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In the present work we study how the adsorption-desorption hysteresis loop of a mesoporous-disordered
medium represented by a three-dimensional dual site-bond model is affected by percolation for different
kinds of site and bond distributions. The behavior of the threshold pressure for the evaporation process,
as a function of the separation between the site and bond distributions and their dispersions, suggests
a method to determine them from experimental adsorption-desorption hysteresis curves.

1. Introduction
The problem of the characterization of porous media,

i.e., the determination of their morphological properties
from experimental data, involve both theoretical and
experimental methods, which have extensively been
reviewed in ref 1. Some of the experimental methods, like
NMR, small-angle X-ray spectroscopy (SAXS), and small-
angle neutron scattering (SANS), require sophisticate
instruments while others, like porosimetry and adsorp-
tion-desorption of vapors, use much simpler apparatus,
which can be available to practically any laboratory.
Theoretical methods based on any of these experimental
techniques require assuming a given geometrical shape
for the pores, and this is an important general limitation.
Adsorption-desorption of vapors, relying on the Kelvin
condensation-evaporation process in a curved liquid-
vapor interface, is particularly useful for mesoporous solids
(pore sizes in the range 20-500 Å) used in a number of
practical applications, especially catalysis.

From the above we see that the characterization of
mesoporous materials, and in particular the determination
of the pore size distribution, from adsorption-desorption
experiments is a subject of great practical importance.
However, as we shall see, this still stands as an open
problem presenting interesting theoretical challenges,1-8

and this is more remarkable in the case of disordered (or
amorphous) porous media. In fact, the shape and extent
of the adsorption-desorption hysteresis loop (ADHL) of
vapors in mesoporous materials are known to be influenced
by several characteristics of the porous space; the geo-
metrical shape of the pores, their size distribution, and
the interconnectivity of the porous network are among
those which have been studied intensively for a long time.

The problem has two aspects: In the first place, a model
describing the properties of the medium must be given,

and then, within that model, a procedure to determine
the pore size distribution must be developed. Modeling of
porous media has evolved along two different, but
complementary, lines: continuum and discrete models.
Continuum models, based on a continuous characteristic
function attaining the value 0 at an empty point and 1 at
a solid point, have proven to be more adequate to study
the flux of fluids through the medium.9-13 On the other
hand, discrete models, representing the porous space by
a network of voids (sites) connected by throats (bonds),
have demonstrated to be a powerful tool to study the
percolation properties of the medium and those phenom-
ena depending on its topological properties.3,5,6,8,14-21

Among the family of discrete models, the dual site-
bond model (DSBM), introduced by Mayagoitia et al.3 is
the simplest model which takes into account spatial
correlation among pore sizes, allowing in this way to
generate porous networks with different structures.
Within the framework of this model, through analytical
calculations on a Cayley tree (where no closed loops are
involved)14 and through Monte Carlo simulations in two-
dimensional networks,15 it has been shown that spatial
correlation among pore sizes drastically affects percolation
probabilities. It is then to be expected that in more realistic
three-dimensional networks spatial correlation will have
similar effects on the percolation probabilities and these,
in turn, will affect the ADHL. Accordingly, the first, and
central, purpose of this work is to study how the ADHL
is influenced by spatial correlation as described by the
DSBM. We remark that real disordered mesoporous
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materials are hardly conceivable as completely random
media and that the determination of percolation prob-
abilities in three-dimensional correlated porous networks
is a nonsolved problem. Thus, our idea is to study directly
the effects of spatial correlations on ADHL with the hope
of finding a general empirical behavior.

The problem of obtaining the site and bond size
distributions from the analysis of ADHL has been solved
so far only for noncorrelated porous networks and in the
extreme cases where the pore volume can be attributed
either entirely to the sites or entirely to the bonds.6,22,23

It seems that the hypothesis that the main pore volume
resides in the sites, while the bonds only play a role in the
interconnectivity effects, is reasonable for a variety of
porous solids,6 and to keep the present study simple with,
respect to all aspects which are relevant to our central
purpose, such a hypothesis will be assumed in what
follows. Our second purpose in this work is to take a first
step toward the development of a method to determine
the site and bond size distributions from the analysis of
ADHL, for the general case of correlated porous networks.

The organization of the present work is as follows. In
section 2 we briefly review the highlights of the DSBM.
In section 3 we present a model to simulate the adsorption
and desorption processes in three-dimensional correlated
porous networks and to obtain ADHL. Results for ADHL
corresponding to site-bond lattices with Gaussian and
Gamma size distributions and for different correlation
degrees are presented and discussed in section 4. In section
5 we test classical characterization methods (not consid-
ering spatial correlations) against simulation results,
showing their limitations, and then we propose a method
to obtain site and bond size distributions from experi-
mental data on the basis of a quasi-universal empirical
equation emerging from the analysis of all the above
results. Finally, conclusions are given in section 6.

2. Dual Site-Bond Model (DSBM)
Let S(R) and B(R) be the distribution functions associ-

ated with the site and bond size R and FS(R) and FB(R)
the corresponding probability density functions, such that

and let the intervals s ) [s1,s2) and b ) [b1,b2) be the support
of site and bond measures, i.e., the set of values of R for
which FS and FB are positively defined. The way in which
sites and bonds are connected to form the network is given
by the joint probability density function, F(RS,RB), of
finding a site with size RS ∈ (RS, RS + dRS) connected to
a bond with size RB ∈(RB, RB + dRB). The two basic laws
describing the DSBM are:

The first law, eq 2, implies that b1 e s1 and b2 e s2, while
the second law, eq 3, called the construction principle (CP),
is of a local nature and expresses the fact that the size RB
of any bond cannot be bigger than that of the two connected
sites (in a porous medium the size of a throat cannot be
larger than that of the two connected voids).

If the joint probability function is expressed as

then the correlation function Φ carries the information
about the site-bond assignation procedure in the network.
In the simplest case where sites and bonds are assigned
to each other in the most random way as allowed by the
CP, called the self-consistent case, then Φ(RS,RB) attains
the following expression:

If we denote by Ω the overlapping area between the site
and bond probability density functions, as shown in Figure
1for the simple case of uniform distributions, the function
Φ has the following properties: (i) ΦΩf0(RS,RB) ) 1, ∀RS,
RB, sites and bonds are distributed completely at random,
and (ii) ΦΩf0(RS,RB) ∝ δ(RS - RB), ∀RS, RB, sites and bonds
group together in macroscopic patches, each having a value
of R. Then, the overlapping Ω is the fundamental
parameter describing the topology of the network in this
model.

This behavior also suggests that Ω must be related to
some correlation length (which would be a physically more
meaningful parameter), characteristic of the decay of the
spatial correlation function defined as:

In fact, it is expected that C(r) decays approximately in
an exponential form (this would be the exact behavior for
a one-dimensional network generated by a Markov chain
of events)

where l0 is the correlation length (measured in lattice
constants). This expression has been used extensively in
applications of the DSBM8 together with the ansatz
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S(R) ) ∫0

R
FS(R′) dR′

B(R) ) ∫0

R
FB(R′) dR′ (1)

B(R) - S(R) g 0 (2)

F(RS,RB) ) 0 for RS < RB (3)

Figure 1. ADHL for Gaussian site and bond distributions for
fixed σ and d showing the effect of the position of the site
distribution. In the inset the site (thick line) and bond (thin
line) distributions are represented for each case. Filled black
symbols are used for the adsorption process and open ones for
the desorption process.

F(RS,RB) ) FS(RS)FB(RB)Φ(RS,RB) (4)

Φ(RS,RB) )
exp[- ∫RB

RS dB
B - S]

B(RB) - S(RB)
(5)

C(r) ) 〈RS(rb0)RS(rb0 + rb)〉 ) 〈RB(rb0)RB(rb0 + rb)〉 (6)

C(r) ≈ exp(-r/l0) (7)

l0 ≈ Ω/(1 - Ω) (8)
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relating the overlapping with the correlation length, in
such a way that l0 f 0 for Ω f 0 and l0 f ∞ for Ωf 1.

The problem of the generation of DSBM networks has
been intensively investigated.3,8,24-28 We employ here the
method presented in refs 8 and 25 for the Monte Carlo
generation of such networks, which can be resumed in
the following very simple terms. An initial network is
prepared by sampling the values of RS and RB from the
corresponding probability density functions FS and FB and
distributing them completely at random on the lattice.
This network will have the correct FS and FB but not the
correct Φ(RS,RB); in particular the CP is not obeyed
everywhere. Then a Markov chain of new states of the
network is generated by choosing at random pairs of sites
(or bonds) and attempting to exchange them; the exchange
is accepted if it does not violate the CP. It has been
demonstrated25 that this procedure leads finally to the
equilibrium distribution for the network and that it does
not suffer the imperfections introduced by other methods
(mainly anisotropy).

Once a network with the desired properties has been
generated, ADHL can be simulated according to the model
to be described in the next section.

3. Adsorption-Desorption Process
3.1. Theoretical Background. Basically, the method

employs the well-known Broekhoff and de Boer equation,29

which is a generalization of the classical Kelvin equation
for condensation-evaporation processes on curved liquid-
vapor interfaces

where RT ln(p0/p) is the so-called adsorption potential or
differential adsorption work.30 It could also be identified
as the difference in the chemical potential between a
saturated phase at an equilibrium liquid-vapor pressure
p0 and an adsorbed one at a pressure p, both at the same
temperature T. This adsorption potential has two parts.
The first, due to the presence of the solid surface and
lateral interactions among the adsorbate molecules packed
at a liquidlike density and forming an adsorbed layer of
thickness t. This potential is only a function of t and is
given by the so-called universal t curve relation:30

For a curved adsorbed layer with local thickness tc, t
must be replaced by tc in this equation. This takes into
account the correction to the differential adsorption work
due to the surface curvature.

The second part of the potential is due to the meniscus
separating the adsorbed phase from the vapor phase, γv/
Rm, where γ and v are the adsorbate surface tension and
molar volume, respectively, and Rm is the mean curvature
radius of the interface. Moreover, γ varies with the mean
curvature radius as γ0Rm/(Rm - σ),32 where γ0 is the surface

tension for a plane layer and σ is the effective molecular
diameter for the adsorbate. Rm is given by

where R1 and R2 are the principal curvature radii of the
interface. Thus, for spherical and cylindrical pore geom-
etry, the potential in eq 9 is given, respectively, by

In our network we assume that sites are spherical, and
then represented by eq 12a, and that bonds are cylindrical,
and then represented by eq 12b.

When adsorption takes place, the whole network is
accessible to the gas. As pressure increases, tc increases
and its value can be found as a solution of these equations
as long as the meniscus radius is above the Kelvin critical
radius for capillary condensation. Therefore, a pore (site
or bond) with an already adsorbed layer of thickness tc at
the previous pressure step will condense (not condense)
at the new p0/p value, if eq 12 does not have (has) a solution
with a new tc value (the absence of a value of tc satisfying
the equation means that capillary condensation already
occurred). In the case of the condensation in sites, an
additional condition to ensure vapor meniscus continuity,
i.e., that at least Z - 1 of the connected bonds (Z being
the local network connectivity) must be previously filled
with liquid, must also be fulfilled for condensation to
occur.33 This last condition, ensuring continuity in the
liquid-vapor interface, is, however, not always considered
in the literature, and we will also explore the consequences
of dropping it.

For the desorption stage, a pore (site or bond) will
evaporate at a p0/p value if its hemispheric curvature
radius Rm is greater than the critical Kelvin radius, RK
) γ0v/RT ln(p/p0), corresponding to that pressure, and if,
in addition, such a pore is connected to the vapor phase
by a continuous path of already evaporated pores. This
last condition introduces cooperative effects in the de-
sorption branch which can be expressed by the relation8

where Vad (Vdes) is the volume filled with adsorbate in the
adsorption (desorption) branch, q is the fraction of bonds
with R > RK (both Z and q calculated for those sites with
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RT ln
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p
) F(tc) + γv

Rm
(9)

F(t) ) 2.303RT[16.11
t2

- 0.1682 exp(-0.1137t)] (10)

1
Rm

) 1
R1

+ 1
R2

(11)

RT ln
p0

p
)

2.303RT[16.11
tc

2
- 0.1682 exp(-0.1137tc)] +

γ0v
RS - tc

2
- σ

(12a)

RT ln
p0

p
)

2.303RT[16.11
tc

2
- 0.1682 exp(-0.1137tc)] +

γ0v
RB - tc - σ

(12b)

[1 - Vdes(RK)] ) [1 - Vad(RK)]PB(Zq) (13)
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R > RK), and PB is the percolation probability for the bond
problem. This percolation factor produces an inhibiting
effect during the evaporation process: the larger the
percolation threshold, the greater will be the retarding on
the evaporation branch.8

Once a pore fulfills the two desorption conditions at a
given p0/p, it is evaporated leaving a liquid layer of
thickness tc, where tc is again the solution of eqs 12a and
b for spherical and cylindrical cavities, respectively, at
that relative pressure. Each time p0/p decreases, tc is
recalculated by means of eq 12 for each partially filled
pore until it empties completely.

3.2. Simulation Algorithm. Cubic porous networks
of L × L × L are generated sampling the site and bond
radii from given distributions with the same shape, the
bond distribution being shifted to lower radii. We consider
two kinds of distributions: the Gaussian and the Gamma
distribution.

(i) Gaussian Distribution. We used two truncated and
renormalized Gaussian distributions, with mean values
Sm and Bm for sites and bonds, respectively, and the same
standard deviation σ. The limits for sampling radii for
sites and bonds were chosen to be Sm ( 2σ and Bm ( 2σ,
respectively.

(ii) Gamma Distribution. We used two truncated and
renormalized Gamma distributions of the form Γ(R) ) (R
- R0)n-1e-(R - R0), truncated at the upper limit at the value
R0 + 2n. The values of site and bond radii at maximum
probability (Sm and Bm, respectively) are obtained in each
case as R0 + (n - 1).

Samples with different overlapping, and then with
different correlation length, were generated by moving
the bond distribution to the right while keeping the site
distribution fixed. Once the desired porous network is
generated for a given kind of distribution by following the
method described in section 2, sorption isotherms are
simulated, recording the adsorbed or desorbed volume V
as a function of p0/p.

Starting at V ) 0, the adsorption branch algorithm
employed was as follows:
• A p/p0 value is fixed.
• tc is calculated for each bond connected to a site i, j, k
by using eq 12b,

if eq 12b has solution then the adsorbed layer on that
bond is actualized.

else, that bond condenses.
V does not change in any case because no volume is

associated to bonds.
• tc for site i, j, k is calculated using eq 12a,

if eq 6a has a solution, then the adsorbed layer on the
site is actualized and V is actualized.

if eq 12a has no solution and the number of its filled
connected bonds is gZ - 1, then that site condenses and
V is actualized.
• i, j, k is looped until the entire network is inspected.
• The relative pressure value is increased and all the above
repeated until p0/p ) 1.

Starting at V ) 1, the desorption branch algorithm
employed was as follows:
• A p/p0 value is fixed (starting from 1).
• A number of bonds at the external faces of the cube are
connected to the gas phase. tc is calculated for each of
them using eq 12b,

if eq 12b has solution, then if Rm ) (RB - tc)/2 g RK the
bond evaporates leaving alayer of thickness tc.
• Elements (sites and bonds) in the whole network are
inspected,

if the element is connected to the gas phase, then tc is
calculated.

If it is a site and eq 12a has solution, then it is evaporated
leaving a layer of thickness tc and V is actualized.

If it is a bond, the procedure is the same as for surface
bonds.
• The relative pressure value is decreased and all the above
repeated until p0/p ) 0.

4. The Behavior of Adsorption-Desorption
Hysteresis Loops

Actual calculations were carried out by assuming N2 at
77 K as the adsorbate. To eliminate spurious effects in
the desorption branch due to a high surface-to-volume
relation in a cubic network of size L × L × L (with L
moderately small), it was necessary to connect the sample
to the vapor phase through just one single bond on the
external faces of the cube. Moreover, it was determined
that finite size effects became negligible for L ) 50, so
that this was the size finally used to obtain our results.

A first series of ADHL was obtained for site and bond
Gaussian distributions with σ ranging from 1 to 20, Sm
from 75 to 240, and d ) Sm - Bm from 10 to 75 (all size
and distance units are in angstroms). The overlapping Ω,
and then the correlation length l0, depends on both σ and
d. As an example, a few values are given in Table 1.

In Figure 1, the behavior of ADHL as Sm changes, when
σ and d are fixed, can be observed. The different Gaussian
site and bond distributions used are shown in the inset.
The adsorption branch, and consequently the whole
ADHL, moves to higher relative pressure as Sm increases,
as expected. The partial saturation shoulder on the
adsorption branch is readily explained due to the coop-
erative effect introduced by the condition that Z - 1
connected bonds must condense before a site is allowed
to condense. In fact, when bond and site distributions are
close enough as in this case, spatial correlation is strong
and a large site is probably surrounded by large bonds,
thus retarding more the condensation process (it should
also be considered that bonds have a cylindrical geometry,
thus doubling the mean curvature radius). On the
contrary, when the distributions are far apart, the
correlation length is nearly zero and a large site is probably
surrounded by several smaller bonds, which have already
condensed, and the retarding effect on condensation should
become much smaller (as will be shown below). The
desorption branch presents a well-defined knee, whose
position should be in close correspondence with the
percolation threshold, according to eq 13. As we can see,
the ADHL is wider, and the percolation threshold higher,
when pore sizes are generally smaller (lower values of
Sm), even though the overlapping Ω between site and bond
distributions remains the same. However, due to the
retarding effect on the adsorption branch just discussed
above, the variation in the wideness of the ADHL cannot
be attributed entirely to the bond percolation threshold.

Figure 2shows the behavior of ADHL for fixed Sm and
σ as d changes. As discussed above, the shoulder in the
adsorption branch gradually disappears as d increases
and consequently the correlation length decreases. We
now observe that the position of the knee in the desorption
branch shifts to lower pressure as d increases; however
at the same time the wideness of the ADHL also decreases.
The first effect was to be expected from two-dimensional

Table 1. Overlapping Values for Different σ and d

σ d Ω

1 10 0
5 10 0.3

10 10 0.6
10 35 0.04
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results,15 where it was found that the bond percolation
threshold increased as the overlapping between site and
bond distributions (and then the correlation length)
decreased. The second one is the consequence of the
disappearance of the cooperative effect on the adsorption
branch as d increases.

From the above it turns out that the position of the
desorption knee, which we denote as p*, should be a
relevant parameter to describe the behavior of ADHL since
it reflects directly the percolation properties of the porous
network independently of the way in which condensation
took place. Of course, the exact value of this parameter
depends on the way in which this relative pressure is
determined from the desorption branch, and this could be
quite arbitrary. Just to fix a simple criterion, we take as
p* the value of the relative pressure where the normalized
adsorbed volume takes the value 0.9 on the desorption
branch. With this we obtain the variation ofp* as a function
of d, for different values of Sm and σ, shown in Figure 3a.
As we can see, we have different families of curves for
each value of Sm, and in each family p* decreases with d,
the decrease becomes quicker as the value of σ becomes
smaller.

We now want to study the effects of changing the shape
of site and bond distributions, by using the Gamma
distribution, and also the effects of dropping the condition
that Z - 1 bonds should have condensed in order that the
connected site can condense if it has reached the Kelvin
radius. Under these conditions we obtain the ADHL shown
in Figure 4. The three series, from top to bottom, are
obtained with the same value of n ) 5, and each one
corresponds to a given Sm. Within each series the different
loops are for different values of d ) Sm - Bm. We observe,
as expected, that we do not have any cooperative effect in
the adsorption branch, which is the same for each series,
and that the desorption knee shifts to lower pressure as
d increases, indicating an increase in the percolation
threshold. The behavior of p* as a function of d, for different
values of Sm and n, shown in Figure 3b, is similar to that
obtained in the case of the Gaussian distribution.

In what follows we intend to use the observed behavior
of ADHL in proposing a characterization method, over-
coming limitations of classical methods.

5. Characterization Method

Classical characterization methods to obtain site and
bond distributions from experimental ADHL have been
extensively discussed in refs 1 and 6. All methods are

similar, in the sense that they are developed under the
assumption that no spatial pore size correlations are
present in the network. To test the validity of the
predictions of these methods against the simulation results
obtained above for a given ideal porous network, we shall
use them in predicting the bond distribution, given the
site distribution, from simulated ADHL.

In particular, we consider the method described in ref
6 for the same ideal porous network considered in our
simulations, i.e., spherical sites and cylindrical bonds, the
adsorbed volume in bonds being negligible. According to
this method, the hysteresis loop is described by eq 13,
where, neglecting correlations, the relation between the
parameter Zq and the Kelvin radius RK is given by

where S and B are the integral site and bond distributions
defined by eq 1. In addition, the method makes use, in eq
13, of the “universal” bond percolation probability due to
Kirkpatrick,34 valid for three-dimensional uncorrelated
networks:

Now the method proceeds as follows: given the site
distribution, FS(R), and the simulated “experimental”
ADHL, PB(Zq) is obtained using eq 13 and then Zq is
obtained by inverting eq 15. With this, B(RK) is calculated
from eq 14 and, finally, FB(R) is obtained by differentiation.

(34) Kirkpatrick, S. Rev. Mod. Phys. 1973, 45, 574.

Figure 2. ADHL for Gaussian site and bond distributions for
fixed σ and Sm showing the effect of the shift in the bond
distribution, d.

Figure 3. Variation of the desorption knee relative pressure,
p*, with the shift between site and bond distributions: (a)
Gaussian distribution; (b) Gamma distribution.

Zq ) Z0[1 - B(RK)]/[1 - S(RK)] (14)

PB(x) ) {0; x < 1.5

1.54(x - 1.5)0.4/[1 + 0.606(x - 1.5)0.4];

1.5 e x e 2.7
1; x > 2.7

(15)
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Figure 5shows the test of this method for the case of the
Gaussian distribution with Sm ) 100 and σ ) 5, for
different values of d. In each case the full line represents
the given site distribution, the broken line the actual
theoretical bond distribution, and the open circles (with
line to guide the eye) the bond distribution predicted by
the above classical method. Important deviations are
evident, especially in the case of important overlapping
between actual site and bond distributions (upper part),
corresponding to stronger spatial correlations.

From these results we infer that classical characteriza-
tion methods not taking into account spatial correlations
(i.e., they force the medium to be completely random) have
serious limitations and that new methods are necessary.

Our analysis of the effects of percolation on ADHL for
correlated networks suggests that the position of the bond
distribution, determined by Bm, and the relative pressure
at the desorption knee, p*, are the two most relevant
parameters. When all results for the Gaussian and Gamma
distributions, represented in Figure 3, are cast together
in a graph of Bm as a function of p*, Figure 6, we see that
all the data come on a single “quasi-universal” curve, given,
by means of a least-squares curve fitting, by the simple
equation

where Bm should be measured in nanometers. This is a
quasi-universal equation in the sense that, at least for
the variations we have considered here, it does not depend

on the shape of the size distribution and its mean square
deviation, or on the position of the site distribution, or
even on the adsorption process considered (cooperative
effects from Z - 1 bonds for the condensation in a site).
The universality is limited by the facts that we considered
a network whose pore volume is essentially attributed to
the sites and that we considered the weakest possible
formof correlation, i.e., theone imposedbytheconstruction
principle and given by the dual site-bond model. At the
present time we do not have a theoretical or approximate
scaling justification of this equation, and it should be taken

Figure 4. ADHL for Gamma site and bond distributions. The
inset shows the site (full squares) and bond (open symbols)
distributions used in each case.

Bm(nm) ) 1
1 - p*

(16)

Figure 5. Numerical test for classical characterization meth-
ods: the thick full curve represents the site distribution used,
the dashed curve represents the bond distribution used, and
the open circles are the predictions of the method given in ref
6.

Figure 6. Quasi-universal empirical relation between Bm and
p* showing the collapse of all the data corresponding to Figure
3 on a single curve.
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as an empirical law. A better understanding of how this
relation arises could be achieved through the study of
percolation probabilities in three-dimensional correlated
networks, not available at the moment.

Equation 16 can now be used to propose a character-
ization method, which we believe is a first realistic
approach to obtain the site and bond size distributions
from experimental ADHL of vapors for mesoporous
materials. The method can be described through the
following steps:

(i) Obtain the size distribution for sites from the
experimental adsorption branch. This, assuming that the
volume associated with bonds is negligible, can be easily
achieved from a differential analysis of that branch.1,2

(ii) Independently of the shape of the distribution
obtained for the sites, assume the same shape for the bond
distribution. This is not a too strong restriction, consider-
ing that other quite stronger restrictions are necessarily
made in any method, like the one regarding the pore
geometry (sites and bonds).

(iii) Obtain p* from the experimental desorption branch
and calculate Bm from eq 16. This will give the positioning
of the bond distribution.

6. Conclusions
We have studied through Monte Carlo simulation how

ADHL are affected by the topological characteristics,
closely related to the percolation characteristics, of cor-
related three-dimensional porous networks described by
the DSBM for Gaussian and Gamma size distributions.
We have in addition assumed that the pore volume in our
networks resides mainly in the sites, whereas bonds only
contribute to percolation effects. The use of the DSBM
has the advantage that once the shape of site and bond
size distributions is fixed, the topological characteristics
of the porous network depend on a single parameter, the
overlapping Ω between those distributions (closely related
to the correlation length of the network, eq 8).

A wide range of the parameters has been investigated,
and we have found out that all results can be conveniently
represented in terms of two main variables: p*, the
relative pressure at the desorption knee in the ADHL,

and Bm, the size of maximum probability in the bond
distribution. By use of these two variables, all results
scatter closely around a characteristic quasi-universal
curve, eq 16. These findings provide us with a method to
determine the site and bond distributions for correlated
networks from the analysis of experimental ADHL.

The proposed method represents a first realistic ap-
proximation to the solution of the characterization problem
for mesoporous materials, given that (a) realistic meso-
porous disordered material cannot be completely random
and present spatial correlations in pore sizes, (b) classical
methods based on random networks show important
deviations in the determination of the bond distribution,
given the site distribution, (c) the DSBM is the simplest
available model to describe a porous network with the
minimum degree of correlation, namely, that imposed by
the construction principle, (d) the desorption branch of
the ADHL is mainly determined by the bond percolation
probability, however this has only been obtained in the
framework of the DSBM for Cayley trees (no closed loops)
and for two-dimensional networks, and (e) the proposed
method overcomes the deviations of classical methods in
the sense that it is better to consider just the minimum
degree of correlation, which should be common to all porous
networks, than considering no correlation at all.

Our final conclusion is that a general and realistic
characterization of mesoporous materials still remains
as an open problem. Further developments should be
directed to investigate the percolation probabilities in
three-dimensional porous networks, described, in a first
step, by the correlations considered in the DSBM, and
then networks with stronger correlations. The effects of
the network topology in a model where the main porous
volume is attributed to the bonds (the opposite of the
present model) should also be investigated, to end up
finally with the general case where the porous volume is
shared by sites and bonds.
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