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Abstract

In previous papers, we have described a suitable method to obtain pore size distributions for voids and necks using
the Dual Site-Bond Model (DSBM) and Monte Carlo simulations. This method basically consists in the determina-
tion of the corresponding size distributions by using adsorption–desorption hysteresis data. Void size frequency
functions are featured from the ascending curve. From the descending curve, we obtain a characteristic pressure value
that will give us, via a quasi-universal curve, information about the neck size distribution function. In this work, we
use our method to predict, using experimental hysteresis loops, the size distributions of several mesoporous samples.
Once these functions are determined, we simulate the adsorption–desorption isotherms on a simple cubic network of
voids and necks whose radii are sampled from the obtained size distributions. Comparison with experimental data is
performed, drawing out fruitful conclusions and future perspectives based on the simplicity and predictive capability
of the method. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Adsorption–desorption experiments are used as
a standard method for characterization of meso-
porous materials. Due to its great practical impor-
tance, this subject still stands as an open problem
presenting interesting theoretical challenges [1–8].
One of the main features that accounts for the
behavior of a porous solid in either transport or

adsorptive phenomena is the knowledge of its
pore size distribution. Although it may seem to be
a feasible aspect to obtain experimentally, it is
not, and implies a great deal of speculations when
any of the experimental methods available to that
end is selected. Whatever the method, it will intro-
duce assumptions that necessarily will affect the
resulting distributions. These assumptions start
when the model describing the porous space is
developed and continue when simplifications are
introduced to the corresponding model of the
physical process occurring in it. To illustrate this
point, let focus our attention on the gas adsorp-
tion–desorption occurring in a mesoporous solid.
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It is well known that the shape and extent of
adsorption–desorption hysteresis loops (ADHL)
are influenced by several characteristics of the
porous space, i.e. the geometrical shape of the
pores, their size distribution, the interconnectivity
of the porous network among others. Thus, the
attainment of the pore size distributions of the
solid from ADHL is a problem presenting two
principal aspects. The first one, as mention above,
is that a model describing the properties of the
medium must be given, and secondly, within the
context of that model, a procedure to determine
the pore size distribution from the experimental
information provided by ADHL must be
developed.

We have already overcome these two stages
with interesting results that are discussed in detail
in [1,19]. A third step would be related with the
proof of the proposed method by testing its pre-
diction capabilities, i.e. by simulating ADHL with
the obtained pore size distributions and compar-
ing them with their experimental counterparts.
This is the aim of the present work.

Modeling of porous media has evolved along
two different, but complementary, lines: contin-
uum and discrete models. Continuum models,
based on a continuous characteristic function,
attaining the value 0 at an empty point and 1 at a
solid point, has proven to be more adequate to
study the flux of fluids through the medium [9–
13]. On the other hand, discrete models, repre-
senting the porous space by a network of voids
(sites) connected by throats (bonds), have demon-
strated to be a powerful tool to study the percola-
tion properties of the medium and those
phenomena depending on its topological proper-
ties [3,5,6,8,14–16].

The discrete model, usually referred as the Dual
Site-Bond Model (DSBM), introduced by Maya-
goitia et al. [3] is the simplest one which takes into
account spatial correlation among pore sizes.
Solid structures with very different topologies can
be generated through this model. It has been
shown [14,15] that spatial correlation among pore
sizes affect drastically percolation probabilities. It
has already been shown how ADHL are affected
by spatial correlations in more realistic 3-D simu-
lation models of pore space [1]. In the present

work, DSBM will be the method employed to
describe the porous space.

As is well known [6], there has been a number
of attempts to generate a method to completely
determine the porous space size distribution from
experimental data. Some of these methods only
obtain the void distribution, neglecting the exis-
tence of necks. On the other hand, others get two
distributions (one for each entity) but fails when
these two distributions overlap. This is due to the
absence of any consideration of the possible pres-
ence of size correlation in the pore space structure
[8]. Thus, we may say that the problem of obtain-
ing the site and bond size distributions from the
analysis of ADHL has been solved so far only for
non-correlated porous networks and in the ex-
treme cases where the pore volume can be at-
tributed either entirely to the sites or entirely to
the bonds [6,17,18]. It seems that the hypothesis
that the main pore volume resides in the sites,
while the bonds only play a role in the intercon-
nectivity effects is reasonable for a variety of
porous solids [6]. For simplicity and to keep cor-
respondence with preceding analysis, we will as-
sume this hypothesis through all our simulations
presented here.

Here, we simulate sorption isotherms by repre-
senting the porous solid through a 3-D cubic
network where the porous space is represented by
sites and bonds (voids and necks) whose sizes are
sampled from two distributions, one for sites and
one for bonds. Usually, the shape of this func-
tions is chosen as a lognormal function. The
behavior of the threshold pressure for the evapo-
ration process suggests a method to determine the
bond from experimental adsorption–desorption
hysteresis curves. This can be achieved by study-
ing the behavior of the threshold as a function of
the separation between the site and bond distribu-
tions and their dispersions [1].

Using experimental ADHL data of our own, we
will first obtain the site and bond size distribu-
tions for three different mesoporous solids, Sec-
ond, we will build a 3-D site-bond network
simulating the solid via the DSBM. Finally,
ADHL will be simulated to perform the compari-
son with the original experimental ones.
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The method used here results in an encouraging
new alternative to better describe and obtain pore
size distributions that proves to be more close to
the real ones, as we will see after presenting our
results.

We remark that the present study is suitable for
disordered porous materials, where network ef-
fects are important in the histheresis loop. How-
ever this is not the only effect contributing to the
histheresis. Another important contribution,
which can be better studied in ordered or taylored
porous solids, comes from the thermodynamical
behavior of the fluid in the pore and the occur-
rence of metastable states in the condensation–
evaporation process and has been intensively
studied by other authors [22–25].

2. Porous space model

As mentioned above, we model our solid using
the DSBM. In what follows, we present a short
explanation of its main features. Details of our
model can be found elsewhere [1,3,4,8,14–16].

Let S(R) and B(R) be the distribution func-
tions associated with the site and bond size R, and
FS(R) and FB(R) the corresponding probability
density functions, such that

S(R)=
� R

0

FS(R �) dR �; B(R)=
� R

0

FB(R �)dR �

(1)

The way in which sites and bonds are con-
nected to form the network is given by the joint
probability density function, F(RS, RB), of finding
a site with size RS� (RS, RS+dRS) connected to a
bond with size RB� (RB, RB+dRB). The two basic
laws describing the DSBM are:

B(R)−S(R)�0 (2)

F(RS, RB)=0 for RS�RB (3)

The second law is often called the Construction
Principle (CP). It is a law of a local nature and
expresses the fact that the size RB of any bond
cannot be bigger than that of the two connected
sites. If the joint probability function is expressed
as

F(RS, RB)=FS(RS)FB(RB)�(RS, RB) (4)

Then, the correlation function � carries the
information about the site-bond assignation pro-
cedure in the network. If we denote by � the
overlapping area between the site and bond prob-
ability density functions, the function � has the
following properties: (i) ���0(RS, RB)=
1, �RS, RB, meaning that in this limit sites and
bonds are distributed completely at random, and
(ii) ���1(RS, RB)��(RS−RB), �RS, RB, sites
and bonds group together in macroscopic patches,
each having a value of R. Then, the overlapping �
is the fundamental parameter describing the to-
pology of the network in this model.

This behavior also suggests that � must be
related to some correlation length (which would be
a physically more meaningful parameter), charac-
teristic of the decay of the spatial correlation
function defined as:

C(r)=�RS(r� 0)RS(r� 0+r� )�=�RB(r� 0)RB(r� 0+r� )�
(5)

In fact, it is expected that C(r) decays approxi-
mately as C(r)�exp(−r/l0) where l0 is the corre-
lation length (measured in lattice constants).
Thus, l0�0 for ��0 and l0�� for ��1.

We employ here the method presented in [8,20]
for the Monte Carlo generation of such networks
and remit the reader to such references for a
detailed explanation. In what follows, we resume
it in very simple terms.

An initial network is prepared by sampling the
values of RS and RB from the corresponding
probability density functions FS and FB and dis-
tributing them completely at random on the lat-
tice. This network will have the correct FS and FB

but not the correct �(RS, RB), in particular the
CP is not obeyed everywhere. Then a Markov
chain of new states of the network is generated by
choosing at random pairs of sites (or bonds)
attempting to exchange them, the exchange is
accepted if it does not violate the CP. It has been
demonstrated [20] that this procedure leads finally
to the equilibrium distribution for the network
and that it does not suffer of the imperfections
introduced by other methods (mainly anisotropy).
Once a network with the desired properties has
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been generated, ADHL can be simulated accord-
ing to the model to be described in Section 3.

3. Simulation of ADHL

Concerning the adsorption–desorption process
simulated on the above described network, Kelvin
equation is applied for condensation and evapora-
tion processes, taking also into account the previ-
ous adsorbed layers in the ascending curve. A
convenient form to the Kelvin equation is:

ln(P/P0)= −2�VL/RmRT (6)

where P/P0 is the relative pressure of the vapor in
equilibrium with a meniscus having a mean radius
of curvature Rm. P0 is the saturation vapor pres-
sure corresponding to Rm=�, � is the surface
tension, and VL is the molar volume of the liquid.
During capillary condensation, the pore walls are
already covered with an adsorbed film of thick-
ness ta. Thus, capillary condensation actually oc-
curs not directly in the pore but rather in the
inner core, and the relation between Rp (pore
radius) and Rm is Rp=Rm+ ta, assuming that the
contact angle between the liquid and the solid
surface is zero. The thickness of the adsorbed film
can be estimated using a multilayer adsorption
isotherm, such as that given by the Halsey equa-
tion [21],

ta= t0
� a

ln(P0/P)
n b

(7)

where t0 is the thickness of a single layer of
adsorbed gas in Angstroms and a and b are
constants for the gas/solid system. As said above,
we assume all pore volume is concentrated in
sites, whereas necks do not possess a volume of
their own. Thus, the filling of every void on the
adsorption branch of the isotherm is determined
only by the individual void characteristics and
does not depend on the neck-size distribution. In
particular, voids with radii lower than the Kelvin
radius, R�Rp, are completely filled and those
with R�Rp are filled only partly via reversible
sorption mechanism (multilayer adsorption). A
differential analysis of the adsorption branch of
the isotherm allows then the determination of the
void-size distribution (site distributions).

The desorption process is dependent both on
the void (site) and neck (bond) size distributions,
Fs(R) and Fb(R). If the radii of all the voids are
larger than those of all the necks, i.e. void and
neck arrangements are random, the desorption
process is mathematically equivalent to the bond
problem in percolation theory. In practice, the
case in which the size distributions of voids and
necks do not overlap is rare. In general, these
distributions may be overlapping, introducing
correlations in the arrangement of voids and
necks.

For the desorption stage, a pore (site or bond),
having the appropriate radius (R�Rp), evapo-
rates only if it is connected to the vapor phase by
a continuous path of already evaporated pores.
This last condition introduces cooperative effects
in the desorption branch that are well known
[1,4,5]. This percolation effect produces an inhibi-
tion of the evaporation process: the larger is the
percolation threshold the greater will be the re-
tarding on the evaporation branch.

In all our present simulations, ADHL are simu-
lated on simple cubic porous networks of 50×
50×50. It is worth mentioning that finite size
effects become negligible for L (linear size of the
network) greater or equal to 50 lattice units. In
order to generate the network, site and bond sizes
were sampled from the distributions obtained fol-
lowing the method explained in Section 4. Once
the desired porous network is ready, sorption
isotherms are simulated as explained above,
recording the adsorbed or desorbed volume V as a
function of P/P0 in order to compare the results
with the corresponding experiments.

4. Determination of pore size distributions

Assume you have a complete set of data be-
longing to primary gas adsorption–desorption
processes onto a mesoporous solid. As said above,
one can determine the size distribution of sites
from the adsorption branch of the isotherm. In [1]
we proposed a method to determine the corre-
sponding bond (neck) distribution using the fact
that a quasi-universal behavior was found for the
mean bond size (Bm) against relative pressure P*,
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where the later is the relative pressure at which
the relative desorbed volume has a value of 0.9.
The relation between Bm and P* is plotted in Fig.
1 for different values of the mean size for sites,
Sm, and the dispersion � of the site distribution
and is approximately given (in nanometers) by:

Bm=
1

1−P*
(8)

We used this method to obtain the size distribu-
tions of one Vycor glass sample and a couple of
silica samples with different active sites, i.e. SiO2–
Cu and SiO2–DIOL whose experimental ADHL
are of our own. In the case of the Vycor glass, the
adsorbate was Xe and for the silica solids it was
N2. The procedure is basically as follows. Starting
from experimental ADHL, we obtain each site
size distribution from the adsorption branch of
each sample. Different differential analysis were
used and the distributions obtained little differ
from one method to another. The resulting distri-
butions are conveniently fitted with log-normal
functions. Then, the value for Sm is determined.
Using the desorption branch of each sample we
get the value of P*, i.e. the relative pressure at
which the relative adsorbed volume was 0.9. Thus,
with both Sm and P*, we use the quasi-universal
curve from Fig. 1 to set the value of Bm. To
determine the bond distribution we assume a log-
normal shape for it with a dispersion half the

Fig. 2. (a) Site and bond normalized distribution functions
obtained from a differential method (sites) and from the
quasi-universal curve (bonds). (b) ADHL for Xe (at 151 K) on
Vycor porous glass. Circles correspond to experimental data
from [17] and triangles correspond to simulated isotherms
using our method. Empty symbols correspond to adsorption
and full ones to desorption.

Fig. 1. Plot of the quasi-universal empirical relation between
Bm and P* showing the collapse of all the data on a single
curve. The dashed line represents Eq. (8).

value of that corresponding to the site distribu-
tion. This choice is based on experimental evi-
dence suggesting that neck distributions are
always narrower that void ones [6,17]. The results
for the corresponding size distribution for the
three samples are shown in the insets of Figs. 2–4.
As can be seen, the bond distributions are trun-
cated for radii values smaller than the range of
validity of Kelvin equation. Only the lines corre-
sponding to the log-normal fitting functions are
shown. These fitting functions are then used in the
simulation program to obtain the porous solid
that will represent each of the samples. After the
networks are generated, we proceed by simulating
the primary isotherms for gas sorption and com-
pare the simulations with experimental results.
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Fig. 3. Site and bond size density distribution functions ob-
tained following our proposed method (inset) and the corre-
sponding ADHL for N2 (at 77 K) on SiO2–Cu. Circles
correspond to experimental data from our own and triangles
correspond to simulated isotherms using our method. Empty
symbols correspond to adsorption and full ones to desorption.

method was used. Tetraethyl-orthosilicate (TEOS)
of analytical purity, was chosen as the silica pre-
cursor. The synthesis was performed in a glass
round-bottom flask at room temperature (25 °C)
by dissolving 37.9 cm3 of TEOS in 59 cm3 of
ethanol under a gentle stirring during some min-
utes. Afterwards, the amount of water necessary
for the hydrolysis reaction (12 cm3) was added
together with a mixture of hydrofluoric and hy-
drochloric acids, the stirring being kept for fur-
ther 30 min. The sol was then taken out of the
reactor and poured into glass cylinders where
gelation eventually occurred. One of the silica
monoliths was prepared with a diolic agent using
the same amounts of the above reactants, but this
time including 14 cm3 extra of ethylene glycol that
was added together with the TEOS–ethanol solu-
tion. Gels were dried in an oven at 100 °C for 48
h. The final xerogels were obtained as gelatinous
but intact (no cracks) cylindrical mass that could
be removed from the mould. The materials were
calcined at 500 °C during 10 h to finally obtain
rigid mesoporous silica monoliths.

In the case of doped silica samples, doped silica
monoliths were synthesized in the same way as for
pure silica specimens. In the case of SiO2–Fe
monoliths, the iron source was 1.3 g of
Fe(NO3)3

. 9H2O that was introduced together with
the water used for the reaction. For the SiO2–Cu
materials, the copper source was 0.56 g of
CuCl2 · 2H2O. The drying and calcinations proce-
dures were the same as those employed for the
pure silica substrata.

Adsorption–desorption isotherms were mea-
sured on the samples with an authomatic Quan-
tachrome Autosorb-1-LC apparatus. Samples
were outgassed at 300 °C for 10 h and stored
under helium previously to the adsorption–des-
orption runs.

6. Results and discussion

In Figs. 2–4 we show the results of our simu-
lated isotherms for the three solids mentioned
above. In Fig. 2 we plot the obtained results for
Vycor glass along with the experimental data
from Ref. [17] from which we extract the experi-

5. Experimental

Here we briefly review the experimental details
for sample preparation and adsorption–desorp-
tion measurements. More details can be obtained
from Ref. [17].

For the preparation of highly-mesoporous silica
specimens for pure silica samples the sol–gel

Fig. 4. Site and bond size density distribution functions ob-
tained following our proposed method (inset) and the corre-
sponding ADHL for N2 (at 77 K) on SiO2–DIOL. Circles
correspond to experimental data from our own and triangles
correspond to simulated isotherms using our method. Empty
symbols correspond to adsorption and full ones to desorption.
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mental ADHL. As clearly seen, the coincidence
with experimental results is quite good given the
simplicity of the method. The departure from the
real isotherm is due mainly to two factors. The
first one related to the assumption that all the
volume space is concentrated in sites, thus, the
volume added by condensation in bonds to the
experimental adsorbed volume at a given relative
pressure is not taken into account in the simula-
tions. The second reason is due to the initial
adsorbed volume in the multilayer region, i.e. the
contribution to the total adsorbed volume made
by the successive layers adsorbed on the pore
walls up to the inception point. On one hand, this
volume is not taken into account when the differ-
ential method is used. On the other hand, the
volume we obtain in our simulations from the
beginning of adsorption to the inception point, is
only approximated because Eq. (7) is no longer
valid in this region of multilayer adsorption. It is
worth to mention that the bond distribution
shown in Fig. 2(a) is not exactly centered at the
Bm value obtained using the quasi-universal curve,
in fact, it is a little bit lower than Bm. The reason
of this change was to allow a smaller overlapping
area between the two size distributions, in order
to accelerate the generation algorithm of the
porous solid given that, as the overlapping area
increases, CPU time consuming increases criti-
cally. Thus, our prediction for the behavior of the
desorption branch is that it will get closer to the
experimental data given that percolation effects
diminish with increasing overlap (increasing cor-
relations) and, consequently, the position of the
knee will move to the right in pressures and the
loop will get a little narrower. This will improve
the coincidence of simulations and experiment.

In Fig. 3 we plot the results for the SiO2–Cu
solid. The simulated branch does not follow its
experimental counterpart. The reason for this dis-
agreement may be attributed, as said above, to
the assumptions made concerning the behavior in
the multilayer region, Eq. (7). In previous works
[1], we have performed adsorption isotherms with
a different equation describing tc and found that,
for some solids, this branch may be very sensitive
to the model. On the other hand, the simulated
data describe closely the desorption behavior of

the solid. The knee of the branch is in very good
agreement with the experiment and the desorption
slope is close to the expected behavior.

The second silica sample, SiO2–DIOL, have a
very different porous space. In fact, it is impor-
tant to remark the great difference in the pore
distributions of the two silica samples. As seen
from the corresponding insets, the mean values
for the site distributions differ in more than 30 A� ,
so do the bond distributions, too. Even though,
the simulated ADHL obtained from the method
describes correctly the shape of the loop, that, in
fact, looks very different compared with the previ-
ous one. For this sample, the analysis of the
coincidences and departures from experimental
behavior are closely the same as the ones made
for the first silica sample.

Both desorption knees agree quite well with the
experimental data. This means that the expected
percolation delay for solids with size correlation
topology, like the ones studied here, is conve-
niently described by our method and it also seems
to describe correctly hysteresis loops that differ
considerably in shape.

We believe that another reason for the
difficulties encountered in describing the adsorp-
tion branch, is the great sensitivity of the differen-
tial method employed to obtain the corresponding
size distribution from steep experimental ascend-
ing curves.

The present method is simple and shows a very
good qualitative description for ADHL. Its quan-
titative prediction capability is still unsatisfactory,
but better than that of traditional methods [19].
Our present efforts are directed in improving this
capability.
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