the Nitta model [17,18], which permits only to study ad-
sorption of polyatomic molecules on random heterogeneous surfaces (RHS). It is clear
that the RHS is a limit case (occurring only rarely in real systems), and more general
topographies must be considered. For these reasons, it is of interest and of value to
inquire how a speci6c lattice structure (heterogeneous surfaces with intermediate cor-
relations or with diFerent geometries) inIuences the main thermodynamic properties
of adsorbed dimers.
From the experimental point of view, most adsorbates consist of a number of single

k components or elementary units, the so-called k-mers. Even the simple gases such as
oxygen, nitrogen and carbon monoxide are polyatomic. Furthermore, surfaces generally
present inhomogeneities due to irregular arrangement of surface and bulk atoms or
the presence of various chemical species, which can signi6cantly aFect the entropic
contribution to the adsorbate’s free energy. Typical examples are O2; N2; CO; CO2,
ethane, isobutane, ethylene absorbed in carbon and zeolite molecular sieves [20,23–27],
oligomers in activated carbons [20,28], etc. As a 6rst step, the understanding of simple
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models, including heterogeneity and multisite occupancy, might be a help and a guide
to establish a general framework for the study of this kind of systems.
In this context, this paper has two main objectives: (1) to determine, via MC sim-

ulation in grand canonical ensemble and the Fermi–Dirac (F–D) theoretical model
presented in a previous article [29], the general properties of the adsorption of dimers
on bivariate surfaces with a characteristic correlation length, l, and 6nd out to what
extent this length scale could be determined from adsorption measurements. Our bi-
variate surfaces are composed by two kinds of sites, say shallow and deep sites with
adsorptive energies �S and �D, respectively, arranged in patches of size l. A special
class of bivariate surfaces, with a chessboard structure, has been observed recently to
occur in a natural system [30], although it was already intensively used in modeling
adsorption and surface diFusion phenomena [31,32]. (2) To study the eFect of the
surface geometry on the properties of adsorption presented in (1). For this purpose,
homonuclear dimers adsorbed on square, triangular and honeycomb heterogeneous bi-
variate lattices are studied.
The plan of the rest of paper is as follow. In Section 2 the lattice-gas model is

given along with the basis of the MC simulation of dimer adsorption in the grand
canonical ensemble (MCGCE). The theoretical model (F–D approach) is derived in
Section 3. The behavior of the simulated adsorption isotherms in comparison with the
F–D model, is discussed in Section 4. Section 5 is dedicated to the determination of
general scaling properties leading to power-law behavior and to the discussion of its
implicances in the determination of l from experimental measurements. We close this
article in Section 6 with the conclusions.

2. Basic de�nitions: the lattice-gas model and MC simulation

We consider the adsorption of homonuclear dimers on square, triangular and honey-
comb heterogeneous bivariate lattices. The dimer molecule is composed of two identical
segments in a linear array with constant bond length equal to the lattice constant a.
The dimers can only adsorb Iat on the surface occupying two lattice sites (each lattice
site can only be single occupied).
The substrate has been represented by a square, triangular or honeycomb lattice of

M = L × L adsorptive sites, with periodical boundary conditions. The heterogeneity
was introduced by considering two kinds of adsorptive sites, deep and shallow traps,
in equal concentration (fD = fS = 0:5) and according to a bimodal site-energy dis-
tribution (see Fig. 1). The interaction energies between one dimer’s segment and a
deep or shallow site are denoted by �D or �S , respectively. The solid heterogeneous
surface is modeled as a collection of 6nite homotatic patches where each patch is
assumed to be a domain of equal size MP = l × l. These adsorptive domains were
used to generate substrates, having diFerent geometrical structure: (i) random distribu-
tion of patches, and (ii) chessboard-like array. These energetic topographies had been
qualitatively represented in Fig. 2(a), (b) and (c), for squares, honeycomb and trian-
gular lattices, respectively. The black (white) symbols correspond to deep (shallow)
adsorption sites; parts (a) and (b) represent random and patchwise case, respectively.
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Fig. 1. Bimodal distribution of the adsorptive energies, �D and �S .

In order to describe a system of N dimers adsorbed on M sites at a given temperature
T , let us introduce the occupation variable ci which can take the values ci = 0 or 1,
if the site i is empty or occupied by a dimer unit, respectively. The dimers retain its
structure upon adsorption, desorption and diFusion. The Hamiltonian of the system is
given by

H =
∑
i

(�i − �)ci ; (1)

where �i (=�D or �S) is the adsorption energy of a segment on a i site and � is the
chemical potential.
The adsorption process is simulated through a MCGCE method [29,33]. The mean

coverage � is obtained as simple averages

�=
1
M

M∑
i

〈ci〉= 2〈N 〉
M

; (2)

where 〈N 〉 is the mean number of adsorbed particles, and 〈: : :〉 means the time average
over the MC simulation runs.

3. Adsorption results

The computational simulations have been developed for square, honeycomb and tri-
angular L×L lattices, with L=144 and periodic boundary conditions. With this lattice
size we veri6ed that 6nite-size eFects are negligible. The equilibrium state can be
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Fig. 2. Schematic representation of heterogeneous bivariate surfaces with chessboard and random topo-
graphies: (a) square lattice; (b) honeycomb lattice; and (c) triangular lattice. The patch size in this 6gure is
l = 2. The black (white) symbols correspond to deep (shallow) adsorption sites.

well reproduced after discarding the 6rst 105–106 Monte Carlo step (MCS) [an MCS
is achieved when M pair of sites have been tested to change its occupancy state].
Then, averages are taken over 105–106 successive con6gurations. It should be noted
that displacement (diFusional relaxation) of ad-particles to nearest-neighbor positions,
by either jumps along the dimer axis or repetition by rotation around the dimer end,
must be allowed in order to reach equilibrium in a reasonable time.
Adsorption of non-interacting dimers on bivariate heterogeneous surface presents a

rich and complex behavior depending on the linear size of the patches l, the topological
distribution of the patches and the diFerence between the energies of the patches,
N�= �D − �S .
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Fig. 3. Adsorption isotherms for square chessboard topographies with diFerent l’s and NE = 12. (a) [(b)]
shows the Monte Carlo (theoretical) results. The inset in (a) [(b)] presents the comparison between isotherms
for honeycomb and square lattices with chessboard topography [the two employed methodologies] in a
particular case (l = 3).

In Fig. 3(a), we show a set of non-interacting dimer isotherms for chessboard bivari-
ate square surfaces with fD=fS =0:5; N�=kBT =12 and diFerent sizes of the patches
(l = 1; 2; 3; 5; 12). In addition, we have plotted the adsorption isotherm corresponding
to two big patches (called BP in the 6gure) and the same value of N�.
Depending on l and the topography, the isotherms present one, two or three diFer-

ent coverage regimes associated to the three possible adsorption energies of a dimer:
(i) �DD, (ii) �SS , corresponding to a dimer adsorbed on two deep [shallow] sites, and
(iii) �SD, corresponding to a dimer adsorbed on a pair of deep-shallow nearest-neighbor
sites. The crossovers between the regimes appear as plateaus at diFerent coverages.
From Fig. 3(a), it is possible to distinguish three diFerent types of isotherms:
(1) For l = 1, the dimers are always adsorbed on DS pairs and a unique regime

characterizes the whole adsorption process.
(2) For even l and two big patches, two marked regimes of adsorption appear:

for 0¡�¡ 0:5, the ad-molecules adsorb on DD pairs occupying completely the deep
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patches; for 0:5¡�¡ 1, the shallow sites (SS pairs) are occupied until the full cov-
erage is reached. A plateau at �= 0:5 separates the two regimes:
(3) For odd l (and l �=1), the number of sites in the deep (and shallow) patches

is also odd. For this reason, each patch can be not ful6led for dimers and empty DS
pairs, occurring in the borderline between the patches, are involved in the adsorption
process. Then, the 6lling process is as follows: at low values of chemical potential,
the DD pairs are preferentially occupied by the dimers (regime 1); as the chemical
potential increases, DS pairs start to be occupied (regime 2); 6nally, for high values of
chemical potential, the SS pairs are 6lled (regime 3). Therefore, the isotherms present
three adsorption regimes and two plateaus. Other situation occurs if l is increased.
In this case, only two regimes prevail. This is so, due that the number of DS pairs,
eventually appearing in the borders between the patches, is negligible compared with
SS or DD pairs and do not a big inIuence on the process.
The isotherms for honeycomb lattices are identical to those obtained from square

lattices due to the distribution of pairs DD; DS and SS is the same for honeycomb or
square lattices (see the appendix). This situation is shown in the inset of Fig. 3(a) for
a particular case (N�= 12; l= 3).
To complete the analysis of Fig. 3(a), it is interesting to note that all curves are

contained between two limit ones: the one corresponding to 1× 1 patches and the one
corresponding to two big patches.
For dimers adsorbed on chessboard bivariate surfaces with triangular geometry

[Fig. 4(a)], the 6lling mechanism can be explained based on the same argument used
above [Fig. 3(a)]. In this case, the high connectivity of the lattice allows to cover
completely the pairs DD (for all values of l) and the resulting isotherms present only
two regimes of adsorption as in the BP case.
The isotherms corresponding to random bivariate heterogeneous surfaces have been

not shown in Figs. 3 and 4 for reasons of simplicity. The unique diFerence between
random and patchwise topographies is the following: for 6xed l, the chessboard-like
topography presents a larger value of the interface between deep and shallow patches
compared with the corresponding random topography. Consequently, the number of
DS pairs (and the width in coverage of the regime 2) is, for the ordered topography,
bigger than for the random surface.

4. F–D approach for the dimer adsorption isotherm on bivariate surfaces

Let us consider an adsorbate molecule of two identical monomers. Let us further as-
sume adsorption sites with two possible diFerent energies (�D; �S). The total adsorption
energy for a particular dimer, �2, is

�2 =
2∑
i=1

�i ; (3)

where each monomer occupies a single adsorption site.
Considering that each of the two terms of the above sum can have any of two

values �D; �S , the number of “energy levels” for �2 (regardless of its degeneracy) is
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Fig. 4. As Fig. 3 for triangular lattices and the l’s indicated in the 6gure.

four. Under the hypothesis that these energy levels are diFerent from each other, their
occupation number is Si = 0 or 1 for i = 1; : : : ; 4.

The mean occupation number of a level �2; �(�2); is then given by the F–D statistics
[34]

�(�2) =
exp (−(�2 − �)=kT )

1 + exp (−(�2 − �)=kT )
: (4)

Eq. (4) represents the local adsorption isotherm on a set of two sites. The mean surface
coverage R� is then obtained by averaging out over f(�2)

R�=
4∑
i=1

f(�i2)�(�
i
2) (5)

with �i2 being the energy of the ith level.
The function f(�i2) can be symbolically expressed in terms of the frequencies fD

and fS

f(�i2) = f(fD; fS) : (6)
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Analytical expressions for f(�i2) can be written down by supposing a particular
adsorption sites topography. For dimers on a surface with two kinds of adsorption
sites, f(�i2) can take four possible values:

f(�12) =fDD (fraction of pairs of (i; j) nearest neighbor sites

with �i = �j = �D) ;

f(�22) =fDS (fraction of pairs of (i; j) nearest neighbor sites

with �i = �D and �j = �S) ;

f(�32) =fSD (fraction of pairs of (i; j) nearest neighbor sites

with �i = �S and �j = �D) ;

f(�42) =fSS (fraction of pairs of (i; j) nearest neighbor sites

with �i = �S = �S) ; (7)

being fDS = fSD.
Then, a simple isotherm equation is obtained for the general case of correlated

topography:

R�(�; T ) =fDD
exp [− (2�D−�)

kT ]

1 + exp [− (2�D−�
kT ]

+ 2fDS
exp[− (�D+�S−�

kT ]

1 + exp [− (�D+�S−�
kT ]

+fSS
exp [− (2�S−�)

kT ]

1 + exp [− (2�S−�
kT ]

: (8)

The eFect of intermediate topographies can be easily investigated in the framework
of the F–D approach. In the particular case of chessboard and random patches to-
pographies, fDD; fDS and fSS can be obtained from geometrical arguments (see the
appendix),

frand
DD =

l− 1
2l

; frand
DS =

1
2l
; frand

SS =
l− 1
2l

;

fchess
DD =

2l− 1
4l

; fchess
DS =

1
4l
; fchess

SS =
2l− 1
4l

: (9)

In order to compare the present model’s predictions with simulation, we used the
parameters as in Figs. 3(a) and 4(a). Although there is a strong quantitative diFerence
between the analytical [Figs. 3(b) and 4(b)] and simulated isotherms, the qualitative
behavior seems to be the same: in fact, (i) both isotherms present diFerent coverage
regimes, separated by well-de6ned plateaus and (ii) all isotherms are contained between
two limit curves (1× 1 and BP).
As it can be seen from the insets of Figs. 3(b) and 4(a), for a particular case (l=3),

the theoretical model reproduces fairly well the two-steeped behavior of the simulated
isotherm for the square lattice, while predicts a more steeped isotherm for the triangular
case.
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Fig. 5. Power-law behavior of the quantity � showing the data for chessboard topographies: (a) computa-
tional results for square lattices; and (b) theoretical results for square, triangular and honeycomb lattices.
The symbology is indicated in the 6gure. In the inset of (a) we present the collapse of data for diFerent
topographies on a single curve when the eFective length scale le; is used.

The diFerences between analytical and computational results is directly associated to
the theoretical hypothesis considering pairs independent on the lattice. In fact, in the
real (and simulated) process, the pairs are not independent. For example, the adsorption
of a isolated dimer on a determined pair of NN sites, eliminates six possible adsorption
pairs for the next incoming dimer.
Finally, it is important to note that even though Eq. (8) was derived for the case of

molecules made of identical atoms or chemical groups, this can be generalized to take
in account larger molecules with two or more kinds of atoms.

5. Scaling behavior

The fact that adsorption isotherm curves for diFerent values of the length scale vary
between two limit curves (see Figs. 3 and 4) allows to de6ne the following quantity:

� =
[∫ ∞

−∞
|�(�)− � R(�)| d�

]2
; (10)

where � R(�) is the reference adsorption isotherm. This quantity, �, which represents
the area between a given curve and a reference curve, is appropriate to measure the
deviation among the isotherms and study its behavior as the length scale is varied. By
taking as a reference curve the one corresponding to the BP topography, we obtain
Fig. 5(a). In this 6gure we can see that � behaves as a power law in l with exponent
! =−2. Same deviations appears for small (and even) values of l due to the patches
cannot be ful6led for dimers and the number of DS pairs in the borderline between the
patches aFects considerably the adsorption process. These deviations disappears as l is
increased and the eFect of the DS pairs is negligible. Identical value for ! is obtained
by using: (i) other reference curve (like for example the theoretical F–D isotherm for
BP topography); (ii) other connectivity; and (iii) other value of N�.
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It is interesting to note (see Fig. 5) that the exponent ! is the same for chessboard and
random topography (logarithmic plots are parallel). This suggest the idea that a random
topography characterized by a scale length l behaves like a chessboard topography with
a larger scale length. Straightforward calculations (see the appendix) demonstrate that
chessboard and random topography curves for � should become the same curve as a
function of an eFective length scale (representing an eFective patch size), leff, given
by

leff = sl ; (11)

where s=1 for chessboard topography and s=2 for random topography. In the inset of
Fig. 5(a) we can see for the case of � how the simulation data for diFerent topographies
cast over a single curve, for a given regime, when the eFective length scale is used.
In Fig. 5(b) we study the scaling behavior of adsorption in the framework of F–D

approximation. We 6nd that the same scaling law [as given in Fig. 5(a)] is obeyed, with
exponent !=−2. The behavior of � for the analytical approach is in excellent agreement
with the behavior observed by MC simulations, which reinforce the robustness of the
scaling law introduced in this paper.
Finally, it is possible to establish that the quantity �, calculated for the adsorption

isotherm by using either a theoretical or a simulated reference curve, behaves as a
power law in the eFective length scale

ln � = const:+ ! ln leff ; (12)

where the exponent ! has an universal behavior given by !=−2. This result provide a
method for the characterization of the energetic topography of heterogeneous substrates
which can be approximated by bivariate surfaces, through adsorption measurements of
non-interacting dimers. In fact, by choosing an appropriate theoretical approach as a
reference curve, the value of � can be calculated allowing leff to be obtained from
Eq. (11). A similar study for interacting dimers is in progress.

6. Conclusions

In this work we have studied, by using Monte Carlo simulation and theoretical mod-
eling, the adsorption of homonuclear dimers on two-dimensional bivariate surfaces. The
heterogeneous substrate has been modeled as an array of deep and shallow sites, with
energies �D and �S , forming l × l patches distributed at random or in chessboard-like
ordered domains on a square, honeycomb and triangular lattice.
In order to analyze the eFects of the topography on the adsorption process, three

quantities have been chosen as the control parameters: (i) the size of the patches, l,
which is associated to the correlation length; (ii) the topological distribution of the
patches (at random or in chessboard structure) and (iii) the connectivity of the lattice,
c (c = 3; 4; 6). On this basis, diFerent cases have been observed:
(1) For c = 3; 4 and chessboard topography with l= 1, only one adsorption regime

appears corresponding to the 6lling of DS pairs.
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(2) For c = 3; 4 and chessboard topography with odd l, the isotherms present two
regimes, corresponding to the sequential 6lling of DD and SS pairs (also this behavior
is observed for BP).
(3) For c=3; 4 and chessboard topography with even l, three regimes are present in

the isotherms, the corresponding to the sequential 6lling of DD; DS and SS pairs. In
addition, when l increases the fraction of DS pairs decreases (particularly, for l¿ 3
the fraction of DS pairs is practically negligible and the isotherms are very close to
the corresponding to two big patches).
(4) For c=6, two adsorption regimes appears corresponding to the sequential 6lling

of DD and SS pairs. In all cases, the random topography minimizes the borderline
between deep and shallow patches, diminishing the number of DS pairs, and for this
reason, the width in coverage of the regime 2.
For all cases, unique scaling properties have been established for the adsorption

isotherms. The exponent ! is found to follow a universal behavior, in the sense that it
is independent of the topography (chessboard or random), the N� and the connectivity.
In addition, we have found that this universality goes far beyond. In fact, exactly
the same behavior is found by taking diFerent isotherms as reference curves for the
calculation of �.
These 6ndings provide for the 6rst time a method to characterize the energetic

topography (i.e., obtain the parameters from experimental measurements) of a class of
heterogeneous surfaces which can be approximately represented as bivariate surfaces.
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Appendix

We introduce the following general notation: let fij be the number of NN pairs of
sites of type (i; j) [i or j takes the values D (deep), S (shallow)], nijk be the number
of NN pairs of sites of type (i; j) on patches of type k; niici be the number of NN
pairs of type (i; i) corresponding to the contact between two patches of type i, n be
the total number of NN pairs, Ni be the number of patches of type i and Nci be the
mean number of contacting patches of type i.
Then, for a square lattice of size L with a chessboard topography of patches of sites

D and S, each of size l, the fraction of pairs of NN sites of type DD; fDD, is given by

fDD =
nDDD ND
n

: (A.1)

Now, in our model

nDDD = 2(2l− 2)2 + 6(2l− 2) + 4 ; (A.2)
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Table A.1

Square lattice

fchessDD = fchessSS fchessDS frandDD = frandSS frandDS

l−1
2l

1
2l

2l−1
4l

1
4l

Honeycomb lattice

fchessDD = fchessSS fchessDS frandDD = frandSS frandDS

l−1
2l

1
2l

2l−1
4l

1
4l

Triangular lattice

fchessDD = fchessSS fchessDS frandDD = frandSS frandDS

3l2−4l+2
6l2

8l−4
6l2

6l2−4l+1
12l2

8l−2
12l2

ND =
1
2

(
L
2l

)2

=
L2

8l2
; (A.3)

n= 2L2 (A.4)

so that from Eqs. (A.1)–(A.4) we obtain

fchess
DD =

l− 1
2l

: (A.5)

On the other hand, for a random topography of patches of size l, we have

fDD =
nDDD ND + nDDcD NcD

n
: (A.6)

In this case

nDDD = 2(l− 2)2 + 6(l− 2) + 4 ; (A.7)

ND =
1
2

(
L
l

)2

; (A.8)

NcD =
1
2

(
L
l

)2

(A.9)

so that, replacing Eqs. (A.4) and (A.7)–(A.9) in Eq. (A.6), we obtain fDD for a
random topography

frand
DD =

2l− 1
4l

: (A.10)

By similar arguments it is possible to obtain fij in all the studied cases. The results
are listed in Table A.1.



352 J.E. Gonz�alez, A.J. Ramirez-Pastor / Physica A 311 (2002) 339–352

References

[1] R.H. Fowler, G.S. Rushbrooke, Trans. Faraday Soc. 33 (1937) 1272.
[2] P.J. Flory, J. Chem. Phys. 10 (1942) 51.
[3] P.J. Flory, Principles of Polymers Chemistry, Cornell University Press, Ithaca, New York, 1953.
[4] T.T. Tsong, R. Casanova, Phys. Rev. B 21 (1980) 4564;

T.T. Tsong, R. Casanova, Phys. Rev. B 22 (1980) 4632.
[5] L.N. Cooper, Phys. Rev. 104 (1959) 1189.
[6] J.M. Koterlitz, D.J. Thouless, J. Phys. C 5 (1972) L124.
[7] D. Lichtman, R.B. McQuistan, J. Math. Phys. 8 (1967) 2441.
[8] R.B. McQuistan, Il Nuovo Cimento B 58 (1968) 86.
[9] A.J. Ramirez-Pastor, T.P. Eggarter, V. Pereyra, J.L. Riccardo, Phys. Rev. B 59 (1999) 11027.
[10] H.N.V. Temperley, M.E. Fisher, Phil. Mag. 6 (1961) 1061.
[11] P.W. Kasteleyn, Physica 27 (1961) 1209.
[12] E.H. Lieb, J. Math. Phys. 8 (1967) 2339.
[13] A.J. Phares, F.J. Wunderlich, D.W. Grumbine, J.D. Curley, Phys. Lett. A 173 (1993) 365.
[14] F. Rom(a, A.J. Ramirez-Pastor, J.L. Riccardo, J. Chem. Phys. 24 (2001) 10932.
[15] A.J. Ramirez-Pastor, J.L. Riccardo, V. Pereyra, Surf. Sci. 411 (1998) 294.
[16] A.J. Ramirez-Pastor, M.S. Nazzarro, J.L. Riccardo, V. Pereyra, Surf. Sci. 391 (1997) 267.
[17] T. Nitta, H. Kiriyama, T. Shigeta, Langmuir 13 (1997) 903.
[18] T. Nitta, M. Kuro-oka, T. Katayama, J. Chem. Eng. Jpn. 17 (1984) 45;

T. Nitta, A.J. Yamaguchi, J. Chem. Eng. Jpn. 25 (1992) 420.
[19] A.W. Marczewski, M. Derylo-Marczewska, M.J. Jaroniec, J. Colloid Interface Sci. 109 (1986) 310.
[20] W. Rudzi(nski, D.H. Everett, Adsorption of Gases on Heterogeneous Surfaces, Academic Press, New

York, 1992.
[21] W. Rudzi(nski, K. Nieszporek, J.M. Cases, L.I. Michot, F. Villeras, Langmuir 12 (1996) 170.
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