
1

b
w
g
w
b
a
c
t
m
�
p

r
m
c
a
H
d
t
a
t
a
s
T
m
n
a
d
a

s
t
g
f
i
L
o
d

J
2
A

J

Downlo
Olivier Brüls1

Department of Aerospace and Mechanical
Engineering (LTAS),
University of Liège,

Chemin des Chevreuils 1, B52/3,
4000 Liège, Belgium

e-mail: o.bruls@ulg.ac.be

Alberto Cardona
CIMEC-INTEC,

Universidad Nacional Litoral-Conicet,
Güemes 3450,

3000 Santa Fe, Argentina
e-mail: acardona@intec.unl.edu.ar

On the Use of Lie Group Time
Integrators in Multibody
Dynamics
This paper proposes a family of Lie group time integrators for the simulation of flexible
multibody systems. The method provides an elegant solution to the rotation parametriza-
tion problem. As an extension of the classical generalized-� method for dynamic systems,
it can deal with constrained equations of motion. Second-order accuracy is demonstrated
in the unconstrained case. The performance is illustrated on several critical benchmarks
of rigid body systems with high rotation speeds, and second-order accuracy is evidenced
in all of them, even for constrained cases. The remarkable simplicity of the new algo-
rithms opens some interesting perspectives for real-time applications, model-based con-
trol, and optimization of multibody systems. �DOI: 10.1115/1.4001370�
Introduction
The numerical simulation of articulated systems including rigid

odies, nonlinear force elements �e.g., springs and dampers�, as
ell as flexible components requires advanced modeling strate-
ies; see Ref. �1�. The absolute coordinate method appears to be
ell-suited for the integrated modeling of complex flexible multi-
ody systems; see Ref. �2�. Still, an inherent difficulty of this
pproach comes from the need to treat large rotation variables in a
onsistent way. This paper considers some adaptation of Lie group
ime integrators, which have been initially developed in applied

athematics by Crouch and Grossmann �3� and Munthe-Kaas
4,5�, in order to provide a more natural answer to the rotation
arametrization problem in multibody dynamics.

The Lie group nature of rotational fields already played a major
ole in the development of geometrically consistent models for
echanical systems with large rotations; see Refs. �6–9�. In those

ontributions, dynamic problems were solved using integration
lgorithms based on the Newmark scheme �10� and on the Hilber-
ughes-Taylor �HHT� scheme �11�. The generalized-� method
escribed by Chung and Hulbert �12�, which will be exploited in
he present paper, is a further extension of the Newmark algorithm
nd it includes as special cases most popular algorithms in struc-
ural dynamics. An optimal design of the generalized-� method
llows to combine second-order accuracy and the ability to filter
purious high frequency modes arising in finite element models.
his method is also able to solve dynamic problems with kine-
atic constraints, as shown by Cardona and Géradin �9� and Ar-

old and Brüls �13�. Lunk and Simeon �14�, Jay and Negrut �15�,
nd Arnold �16� combined the generalized-� method with an in-
ex reduction technique in order to solve systems of differential-
lgebraic equations.

Crouch and Grossmann �3� and Munthe-Kaas �4,5� addressed
ome generalizations of classical Runge–Kutta and multistep
ime-integration schemes to solve differential equations on Lie
roups. From a mathematical viewpoint, a Lie group G is a dif-
erentiable manifold for which the product �or composition� and
nversion operations are smooth maps. A differential equation on a
ie group G is then a differential equation whose solution remains
n G for any initial condition on G. For instance, the rotational
ynamics of a rigid body can be described as a differential equa-
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tion on SO�3�, the group of proper orthogonal linear transforma-
tions. Some applications of Lie group time integrators in rigid
body dynamics have been considered by Celledoni and Owren
�17� and by Bottasso and Borri �18�. It is remarkable that Lie
group time integrators do not require a priori the definition of
local generalized coordinates. In other words, a Lie group integra-
tor includes in its algorithmic structure an intrinsic and consistent
strategy for the parametrization of the configuration manifold.

The present work concerns the numerical simulation of flexible
multibody systems modeled according to the absolute coordinate
method in a finite element context; see Ref. �2�. The motion being
described using nodal translation and rotation variables, the sys-
tem evolves on the Lie group defined by a multiple Cartesian
product of R3 and SO�3�. In this formulation, the interconnections
between the various bodies of the multibody system are modeled
using nonlinear kinematic constraints. As a consequence, the mo-
tion of the system is restricted to a submanifold of the Lie group.
In other words, the equations of motion have the structure of a
differential equation on a Lie group with algebraic constraints.

We propose a new family of Lie group time integrators, which
tries to inherit the favorable accuracy and stability properties of
the generalized-� method and which can be used for the simula-
tion of complex multibody systems. This rather broad family in-
cludes as special cases the classical generalized-� method for the
analysis of dynamic systems on a linear space by Chung and
Hulbert �12�, the algorithm by Simo and Vu-Quoc �6�, as well as
the geometric algorithm studied by Brüls and Eberhard �19�.

Recent research efforts lead to the development of structure-
preserving time-integration schemes such as variational integra-
tors or energy-preserving schemes; see, e.g., Refs. �7,18,20–27�.
The design of those algorithms usually requires a deep investiga-
tion of the internal structure of the dynamic system. In contrast,
the algorithms studied in this paper are not designed to preserve
exactly energy or other first integrals; however, since they only
exploit the Lie group structure of the problem, they can be imple-
mented in a more generic way. In the work by Betsch and Stein-
mann �22�, specific redundant coordinates are used in order to
overcome the rotation parametrization problem. As opposed to
this strategy, which tends to increase the number of coordinates
and kinematic constraints, the parametrization naturally induced
by our Lie group formulation is based on a minimal number of
rotation parameters.

The resulting simplicity of the proposed algorithms is attractive
from several points of view: possible implementation in an exist-
ing industrial simulation code, easier code maintenance and im-

proved efficiency with perspectives for real-time applications, op-
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imization, and model-based control. In addition, a simplified code
ay render possible the implementation of an exact linearization

or a semi-analytical sensitivity analysis, which would otherwise
e cumbersome; see Ref. �19�.

Using several critical benchmarks with large rotation speeds
nd kinematic constraints, this paper shows that the new and sim-
ler Lie group methods can compete with the classical “linear”
eneralized-� scheme from the viewpoints of accuracy, stability,
nd conservation of energy. Hence, these new methods are prom-
sing candidates for the development of robust, efficient, and open
imulation software for flexible multibody systems.

The paper is organized as follows. In Sec. 2, the equations of
otion of a flexible multibody system are described according to

he Lie group formalism. The new family of time integrators is
resented in Sec. 3, and some implementation issues are discussed
n Sec. 4. Section 5 presents some examples of dynamic systems
ith large rotations, which can be simulated using the proposed

pproach. Second-order accuracy of the algorithms is demon-
trated in the unconstrained case in Sec. 6. Some numerical results
or dynamic systems with large rotation speeds are reported in
ec. 7. Three examples are presented with comparisons to analyti-
al solutions given by Romano �28,29�. Two more examples are
olved and compared with reference solutions computed numeri-
ally with small time steps. Finally, in Sec. 8, conclusions of the
tudy are drawn.

Equations of Motion
We consider a flexible multibody system whose dynamics

volves on an n-dimensional manifold G with a Lie group struc-
ure �see Ref. �30� for mathematical details about Lie groups�. In
n absolute coordinate formulation, an element q�G is composed
f several subsets of absolute nodal translations and rotations, a
riori considered as independent variables. The composition op-
ration G�G→G is written as

qtot = q1 � q2 �1�

ith q1 ,q2 ,qtot�G and the identity element e is such that q �e
e �q=q , ∀q�G. TqG denotes the tangent space at a point q
G and the Lie algebra is defined as the tangent space at the

dentity g=TeG. The Lie algebra is a vector space, which is iso-
orphic to Rn by an invertible linear mapping

� • �˜:Rn → g, v � ṽ �2�

tangent vector at any point q can be represented in the Lie
lgebra using the left translation map Lq. Indeed, Lq is a diffeo-
orphism of G defined as:

Lq:G → G, y � q � y �3�

nd its derivative defines a diffeomorphism between TyG and
q�yG. In the particular case y=e, we thus have a bijection be-

ween TeG=g and TqG as follows:

DLq�e�:g → TqG, w̃ � DLq�e� · w̃ �4�

here DLq�e� · w̃ is the directional derivative of Lq evaluated at
oint e in the direction w̃�g. Hence, a tangent vector w̃�g de-
nes a left invariant vector field on G, which is constructed by left

ranslation of w̃ to the tangent space at any point of G.
In a multibody system, the nodal translation and rotation vari-

bles are generally not independent but they have to satisfy a set
f m kinematic constraints � :G→Rm, which restrict the dynam-
cs to the submanifold N of dimension n−m defined as:

N = �q � G:��q� = 0� �5�
sing classical principles of mechanics �2�, the equations of mo-

ion of a flexible multibody system have the following index-3
ifferential-algebraic structure:

˙ ˜
q = DLq�e� · v �6�

31002-2 / Vol. 5, JULY 2010
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M�q�v̇ + g�q,v,t� + BT�q�� = 0 �7�

��q� = 0 �8�

where q�G represents the configuration of the system, v�Rn is
the velocity vector, and ��Rm is the vector of Lagrange multi-
pliers associated with the constraints �. M is the n�n symmetric
mass matrix, g is the vector of external, internal, and complemen-
tary inertia forces, and B is the m�n matrix of constraint gradi-
ents such that

D��q� · w̃ = B�q�w, ∀ w � Rn �9�

In the above equation, D��q� · w̃ is the directional derivative of �
evaluated at point q in the direction of the tangent vector defined
by left translation of w̃.

The equations of motion �6�–�8� represent the dynamics of a
general class of flexible multibody systems, e.g., using the finite
element approach described in Ref. �2�.

3 Formulation of Lie Group Time Integrators
Inspired by the index-3 formulation of the generalized-� time-

integration scheme for classical systems of differential-algebraic
equations �13�, as well as by the work of Crouch and Grossmann
�3� and Munthe-Kaas �4,5�, we propose a family of Lie group time
integrators based on the following discretized set of equations:

M�qn+1�v̇n+1 + g�qn+1,vn+1,tn+1� + BT�qn+1��n+1 = 0 �10�

��qn+1� = 0 �11�

qn+1 = �h�qn,vn,an,an+1� �12�

vn+1 = vn + �1 − ��han + �han+1 �13�

�1 − �m�an+1 + �man = �1 − � f�v̇n+1 + � fv̇n �14�

h= tn+1− tn is the time step size, and the particular form of Eq. �12�
makes this formulation applicable to dynamic systems on Lie
groups. Indeed, �h :G�Rn�Rn�Rn→G is a discrete time map-
ping, which may be defined in several ways; e.g.,

�h
�1��qn,vn,an,an+1� = qn � exp�hvn˜ + h2�0.5 − ��an˜ + �h2an+1˜�

�15�

�h
�2��qn,vn,an,an+1� = qn � exp�hvn˜� � exp�h2�0.5 − ��an˜ + �h2an+1˜�

�16�

�h
�3��qn,vn,an,an+1� = qn � exp�hvn˜� � exp�h2�0.5 − ��an˜�

� exp��h2an+1˜� �17�

where exp:g→G is the exponential operator of the group �30�.
The complete algorithm thus involves four parameters �, �, �m,
and � f, which should be selected as usual in order to obtain suit-
able convergence and stability properties.

Given some initial values q�0� and v�0� at time t0=0 and as-
suming that the kinematic constraints are satisfied at position and
velocity level

��q0� = 0, �̇�q0,v0� = 0 �18�
the step-by-step recursive procedure is initialized by solving the
equations

q0 = q�0� �19�

v0 = v�0� �20�

M�q0�v̇0 + g�q0,v0,0� + BT�q0��0 = 0 �21�

¨ ˙
��q0,v0,v0� = 0 �22�
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a0 = v̇0 �23�
here Eq. �22� represents the second time derivative of the kine-
atic constraints.

3.1 Remarks Concerning the Proposed Integration
cheme.

1. The equations of motion are enforced exactly at time n+1
and there is no weighted combination of forces between time
n and time n+1. This is especially important to guarantee
the consistency of the algorithm when the mass matrix is not
constant; see Ref. �13�.

2. The variable an+1 is an acceleration-like variable, which is
different from the true acceleration v̇n+1 at time tn+1.

3. �n is not involved in the computation of step n+1; i.e., we
may say that the Lagrange multipliers have “no memory.”

4. The derivative q̇�TqG is never explicitly evaluated in the
numerical procedure. The algorithm only relies on tangent
vectors in the Lie algebra g. Linear combinations of tangent
vectors in the Lie algebra make perfect sense.

5. Nonlinearities are present not only in the equations of mo-
tion, but also in the integration formulas.

6. An analytical expression of the exponential map can be
used, as will be discussed later in this paper.

7. Other variants of the algorithm may be obtained if the ex-
ponential map is replaced with another g→G mapping op-
erator, e.g., the Cayley transform.

8. The proposed algorithm includes the classical generalized-�
algorithm as a special case. Indeed, the vector space Rn is a
particular case of a Lie group with the following composi-
tion and exponential operations:

q1 � q2 = q1 + q2 �24�

exp�q� = q �25�

for q1 ,q2 ,q�Rn. The identity element is the null vector 0.
In a vector space, the configuration space can be identified
with the tangent space at any point, and Eq. �6� becomes
simply

q̇ = v �26�
Consequently, the proposed algorithm degenerates into the
classical generalized-� algorithm described in Ref. �13�. All
integration formulas are then linear, and the three variants
defined by Eqs. �15�–�17� cannot be distinguished anymore.

Implementation
This section presents a Newton–Raphson algorithm, which

olves Eqs. �10�–�14� for all variables at time step n+1, starting
rom given values qn, vn, v̇n, and an. The linearization of the set of
onlinear equations �10�–�14� is described below.

First, the linearization of Eqs. �10�, �11�, �13�, and �14� is
chieved without difficulty. Let us define the residual vector r as
ollows:

r�q,v,�, v̇,t� = M�q�v̇ + g�q,v,t� + BT�q�� �27�

nd the tangent stiffness and damping matrices Kt and Ct such
hat

D1r�q,v,�, v̇,t� · �q˜ = Kt�q �28�

D2r�q,v,�, v̇,t� · �v = D2g�q,v,t� · �v = Ct�v �29�

here D1 �D2� indicates the directional derivative with respect to
he first argument q�G �to the second argument v�Rn�. The
inearization of Eqs. �10�, �11�, �13�, and �14� follows immediately

�r = M�v̇n+1 + Ct�vn+1 + Kt�qn+1 + BT��n+1 �30�
�� = B�qn+1 �31�

ournal of Computational and Nonlinear Dynamics
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�vn+1 = �h�an+1 �32�

�1 − �m��an+1 = �1 − � f��v̇n+1 �33�

Second, the linearization of the mapping �h in Eq. �12� requires
a more detailed study. We rewrite Eqs. �15�–�17� as

�h
�a��qn,vn,an,an+1� = �h�

�a��qn,vn,an� � exp��hx
�a�̃�vn,an,an+1�� ,

a = 1, 2, or 3 �34�

with the mappings �h�

�a� and �hx
�a� defined consistently as

�h�
�1��qn,vn,an� = qn �35�

�hx
�1��vn,an,an+1� = hvn + h2�0.5 − ��an + �h2an+1 �36�

�h�
�2��qn,vn,an� = qn � exp�hvn˜� �37�

�hx
�2��vn,an,an+1� = h2�0.5 − ��an + �h2an+1 �38�

�h�
�3��qn,vn,an� = qn � exp�hvn˜� � exp�h2�0.5 − ��an˜� �39�

�hx
�3��vn,an,an+1� = �h2an+1 �40�

Using those mappings, qn+1 can be evaluated by four successive
operations as follows:

q�
ª �h�

�a��qn,vn,an� �41�

x ª �hx
�a��vn,an,an+1� �42�

qinc ª exp�x̃� �43�

qn+1 ª q� � qinc �44�

with the intermediate variables q� ,qinc�G and x�Rn. One ob-
serves that q� is computed explicitly from the known variables at
time step n whereas the increment x implicitly depends on an+1.
One also notes that �hx

�a� only involves linear operations. The lin-
earization of the first two relations �41� and �42� is straightforward
considering the special form of the operators �h�

�a� and �hx
�a� in Eqs.

�35�–�40� as follows:

DLq��e� · �q�̃ = 0 �45�

�x = �h2�an+1 �46�

and Eq. �45� yields �q�=0. The linearization of Eq. �43�

DLqinc
�e� · �qinc

˜ = D exp�x̃� · �x̃ �47�

defines a linear relation between the vectors �x and �qinc�Rn,
which is written in compact form as

�qinc = T�x��x �48�

where T�x� is the n�n tangent operator of the exponential map
�5�. Finally, developing the linearized form of Eq. �44�

DLqn+1
�e� · �qn+1

˜ = DLq��qinc� · �DLqinc
�e� · �qinc

˜� �49�

and observing that its right-hand-side is equal to

DLq��qinc
�e� ·�qinc

˜, we obtain

�qn+1 = �qinc �50�

If the variables �qn+1, �vn+1, �v̇n+1, �an+1, and �qinc are
eliminated from the linearized equations �30�–�33�, �46�, �48�, and
�50�, we obtain the linearized form

� �r

��
� = St��x

��
� �51�
with the �n+m�� �n+m� tangent matrix

JULY 2010, Vol. 5 / 031002-3
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t�q,x,v, v̇,�,t�

= �M�q��� + Ct�q,v,t��� + Kt�q,v, v̇,�,t�T�x� BT�q�
B�q�T�x� 0

� �52�

nd the algorithmic parameters

�� =
1 − �m

�h2�1 − � f�
, �� =

�

�h
�53�

The following algorithm �a=1, 2, or 3� computes all system
ariables at time step n+1 based on their value at time step n:

unction SolveTimeStep �qn ,vn , v̇n ,an�

v̇n+1ª0
�n+1ª0
an+1ª �� fv̇n−�man� / �1−�m�
vn+1ªvn+h�1−��an+�han+1

q�
ª�

h�

�a��qn ,vn ,an�
xª�hx

�a��vn ,an ,an+1�
for i=1 to imax

qn+1ªq� �exp�x̃�

resª�r�qn+1 ,vn+1 ,�n+1 , v̇n+1 , tn+1�

��qn+1� �
if 	res	� to1

break
end
StªSt�qn+1 ,x ,vn+1 , v̇n+1 ,�n+1 , tn+1�

��x

��
�ª−St

−1res

xªx+�x
vn+1ªvn+1+���x
v̇n+1ª v̇n+1+���x
�n+1ª�n+1+��

end
an+1ªan+1+ �1−� f� / �1−�m�v̇n+1

eturn qn+1 ,vn+1 , v̇n+1 ,�n+1 ,an+1

Examples

5.1 Example 1: Motion of a Single Rotating Body. The mo-
ion of a rotating body fixed to the ground by a spherical joint is
epresented by the 3�3 rotation matrix R, which belongs to the
roup of proper orthogonal linear transformations SO�3�. The
omposition operation is the matrix product

R1 � R2 = R1R2 �54�

nd the identity element is the 3�3 identity matrix I3. At any
oint R, the tangent space is noted TRSO�3� and the Lie algebra
o�3�=TI3

SO�3� is the set of skew-symmetric matrices

so�3� = ��̃:�̃ + �̃T = 0� �55�

he Lie algebra can be identified to R3 since any matrix �̃
so�3�

�̃ = 
 0 − �3 �2

�3 0 − �1

− �2 �1 0
� �56�

an be represented by the 3�1 axial vector �= ��1 �2 �3�T. The
3
angent space TRSO�3� is thus isomorphic to R and we have

31002-4 / Vol. 5, JULY 2010
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Ṙ = DLR�I3� · �̃ = R�̃ �57�
The equations of motion of the rotating rigid body are written

as

J�̇ + � � J� − C�R,t� = 0 �58�

where J is the 3�3 symmetric inertia tensor around the fixed
point, ��R3 is the material angular velocity, and C is the applied
torque in body coordinates. In the particular case of a heavy top
�see Fig. 1�, the gravity torque is computed as

C�R� = X̃RTm� �59�

where � is the 3�1 vector of gravity acceleration, m is the mass
of the top, and X is the 3�1 material position vector of the center
of gravity with respect to the fixed point.

Clearly, Eqs. �57� and �58� are special cases of Eqs. �6� and �7�
with

M = J �60�

g�R,�,t� = � � J� − C�R,t� �61�

Ct��� = �̃J − J�˜ �62�

Kt · 	� = − DC�R,t� · 	�˜ �63�
In the heavy top case, the last equation becomes

Kt = − X̃RTm�˜ �64�

For SO�3�, the exponential operator can be computed using the
analytic Rodrigues formula

exp��� = I3 +
sin 




�̃ +

1 − cos 



2 �̃�̃ �65�

where 
= 	�	 and the vector ��R3 is the so-called Cartesian
rotation vector. The exponential map admits the series expansion

exp��̃� = I3 +
�̃

1!
+

�̃2

2!
+ ¯ �66�

and the tangent operator is given by the formula

T��� = I3 +
cos 
 − 1


2 �̃ + �1 −
sin 




 �̃�̃


2 �67�

Hence, the proposed Lie group time-integration algorithm can be
used to solve the equations of motion �58�. In the case �m=� f

=0, the integration algorithm with the discrete operator �h
�1� is

equivalent to the algorithm proposed by Simo and Vu-Quoc �6�.

5.2 Parametrization-Based Time-Integration Algorithm.
In the following numerical investigations, the performance of the
new Lie group time integrators will be compared with a more
classical integration algorithm based on an incremental parametri-
zation of the equations of motion. This algorithm, presented in
Ref. �9�, is summarized below.

Fig. 1 Heavy top
Even though it is not possible to find a global parametrization
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f SO�3� with a set of three coordinates, it is possible to use a
ocal coordinate chart for limited rotational amplitudes around a
xed reference rotation Rref. If we consider the natural parametri-
ation of SO�3� using the Cartesian rotation vector ��R3, the
urrent rotation at time t is computed from ��t� using

R�t� = Rref exp��̃� �68�

t velocity level, we have the relation

��t� = T����̇ �69�

here the tangent operator T��� was already defined in Eq. �67�.
ue to the existence of singularities, the validity range of this
arametrization is limited to 
� �−2� ,2��.

Introducing Eq. �69� in the equation of motion �58� leads to the
arametrized form of the equations of motion

M����̈ + g��,�̇,t� = 0 �70�

ith

M��� = TT���JT��� �71�

g��,�̇,t� = TT����JṪ��,�̇��̇ + �T����̇� � �JT����̇�

− C�Rref exp��̃�,t�� �72�

he dynamics of the system is thus described in the vector space
3 and it can be solved using the classical generalized-� method

we recall that it is a special case of the Lie group method de-
cribed in this paper�. The detailed expressions of the tangent
atrices Ct and Kt can be found in Ref. �2�, but they are not

eproduced here for reasons of space.
The coordinate system can only be used locally for limited

otations around the reference point. In order to deal with large
otational amplitudes without singularity problems, a usual tech-
ique is to change the reference Rref during the integration proce-
ure. At time tn+1, one can move from an old reference to the new

ne RrefªRn+1, provided that the values of �n+1, �̇n+1, �̈n+1, and
n+1 are mapped to the new coordinate chart according to the
ollowing algorithm �8�:

�̈n+1 ª T��n+1��̈n+1 + Ṫ��n+1,�̇n+1��̇n+1 �73�

an+1 ª T��n+1�an+1 + Ṫ��n+1,�̇n+1��̇n+1 �74�

�̇n+1 ª T��n+1��̇n+1 �75�

�n+1 ª 0 �76�

he update for acceleration-like variables in Eq. �74� is required
or the consistency of the algorithm. A pragmatic approach is to
mplement the above update procedure at the end of each time
tep, so that the current local coordinate system is systematically
entered on the total rotation at the preceding time step.

5.3 Example 2: Heavy Top With Kinematic Constraints.
ven though the problem is the same as in Example 1, the fol-

owing example relies on a differential-algebraic formulation of
he dynamic system. According to the absolute coordinate formu-
ation, the equations of motion of a rotating top about a fixed point
re written as �2�

mẍ − � = m� �77�

J�̇ + � � J� + X̃RT� = 0 �78�
− x + RX = 0 �79�
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The vector x represents the position of the center of mass in the
inertial frame and X represents the position of the center of mass
in the body-fixed frame. m is the mass of the top and the inertia
tensor J is now defined with respect to the center of mass �and not
with respect to the fixed point as in Example 1�. The third equa-
tion is a set of three algebraic constraints and � is the associated
3�1 vector of Lagrange multipliers.

The set R3�SO�3� with the composition operation

� x1

R1
� � � x2

R2
� = �x1 + x2

R1R2
� �80�

defines a six-dimensional Lie group denoted as G6. The exponen-
tial map and the tangent operator are constructed in a straightfor-
ward way by using independently their definition in R3 for the
translation variables and their definition in SO�3� for the rotation
variables. Due to the constraints, the motion is restricted to a
three-dimensional submanifold of G6, and we have

M = �mI3 0

0 J
�, g = � − m�

� � J�
�, Ct = �0 0

0 �̃J − J�˜

� ,

Kt = �0 0

0 X̃RT�˜

�, B = �− I3 − RX̃ � �81�

Let us remark that the Lie group G6 should not be confused
with the special Euclidean group SE�3�, which is also isomorphic
to R3�SO�3�, but whose composition operation is defined by the
product of homogeneous transformation matrices of the form

� R x

01�3 1
� �82�

6 Consistency of the Method in the Unconstrained
Case

Let us consider a dynamic system on an n-dimensional Lie
group G=R3� ¯ �R3�SO�3�� ¯ �SO�3� without any kine-
matic constraint. The local error of the time-integration algorithm
is analyzed in a local coordinate system x=�−1�q�, where � is an
invertible coordinate mapping Rn→G. If the exact solution is
denoted by �x�t� ,v�t�� and the numerical solution after one time
step �x1�h� ,v1�h��, the algorithm is consistent of order 2 provided
that the local errors at position and velocity levels satisfy x�h�
−x1�h�=O�h3� and v�h�−v1�h�=O�h3�, respectively. For conve-
nience, the analysis will be performed in the canonical coordinate
system centered on q0; i.e., � is defined by

��x� = q0 � exp�x̃� �83�

with the properties x�0�=0 and ��0�=q0.
THEOREM. Using the canonical coordinate system x=�−1�q�

centered on q0, the local errors of the time-integration algorithm
verify

x�h� − x1�h� = O�h3�, v�h� − v1�h� = O�h3� �84�
provided that the algorithmic parameters satisfy the standard
second-order condition

� = 0.5 + � f − �m �85�
Proof. First, we consider the Taylor series expansion for the

exact solution

x�h� = h
dx

dh
�0� +

h2

2

d2x

dh2 �0� + O�h3� �86�

v�h� = v�0� + h
dv

�0� +
h2 d2v

2 �0� + O�h3� �87�

dh 2 dh
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he relation between ẋ and v is given by

T�x�ẋ = v, T�x�ẍ + Ṫ�x�ẋ = v̇ �88�

e have T=diag�Ttrans , . . . ,Ttrans ,Trot , . . . ,Trot�, with Ttrans=I3
he tangent operator for translation variables and Trot the tangent
perator for rotation variables as defined in Eq. �67�. We have

�0�=In. Moreover, observing that Ṫrot�0�=−0.5x̃̇, we also get
˙ �0�ẋ=0, so that Eqs. �86� and �87� become

x�h� = hv�0� + 0.5h2v̇�0� + O�h3� �89�

v�h� = v�0� + hv̇�0� + 0.5h2v̈�0� + O�h3� �90�
Second, we develop Taylor series expansions for the numerical

olution. Let us observe that

a1 = v̇0 + h�1 + �m − � f�v̈0 + O�h2� �91�

a0 = v̇0 + h��m − � f�v̈0 + O�h2� �92�
t position level, depending on the selected algorithmic variant,
e have

exp�x1
�1�̃� = exp�hv0˜ + 0.5h2v̇0

˜ + O�h3�� �93�

exp�x1
�2�̃� = exp�hv0˜� � exp�0.5h2v̇0

˜ + O�h3�� �94�

exp�x1
�3�̃� = exp�hv0˜� � exp�h2�0.5 − ��v̇0

˜ + O�h3�� � exp��h2v̇1
˜

+ O�h3�� �95�
nd those three formulas only differ in the treatment of rotation
ariables. From Eq. �93�, we immediately get for the first variant

x1�h� = hv0˜ + 0.5h2v̇0
˜ + O�h3� �96�

his result is also verified for the two other algorithmic variants
sing the series expansion of the exponential map for SO�3�; see
q. �66�. At velocity level, the numerical solution satisfies

v1�h� = v0 + hv̇0 + ��1 − ����m − � f� + ��1 + �m − � f��h2v̈0 + O�h3�
�97�

he conclusion follows from a comparison of Eqs. �89� and �90�
nd Eqs. �96� and �97�.

Numerical Results
This section compares the performance of three different algo-
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�1� “geom1” is the geometric Lie group algorithm with the
discrete operator �h

�1�.
�2� “geom2” is the geometric Lie group algorithm with the

discrete operator �h
�2�.

�3� “linear” is the classical generalized-� algorithm used with
an incremental parametrization of the rotation field as de-
scribed in Sec. 5.2.

For all methods, the algorithmic parameters are selected ac-
cording to the formulas described by Chung and Hulbert �12� as
follows:

� f =
�

� + 1
, �m =

2� − 1

� + 1
, � =

1

4
�1 + � f − �m�2,

� =
1

2
+ � f − �m �98�

where � represents the desired value of the spectral radius at
infinite frequencies. We will consider either a value � close or
equal to 1 �small or no numerical damping�, or the value �

=0.6 �significant numerical damping�.
Five different problems are studied. In all cases, the system is a

single object with fast rotating speeds and the problems differ in
the value of the inertia tensor, the applied load, the initial condi-
tions, and the structure of the equations of motion �without con-
straint as in Example 1 or with constraints as in Example 2�.

For the purpose of convergence analysis, numerical errors are
evaluated on the displacement x�ti�=R�ti�X at a set of specified
times ti as follows:

error =
1

ne
�
i=1

ne

	x�ti� − xref�ti�	 �99�

In the first three problems, the reference value is computed using
analytical solutions presented by Romano �28,29�. For the last two
problems, for each convergence curve, we use the reference
xref�ti� computed using the same algorithm but a smaller time step.

7.1 Rotating Body With Spherical Ellipsoid of Inertia and
Follower Torque. In this problem, the inertia tensor is J
=diag�3.,3. ,3.�, the reference point is X= �0. 0. −0.6�T, the ap-
plied following torque C= �0. 0. 30.�T is constant, and the equa-
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s in Example 1. The initial conditions are R�0�=I3, ��0�
�10. 15. 20.�T rad /s.
With this particular value of the inertia tensor, the nonlinear

yroscopic and centrifugal force vector is zero; i.e., ��J�=0.
he analytical solution described by Romano �28� is used for the
onvergence analysis in Fig. 2.

In the results, as predicted by the theory, the numerical errors
ecrease as O�h2�. Although numerical errors are quite small for
ll algorithms, we observe that the geometric algorithms are
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Fig. 3 Free rotating body. Error
lightly more accurate than the linear algorithm.
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7.2 Free Rotating Body. In this problem, the inertia tensor
J=diag�21.959,21.959,6.671� has an axial symmetry, the refer-
ence point is X= �0. 0. −0.646�T, there is no applied torque �C
=0�, and the equations of motion are formulated without any ki-
nematic constraint, as in Example 1. The initial conditions are
R�0�=I3, ��0�= �0. 0. 0236.�T rad /s. The analytical solution de-
scribed by Romano �29� is used for the convergence analysis.

Time domain and convergence results are given in Fig. 3. After
several seconds of simulation, the numerical solutions depart from
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he analytical solution. The geometric algorithms tend to preserve
he amplitude of oscillations, leading to good energy conservation,
ut the period is underestimated. The converse is observed for the
inear algorithm, with an increase in period and in amplitude. In
oth cases, numerical damping increases the dissipation of energy
uring the simulation.

Again, all methods are second-order accurate but the error con-
tants are now larger for geometric algorithms, which are slightly
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ess accurate than the linear algorithm.
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Trajectories in the x-y plane are also represented in Fig. 4.

7.3 Rotating Object With Follower Torque. As in the case
before, the inertia tensor is J=diag�21.959,21.959,6.671�, the
reference point is X= �0. 0. −0.646�T, but there is an applied fol-
lowing torque C= �0. 0. 40.�T aligned with the third axis of the
body. The equations of motion are formulated without any kine-
matic constraint, as in Example 1. The initial conditions are

T
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r all algorithms, compared with analytical solution
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Time domain and convergence results are given in Fig. 5. The
umerical solutions depart from the analytical solution with the
dvancement of computations. Numerical damping increases the
issipation of energy during the simulation.

All methods are second-order accurate but the error constants
re again larger for geometric algorithms, which are slightly less
ccurate than the linear algorithm.

7.4 Heavy Top (Without Kinematic Constraints). In this
xample, the inertia tensor with respect to the fixed point is J
diag�15.234375,0.46875,15.234375�, the reference point is X

�0. 1. 0.�T, and the applied gravity torque C= X̃RTm� with the
ass m=15 kg and gravity acceleration �= �0. 0. −9.81�T m /s2.
he equations of motion are formulated without any kinematic
onstraint, as in Example 1. The initial conditions are R�0�=I3,
�0�= �0. 150. −4.61538�T rad /s.
For each convergence curve, the reference solution is computed

sing a small time step h=1.5625�10−5 s.
The results are presented in Fig. 6. Even if numerical damping

s not introduced, the algorithms do not preserve the energy any-
ore. The linear algorithm shows a very small decrease in total

nergy, while the geometric algorithms present some oscillations
ith a larger drift in the geom2 algorithm.
All methods are second-order accurate but the error constants

re again larger for geometric algorithms, which are slightly less
ccurate than the linear algorithm.

7.5 Heavy Top (With Kinematic Constraints). The previous
xample is now formulated with kinematic constraints as in Ex-
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Fig. 5 Rotating body with follower torque
mple 2. The inertia tensor is now evaluated with respect to the
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center of mass �and not with respect to the fixed point as before�,
with J=diag�0.234375,0.46875,0.234375�. The other parameters
of the model are as in Sec. 7.4. Note that the initial acceleration is

computed as �̇�0�=J−1�X�m�−��0��J��0��, where J=J

−mX̃X̃ is the inertia tensor with respect to the fixed point �as in
Sec. 7.4�. We also have, according to the constraints, x�0�=X,

ẋ�0�=��0��X, and ẍ�0�=�̇�0��X+��0�� ���0��X�.
The case without numerical damping was not considered be-

cause of stability problems in the presence of kinematic con-
straints. Instead, a lightly damped case was considered �=0.9�.

Again, for each convergence curve, the reference solution is
computed using a small time step h=1.5625�10−5 s.

The results are displayed in Fig. 7. We observe that the results
are more accurate in this case than in the unconstrained case. After
several seconds of simulation, small drifts in the energy are ob-
served in all cases �the apparent energy conservation of geometric
algorithm 1 is a coincidence in this case�. All algorithms are of
order 2, with different error constants. The improved accuracy
might be explained by the smaller value of nonlinear gyroscopic
forces when the inertia tensor is evaluated with respect to the
center of mass.

Figure 8 represents the large rotation angles �here, the compo-
nent 2 of the Cartesian rotation vector �, which is defined such
that 	�	��� and the oscillations in the multipliers at the begin-
ning of the simulation. A stability analysis might allow a better
understanding of these phenomena; this issue should be investi-
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gated in a future work.
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Conclusions
This paper proposes a family of Lie group time integrators for

he simulation of flexible multibody systems. This method pro-
ides an elegant solution to the rotation parametrization problem
nd it does not suffer from parametrization singularities. As an
xtension of the classical generalized-� method for dynamic sys-
ems, it can deal with constrained equations of motion. Second-
rder accuracy has been demonstrated for three algorithms of this
amily in the unconstrained case, and has been verified for several
xamples in the constrained and unconstrained cases.

In several critical benchmarks of rigid body systems with large
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Fig. 6 Heavy top „without kinematic constrai
otation speeds, the performance of the Lie group algorithms has
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been compared with classical parametrization-based methods.
Even though the performance of the different algorithms is prob-
lem dependent, we conclude that the new methods can compete
reasonably well with classical approaches from the viewpoints of
accuracy, stability, and energy conservation.

The main advantages of the proposed approach are related with
its particular formulation, which is both generic and remarkably
simple compared with parametrization-based algorithms. Tangent
operators can be easily derived analytically without any approxi-
mation, at least for rigid multibody problems. This allows an ef-
ficient implementation of the Newton algorithm at each time step
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he resulting code is an advantage for real-time applications, large
cale problems, or parametric studies. The availability of simple
ormulations of tangent operators is also useful for the implemen-
ation of a sensitivity analysis based on a semi-analytical ap-
roach, which opens some interesting perspectives for the optimi-
ation of multibody systems. Finally, model simplicity and
fficiency are valuable for the development of model-based con-
rol schemes. Hence, the proposed Lie group time integrators are
romising candidates for the development of robust, efficient, and
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pen simulation software for flexible multibody systems.
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For constrained dynamic systems on Lie group, further studies
may include a stability analysis as well as a global convergence
analysis.
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