How reliable could economic Hartree-Fock computations be in studying large, folded peptides? A comparative HF and DFT case study on N - and C-protected aspartic acid

Joseph C.P. Koo ${ }^{\text {a,* }}$, Janice S.W. Lam ${ }^{\text {a }}$, Salvatore J. Salpietro ${ }^{\text {a }}$, Gregory A. Chass ${ }^{\text {a,b }}$,
R.D. Enriz ${ }^{\text {c }}$, Ladislaus L. Torday ${ }^{\text {d }}$, Andras Varro ${ }^{\text {d }}$, Julius Gy. Papp ${ }^{\text {d,e }}$
${ }^{\text {a }}$ Department of Chemistry, University of Toronto, Toronto, Ont., Canada M5S 3H6
${ }^{\mathrm{b}}$ Velocet R\&D, 210 Dundas St. West, Suite 810, Toronto, Ont., Canada M5G 2E8
${ }^{\text {c Department of Chemistry, National University of San Luis, Chacabuco 971, } 5700 \text { San Luis, Argentina }}$
${ }^{\mathrm{d}}$ Department of Pharmacology and Pharmacotherapy, Szeged University, Dóm tér 12, H-6701 Szeged, Hungary
${ }^{\mathrm{e}}$ Division of Cardiovascular Pharmacology, Hungarian Academy of Sciences and Szeged University, Dóm tér 12, H-6701 Szeged, Hungary

Received 23 June 2002; accepted 11 August 2002

Abstract

In this study, potential energy hypersurfaces have been generated and analyzed for each of the nine possible backbone (BB) conformations for both the endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide. Ab initio calculations were carried out at RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d) levels for all backbone conformations. The relative energies, as well as stabilization energies exerted by the sidechain (SC) on the backbone, were calculated for all stable conformers. All sidechain-sidechain ($\mathrm{HO} \cdots \mathrm{O}=\mathrm{C}$), backbone-backbone ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$), and sidechain-backbone ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} ; \mathrm{N}-\mathrm{H} \cdots \mathrm{OH}$) hydrogen bond interactions were analyzed. The appearance of the traditionally absent α_{L} and ε_{L} conformers may be recognized as special geometric orientation which the aspartyl residue manifests during peptide folding or ligand docking in a receptor that contains aspartic acids in its ligand recognition sites. At all three levels of theory, there exists a trend between the hydrogen bond distance and ring size. In addition, strikingly high correlations between the torsional angles ($R^{2}=0.9937$ for RHF/6$31 \mathrm{G}(\mathrm{d})$ versus $\mathrm{RHF} / 3-21 \mathrm{G} ; R^{2}=0.9967$ for B3LYP/6-31G(d) versus $\mathrm{RHF} / 6-31 \mathrm{G}(\mathrm{d}) ; R^{2}=0.9914$ for B3LYP/6-31G(d) versus RHF/3-21G) and between the ΔE values in $\mathrm{kcal} / \mathrm{mol}\left(R^{2}=0.9424\right.$ for $\mathrm{RHF} / 6-31 \mathrm{G}(\mathrm{d})$ versus RHF/3-21G; $R^{2}=0.9108$ for B3LYP/6-31G(d) versus RHF/6-31G(d); $R^{2}=0.9434$ B3LYP/6-31G(d) versus RHF/3-21G) found at the different ab initio levels suggest that calculations carried out at the lower levels (i.e. at RHF/3-21G) are still significant.

© 2002 Elsevier Science B.V. All rights reserved.
Keywords: Aspartic acid residue; Density functional theory conformations; α_{L} Helical structure; ε_{L} Helical structure; Internal hydrogen bonding; External hydrogen bonding

[^0]
1. Introduction

Computational molecular modeling is a field of great interest in recent years. In particular, computational studies have played a dominant role
in drug designs as well as functional studies in pharmacology [1-8]. However, results from computational modeling are often limited by computer powers. In addition, the speed of which these results were generated is also determined by the different theories that form the fundamental formulas and equations in these modeling computer programs. The more strict and less degree of freedom a particular theory has, the more accurate the results, and the computation requires a longer period of time. In quantum chemistry, the efficiency and accuracy of ab initio calculations are restricted by the abovementioned conditions. It is important to perform ab initio studies on peptides and molecules, as they are the constituents from which proteins, ligands, and other macromolecules were formed. All amino acids can now be studied by ab initio methods. Many single amino acids have already been subjected to detailed ab initio calculations. These attempts include, among others, alanine [$9-14]$, asparagines [15], cysteine [16, 17], glycine [18,19], phenylalanine [20-22], proline [23], selenocysteine [24], serine [25-27], and valine [28]. In the past, it is always assumed that only results generated at B3LYP/6-31G(d) (or density functional theory, DFT) or higher levels would have validity while results from the Hartree-Fock levels, including the RHF/3-21G and RHF/6-31G(d), are only viewed as preliminary 'guesses' and estimates of the true values. As a result, ab initio computational studies are often time-consuming, a factor that affects the efficiency of which result analyses can be reported. In this paper, we wish to explore the answer to the question whether ab initio results generated at the RHF/3-21G and RHF/6-31G(d) levels are sufficiently accurate when compared to higher levels of theory such as DFT. Here, all stable conformers for the aspartic acid residue, N-acetyl-L-aspartic acid N^{\prime} methylamide, were computed at RHF/3-21G, RHF/ $6-31 \mathrm{G}(\mathrm{d})$, and B3LYP/6-31G(d). In turn, we compared the correlation of these levels of theory by comparing their torsional angles computed for all stable conformers.

2. Stereochemical background

An earlier study performed by Salpietro et al. [29] focused on the sidechain potential energy surface
of N-formyl-L-aspartic acidamide and its conjugate base N-formyl-L-aspartamide in their γ_{L} backbone conformations. In that study, ab initio calculations were performed on all conformations of the parent aspartic acid diamide and its conjugate base with depronated sidechain. Propionic acid and priopionate ion were, respectively, used to mimic the sidechain of N -formyl-L-aspartamide in its neutral and anionic form. In this report, the full backbone (BB) and sidechain (SC) conformations of N -acetyl-L-aspartic acid N^{\prime}-methylamide in both endo and exo forms were explored for the carboxylic acid moiety.
N-acetyl-L-aspartic acid N^{\prime}-methylamide differs from N-formyl-L-aspartic acidamide by having methyl groups instead of H atoms in each of its N and C-protective groups, as shown in Fig. 1. It is expected that the backbone geometry of N-acetyl-Laspartic acid N^{\prime}-methylamide will be analogues to that of an alanine residue. In this case, however, an H atom of the α-methyl group in alanine is replaced with a COOH group. Previous studies on the alanine molecule [$9-14$] did not reveal any stable conformer in either the α_{L} and ε_{L} backbones. Because alanine is the simplest chiral amino acid whose backbone also recurred in other peptide residues, it was predicted at first that no stable α_{L} and ε_{L} conformers will exist N -acetyl-L-aspartic acid N^{\prime}-methylamide.

As mentioned above, other ab initio studies have been performed on various single amino acids [9-28]. In this investigation, the 4D-Ramachandran potential energy hypersurface (PEHS) of the N-methylated aspartic acid, where $E=E\left(\phi, \psi, \chi_{1}, \chi_{2}\right)$, is explored by varying the backbone (ϕ, ψ) and sidechain (χ_{1}, χ_{2}). As a result, $3^{2}=9$ backbone conformations ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}$, $\delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \varepsilon_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) are coupled with $3^{2}=9$ sidechain orientations on a 2D-Ramachandran Map, shown in Fig. 2. Consequently, $3^{4}=81$ geometries were optimized on a 4D-Ramachandran PEHS, shown in Fig. 3, for both the endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide.
N-acetyl-L-aspartic acid N^{\prime}-methylamide exists in two forms: endo and exo. This is because its carboxyl group of the propionic acid sidechain also exist in two forms: where $\chi_{3}=180^{\circ}$ denotes the endo orientation and $\chi_{3}=0^{\circ}$ denotes the exo orientation, shown in Fig. 4. As a result, it is clear that the sidechain of N-acetyl-L-aspartic acid N^{\prime}-methylamide can be modeled by propionic acid $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}\right)$

(a)

(b)

Fig. 1. Definition of torsional angles and atomic numbering for (a) the endo form and (b) the exo form of N-acetyl-L-aspartic acid N^{\prime} methylamide.
where the α-carbon on the aspartic acid residue is represented by CH_{3}.

In this paper, optimization results for all stable conformers found in both the endo and the exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide were reported. Studying the aspartic acid residue in both its endo and exo form is important in a biological system. For example, in its exo form, the peptide residue is allowed to form external hydrogen bonds and when in its endo form, these external hydrogen interactions may be broken to allow the formation of other stabilizing forces. These forces are especially important in a biological system involving ligand binding, substrate interactions, protein docking and protein-protein interactions; all of which are pharmacologically important on a molecular level.

3. Biological background

It is not difficult to find the many biological implications involving aspartic acid. On a molecular level, mutational studies involving the aspartic acid residue are very popular in the recent years. For
example, it was shown that mutations in two aspartate regions of the human immunodeficiency virus-1 (HIV-1) chemokine coreceptor CXCR4 would reduce the coreceptor's function in enhancing HIV-1 entry into host cells [30]. The aspartic residue is also shown to be clinically important in many situations. Neurologically, the quantification of N -acetylaspartate is a potential relative measurement of cellular dysfunction and neuronal loss for stroke patients suffering from cerebral injury [31]. In experiments that explore the issue of aging, it was shown that K and Mg salts of aspartic acid intake allows rats to survive longer by as much as 30% [32,33].

An ongoing list of biological applications and experiments can be contributed to researches involving aspartic acid, including lipase activities [34], probing for the binding sites of HIV-1 protease [35], immunological antiproliferative experiments [36], protein modification studies in Alzheimer's disease [37], enzyme kinetics involving bacteria [38], using aspartic acid-specific sites to probe for target proteins in their normal and disease states [39], and protein decomposition that influence rate of racemization [40]. Results from these studies often indicate that

Fig. 2. A schematic representation of the 4D Ramachandran PEHS, $E=E\left(\phi, \psi, \chi_{1}, \chi_{2}\right)$. Each of the nine backbone conformations $\left(\gamma_{\mathrm{L}}\right.$, $\left.\beta_{L}, \delta_{L}, \alpha_{L}, \varepsilon_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}, \varepsilon_{D}\right)$ has nine sidechain conformations as shown by the γ_{L} conformation.
specific conformations of the aspartic acid could lead to variations in the regulation of a biological system. Here, all possible sidechain and backbone conformers that may exist for the aspartic acid residue, N -acetyl-L-aspartic acid N^{\prime}-methylamide, in both its endo and exo forms were reported. The sidechain carboxyl group of this particular aspartic acid residue is capable to inter- and intra-residual as well as intermolecular hydrogen bonding, characteristics that may be responsible for the peptide's many applications in biology and medicine.

One notable application of the aspartic acid residue in a biological system is shown in the RGD tripeptide. The RGD tripeptide can be separated into three components, namely, arginine (R), glycine (G), and aspartic acid (D), shown in Fig. 5 [41]. It is highly involved in molecular genetics and cell biology studies, including cell-surface recognition by receptors [42], expanding adenovirus vector tropism [43] and improving gene delivery $[44,45]$ in gene therapy, apoptosis [46], and increasing oral bioavailability in drug production [47]. By exploring the conformation preferences of the aspartic acid (D) residue, one can examine the stabilization forces as well as molecular geometry for the RGD tripeptide.

4. Computational methods

Using GAUSSIAN 94 [48] and GAUSSIAN 98 [49], ab initio calculations were performed on all possible conformers for both endo and exo forms of N -acetyl-L-aspartic acid N^{\prime}-methylamide. Specifically, these calculations were carried out on all backbone conformations $\left(\gamma_{L}, \beta_{L}, \delta_{L}, \alpha_{L}, \varepsilon_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}\right.$, and ε_{D}) of the aspartic acid residue. The ab initio results were then used to determine all minima on the PEHS. The sidechain geometry of N -acetyl-L-aspartic acid N^{\prime}-methylamide can be related to that of propionic acid, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$. Here, the carboxyl group can be in the endo or exo form, where χ_{3} is 180 or 0°, respectively (Fig. 4). As a result, $9 \times 9=81$ initial conformers were calculated at the RHF/3-21G level of theory for each of the endo and exo forms of N -acetyl-L-aspartic acid N^{\prime}-methylamide. Subsequently, all stable conformers found at RHF/3-21G were then subjected to optimizations at RHF/6-31G(d) level of theory. Likewise, all stable conformers found at the RHF/6-31G(d) level were then subjected to geometry optimization at B3LYP/6-31G(d) level of theory, the results of which were previously published [50,51]. All calculations were performed at tight geometry settings using Berny Optimization: FOPT $=$ TIGHT, Z-Matrix; which at termination produced critical points that have gradients of less than 1.5×10^{-5} a.u.

In addition, partially relaxed PEHS scan calculations, where $E=E\left(\chi_{1}, \chi_{2}\right)$ and FOPT $=$ Z-Matrix, were performed on both the endo and the exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide at

Fig. 3. 2D topology of a Ramachandran PEHS, $E=E(\phi, \psi)$ of an amino acid residue in a peptide. (Top) conformers are designated by traditional conventions; (bottom) conformers are designated by IUPAC conventions.

Fig. 4. Definitions of endo (top) and exo (bottom) forms for the propionic sidechain of N-acetyl-L-aspartic acid N^{\prime}-methylamide.

RHF/3-21G. Here, setting and specifying the ϕ, ψ, and χ_{3} torsional angles allow the backbone of the aspartic acid residue to be fixed to either the endo or the exo form as well as to their respective backbone conformations ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \varepsilon_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}). In turn, all critical points for these scan calculations had gradients of less than 4.5×10^{-4} a.u.

The stabilization or destabilization energy exerted by the sidechain on the backbone was calculated using

Fig. 5. An Arg-Gly-Asp (RGD) conformer obtained by preliminary optimization.
the following isodesmic reactions with respect to the γ_{L} and the β_{L} backbones of the glycine residue:

$$
\begin{align*}
\mathrm{CH}_{3} & -\mathrm{CO}-\left(\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CO}\right)-\mathrm{NHCH}_{3}+\mathrm{CH}_{3}-\mathrm{R} \\
& \rightarrow \mathrm{CH}_{3} \mathrm{CO}-(\mathrm{NH}-\mathrm{CHR}-\mathrm{CO})-\mathrm{NHCH}_{3} \\
& +\mathrm{CH}_{4}+\Delta E^{\text {stabil conformation }}\left(\gamma_{\mathrm{L}}\right)
\end{align*}
$$

$$
\begin{align*}
\mathrm{CH}_{3} & -\mathrm{CO}-\left(\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CO}\right)-\mathrm{NHCH}_{3}+\mathrm{CH}_{3}-\mathrm{R} \\
& \rightarrow \mathrm{CH}_{3} \mathrm{CO}-(\mathrm{NH}-\mathrm{CHR}-\mathrm{CO})-\mathrm{NHCH}_{3} \\
& +\mathrm{CH}_{4}+\Delta E^{\text {atabil conformation }}\left(\beta_{\mathrm{L}}\right) . \tag{2}
\end{align*}
$$

Here, $\mathrm{CH}_{3}-\mathrm{R}$ stands for $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CO}-(\mathrm{NH}-\mathrm{CHR}-\mathrm{CO})-\mathrm{NHCH}_{3}$ stands for N -acetyl-L-aspartic acid N^{\prime}-methylamide. Table 1 shows the energies for each component of the isodesmic reaction (excluding N-acetyl-L-aspartic acid N^{\prime}-methylamide, whose optimized energies for each stable conformer found will be tabulated in Tables 2-7). Fig. 6 provides an example of the stabilization energy calculation. Note that the two stabilization values (from Eqs. (1) and (2)) are shifted with respect to each other by $0.66 \mathrm{kcal} / \mathrm{mol}$ at RHF/321 G , by $0.031 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{RHF} / 6-31 \mathrm{G}(\mathrm{d})$, and by $1.13 \mathrm{kcal} / \mathrm{mol}[50,51]$ at B3LYP $/ 6-31 \mathrm{G}(\mathrm{d})$. This shift in stabilization energy corresponds to the difference in
relative energies between the β_{L} and γ_{L} backbone conformation for the glycine diamide:

RHF/3-21G
$\Delta E^{\text {stabil }}\left(\beta_{\mathrm{L}}\right)-\Delta E^{\text {stabil }}\left(\gamma_{\mathrm{L}}\right)=0.66 \mathrm{kcal} / \mathrm{mol}$
RHF/6-31G(d)
$\Delta E^{\text {stabil }}\left(\beta_{\mathrm{L}}\right)-\Delta E^{\text {stabil }}\left(\gamma_{\mathrm{L}}\right)=0.031 \mathrm{kcal} / \mathrm{mol}$
B3LYP/6-31G(d)
$\Delta E^{\text {stabil }}\left(\beta_{\mathrm{L}}\right)-\Delta E^{\text {stabil }}\left(\gamma_{\mathrm{L}}\right)=1.13 \mathrm{kcal} / \mathrm{mol}$.
In the past, $\Delta E^{\text {stabil }}\left(\gamma_{\mathrm{L}}\right)$ was favored in stabilization calculations as the global minima for most of the single amino acid diamides in the gas phase are usually located at the γ_{L} backbone. Interestingly, when fully extended the β_{L} conformation is highly symmetrical and it represents a unique structure on the Ramachandran map. As a result, $\Delta E^{\text {stabil }}\left(\beta_{\mathrm{L}}\right)$ is becoming a more accepted parameter for stabilization energy calculations [52-54].

5. Results and discussions

All optimized results, including the dihedral angles, the relative energies and the stabilization energies for both the endo and the exo forms N-acetyl-L-aspartic acid N^{\prime}-methylamide were tabulated in Tables 2-7. At all three levels of theory, 81 possible

Table 1
Components in the isodesmic reaction that were used to calculate the stabilization energy of various conformers found for both endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide. All components were individually optimized at the three levels of theory: RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d)

Components of the isodesmic reaction	$E_{\text {min }}$		
	RHF/3-21G (Hartree)	RHF/6-31G(d) (Hartree)	B3LYP/6-31G(d) (Hartree)
$\mathrm{CH}_{3}-\mathrm{CO}-\left(\mathrm{NH}-\underset{\gamma_{\mathrm{L}}}{\mathrm{CH}_{2}}-\mathrm{CO}\right)-\mathrm{NHCH}_{3}$	-451.2942437	-453.8237506	-456.5375150
$\mathrm{CH}_{3}-\mathrm{CO}-\left(\mathrm{NH}-\underset{\beta_{\mathrm{L}}}{\mathrm{CH}_{2}}-\mathrm{CO}\right)-\mathrm{NHCH}_{3}$	-451.2931883	-453.8237997	-456.5357122
$\mathrm{CH}_{3}-\mathrm{R}$ endo	- 265.3567876	-266.8465482	-268.3966238
$\mathrm{CH}_{3}-\mathrm{R}$ exo	- 265.3440785	-266.8354509	-268.3872059
CH_{4}	-39.9768776	-40.19517190	-40.5183829

Table 2
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformation computed at the RHF/3-21G level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.	Optimized	parameters									
BB [$\chi_{1} \chi_{2}$]	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	$\chi 2$	χ_{3}	$E_{\text {min }}$ (Hartree)	$\begin{aligned} & \Delta E \\ & (\mathrm{kcal} / \mathrm{mol}) \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\text { kcal }) \gamma_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & \text { (kcal) } \beta_{\mathrm{L}} \end{aligned}$
γ_{L} Backbone conformation											
$\gamma_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	-86.54	68.85	- 178.11	-177.98	59.15	145.48	- 178.71	-676.6905014	0.000	- 10.2580	- 10.9202
$\gamma_{\mathrm{L}}\left[g^{+} g^{-}\right]$	-86.81	68.93	-177.74	- 178.32	69.45	-42.59	176.18	-676.6875087	1.878	-8.3800	-9.0423
$\gamma_{\mathrm{L}}[a s]$	-85.88	65.69	-175.63	-179.50	177.98	28.89	- 177.17	-676.6819477	5.368	-4.8904	-5.5527
$\gamma_{\mathrm{L}}[a a]$	-86.16	69.00	- 176.45	- 179.56	- 171.53	- 169.18	178.94	-676.6827908	4.838	-5.4195	-6.0818
$\gamma_{\mathrm{L}}\left[g^{-} g^{+}\right]$	-83.43	69.39	-174.01	- 178.84	-49.09	81.79	178.60	-676.6822089	5.204	-5.0543	-5.7166
$\gamma_{\mathrm{L}}\left[g^{-} g^{+}\right]$	-97.61	8.58	- 170.57	177.23	- 53.18	83.43	179.19	-676.6737116	10.536	0.2778	-0.3845
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} a\right]$	-87.82	65.47	- 171.45	-179.09	-69.97	169.60	177.20	-676.6815484	5.618	-4.6399	-5.3021
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{s}^{-}\right]$	-84.08	70.15	-171.84	- 178.48	-41.15	- 124.82	-177.36	-676.6828537	4.799	-5.4590	-6.1212
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	-84.91	67.70	-174.84	- 179.01	- 55.44	-70.03	178.10	-676.6823949	5.087	- 5.1711	- 5.8333
$\gamma_{\mathrm{L}}\left[g^{-} g^{-}\right]$	-116.57	25.83	-172.39	176.12	-61.30	-57.92	177.77	-676.6762169	8.964	-1.2943	- 1.9566
β_{L} Backbone conformation											
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	- 169.95	170.13	- 178.51	176.98	54.96	76.93	-174.25	-676.6784956	7.534	-2.7242	-3.3865
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	- 166.71	- 176.90	177.16	- 179.82	63.86	- 173.36	- 179.71	-676.6786647	7.428	-2.8303	-3.4926
$\beta_{\mathrm{L}}[a s]$	- 169.46	168.76	177.30	178.24	- 172.54	28.46	171.50	-676.6832670	4.540	- 5.7183	-6.3806
$\beta_{\mathrm{L}}[a a]$	- 169.94	171.34	176.74	179.83	-162.37	174.19	-178.43	-676.6879710	1.588	-8.6701	-9.3324
$\beta_{\mathrm{L}}[a a]$	- 169.89	170.76	176.79	179.59	-161.90	174.43	-178.36	-676.6880484	1.539	-8.7187	-9.3810
$\delta_{\text {L }}$ Backbone conformation											
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	- 130.74	36.35	-173.74	177.68	60.24	167.20	-179.06	-676.6854098	3.195	-7.0629	-7.7252
$\delta_{\mathrm{L}}\left[g^{+} g^{-}\right]$	- 126.96	42.20	-173.35	177.35	72.20	-30.10	176.19	-676.6819374	5.374	-4.8840	-5.5462
$\delta_{L}\left[\mathrm{ag}^{+}\right]$	- 135.26	39.36	-174.15	176.58	-176.79	35.75	-177.53	-676.6767391	8.636	- 1.6220	-2.2843
$\delta_{\mathrm{L}}[\mathrm{a} a]$	- 138.35	46.79	- 175.01	176.79	- 168.58	-160.28	179.56	-676.6767888	8.605	- 1.6532	-2.3154
$\delta_{\mathrm{L}}\left[s^{-} s^{+}\right]$	-168.36	44.10	-176.30	176.26	- 101.54	146.29	- 179.82	-676.6721066	11.543	1.2850	0.6227
$\delta_{\mathrm{L}}\left[\mathrm{g}^{-} g^{-}\right]$	- 142.26	33.50	- 170.54	176.32	-65.68	-73.27	170.07	-676.6760032	9.098	- 1.1602	-1.8225
α_{L} Backbone conformation											
γ_{D} Backbone conformation											
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	73.89	-53.47	175.99	- 177.00	-168.59	56.36	-175.04	-676.6747454	9.887	-0.3709	- 1.0332
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	74.64	-53.94	175.80	- 177.29	-168.36	56.27	- 175.11	-676.6747365	9.893	-0.3653	- 1.0276
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	76.36	-65.94	178.06	179.76	-155.27	-161.97	-178.26	-676.6739166	10.407	0.1492	-0.5131
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	74.17	-76.20	179.76	179.47	-173.93	-175.75	-179.83	-676.6738807	10.430	0.1717	-0.4906
$\gamma_{\mathrm{D}}\left[\mathrm{g}^{-} a\right]$	73.47	- 58.91	172.99	- 178.65	-65.92	178.73	179.13	-676.6803159	6.391	-3.8665	-4.5287
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	72.59	-59.63	175.05	- 178.70	-58.91	-47.94	-177.93	-676.6774479	8.191	-2.0668	-2.7290
										(continued	next page)

Table 2 (continued)

Final conform.	Optimized parameters										
$\mathrm{BB}\left[\chi_{1} \chi_{2}\right.$]	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\min }$ (Hartree)	$\begin{aligned} & \Delta E \\ & (\mathrm{kcal} / \mathrm{mol}) \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\text { kcal }) \gamma_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\mathrm{kcal}) \beta_{\mathrm{L}} \end{aligned}$
δ_{D} Backbone conformation											
$\delta_{\text {D }}\left[s g^{+}\right]$	- 153.01	-62.32	176.64	179.36	24.90	64.75	178.62	-676.6705819	12.500	2.2417	1.5794
$\delta_{\mathrm{D}}\left[g^{+} s\right]$	121.52	-2.95	175.72	- 179.41	65.23	15.35	179.67	-676.6684883	13.813	3.5555	2.8932
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	-163.58	-49.46	177.17	179.43	50.76	- 171.14	- 179.76	-676.6775156	8.149	-2.1092	-2.7715
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-172.55	-49.25	- 179.86	- 178.71	66.16	-40.03	- 173.06	-676.6697533	13.020	2.7617	2.0994
$\delta_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	178.92	-39.96	172.20	- 175.30	- 176.59	53.79	- 175.95	-676.6682117	13.987	3.7290	3.0668
$\delta_{\mathrm{D}}[\mathrm{a} a]$	-179.53	-46.96	172.05	- 176.97	- 164.09	- 157.96	- 177.06	-676.6667564	14.900	4.6423	3.9800
$\delta_{\mathrm{D}}\left[g^{-} g^{+}\right]$	- 154.38	- 56.93	178.01	- 179.39	-66.55	87.55	- 172.27	-676.6643590	16.405	6.1466	5.4844
$\delta_{\text {D }}\left[g^{-} g^{-}\right]$	-170.00	- 50.52	173.92	- 177.36	-80.67	-51.48	171.58	-676.6671680	14.642	4.3840	3.7217
$\alpha_{\text {D }}$ Backbone conformation											
$\alpha_{\mathrm{D}}\left[g^{+}{ }^{+}{ }^{+}\right]$	28.97	66.58	157.07	- 171.56	59.79	142.97	- 178.07	-676.6651020	15.938	5.6804	5.0181
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	55.61	38.91	167.38	179.69	49.34	-73.91	179.12	-676.6661590	15.275	5.0171	4.3549
$\alpha_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	61.63	35.39	174.93	179.12	- 172.23	36.32	- 176.48	-676.6749103	9.784	-0.4744	- 1.1367
$\alpha_{\mathrm{D}}[\mathrm{a} a]$	61.92	36.63	175.50	178.80	- 162.44	- 155.51	178.63	-676.6757864	9.234	-1.0242	-1.6864
$\alpha_{\text {D }}\left[g^{-} s\right]$	61.23	34.49	172.72	179.01	-60.24	-26.22	- 176.19	-676.6758499	9.194	-1.0640	-1.7263
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	61.23	35.50	171.49	179.11	-63.61	-178.56	179.68	-676.6798427	6.688	-3.5695	-4.2318
ε_{D} Backbone conformation											
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	68.82	171.79	-163.69	177.23	76.42	46.61	- 167.26	-676.6643520	16.409	6.1510	5.4888
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	53.83	- 123.13	- 175.80	- 178.23	50.20	89.60	- 169.69	-676.6699202	12.915	2.6569	1.9947
$\varepsilon_{\mathrm{D}}\left[g^{+} s^{-}\right]$	55.77	- 131.66	- 173.52	- 177.38	64.65	-94.37	172.82	-676.6707814	12.374	2.1165	1.4543
$\varepsilon_{\mathrm{D}}[a a]$	67.63	175.10	- 160.89	179.99	- 151.80	168.39	179.03	-676.6777138	8.024	-2.2336	-2.8959
$\varepsilon_{\mathrm{D}}\left[s^{-} g^{-}\right]$	65.35	- 176.81	- 162.80	- 179.63	-134.59	-43.56	- 179.95	-676.6724414	11.333	1.0749	0.4126
$\varepsilon_{\mathrm{D}}\left[\mathrm{g}^{-} a\right]$	65.02	178.61	- 167.13	- 179.28	-71.30	168.99	179.28	-676.6710500	12.206	1.9480	1.2857
$\varepsilon_{\mathrm{D}}\left[g^{-} g^{-}\right]$	62.59	-175.09	-166.69	- 178.91	-58.21	-53.07	179.87	-676.6697134	13.045	2.7867	2.1244

Table 3
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformation computed at the RHF/321G level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Optimized parameters										
	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}(\mathrm{kcal}) \gamma_{\mathrm{L}}$	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
γ_{L} Backbone conformation											
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-87.38	76.81	-176.83	- 177.11	39.69	43.19	22.15	-676.6851664	3.348	-14.8853	- 15.5476
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-81.50	63.94	- 172.24	179.98	51.00	89.06	-23.41	-676.6896522	0.533	- 17.7002	- 18.3624
$\gamma_{L}\left[a g^{+}\right]$	-86.48	67.91	- 176.69	- 179.07	177.80	37.16	6.04	-676.6610996	18.450	0.2169	-0.4454
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{-}\right]$	-85.15	64.56	- 172.48	- 179.67	- 167.11	-69.85	3.64	-676.6808379	6.064	- 12.1691	- 12.8314
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} g^{+}\right]$	-82.06	74.60	175.26	- 178.62	-70.48	36.19	-0.88	-676.6672684	14.579	-3.6541	-4.3164
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	-88.83	65.59	-168.34	- 178.97	-66.14	177.71	2.04	-676.6695026	13.177	-5.0561	-5.7184
$\gamma_{L}\left[g^{-} s^{-}\right]$	-83.91	68.36	-170.89	-178.64	-43.12	-121.57	0.83	-676.6702313	12.720	-5.5134	-6.1756
β_{L} Backbone conformation											
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-168.29	- 176.69	-178.95	- 174.85	59.47	74.45	1.41	-676.6648105	16.121	-2.1118	-2.7740
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	-169.88	- 176.43	176.91	179.51	63.70	- 164.81	6.85	-676.6663164	15.176	-3.0567	-3.7190
$\beta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	-165.97	166.30	177.81	176.24	- 176.14	45.45	32.11	-676.6702094	12.733	-5.4996	-6.1619
$\beta_{\mathrm{L}}[a a]$	-173.06	172.01	175.92	179.84	- 161.54	172.17	-4.23	-676.6769545	8.501	-9.7322	- 10.3945
$\beta_{\mathrm{L}}[a a]$	-173.12	172.65	175.87	- 179.93	- 161.96	171.90	-4.26	-676.6769286	8.517	-9.7160	- 10.3783
δ_{L} Backbone conformation											
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	-130.38	33.55	- 173.77	177.98	60.32	164.49	-9.88	-676.6740529	10.322	-7.9115	-8.5737
$\delta_{\mathrm{L}}\left[s^{-} g^{+}\right]$	- 164.33	51.49	- 177.84	177.18	-121.17	46.70	12.47	-676.6710723	12.192	-6.0411	-6.7034
$\delta_{\mathrm{L}}\left[g^{-} g^{-}\right]$	-140.37	34.46	-179.17	176.30	-71.97	-30.17	56.08	-676.6697746	13.006	-5.2268	-5.8891
γ_{D} Backbone conformation											
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	66.34	-58.66	171.40	177.21	60.56	71.34	-26.29	-676.6587310	19.936	1.7032	1.0409
$\gamma_{\mathrm{D}}\left[s^{+} g^{-}\right]$	96.91	-77.77	-178.37	178.07	102.79	-64.39	- 12.47	-676.6663410	15.161	-3.0722	-3.7344
$\gamma_{\mathrm{D}}\left[\mathrm{a} g{ }^{+}\right]$	73.89	- 59.87	178.08	-177.05	-172.00	66.23	3.19	-676.6563803	21.411	3.1783	2.5160
$\gamma_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	74.56	- 59.93	177.92	- 177.13	- 171.99	65.88	2.97	-676.6563797	21.412	3.1786	2.5164
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	76.50	-68.39	178.90	179.32	- 157.18	-166.38	4.60	-676.6611624	18.411	0.1775	-0.4848
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	74.85	-75.02	-179.68	179.59	- 170.69	- 172.91	3.83	-676.6611313	18.430	0.1970	-0.4653
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{-}\right]$	72.04	-78.63	176.43	175.39	-178.83	-69.29	2.40	-676.6652082	15.872	-2.3613	-3.0236
$\gamma_{\mathrm{D}}\left[g^{-}-\mathrm{]}\right.$]	73.93	- 57.40	172.34	- 178.95	-64.82	175.17	-1.71	-676.6688080	13.613	-4.6202	-5.2825
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	76.94	-53.03	162.39	- 178.46	- 55.17	-79.81	-10.13	-676.6639563	16.657	-1.5757	-2.2380
δ_{D} Backbone conformation											
$\delta_{\mathrm{D}}\left[g^{+} g^{+}\right]$	-168.58	- 50.00	- 174.89	177.23	39.74	85.15	16.86	-676.6561993	21.525	3.2919	2.6296
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	-165.98	-49.33	177.76	179.34	49.65	-168.17	3.75	-676.6667681	14.893	-3.3402	-4.0024
$\delta_{\text {D }}\left[g^{+} g^{-}\right]$	-157.27	-48.33	166.32	- 178.07	63.92	-41.74	-7.58	-676.6629634	17.280	-0.9527	- 1.6150
$\delta_{\mathrm{D}}[\mathrm{a} a]$	-167.40	-67.99	173.28	- 179.14	175.51	171.19	-6.37	-676.6534401	23.256	5.0233	4.3610
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	-170.81	- 54.45	174.81	- 177.77	-122.95	52.85	11.12	-676.6671813	14.634	-3.5995	-4.2617
$\delta_{\mathrm{D}}\left[g^{-} s\right]$	-140.79	-61.80	171.60	179.91	-70.60	-29.79	55.06	-676.6631427	17.168	-1.0652	- 1.7275

Table 3 (continued)

Final conform.	Optimized parameters										
BB [$\chi_{1} \chi_{2}$]	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
$\alpha_{\text {D }}$ Backbone conformation											
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	48.19	52.74	162.59	- 177.97	55.55	84.13	-22.40	-676.6725960	11.236	-6.9972	-7.6595
$\alpha_{\text {D }}\left[g^{+} g^{-}\right]$	54.89	37.74	172.17	179.31	31.15	-64.72	-0.20	-676.6482748	26.498	8.2646	7.6023
$\alpha_{\text {D }}\left[\mathrm{a} g^{-}\right]$	64.05	32.27	171.91	178.78	- 150.55	- 59.78	-3.39	-676.6749987	9.728	-8.5050	-9.1672
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	61.62	35.58	171.55	178.93	-63.18	179.32	0.15	-676.6700644	12.824	-5.4086	-6.0709
ε_{D} Backbone conformation											
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{-}\right]$	42.82	- 126.48	-166.54	- 178.59	57.27	-84.00	12.45	-676.6551743	22.168	3.9350	3.2728
$\varepsilon_{\mathrm{D}}\left[\begin{array}{l}\text { a }\end{array} \mathrm{a}\right]$	68.31	173.61	- 159.69	179.90	- 153.52	174.81	0.94	-676.6675821	14.382	-3.8510	-4.5132
$\varepsilon_{\mathrm{D}}\left[\mathrm{g}^{-} a\right]$	67.31	174.63	-166.00	- 179.65	-70.72	157.30	-8.66	-676.6604377	18.865	0.6322	-0.0301

conformers were initially expected to be found for the aspartic acid residue. At the RHF/3-21G level, there were 49 stable conformers found for the endo form while 37 were found for the exo form (Tables 2 and 3). At the RHF/6-31G(d) level, there were 40 stable conformers found for the endo form while 31 were found for the exo form (Tables 4 and 5). Finally, at the B3LYP/6-31G(d) level, 37 stable conformers were found for the endo form while 27 were found for the exo form (Tables 6 and 7). Sidechain PESs, $E=$ $E\left(\chi_{1}, \chi_{2}\right)$, were generated for all nine backbone conformations ($\gamma_{L}, \beta_{L}, \delta_{L}, \alpha_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}, \varepsilon_{D}$) for both the endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide at RHF/3-21G. These PESs revealed numerous minima for each backbone conformation, shown in landscape and contour representations (Figs. 7-15). However, subsequent optimizations on these 'apparent' minima revealed that only some were 'true' minima. This discrepancy can be explained, as both the ϕ and ψ torsional angles were frozen when the PESs were generated. Also, grid points are optimized at fixed χ_{1} and χ_{2} values (in our case, 30° increments of both χ_{1} and χ_{2} from 0 to 360°) in a double-scan PESs such as $E=E\left(\chi_{1}, \chi_{2}\right)$. As a result, any minimum appearing on a particular PES surface may not be a true minimum on the hypersurface, as these semi-rigid optimizations do not precisely correspond to true optimized structures. In these cases, the 'false' minima may reflect higher order critical points, such as transition structures. It is also worth noting that a minimum appearing on a surface may be shifted somewhat to a regional neighbor. In addition to landscape and contour representations, topology diagrams were generated to illustrate the stable conformers found for both endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide at RHF/3-21G (Figs. 7-15).

In Tables 2-7, optimized results showed that sometimes there are noticeable shifts in the torsional angle away from the typical g^{+}value $\left(60^{\circ}\right)$ or from the typical g^{-}value $\left(-60^{\circ}\right)$ toward the anti orientation $\left(+180\right.$ or $\left.-180^{\circ}\right)$. In these cases, the planar -COOH moiety was rotated against the tetrahedral β-carbon $\left(\chi_{2}\right)$. Values that fell within the range of +90 and $+150^{\circ}$ (i.e. $+120 \pm 30^{\circ}$) were categorized as $\operatorname{syn}^{+}\left(s^{+}\right)$, which indicates that the oxygen of -OH in the carboxyl moiety was in syn orientation arrangement with the proton attached to

Table 4
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformation computed at the RHF/6-31G(d) level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.$\text { BB }\left[\chi_{1} \chi_{2}\right]$	Optimized parameters										
	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	$\chi 2$	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
γ_{L} Backbone conformation											
$\gamma_{\mathrm{L}}\left[g^{+} s^{+}\right]$	-86.13	67.15	179.93	- 178.00	59.99	146.35	179.15	-680.4826738	0.000	-4.7358	-4.7049
$\gamma_{\mathrm{L}}\left[g^{+} g^{-}\right]$	-86.51	71.14	179.30	-176.92	67.88	-39.35	179.12	-680.4775689	3.203	- 1.5324	- 1.5016
$\gamma_{\mathrm{L}}[a s]$	-85.91	72.96	178.53	- 177.07	- 178.29	24.53	- 179.78	-680.4755867	4.447	-0.2885	-0.2577
$\gamma_{\mathrm{L}}[a a]$	-85.75	77.61	176.69	-177.03	- 172.52	-167.44	- 179.48	-680.4780650	2.892	- 1.8437	- 1.8129
$\gamma_{\mathrm{L}}\left[g^{-} s^{+}\right]$	-85.14	77.16	- 179.71	- 175.19	-60.48	106.57	- 179.58	-680.4759197	4.238	-0.4975	-0.4667
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} a\right]$	-89.37	74.07	- 171.72	- 175.05	-68.77	167.13	177.31	-680.4763858	3.946	-0.7900	-0.7592
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	-86.77	73.88	-175.31	- 175.52	- 55.62	-85.52	178.26	-680.4774970	3.248	- 1.4873	- 1.4564
$\gamma_{\mathrm{L}}\left[g^{-} g^{-}\right]$	-87.77	73.56	-170.93	-175.41	- 56.23	-86.60	178.37	-680.4774861	3.255	- 1.4804	- 1.4496
β_{L} Backbone conformation											
$\beta_{\mathrm{L}}\left[g^{+} s^{+}\right]$	-166.46	145.06	- 168.69	178.75	58.09	108.65	- 177.16	-680.4740676	5.400	0.6647	0.6955
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	-152.98	- 177.39	172.03	- 175.47	65.26	- 172.27	- 179.40	-680.4742037	5.315	0.5793	0.6101
$\beta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	- 159.40	159.74	175.70	179.14	- 172.59	36.46	174.58	-680.4755791	4.452	-0.2838	-0.2529
$\beta_{\mathrm{L}}[a a]$	- 160.51	163.15	173.97	178.17	-160.64	177.93	-178.48	-680.4811329	0.967	-3.7688	-3.7380
δ_{L} Backbone conformation											
$\delta_{\mathrm{L}}\left[g^{+}{ }_{s}\right]$	-137.58	33.62	-168.99	174.34	70.01	-22.09	178.41	-680.4745853	5.076	0.3399	0.3707
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	- 136.26	32.10	-168.80	178.32	62.68	165.63	179.68	-680.4802297	1.534	-3.2021	-3.1712
$\delta_{L}\left[\mathrm{ag}^{+}\right]$	- 146.22	38.90	- 169.50	172.96	- 173.49	34.53	179.61	-680.4716220	6.935	2.1994	2.2302
$\delta_{\text {L }}\left[g^{-{ }^{-}} \mathrm{g}^{+}\right]$	-137.85	27.48	- 165.77	172.75	-66.59	81.12	-178.43	-680.4710249	7.310	2.5740	2.6049
$\delta_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{s}^{-}\right]$	-137.67	24.59	-163.30	173.31	- 58.22	-91.65	175.62	-680.4739890	5.450	0.7140	0.7449
$\alpha_{\text {L }}$ Backbone conformation											
$\alpha_{L}\left[g^{-} S^{-}\right]$	-83.98	- 12.33	- 164.67	175.46	- 58.28	- 104.83	179.00	-680.4733488	5.852	1.1158	1.1466
γ_{D} Backbone conformation											
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	74.66	- 50.42	179.60	- 174.81	- 167.93	63.63	-176.90	-680.4695010	8.266	3.5303	3.5611
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	71.00	-88.48	- 173.64	174.11	- 169.06	-169.92	- 178.78	-680.4701740	7.844	3.1080	3.1388
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	76.44	-43.19	166.92	- 176.47	-63.68	178.79	179.14	-680.4753736	4.581	-0.1548	-0.1240
$\gamma_{\mathrm{D}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	74.17	-50.32	171.96	- 177.42	- 56.97	-48.89	- 177.72	-680.4715568	6.976	2.2403	2.2711
$\delta_{\text {D }}$ Backbone conformation											
$\delta_{\mathrm{D}}\left[g^{+} s\right]$	132.04	-7.86	169.72	-173.73	65.57	13.02	179.08	-680.4635646	11.991	7.2555	7.2863
$\delta_{\text {D }}\left[g^{+} g^{+}\right]$	- 159.11	-23.59	168.02	- 175.02	46.99	48.12	176.76	- 680.4649266	11.137	6.4008	6.4316
$\delta_{\text {D }}\left[g^{+} a\right]$	- 154.13	-43.81	174.44	- 175.97	54.33	- 171.36	- 179.46	-680.4723052	6.506	1.7706	1.8015
$\delta_{\text {D }}\left[g^{+} g^{-}\right]$	-160.89	-44.89	179.21	- 174.62	66.76	-36.95	- 175.41	-680.4641405	11.630	6.8941	6.9249
$\delta_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	- 164.39	-41.51	167.42	-170.82	178.24	66.27	-176.77	-680.4652722	10.920	6.1839	6.2147
$\delta_{\mathrm{D}}\left[\mathrm{as}^{-}\right]$	-164.82	-40.79	166.98	-171.06	- 178.77	-99.88	176.19	-680.4637103	11.900	7.1640	7.1948

Table 4 (continued)

Final conform. BB [$\chi_{1} \chi_{2}$]	Optimized parameters										
	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}($ Hartree $)$	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
$\delta_{\mathrm{D}}\left[g^{-} s^{+}\right]$	-146.42	- 54.72	175.77	- 174.61	-70.07	91.82	-174.67	-680.4619070	13.031	8.2956	8.3264
$\delta_{\mathrm{D}}\left[g^{-} g^{-}\right]$	- 144.62	- 57.05	180.21	- 175.41	-62.08	-79.34	172.33	-680.4640699	11.674	6.9384	6.9692
$\alpha_{\text {D }}$ Backbone conformation											
$\alpha_{\text {D }}\left[g^{+}{ }^{+}{ }^{+}\right]$	57.36	38.29	162.26	- 175.32	45.38	101.21	- 176.46	-680.4652539	10.931	6.1954	6.2262
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	57.59	35.82	164.67	- 175.59	55.27	-77.32	178.31	-680.4617149	13.152	8.4162	8.4470
$\alpha_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	64.57	34.56	167.57	- 176.26	-166.29	35.33	-179.68	-680.4690305	8.561	3.8255	3.8564
$\alpha_{\mathrm{D}}[\mathrm{a} a]$	65.34	35.91	168.43	- 176.85	-157.79	- 151.63	-179.28	-680.4717819	6.835	2.0990	2.1298
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	65.49	32.93	164.87	- 176.47	-62.46	- 179.47	179.48	-680.4760321	4.168	-0.5680	-0.5372
$\alpha_{\mathrm{D}}\left[g^{-} g^{-}\right]$	65.47	31.27	165.66	- 176.39	-56.08	-42.85	- 176.56	-680.4708365	7.428	2.6923	2.7231
ε_{D} Backbone conformation											
$\varepsilon_{\mathrm{D}}\left[\mathrm{g}^{+} g^{+}\right]$	51.50	- 131.49	- 168.45	177.43	53.11	87.73	- 174.10	-680.4656585	10.677	5.9415	5.9723
$\varepsilon_{\mathrm{D}}\left[g^{+} s^{-}\right]$	53.94	-137.68	-164.44	178.66	67.87	-98.90	176.04	-680.4684261	8.941	4.2048	4.2356
$\varepsilon_{\mathrm{D}}\left[s^{-} a\right]$	66.93	- 178.87	- 158.06	- 174.75	- 148.12	168.66	178.88	-680.4728813	6.145	1.4091	1.4399
$\varepsilon_{\mathrm{D}}\left[s^{-} g^{-}\right]$	64.10	-167.71	- 160.46	-174.74	-132.37	-51.70	-179.22	-680.4659488	10.495	5.7593	5.7902

the β-carbon, positioned at about $+120^{\circ}$. Similarly, values that fell within the range of -90 and -150° (i.e. $-120 \pm 30^{\circ}$) were labeled as $\operatorname{syn}^{-}\left(s^{-}\right)$, indicating that the -OH oxygen of the carboxyl moiety was in syn orientation with the proton attached to the β-carbon, position at about -120°.

For the endo form of the aspartic acid residue, it is interesting to note that a $g^{-} s^{-}$conformer, shown in Fig. 16, as found in the α_{L} backbone conformation at RHF/3-21G. In this particular $g^{-} s^{-}$conformer, it is found that, besides the sidechain-sidechain (SC/SC) hydrogen bond (calculated to be $2.362 \AA$), a side-chain-backbone (SC/BB) hydrogen bond calculated to be $2.052 \AA$, may contribute to the stabilizing forces of the conformer at RHF/3-21G. This $g^{-} s^{-}$conformer was found also at RHF/6-31G(d) and at B3LYP/6-31G(d). At all three levels of theory, the same SC/SC (Type 1 , calculated to be $2.272 \AA$ at RHF/6-31G(d) and $2.281 \AA$ at B3LYP/6-31G(d)) and SC/BB (Type 3A, calculated to be $2.293 \AA$ at RHF/6$31 \mathrm{G}(\mathrm{d})$ and $2.121 \AA$ at B3LYP/6-31G(d)) hydrogen bonds were found. In addition, it is interesting to note that there exists a rather unusual hydrogen bond, $\mathrm{N}^{2} \cdots \mathrm{H}^{6}$, which has an intermolecular distance of $2.291 \AA$ at RHF/3-21G, $2.325 \AA$ at RHF/6-31G(d), and $2.276 \AA$ [51] at B3LYP/6-31G(d) (results not tabulated but shown in Fig. 16), may also contribute to the stabilizing force that allows for the existence of this $g^{-} s^{-}$conformer. Fig. 17 shows the various 'traditional' hydrogen bonds that may exist in the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide. There exist three kinds of stabilizing hydrogen bonds: sidechain-sidechain (SC/SC), backbonebackbone ($\mathrm{BB} / \mathrm{BB}$), or sidechain-backbone ($\mathrm{SC} /$ $\mathrm{BB})$. In total, there exist one $\mathrm{SC} / \mathrm{SC}$, two $\mathrm{BB} / \mathrm{BB}$, and four SC/BB hydrogen bond interactions for the endo form. The corresponding distances for these hydrogen bond interactions were tabulated in Tables 8, 10 and 12 .

For the exo form of the aspartic acid residue, it is interesting to note that initially no stable conformers can be found in the α_{L} and ε_{L} backbones at RHF/321G. However, at both RHF/6-31G(d) and B3LYP/6$31 \mathrm{G}(\mathrm{d})$ levels, a $g{ }^{-} g^{+}$conformer was found at the α_{L} backbone conformation, as shown in Fig. 18. In this particular $g^{-} g^{+}$conformer, there exists a weak backbone-backbone internal hydrogen bond, calculated to be $2.476 \AA$ at RHF/6-31G(d) and $2.297 \AA$ [50]

Table 5
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \varepsilon_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformation computed at the RHF/6-31G(d) level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.	Optimized	parameters									
$\mathrm{BB}\left[\begin{array}{ll}\chi_{1} & \chi_{2}\end{array}\right]$	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}(\mathrm{kcal}) \gamma_{\mathrm{L}}$	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
γ_{L} Backbone conformation											
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-85.33	62.09	- 169.71	179.81	51.48	87.25	-16.58	-680.4785887	2.563	-9.1360	-9.1052
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{-}\right]$	-86.59	68.55	- 172.81	- 178.21	-166.56	-74.85	5.70	-680.4731593	5.970	- 5.7290	-5.6982
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	-92.63	70.66	- 162.97	- 175.88	-64.33	-175.85	1.51	-680.4661419	10.374	-1.3255	- 1.2947
$\gamma_{\mathrm{L}}\left[g^{-}{ }^{-}{ }^{-}\right]$	-88.87	69.81	- 167.64	- 176.16	-55.37	-97.05	-3.09	-680.4663875	10.220	- 1.4796	- 1.4488
β_{L} Backbone conformation											
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	- 178.13	- 171.67	-159.41	177.96	62.50	79.37	- 1.04	-680.4617018	13.160	1.4607	1.4915
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	169.71	175.19	- 157.10	- 175.35	65.51	- 150.99	5.96	-680.4635102	12.025	0.3259	0.3567
$\beta_{\mathrm{L}}\left[\begin{array}{ll}a & a\end{array}\right.$	- 162.62	164.33	173.01	178.29	- 160.10	175.37	-2.36	-680.4711439	7.235	-4.4643	-4.4335
$\beta_{\mathrm{L}}\left[s^{-} g^{+}\right]$	174.30	179.61	- 168.85	- 179.55	- 131.15	75.52	-4.60	-680.4767330	3.728	-7.9715	-7.9407
δ_{L} Backbone conformation											
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	-136.55	31.02	-168.58	179.12	63.51	159.55	-8.66	-680.4706011	7.576	-4.1237	-4.0929
$\delta_{\mathrm{L}}\left[s^{-} g^{+}\right]$	-163.64	44.63	- 175.11	171.72	- 124.31	54.00	4.19	-680.4627730	12.488	0.7885	0.8193
$\delta_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	-131.47	22.20	- 174.36	172.69	-54.97	-32.30	15.27	-680.4638043	11.841	0.1414	0.1722
ε_{L} Backbone conformation											
$\varepsilon_{\mathrm{L}}\left[g^{-} g^{+}\right]$	-79.30	148.28	161.92	- 179.27	-69.79	42.55	-3.62	-680.4655327	10.756	-0.9432	-0.9124
γ_{D} Backbone conformation											
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	68.43	-64.15	168.73	175.08	57.30	74.80	-16.88	-680.4551001	17.303	5.6033	5.6342
$\gamma_{\mathrm{D}}\left[s^{+} g^{-}\right]$	82.81	- 54.23	- 177.57	- 173.52	109.19	-82.77	8.76	-680.4594361	14.582	2.8825	2.9133
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	74.03	- 57.83	- 176.93	- 175.43	- 172.56	72.22	-0.22	-680.4549002	17.428	5.7288	5.7596
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	74.78	- 57.40	178.38	-175.55	- 172.82	71.57	-0.66	-680.4548321	17.471	5.7715	5.8023
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	72.01	-87.48	-173.23	174.35	- 167.92	-170.61	2.93	-680.4590778	14.807	3.1073	3.1381
$\gamma_{\mathrm{D}}\left[\mathrm{ag}{ }^{-}\right]$	71.95	-84.52	176.58	172.58	- 170.66	-75.55	3.36	-680.4606718	13.806	2.1071	2.1379
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	76.13	-33.49	165.48	- 176.02	-62.08	176.32	-0.59	-680.4655035	10.775	-0.9249	-0.8941
δ_{D} Backbone conformation											
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	-157.75	-42.67	175.09	- 176.09	53.69	-169.05	2.41	-680.4629789	12.359	0.6593	0.6901
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	-158.84	-43.49	- 179.92	- 176.11	53.52	-169.93	2.14	-680.4629534	12.375	0.6753	0.7061
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-151.86	-42.53	162.49	- 173.05	64.60	- 50.32	-1.70	-680.4579405	15.520	3.8210	3.8518
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	-167.14	-47.86	170.63	- 172.41	- 125.58	58.87	3.81	-680.4609358	13.641	1.9414	1.9722
$\delta_{\mathrm{D}}\left[g^{-} s\right]$	-131.15	-60.53	167.76	- 175.83	-65.98	- 17.71	18.34	-680.4583677	15.252	3.5529	3.5837
α_{D} Backbone conformation											
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	52.39	49.36	160.04	- 173.81	57.48	81.53	-15.20	-680.4673923	9.589	-2.1101	-2.0793
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	52.06	34.32	172.89	-176.37	48.05	-78.28	0.37	-680.4447479	23.799	12.0994	12.1303

Table 5 (continued)

Final conform.	Optimized	parameters									
$\mathrm{BB}\left[\begin{array}{lll}\chi_{1} & \chi_{2}\end{array}\right]$	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}($ Hartree $)$	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\Delta E^{\text {stabil }}$ (kcal) β_{L}
$\alpha_{\mathrm{D}}\left[s^{-} g^{-}\right]$	68.04	31.35	165.56	- 178.41	- 145.80	-67.22	2.40	-680.4688675	8.664	-3.0358	-3.0050
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	66.03	33.29	164.97	- 176.88	-61.61	179.18	0.22	-680.4674263	9.568	-2.1315	-2.1007
ε_{D} Backbone co	formation										
$\varepsilon_{\mathrm{D}}\left[s^{+} g^{-}\right]$	70.08	179.51	-161.04	178.00	116.46	-68.81	1.18	-680.4657620	10.612	-1.0871	-1.0563
$\varepsilon_{\mathrm{D}}\left[\mathrm{s}^{-} a\right]$	68.15	179.02	-157.22	- 175.16	- 149.61	174.98	0.36	-680.4641156	11.645	-0.0540	-0.0232
$\varepsilon_{\mathrm{D}}\left[g^{-} s^{+}\right]$	74.67	172.20	- 154.23	- 176.90	-53.19	98.22	-9.90	-680.4650164	11.080	-0.6192	-0.5884

at B3LYP/6-31G(d), which may contribute in stabilizing the conformer (results not tabulated but shown in Fig. 18). In addition, a rather unusual hydrogen interaction, $\mathrm{H}^{19} \cdots \mathrm{~N}^{2}$, calculated to have an intermolecular distance of $2.039 \AA$ at RHF/6-31G(d) and $1.918 \AA$ [50] at B3LYP/6-31G(d) was found, which could also stabilize the conformer. Fig. 19 shows the various traditional hydrogen bonds that may exist in the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide. Here, since the carboxyl group in the sidechain is in the exo form, there can be no sidechainsidechain interaction in the aspartic acid residue. Hence, there exist two kinds of stabilizing hydrogen bonds: backbone-backbone ($\mathrm{BB} / \mathrm{BB}$) or sidechainbackbone (SC/BB). In total, there exist two $\mathrm{BB} / \mathrm{BB}$ and four $\mathrm{SC} / \mathrm{BB}$ hydrogen bond interactions for the exo form. The corresponding distances for these hydrogen bond interactions were tabulated in Tables 9,11 and 13.

When examining Tables $8-13$, it was found that the existence of hydrogen bond interactions is prominent among all stable conformers found for both endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide. This suggests that hydrogen bonding is significant in stabilizing most of the conformers found for the aspartic acid residue. It is also worth noting that hydrogen bond interactions are more common in the exo forms of the aspartic acid residue than in the endo forms (comparing Tables 9, 11 and 13 for exo versus Tables 8, 10 and 12 for endo). External hydrogen bondings are significant when the aspartyl residue participates in intra- or inter-molecular interactions, such as in the RGD tripeptide. This way, the presence or absence of these stabilizing forces may directly affect the folding patterns of the RGD tripeptide moiety. Here, we propose that while the $\mathrm{BB} / \mathrm{BB}$ interaction can be considered as an internal stabilizing factor for the exo forms of the aspartic acid residue, its sidechain can participate in external interactions with other substrates. This phenomenon can be applied to the docking of a specific molecule to receptors that express the aspartic acid residue on its surface. This way, one can explain why a point mutation in a receptor will significantly affect its recognition capabilities for certain ligands. This proposed mechanism does not imply that the endo forms of the aspartic acid residue are 'useless' in such ligand/

Table 6
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone $\left(\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}\right.$, and ε_{D}) conformation computed at the B3LYP/6-31G(d) level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Optimized parameters									
	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	$\begin{aligned} & E_{\min } \\ & \text { (Hartree) } \end{aligned}$	$\begin{aligned} & \Delta E \\ & (\mathrm{kcal} / \mathrm{mol}) \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\text { kcal }) \gamma_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\mathrm{kcal}) \beta_{\mathrm{L}} \end{aligned}$
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	-82.63	69.39	-179.63	- 176.47	58.85	144.19	-684.4260542	0.000	-6.4623	-7.5936
$\gamma_{\mathrm{L}}\left[g^{+} g^{-}\right]$	-83.22	70.88	- 179.64	- 176.59	67.76	-41.53	- 684.4210847	3.118	-3.3439	-4.4751
$\gamma_{L}[a s]$	-83.13	69.16	- 178.12	- 177.73	- 176.54	27.91	-684.4178720	5.134	- 1.3279	-2.4591
$\gamma_{\mathrm{L}}[a a]$	-82.80	71.63	-179.13	- 177.93	- 169.19	-163.60	-684.4199177	3.851	-2.6116	-3.7428
$\gamma_{\mathrm{L}}\left[g^{-} s^{+}\right]$	-83.30	71.37	- 173.51	- 176.48	- 55.28	90.31	-684.4190950	4.367	-2.0953	-3.2266
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	-84.30	66.13	-173.78	- 177.94	-72.14	157.14	-684.4189046	4.486	-1.9758	-3.1071
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} s^{-}\right]$	-83.95	72.82	-170.48	- 175.81	-45.07	-119.39	-684.4217674	2.690	-3.7723	-4.9035
β_{L} Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	-170.22	150.84	-169.30	175.92	58.82	107.24	-684.4154168	6.675	0.2128	-0.9185
$\beta_{\mathrm{L}}\left[g^{+} a\right]^{\text {a,b }}$	- 157.77	- 177.22	173.48	- 179.57	66.22	- 171.49	-684.4153786	6.699	0.2368	-0.8945
$\beta_{\mathrm{L}}\left[\mathrm{a} g{ }^{+}\right]$	- 164.40	162.84	177.73	177.71	- 173.28	32.25	-684.4184974	4.742	- 1.7203	-2.8516
$\beta_{\mathrm{L}}[a a]$	-163.51	167.73	175.07	178.61	-161.48	173.27	-684.4240236	1.274	-5.1881	-6.3193

δ_{L} Backbone conformation

$\delta_{\mathrm{L}}\left[g^{+} s\right]$	-130.53	32.86	- 170.39	176.65	69.12	- 26.01	-684.4164380	6.034	-0.4280	-1.5593
$\delta_{\mathrm{L}}\left[g^{+} a\right]^{\mathrm{a}, \mathrm{b}}$	- 130.74	30.06	- 170.27	177.91	60.44	162.32	-684.4215144	2.849	-3.6135	-4.7448
$\delta_{\mathrm{L}}\left[\mathrm{ag}{ }^{+}\right]$	- 135.53	34.83	- 170.11	175.22	- 172.91	37.96	-684.4130412	8.166	1.7035	0.5722
$\delta_{\mathrm{L}}\left[g^{-} g^{+}\right]$	- 135.08	25.11	- 164.18	174.86	-67.72	82.47	-684.4133097	7.997	1.5350	0.4037
$\delta_{\mathrm{L}}\left[g^{-} S^{-}\right]$	- 133.61	22.39	- 161.57	175.51	- 56.89	-98.79	-684.4155795	6.573	0.1107	-1.0206
α_{L} Backbone conformation										
$\alpha_{\mathrm{L}}\left[g^{-} s^{-}\right]^{\mathrm{a}, \mathrm{b}}$	-81.20	-13.35	- 164.10	176.83	- 55.35	- 119.10	-684.4153827	6.696	0.2342	-0.8971

γ_{D} Backbone conformation

$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	73.01	-53.01	175.99	-176.30	-170.77	65.87	-684.4128945	8.258	1.7956	0.6643
$\gamma_{\mathrm{D}}\left[\mathrm{as}^{-}\right]^{\mathrm{a}, \mathrm{b}}$	74.54	-65.87	178.99	177.75	-155.29	-145.77	-684.4128963	8.257	1.7944	0.6632
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	73.63	-49.71	168.25	-178.12	-64.89	179.52	-684.4181554	4.957	-1.5057	-2.6370
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	72.81	-53.52	172.24	-178.73	-59.41	-37.44	-684.4146876	7.133	0.6704	-0.4609
δ_{D} Backbone conformation										
$\delta_{\mathrm{D}}\left[g^{+} g^{+}\right]^{\mathrm{a}, \mathrm{b}}$	-155.89	-38.80	171.16	-175.78	43.03	44.58	-684.4069299	12.001	5.5384	4.4071
$\delta_{\mathrm{D}}\left[g^{+} a\right]^{\mathrm{a}, \mathrm{b}}$	-156.90	-48.59	174.77	-176.77	54.07	-168.35	-684.4146306	7.168	0.7061	-0.4251
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-164.26	-45.65	176.01	-175.35	67.67	-35.23	-684.4075771	11.595	5.1323	4.0010
$\delta_{\mathrm{D}}\left[\mathrm{a} g^{+}\right]$	-169.53	-39.89	168.72	-171.72	178.57	65.29	-684.4067348	12.123	5.6608	4.5296
$\delta_{\mathrm{D}}\left[\mathrm{as}^{-}\right]$	-173.40	-36.11	167.19	-172.40	-172.30	-117.79	-684.4058219	12.696	6.2337	5.1024
$\delta_{\mathrm{D}}\left[g^{-} g^{-}\right]^{\mathrm{a}, \mathrm{b}}$	-144.09	-61.07	178.05	-176.94	-61.73	-79.40	-684.4052097	13.080	6.6178	5.4866

α_{D} Backbone conformation

| $\alpha_{\mathrm{D}}\left[g^{+}{ }^{+}\right]$ | 58.20 | 35.63 | 161.69 | -175.78 | 42.53 | 102.03 | -684.4070563 | 11.921 | 5.4591 | 4.3278 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (continued on next page)

Final conform. Optimized parameters

$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	$E_{\min }$ (Hartree)	ΔE ($\mathrm{kcal} / \mathrm{mol}$)	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\mathrm{kcal}) \gamma_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & (\text { kcal }) \beta_{\mathrm{L}} \end{aligned}$
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	59.50	29.35	164.08	-176.20	55.10	-81.81	-684.4040903	13.783	7.3203	6.1890
$\alpha \mathrm{a}_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	65.49	31.81	168.69	- 176.91	- 167.04	37.82	-684.4097827	10.211	3.7482	2.6170
$\alpha_{\text {D }}\left[\mathrm{as}^{-}\right]$	66.30	32.61	169.86	- 177.78	- 157.47	-149.78	-684.4122840	8.641	2.1787	1.0474
$\alpha_{\mathrm{D}}\left[g^{-} s\right]$	66.36	28.71	166.07	- 177.25	-63.19	- 18.36	-684.4119363	8.859	2.3968	1.2656
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	66.01	30.43	164.61	- 177.19	-64.43	-176.83	-684.4166005	5.932	-0.5300	-1.6613
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	53.92	-123.45	-176.20	177.24	51.08	89.57	-684.4079873	11.337	4.8749	3.7436
$\varepsilon_{\mathrm{D}}\left[g^{+} S^{-}\right]$	57.16	- 134.18	- 164.86	179.14	69.41	-103.68	-684.4113997	9.196	2.7336	1.6023
$\varepsilon_{\mathrm{D}}\left[s^{-} a\right]$	66.93	- 178.82	-158.02	-175.88	- 149.86	160.48	-684.4142905	7.382	0.9196	-0.2117
$\varepsilon_{\mathrm{D}}\left[s^{-} g^{-}\right]$	64.41	-167.41	-160.60	- 175.48	-135.38	- 50.94	-684.4076898	11.524	5.0616	3.9303

${ }^{\text {a }}$ After 200 iterations under B3LYP/6-31G(d) at (TIGHT, Z-MATRIX), the force has converged, but the displacement did not converge completely.
${ }^{\text {b }}$ This result was obtained from an optimization fully converged under regular B3LYP/6-31G(d) at (Z-MATRIX).
receptor binding. Rather, it suggests that while the sidechain of the aspartic acid residue is stabilized by its SC/SC hydrogen bond, it is still possible for its backbone to participate in either external or internal stabilizing interactions. These suggestions point to the fact that ab initio studies for single amino acid residues may be useful in experiments involving protein bindings, receptor/ligand recognition, as well as de novo drug designs in a biological system.

The difference in stabilization energy, $\Delta E^{\text {stabil }}$, with respect to the β_{L} and with respect to the γ_{L} backbone of N-acetyl-glycine- N^{\prime}-methylamide is constant ($0.66 \mathrm{kcal} / \mathrm{mol}$ at RHF/3-21G, $0.031 \mathrm{kcal} / \mathrm{mol}$ at RHF/6-31G(d), and $1.13 \mathrm{kcal} / \mathrm{mol}[50,51]$ at B3LYP/ $6-31 \mathrm{G}(\mathrm{d})$), as shown in Tables $2-7$. When examining Tables 2-7, one can observe that the L subscripted conformations (i.e. $\alpha_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \varepsilon_{\mathrm{L}}, \gamma_{\mathrm{L}}$) of N-acetyl-Laspartic acid N^{\prime}-methylamide are more stabilized than its D subscripted forms (i.e. $\alpha_{\mathrm{D}}, \delta_{\mathrm{D}}, \varepsilon_{\mathrm{D}}, \gamma_{\mathrm{D}}$). Most of the stabilization energies for the L conformers have greater negative values or smaller positive values than those found for the D conformers. This trend, existed in both endo and exo forms of the aspartic acid residue (Figs. 20-25), shows that the L subscripted conformers are more stabilized while the D subscripted conformers are more 'de-stabilized'. In addition, the stabilization energy calculated with respect to the β_{L}
backbone of glycine diamide was observed to be generally lower than those calculated with respect to the γ_{L} backbone (Figs. 20, 21, 24 and 25). However, this trend is not observed at the RHF/6-31G(d) level of theory, where the stabilization energy calculated with respect to the γ_{L} backbone of glycine diamide is lowered than that calculated with respect to the β_{L} backbone (Figs. 22 and 23).

A correlating trend between hydrogen bond distance and ring size (RS) was observed. Here, it is apparent that the shorter the hydrogen bond distance, the greater the RS. This trend can be observed at all three levels of theory (RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d)) in both the endo and the exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide, as shown in Figs. 26 and 27. At RHF/3-21G, the correlation equation for hydrogen bond distance versus ring size shows a least square value of $R^{2}=0.8083$ for the endo form (Fig. 26(a)) and $R^{2}=0.8312$ for the exo form (Fig. 27(a)). At RHF/6-31G(d), the correlation equation shows a least square value of $R^{2}=0.9300$ for the endo form (Fig. 26(b)) and $R^{2}=0.9425$ for the exo form (Fig. 27(b)). At B3LYP/6-31G(d), the correlation equation shows a least square value of $R^{2}=0.8443$ [51] for the endo form (Fig. 26(c)) and $R^{2}=$ 0.9980 [50] for the exo form (Fig. 27(c)). Clearly,

Table 7
Optimized conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \varepsilon_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformation computed at the B3LYP/6-31G(d) level of theory. Shown here are the optimized torsional angles, computed energy values, relative energies, and stabilization energies

Final conform.	Optimized	parameters									
BB [$\chi_{1} \chi_{2}$]	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & \left(\text { kcal) } \beta_{\mathrm{L}}\right. \end{aligned}$
γ_{L} Backbone conformation											
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-81.06	63.58	- 171.12	- 179.73	50.73	82.28	-13.95	-684.4265160	-0.290	- 12.6619	- 13.7932
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	-81.91	63.80	- 170.70	- 179.40	50.58	82.31	- 13.98	-684.4266579	-0.379	- 12.7509	- 13.8822
$\gamma_{\mathrm{L}}\left[a g^{-}{ }^{-}\right]$	-83.16	64.17	- 172.10	- 179.20	- 165.32	-70.57	4.41	-684.4208809	3.246	-9.1258	- 10.2571
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} s^{-}\right]$	-84.07	70.53	- 169.26	- 176.36	-45.91	- 121.27	0.59	-684.4126227	8.428	-3.9437	-5.0750
β_{L} Backbone conformation											
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]^{\text {a,b }}$	- 156.59	-176.43	177.82	- 171.12	64.56	72.14	- 1.65	-684.4058456	12.681	0.3090	-0.8223
$\beta_{\mathrm{L}}\left[g^{+}{ }^{-}\right]$	158.11	-139.74	172.36	179.88	63.71	-90.93	6.92	-684.4201077	3.731	-8.6406	-9.7719
$\beta_{\mathrm{L}}[a a]$	- 167.29	170.92	174.39	179.24	- 159.70	167.29	-3.78	-684.4161709	6.202	-6.1702	-7.3015
$\beta_{\mathrm{L}}\left[s^{-} \mathrm{g}^{+}\right]$	- 169.92	- 177.45	175.01	- 179.22	- 130.05	74.37	-4.45	-684.4237651	1.436	-10.9357	-12.0669
δ_{L} Backbone conformation											
$\delta_{\mathrm{L}}\left[s^{-} g^{+}\right]^{\text {a,b }}$	- 161.43	45.11	-176.35	173.71	- 118.31	48.09	4.66	-684.4099383	10.113	-2.2592	-3.3905
$\delta_{\mathrm{L}}\left[g^{-} s\right]$	- 135.40	25.16	- 177.58	174.07	-67.01	- 15.76	14.84	-684.4103060	9.882	-2.4900	-3.6212
ε_{L} Backbone conformation											
$\varepsilon_{L}\left[g^{-} g^{+}\right]$	-94.47	149.36	160.78	177.79	-63.25	43.99	-5.09	-684.4102974	9.888	-2.4846	-3.6158
γ_{D} Backbone conformation											
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	64.96	-61.81	168.52	175.34	60.23	67.68	- 17.12	-684.4033200	14.266	1.8938	0.7625
$\gamma_{\mathrm{D}}\left[s^{+} g^{-}\right]$	79.72	-53.75	-177.65	-174.22	107.66	-75.40	6.66	-684.4073279	11.751	-0.6212	- 1.7524
$\gamma_{\mathrm{D}}[a a]$	74.38	-70.80	-179.62	175.29	- 154.73	-154.72	4.80	-684.4035338	14.132	1.7597	0.6284
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{-}\right]$	70.34	-81.17	177.02	172.78	- 176.52	-70.85	4.12	-684.4078146	11.446	-0.9266	-2.0579
$\gamma_{\mathrm{D}}\left[s^{-} \mathrm{g}^{-}\right]$	70.12	-28.28	167.77	- 175.15	- 143.16	-35.94	-3.53	-684.4144381	7.289	- 5.0829	-6.2142
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	73.63	-44.57	167.30	-177.58	-63.68	176.48	-0.54	-684.4098022	10.198	-2.1738	-3.3051
δ_{D} Backbone conformation											
$\delta_{\mathrm{D}}\left[g^{+} a\right]^{\mathrm{a}, \mathrm{b}}$	- 160.74	-48.85	175.72	- 176.93	52.48	-164.30	3.41	-684.4071457	11.865	-0.5068	- 1.6381
$\delta_{\text {D }}\left[g^{+} g^{-}\right]^{\text {a,b }}$	- 152.24	-46.34	162.79	-174.56	62.86	-42.90	-3.04	-684.4046175	13.452	1.0796	-0.0516
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	- 166.96	- 52.06	172.53	- 173.85	- 121.06	55.27	4.53	-684.4070418	11.930	-0.4416	- 1.5729
$\delta_{\text {D }}\left[g^{-} s\right]^{\text {a,b }}$	- 135.56	-70.97	168.84	- 177.26	-79.12	2.05	12.10	-684.4055002	12.898	0.5257	-0.6055
$\alpha_{\text {D }}$ Backbone conformation											
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	51.02	50.87	158.65	- 173.41	57.95	78.07	-13.34	-684.4118612	8.906	-3.4659	-4.5971
$\alpha_{\text {D }}\left[g^{+} g^{-}\right]$	49.91	35.67	175.22	- 176.17	42.68	-69.95	7.37	-684.3904410	22.348	9.9755	8.8442
$\alpha_{\mathrm{D}}\left[s^{-} g^{-}\right]$	68.57	27.90	165.45	- 178.48	- 147.48	-61.61	0.62	-684.4145135	7.242	- 5.1302	-6.2615
$\alpha_{\mathrm{D}}\left[g^{-}-a\right]$	66.58	30.54	164.64	- 177.60	-64.08	- 177.94	0.92	-684.4094323	10.430	- 1.9417	-3.0730

Table 7 (continued)

Final conform. BB $\left[\chi_{1} \chi_{2}\right]$	Optimized parameters										
	ϕ	ψ	ω_{0}	ω_{1}	χ_{1}	χ_{2}	χ_{3}	$E_{\text {min }}$ (Hartree)	$\Delta E(\mathrm{kcal} / \mathrm{mol})$	$\Delta E^{\text {stabil }}$ (kcal) γ_{L}	$\begin{aligned} & \Delta E^{\text {stabil }} \\ & \text { (kcal) } \beta_{\mathrm{L}} \end{aligned}$
ε_{D} Backbone conformation											
$\varepsilon_{\mathrm{D}}[a a]$	68.83	176.68	- 157.00	- 176.55	- 152.00	171.32	-0.35	-684.4069842	11.967	-0.4055	- 1.5368
$\varepsilon_{\mathrm{D}}\left[g^{-} g^{+}\right]$	85.36	163.60	- 152.58	178.97	-62.34	93.43	-7.44	-684.4096079	10.320	-2.0519	-3.1832

[^1]this trend concerning hydrogen bond distance and ring size is unmistakably evident at all three levels of theory.

Furthermore, a strikingly significant correlation was found between the torsional angles $\left(\chi_{1}, \chi_{2}, \chi_{3}\right.$, $\omega_{0}, \omega_{1}, \phi$, and ψ) optimized at the one level of theory and those optimized at another level of theory (Fig. 28). Specifically, only minute deviation was found between torsional angle values found at RHF/3-21G when compared to those found at RHF/ $6-31 \mathrm{G}(\mathrm{d})$ or at B3LYP/6-31G(d) levels. For example, when correlating the torsional angles optimized at RHF/6-31G(d) against those optimized at RHF/3-21G for the endo form of the aspartic acid residue, the correlation has a strikingly high least square value of $R^{2}=0.9956$ (Fig. 28(a)). When correlating the torsional angles optimized at B3LYP/6-31G(d) against those optimized at RHF/ $6-31 \mathrm{G}(\mathrm{d})$ for the endo form, yet another high correlation with a least square value of $R^{2}=$ 0.9981 was found (Fig. 28(b)). Lastly, when correlating the torsional angles optimized at B3LYP/6-31G(d) against those optimized at RHF/ 3-21G, a strong correlation that has a least square value of $R^{2}=0.9703$ was found (Fig. 28(c)). Although the trend observed at B3LYP/6-31G(d) versus RHF/3-21G was slightly less significant, the correlation was clearly strong and undoubtedly apparent. In a similar fashion, the torsional angles found for the exo form of N -acetyl-L-aspartic acid N^{\prime}-methylamide at the different levels of theory correlated strongly against one another: $R^{2}=$ 0.9910 for RHF/6-31G(d) versus RHF/3-21G (Fig. 28(d)), $R^{2}=0.9958$ for B3LYP/6-31G(d) versus RHF/6-31G(d) (Fig. 28(e)), and $R^{2}=0.9923$ for B3LYP/6-31G(d) versus RHF/3-21G (Fig. 28(f)). To test the validity of this observation, optimization results for the torsional angles found in both endo and exo forms of N-acetyl-L-aspartic acid N^{\prime} methylamide were collectively correlated between the different levels of theory. In order to perform the correlation, the χ_{3} torsional angles were removed from the data pool. This is because the only true difference between endo and exo lies in the hydroxyl group. The results obtained were quite remarkable (Fig. 29). When both endo and exo optimization results were combined, very high correlation values were obtained between

Fig. 6. An example demonstrating how stabilization energies for all stable conformers were calculated using N-acetyl-glycine- N^{\prime}-methylamide with respect to the γ_{L} or β_{L} conformers of N-acetyl-L-aspartic acid N^{\prime}-methylamide. The endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide was used in this example. Here, the stabilization energy for the ag^{+}conformer found at the β_{L} backbone conformation at RHF/6-31G(d) was calculated.

Fig. 7. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the γ_{L} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 8. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the β_{L} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 9. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the δ_{L} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 10. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the α_{L} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Note that no stable conformers could be found for the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide in the α_{L} backbone conformation (and hence there is no topology diagram for the exo form in this backbone). Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 11. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the ε_{L} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Note that no stable conformers could be found for both endo and exo forms of N -acetyl-L-aspartic acid N^{\prime}-methylamide in the ε_{L} backbone conformation (and hence there are no topology diagrams for both the endo and the exo forms in this backbone). Torsional angles X_{1} on X_{2} are given in degrees.
the different levels of theory: $R^{2}=0.9937$ for RHF/6-31G(d) versus RHF/3-21G (Fig. 29(a)); $R^{2}=0.9967$ for B3LYP/6-31G(d) versus RHF/6$31 \mathrm{G}(\mathrm{d})$ (Fig. 29(b)); and $R^{2}=0.9914$ for B3LYP/ 6-31G(d) versus RHF/3-21G (Fig. 29(c)). And lastly,
optimized ΔE values in $\mathrm{kcal} / \mathrm{mol}$ for all endo and exo conformers were correlated between each level of theory (Fig. 30). Again, high correlation values were obtained between the different levels of theory: $R^{2}=0.9424$ for $R H F / 6-31 G(d)$ versus

Fig. 12. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the γ_{D} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 13. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the δ_{D} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 14. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the α_{D} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 15. Double-scan PES, $E=E\left(\chi_{1}, \chi_{2}\right)$, generated for the ε_{D} backbone conformation of (a) the endo form and (b) the exo form of N-acetyl-Laspartic acid N^{\prime}-methylamide at RHF/3-21G. (Top) landscape representation; (middle) contour representation; (bottom) topology diagram with ball-and-stick representation of stable conformers found. Torsional angles X_{1} on X_{2} are given in degrees.

Fig. 16. A pictorial representation of the stable $g^{-} S^{-}$conformer found at the α_{L} backbone of the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide.

RHF/3-21G (Fig. 30(a)); $R^{2}=0.9108$ for B3LYP/ $6-31 \mathrm{G}(\mathrm{d})$ versus $\mathrm{RHF} / 6-31 \mathrm{G}(\mathrm{d})$ (Fig. 30(b)); and $R^{2}=0.9434$ B3LYP/6-31G(d) versus RHF/3-21G (Fig. 30(c)).

Although the correlations for optimization results (be it torsional angles or ΔE values) between different levels of theories are strong, one limitation for lowerlevel optimizations is that they are not selective enough for identifying stable conformers. For example, it is
clear that some conformers found at the RHF/3-21G level of theory are not found at the B3LYP/6-31G(d) level. With that said however, the strong correlation between the torsional angles ($\chi_{1}, \chi_{2}, \chi_{3}, \omega_{0}, \omega_{1}, \phi, \psi$) and between the ΔE values, for both endo and exo forms, optimized at the different levels of theory undoubtedly suggest that the optimization results did not deviate greatly among the three levels of theory. This observation suggests that calculations performed

Sidechain-Sidechain Interaction (SC/SC)

Intramolecular H -bonded Interaction Type: 1
Distance: $\mathrm{O}^{17} \ldots \ldots \ldots . . \mathrm{H}^{19}$
Ring Size: 4

Backbone-Backbone Interactions

(BB/BB)

Intramolecular H-bonded
Interaction Type: 2A
Distance: $\mathrm{O}^{5} \ldots \mathrm{H}^{9}$
Ring Size: 5

Intramolecular H-bonded
Interaction Type: 2B
Distance: $\mathrm{O}^{10} \ldots \ldots \ldots . \mathrm{H}^{6}$
Ring Size: 7

Sidechain-Backbone Interactions

(SC/BB)

Intramolecular H-bonded
Interaction Type: 3A
Distance: $\mathrm{O}^{17} \ldots \ldots \ldots . . \mathrm{H}^{9}$
Ring Size: 6

Intramolecular H -bonded
Interaction Type: 3C
Distance: $\mathrm{O}^{17} \ldots \mathrm{H}^{6}$
Ring Size: 7

Intramolecular H-bonded
Interaction Type: 3B
Distance: $\mathrm{O}^{18} \ldots \mathrm{H}^{9}$
Ring Size: 6

Intramolecular H-bonded
Interaction Type: 3D
Distance: $\mathrm{O}^{18} \ldots \mathrm{H}^{6}$
Ring Size: 7

Fig. 17. Classification of traditional hydrogen bond interactions for the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide.

Table 8
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone (γ_{L}, $\beta_{\mathrm{L}}, \delta_{\mathrm{L}}, \alpha_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformations computed at the RHF/3-21G level of theory. No conformers were found for the ε_{L} backbone and hence no hydrogen bond distances for the ε_{L} backbone could be tabulated

Final conform.	Interaction type			Distance (\AA)						
BB [$\chi_{1} \chi_{2}$]	SC/SC	BB/BB	SC/BB	O17-H19	H9 - O17	H9 - O18	H9 - O5	H6-O10	H6-O17	H6- O18
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	2B	3A	2.359	2.007	3.878	3.497	2.065	4.826	5.763
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{+} \mathrm{g}^{-}\right.$]	1	2B	3B	2.355	3.936	2.007	3.505	2.068	5.742	4.716
$\gamma_{\mathrm{L}}[a s]$	1	2B	-	2.371	4.880	4.610	3.644	2.032	5.664	4.141
$\gamma_{\mathrm{L}}[a a]$	1	2B	-	2.369	4.715	4.867	3.588	2.060	4.207	5.789
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{+}\right]$	1	2B	3B	2.356	3.651	2.134	3.710	1.969	5.678	5.424
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{+}\right]$	1	-	3B	2.357	3.777	2.274	4.175	3.119	5.768	4.872
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	1	2B	-	2.365	3.371	3.942	3.677	2.008	4.899	6.157
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} s^{-}\right]$	1	2B	3A	2.354	2.069	3.813	3.752	1.950	5.374	5.950
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	1	2B	-	2.371	2.798	3.672	3.673	2.006	5.717	5.047
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	1	-	-	2.377	3.532	3.974	3.917	3.311	5.714	5.220

β_{L} Backbone conformation

$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1	2 A	-	2.376	3.497	3.620	2.101	5.011	5.017	3.576
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	1	2 A	-	2.365	2.971	4.584	2.110	5.077	3.769	4.315
$\beta_{\mathrm{L}}[a s]$	1	2 A	3D	2.349	5.408	4.849	2.077	5.011	3.427	2.070
$\beta_{\mathrm{L}}[a a]$	1	2 A	3C	2.356	4.933	5.472	2.047	5.079	1.962	3.795
$\beta_{\mathrm{L}}[a a]$	1	2 A	3C	2.357	4.934	5.470	2.044	5.053	1.963	3.791

δ_{L} Backbone conformation

$\delta_{\mathrm{L}}\left[g^{+} a\right]$	1	-	3A	2.361	2.150	3.993	3.708	3.532	3.992	5.656
$\delta_{\mathrm{L}}\left[g^{+} g^{-}\right]$	1	-	3B	2.347	4.049	2.104	3.663	3.370	5.598	4.034
$\delta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.368	5.117	4.750	3.675	3.593	5.791	4.676
$\delta_{\mathrm{L}}[\mathrm{a} a]$	1	-	-	2.363	4.854	5.157	3.566	3.613	4.655	5.903
$\delta_{\mathrm{L}}\left[s^{-} s^{+}\right]$	1	-	-	2.359	4.786	4.968	3.520	4.209	5.008	6.100
$\delta_{\mathrm{L}}\left[g^{-} g^{-}\right]$	1	-	-	2.383	3.664	4.407	3.733	3.770	5.568	5.311
α_{L} Backbone conformation										
$\alpha_{\mathrm{L}}\left[g^{-} s^{-}\right]$	1	-	3A	2.362	2.052	3.856	4.385	3.092	4.569	5.589
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	2B	-	2.374	5.507	4.443	3.913	1.916	4.312	4.850
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	2B	-	2.374	5.508	4.442	3.899	1.918	4.304	4.836
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1	2B	-	2.365	4.545	5.543	3.719	1.951	4.691	4.560
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1	2B	-	2.366	4.779	5.560	3.586	2.008	4.033	4.301
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1	2B	-	2.368	2.918	4.615	3.932	1.884	4.949	5.060
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	2B	-	2.357	4.122	3.313	3.869	1.896	4.830	5.040

δ_{D} Backbone conformation										
$\delta_{\mathrm{D}}\left[s g^{+}\right]$	1	-	3 D	2.336	3.844	2.992	3.484	4.886	3.864	1.877
$\delta_{\mathrm{D}}\left[g^{+} s\right]$	1	-	-	2.350	5.238	3.901	3.939	3.787	4.878	2.796
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	1	-	3 C	2.349	2.955	4.609	3.576	4.745	1.927	3.886
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]$	1	-	3 D	2.321	4.735	2.955	3.555	4.593	3.411	2.060
(continued on next page)										

Table 8 (continued)

Final conform.$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Interaction type			Distance (\AA)						
	SC/SC	BB/BB	SC/BB	$\mathrm{O} 17-\mathrm{H} 19$	H9 - O17	H9- O18	H9 - O5	H6-O10	H6-O17	H6-O18
$\delta_{\mathrm{D}}\left[\mathrm{ag}{ }^{+}\right]$	1	-	-	2.374	5.429	4.897	3.545	4.405	4.467	4.885
$\delta_{\mathrm{D}}[\mathrm{a} a]$	1	-	-	2.362	4.949	5.585	3.450	4.397	4.807	4.671
$\delta_{\mathrm{D}}\left[g^{-} g^{+}\right]$	1	-	-	2.365	4.916	3.781	3.526	4.793	5.157	4.253
$\delta_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	-	-	2.389	4.896	4.668	3.454	4.548	4.897	5.056
$\alpha_{\text {D }}$ Backbone conformation										
$\alpha_{\mathrm{D}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	-	-	2.355	3.264	4.710	4.289	2.886	4.898	5.780
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	1	-	-	2.336	4.754	3.281	4.411	2.985	5.333	4.994
$\alpha_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.358	5.497	4.435	4.375	3.210	5.795	4.757
$\alpha_{\mathrm{D}}[\mathrm{a} a]$	1	-	-	2.361	4.507	5.459	4.372	3.264	4.853	5.886
$\alpha_{\mathrm{D}}\left[g^{-} s\right]$	1	-	-	2.339	4.092	2.736	4.389	3.135	6.046	4.903
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	1	-	-	2.360	2.560	4.323	4.395	3.140	4.962	6.167
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1	-	-	2.402	5.057	4.602	3.022	4.722	4.487	2.986
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1	-	3D	2.377	3.954	4.793	3.369	2.891	3.701	1.921
$\varepsilon_{\mathrm{D}}\left[g^{+} s^{-}\right]$	1	-	3C	2.365	4.972	4.061	3.254	3.147	1.966	3.674
$\varepsilon_{\mathrm{D}}[a a]$	1	-	3C	2.354	4.756	5.503	2.962	4.736	1.971	3.742
$\varepsilon_{\mathrm{D}}\left[s^{-} g^{-}\right]$	1	-	3D	2.350	5.170	4.706	2.953	4.516	3.881	1.950
$\varepsilon_{\mathrm{D}}\left[\mathrm{g}^{-} a\right]$	1	-	-	2.365	3.321	4.766	3.171	4.695	4.311	4.698
$\varepsilon_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	-	-	2.356	4.175	3.509	3.076	4.516	5.022	4.141

Fig. 18. A pictorial representation of the stable $g^{-} g^{+}$conformer found at the α_{L} backbone of the exo form of N-acetyl-L-aspartic acid N^{\prime} methylamide. Note that at RHF/3-21G this $g{ }^{-} g^{+}$conformer does not exist in the ε_{L} backbone.

Backbone-Backbone Interactions

(BB/BB)

Intramolecular H -bond
Interaction Type: 1A
Distance: $\mathrm{O}^{5} \ldots \ldots \ldots . . \mathrm{H}^{9}$
Ring Size: 5

Intramolecular H -bond Interaction Type: 1B Distance: $\mathrm{O}^{10} \ldots \ldots \mathrm{H}^{6}$ Ring Size: 7

Sidechain-Backbone Interactions

(SC/BB)

Intramolecular H -bond
Interaction Type: 2A
Distance: $\mathrm{O}^{17} \ldots \mathrm{H}^{9}$
Ring Size: 6

Intramolecular H -bond
Interaction Type: 2B
Distance: $\mathrm{O}^{18} \ldots \ldots \mathbf{H}^{9}$
Ring Size: 6

Intramolecular H -bond Interaction Type: 2C
Distance: $\mathrm{O}^{5} \ldots \ldots \mathrm{H}^{19}$ Ring Size: 7

Intramolecular H -bond Interaction Type: 2D
Distance: $\mathrm{O}^{17} \ldots H^{6}$
Ring Size: 7

Intramolecular H -bond Interaction Type: $\mathbf{2 E}$
Distance: $\mathrm{O}^{18} \ldots \mathrm{H}^{6}$
Ring Size: 7

Intramolecular H -bond Interaction Type: 2F
Distance: $\mathrm{O}^{10} \ldots \ldots \mathrm{H}^{19}$
Ring Size: 8

Fig. 19. Classification of traditional hydrogen bond interactions for the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide.

Table 9
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}$, $\delta_{\mathrm{L}}, \gamma_{\mathrm{D}}, \delta_{\mathrm{D}}, \alpha_{\mathrm{D}}$, and ε_{D}) conformations computed at the RHF/3-21G level of theory. No conformers were found for the α_{L} and ε_{L} backbones and hence no hydrogen bond distances for the α_{L} and ε_{L} backbones could be tabulated

Final conform.$\mathrm{BB}\left[\begin{array}{ll} \chi_{1} & \chi_{2} \end{array}\right]$	Interaction type		Distance (\AA)							
	BB/BB	SC/BB	H9-O5	H9-O17	H9-O18	H19-O5	H6-O10	H6-O17	H6-O18	H19-O10
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1B	2 C	3.411	3.170	2.405	1.681	2.106	6.014	4.817	4.946
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1B	2A, 2C	3.821	2.152	3.395	1.714	1.913	5.340	5.059	5.470
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1B	-	3.602	4.823	4.787	3.490	2.052	5.662	4.420	4.357
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{-}\right]$	1B	2 C	3.697	4.785	4.764	1.706	1.954	5.593	4.803	5.432
$\gamma_{\mathrm{L}}\left[g^{-} \mathrm{g}^{+}\right]$	1B	-	3.354	4.522	3.109	4.604	2.107	5.967	5.044	3.366
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	1B	2A	3.790	2.033	3.789	4.946	1.932	5.350	5.988	5.916
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{s}^{-}\right.$]	1B	-	3.719	3.084	3.987	4.703	1.992	4.928	6.217	6.411
β_{L} Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1A	-	2.143	3.610	3.748	3.048	5.041	4.868	3.445	5.296
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	1A	-	2.083	3.059	4.558	5.611	5.108	3.623	4.445	4.326
$\beta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1A	2E	2.132	5.262	4.939	4.869	4.911	3.110	2.204	3.567
$\beta_{\mathrm{L}}[a a]$	1A	2D	2.020	4.913	5.556	5.732	5.095	1.928	3.780	4.509
$\beta_{\mathrm{L}}[a a]$	1A	2D	2.024	4.912	5.558	5.743	5.121	1.928	3.782	4.505
δ_{L} Backbone conformation										
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	-	2A	3.744	2.102	3.990	3.885	3.571	3.918	5.605	6.176
$\delta_{\text {L }}\left[s^{-} g^{+}\right]$	-	2F	3.421	5.474	4.627	4.822	4.136	5.835	4.987	1.717
$\delta_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	-	2F	3.678	4.535	4.245	4.790	3.793	6.128	5.153	1.730
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1B	-	3.988	4.398	4.847	3.458	1.800	3.958	2.668	2.991
$\gamma_{\mathrm{D}}\left[s^{+} \mathrm{g}^{-}\right]$	-	2E, 2F	3.236	5.550	4.640	4.726	2.952	3.126	1.962	1.583
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1B	-	3.809	5.485	4.731	3.859	1.945	4.011	4.902	5.296
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1B	-	3.799	5.489	4.733	3.838	1.945	4.005	4.886	5.292
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1B	-	3.675	4.559	5.597	5.286	1.966	4.597	4.625	4.646
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1B	-	3.585	4.716	5.625	5.483	2.010	4.156	4.392	4.612
$\gamma_{\mathrm{D}}\left[\mathrm{a} g^{-}\right]$	1B	-	3.653	5.199	5.198	3.102	1.910	4.779	3.274	3.892
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1B	-	3.951	2.882	4.579	5.685	1.883	4.936	5.128	4.477
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1B	-	3.983	3.405	3.740	4.383	1.873	4.581	5.288	5.245
δ_{D} Backbone conformation										
$\delta_{\text {D }}\left[g^{+} g^{+}\right]$	-	2E	3.553	3.441	3.690	3.962	4.743	3.406	2.164	5.245
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	-	2D	3.578	2.944	4.600	5.670	4.726	1.906	3.890	4.340
$\delta_{\text {D }}\left[g^{+} g^{-}\right]$	-	2E	3.474	4.788	3.069	4.419	4.754	3.243	2.080	3.323
$\delta_{\text {D }}[\mathrm{a} a]$	-	2 F	3.413	5.549	4.671	4.763	4.565	4.970	5.095	1.698
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	-	-	3.220	4.788	5.583	5.647	4.707	3.612	4.295	4.649
$\delta_{\mathrm{D}}\left[g^{-} s\right]$	-	2 F	3.502	4.751	4.351	4.694	4.933	4.680	5.000	1.671
$\alpha_{\text {D }}$ Backbone conformation										
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	-	2 C	4.389	3.639	4.604	1.783	3.105	5.414	4.983	3.021
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-	-	4.390	4.766	3.293	4.855	3.013	5.487	5.060	3.332
$\alpha_{\text {D }}\left[\mathrm{ag}^{-}{ }^{-}\right]$	-	2 C	4.391	4.793	4.995	1.668	3.116	5.998	5.045	4.492
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	-	-	4.393	2.548	4.314	4.796	3.159	4.947	6.205	4.789
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-	2D	3.293	4.935	3.879	5.114	3.021	2.067	3.659	3.080
$\varepsilon_{\mathrm{D}}[a a]$	-	2D	2.957	4.718	5.604	5.756	4.782	1.983	3.696	4.515
$\varepsilon_{\mathrm{D}}\left[\mathrm{g}^{-} a\right]$	-	-	3.163	3.447	4.701	5.752	4.815	4.178	4.928	3.876

Table 10
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone (γ_{L}, $\beta_{L}, \delta_{L}, \alpha_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}$, and ε_{D}) conformations computed at the RHF/6-31G(d) level of theory. No conformers were found for the ε_{L} backbone and hence no hydrogen bond distances for the ε_{L} backbone could be tabulated

Final conform.$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Interaction type			Distance (A)						
	SC/SC	BB/BB	SC/BB	O17-H19	H9-O17	H9-O18	H9-O5	H6-O10	H6-O17	H6-O18

γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	2B	3A	2.263	2.125	3.956	3.550	2.182	4.931	5.842
$\gamma_{\mathrm{L}}\left[g^{+} g^{-}\right]$	1	2B	3B	2.260	4.028	2.166	3.505	2.206	5.854	4.906
γ_{L} [as]	1	2B	-	2.270	4.868	4.676	3.486	2.220	5.723	4.182
$\gamma_{\mathrm{L}}[a a]$	1	2B	-	2.271	4.739	4.872	3.391	2.285	4.146	5.740
$\gamma_{\mathrm{L}}\left[g^{-} s^{+}\right]$	1	2B	-	2.266	3.868	2.898	3.497	2.196	5.222	5.764
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	1	2B	-	2.268	3.430	3.954	3.547	2.186	4.922	6.156
$\gamma_{L}\left[g^{-} g^{-}\right]$	1	2B	-	2.272	2.634	3.838	3.643	2.144	5.645	5.325
$\gamma_{\mathrm{L}}\left[g^{-} g^{-}\right]$	1	2B	-	2.272	2.619	3.847	3.656	2.143	5.632	5.341
β_{L} Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	2A	-	2.269	2.811	3.997	2.345	4.777	5.321	4.561
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	1	2A	-	2.269	3.059	4.606	2.188	5.033	3.866	4.433
$\beta_{L}\left[a g^{+}\right]$	1	2A	-	2.256	5.319	4.924	2.181	4.917	3.677	2.391
$\beta_{\mathrm{L}}[a a]$	1	2A	3 C	2.264	4.955	5.442	2.136	4.988	2.123	3.929
$\delta_{\text {L }}$ Backbone conformation										
$\delta_{\mathrm{L}}\left[g^{+} s\right]$	1	-	-	2.256	4.149	2.303	3.753	3.701	5.710	4.111
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	1	-	3A	2.266	2.271	4.062	3.777	3.723	4.058	5.678
$\delta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.268	5.108	4.825	3.642	3.822	5.880	4.800
$\delta_{\mathrm{L}}\left[g^{-} g^{+}\right]$	1	-	-	2.257	4.514	3.147	3.822	3.691	5.827	5.314
$\delta_{\mathrm{L}}\left[g^{-} s^{-}\right]$	1	-	-	2.275	3.112	4.326	3.868	3.714	5.361	5.680
α_{L} Backbone conformation										
$\alpha_{\mathrm{L}}\left[g^{-}{ }^{-}\right]$	1		3A	2.272	2.293	3.826	4.324	3.045	4.965	5.791
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	2B	-	2.275	5.469	4.562	3.871	2.052	4.316	4.997
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1	2B	-	2.269	4.732	5.568	3.361	2.232	4.047	4.166
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1	2B	-	2.270	2.836	4.534	4.062	1.998	5.084	5.350
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	2B	-	2.262	4.150	3.345	3.932	2.000	4.971	5.185
$\delta_{\text {D }}$ Backbone conformation										
$\delta_{\mathrm{D}}\left[g^{+} s\right]$	1	-	-	2.254	5.285	4.014	3.852	3.863	4.858	2.833
$\delta_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1	-	-	2.245	4.455	3.520	3.654	4.759	4.253	2.369
$\delta_{\mathrm{D}}\left[g^{+} a\right]$	1	-	3 C	2.259	2.966	4.579	3.672	4.876	2.080	4.041
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]$	1	-	3D	2.236	4.755	3.001	3.630	4.790	3.641	2.273
$\delta_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.277	5.260	5.083	3.508	4.658	4.068	4.879
$\delta_{\mathrm{D}}\left[\mathrm{as}{ }^{-}\right]$	1	-	-	2.272	5.263	5.075	3.502	4.644	4.991	3.834
$\delta_{\mathrm{D}}\left[g^{-}{ }^{+}\right]$	1	-	-	2.273	4.925	3.965	3.530	4.919	5.193	4.491
$\delta_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	-	-	2.290	3.947	4.673	3.605	4.969	4.541	5.118
$\alpha_{\text {D }}$ Backbone conformation										
$\alpha_{\mathrm{D}}\left[g^{+} s^{+}\right]$	1	-	-	2.271	3.329	4.573	4.394	2.815	5.132	5.109
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	1	-	-	2.254	4.753	3.390	4.393	2.792	5.247	5.026
$\alpha_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.262	5.373	4.411	4.370	3.064	5.885	4.969
$\alpha_{\mathrm{D}}[\mathrm{a} a]$	1	-	-	2.266	4.416	5.353	4.366	3.149	5.027	5.911
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	1	-	-	2.264	2.538	4.257	4.378	3.005	5.063	6.183
$\alpha_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	-	-	2.253	3.871	2.943	4.377	2.967	5.912	5.160
									ntinue	

Table 10 (continued)

Final conform.	Interaction type			Distance (A)						
$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	SC/SC	BB/BB	SC/BB	O17-H19	H9-O17	H9-O18	H9-O5	H6-O10	H6-O17	H6-O18
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1	-	3D	2.277	4.155	4.870	3.134	3.109	3.865	2.123
$\varepsilon_{\mathrm{D}}\left[g^{+}{ }^{-}{ }^{-}\right]$	1	-	3C	2.270	5.021	4.343	2.968	3.322	2.071	3.785
$\varepsilon_{\mathrm{D}}\left[s^{-} a\right]$	1	-	3C	2.262	4.739	5.502	2.774	4.732	2.100	3.765
$\varepsilon_{\mathrm{D}}\left[s^{-} g^{-}\right]$	1	-	3D	2.259	5.102	4.811	2.744	4.429	3.999	2.130

Table 11
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone (γ_{L}, β_{L}, $\delta_{L}, \varepsilon_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}$, and ε_{D}) conformations computed at the RHF/6-31G(d) level of theory. No conformers were found for the α_{L} backbone and hence no hydrogen bond distances for the α_{L} backbone could be tabulated

Final conform.$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Interaction type		Distance (A)							
	BB/BB	SC/BB	H9-O5	H9-O17	H9-O18	H19-O5	H6-O10	H6-O17	H6-O18	H19-O10
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1B	2C	3.837	2.346	3.447	1.884	2.056	5.493	5.155	5.589
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{-}\right]$	1B	2 C	3.623	4.773	4.777	1.874	2.118	5.479	4.851	5.545
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	1B	-	3.754	2.819	3.945	4.631	2.114	5.023	6.220	6.358
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{s}^{-}\right]$	1B	-	3.764	2.383	3.840	4.744	2.096	5.518	5.604	5.255
β Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1A	-	2.219	3.568	3.907	3.199	4.952	4.974	3.672	5.442
$\beta_{\mathrm{L}}\left[g^{+} a\right]$	1A	-	2.125	3.360	4.503	5.614	5.163	3.229	4.374	4.243
$\beta_{\mathrm{L}}[a a]$	1A	2D	2.117	4.939	5.521	5.538	5.021	2.083	3.916	4.727
$\beta_{\mathrm{L}}\left[s^{-} \mathrm{g}^{+}\right]$	1A	2F	2.153	5.341	4.836	5.207	5.016	2.467	3.838	1.947
δ_{L} Backbone conformation										
$\delta_{\mathrm{L}}\left[g^{+} a\right]$	-	2A	3.793	2.223	4.073	3.818	3.753	4.030	5.617	6.016
$\delta_{\text {L }}\left[s^{-} g^{+}\right]$	-	2F	3.505	5.421	4.701	4.741	4.155	5.801	5.148	1.892
$\delta_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{-}\right]$	-	2F	3.854	4.104	3.843	4.613	3.713	6.024	5.310	2.069
ε_{L} Backbone conformation										
$\varepsilon_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{g}^{+}\right]$	-	-	2.476	4.694	3.345	4.445	3.806	4.957	5.093	3.501
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1B	-	3.933	4.266	4.826	3.654	1.918	4.058	2.795	3.161
$\gamma_{\mathrm{D}}\left[s^{+} g^{-}\right]$	-	2F	3.694	5.435	4.859	4.661	2.319	3.628	2.663	1.815
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1B	-	3.743	5.444	4.828	3.885	2.090	3.973	4.969	5.318
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1B	-	3.760	5.447	4.822	3.850	2.082	3.992	4.972	5.321
$\gamma_{\mathrm{D}}[\mathrm{a} a]$	1B	-	3.353	4.707	5.619	5.548	2.232	4.088	4.268	4.626
$\gamma_{\mathrm{D}}\left[\mathrm{ag}^{-}\right]$	1B	-	3.553	5.035	5.236	3.299	2.074	4.836	3.444	4.151
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1B	-	4.135	2.762	4.471	5.224	2.024	5.112	5.527	4.602
$\delta_{\text {D }}$ Backbone conformation										
$\delta_{\text {D }}\left[g^{+} a\right]$	-	2D	3.675	2.967	4.580	5.467	4.855	2.069	4.054	4.580
$\delta_{\text {D }}\left[g^{+} a\right]$	-	2D	3.685	2.928	4.559	5.463	4.857	2.071	4.044	4.600
$\delta_{\text {D }}\left[g^{+} g^{-}\right]$	-	-	3.503	4.782	3.271	4.551	4.810	3.322	2.430	3.407
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	-	2F	3.458	5.539	4.772	4.699	4.644	4.987	5.226	1.866
$\delta_{\mathrm{D}}\left[g^{-} s\right]$	-	2F	3.551	4.800	4.233	4.611	5.035	4.693	5.036	1.862

Table 11 (continued)

Final conform.	Interaction type		Distance (\AA)							
$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	BB/BB	SC/BB	H9-O5	H9-O17	H9-O18	H19-O5	H6-O10	H6-O17	H6-O18	H19-O10
α_{D} Backbone conformation										
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	-	2C	4.367	3.643	4.557	1.942	2.993	5.462	4.988	3.225
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-	-	4.377	4.809	3.585	4.868	2.706	5.191	5.122	3.389
$\alpha_{\mathrm{D}}\left[s^{-} g^{-}\right]$	-	2C	4.377	4.539	4.970	1.823	3.067	5.955	5.177	4.657
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	-	-	4.376	2.520	4.250	4.728	3.042	5.047	6.217	4.814
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}\left[s^{+} g^{-}\right]$	-	2F	2.799	5.496	4.771	3.584	4.631	2.408	3.291	1.766
$\varepsilon_{\mathrm{D}}\left[\mathrm{s}^{-} a\right]$	-	2D	2.777	4.707	5.591	5.775	4.791	2.112	3.717	4.503
$\varepsilon_{\mathrm{D}}\left[g^{-} S^{+}\right]$	-	2F	2.807	4.315	4.130	4.781	5.021	4.387	5.224	1.958

Table 12
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its endo form for all its stable backbone (γ_{L}, $\beta_{L}, \delta_{L}, \alpha_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}$, and ε_{D}) conformations computed at the B3LYP/6-31G(d) level of theory. No conformers were found for the ε_{L} backbone and hence no hydrogen bond distances for the ε_{L} backbone could be tabulated

Final conform.	Interaction type			Distance (\AA)						
$\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	SC/SC	BB/BB	SC/BB	O17-H19	H9-O17	H9-O18	H9-O5	H6-O10	H6-O17	H6-018
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	2B	3A	2.274	2.056	3.924	3.565	2.030	4.945	5.833
$\gamma_{\mathrm{L}}\left[g^{+} g^{-}\right]$	1	2B	3B	2.276	4.026	2.109	3.554	2.053	5.858	4.893
$\gamma_{\mathrm{L}}[a s]$	1	2B	-	2.282	4.911	4.701	3.632	2.044	5.761	4.260
$\gamma_{\mathrm{L}}[a a]$	1	2B	-	2.283	4.774	4.895	3.588	2.066	4.277	5.797
$\gamma_{\mathrm{L}}\left[g^{-} s^{+}\right]$	1	2B	-	2.281	3.778	2.419	3.747	1.986	5.506	5.566
$\gamma_{\mathrm{L}}\left[g^{-} a\right]$	1	2B	-	2.280	3.638	3.859	3.720	2.004	4.922	6.155
$\gamma_{\mathrm{L}}\left[g^{-} s^{-}\right]$	1	2B	3A	2.275	2.097	3.807	3.834	1.952	5.416	5.873
β_{L} Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	2A	-	2.281	2.906	4.064	2.261	4.891	5.233	4.343
$\beta_{\mathrm{L}}\left[g^{+} a\right]^{\text {a,b }}$	1	2A	-	2.282	3.161	4.713	2.117	5.099	3.719	4.322
$\beta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1	2A	3D	2.266	5.406	4.935	2.120	4.999	3.587	2.196
$\beta_{\mathrm{L}}[a a]$	1	2 A	3C	2.270	4.988	5.509	2.074	5.040	1.984	3.864
δ_{L} Backbone conformation										
$\delta_{\mathrm{L}}\left[g^{+} s\right]$	1	-	3B	2.270	4.129	2.215	3.832	3.543	5.674	4.065
$\delta_{\mathrm{L}}\left[g^{+} a\right]^{\mathrm{a}, \mathrm{b}}$	1	-	3A	2.275	2.179	4.031	3.850	3.588	4.038	5.649
$\delta_{\mathrm{L}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.282	5.107	4.838	3.784	3.617	5.887	4.899
$\delta_{\mathrm{L}}\left[g^{-} g^{+}\right]$	1	-	-	2.271	4.514	3.111	3.921	3.649	5.828	5.281
$\delta_{\mathrm{L}}\left[g^{-} s^{-}\right]$	1	-	-	2.286	2.950	4.333	3.978	3.641	5.245	5.773
α_{L} Backbone conformation										
$\alpha_{\mathrm{L}}\left[g^{-} s^{-}\right]^{\text {a,b }}$	1	-	3A	2.281	2.121	3.843	4.397	3.014	4.822	5.831
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[\mathrm{a}^{+}{ }^{+}\right]$	1	2B	-	2.288	5.505	4.611	3.941	1.927	4.230	4.972
$\gamma_{\mathrm{D}}\left[\mathrm{as}^{-}\right]^{\text {a,b }}$	1	2B	-	2.282	4.558	5.581	3.754	1.957	4.856	4.483
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1	2B	-	2.282	2.787	4.517	4.096	1.873	4.856	5.279
$\gamma_{\mathrm{D}}\left[g^{-} g^{-}\right]$	1	2B	-	2.271	4.307	3.193	3.992	1.894		
(continued on next page)										

Table 12 (continued)

Final conform.	Interact	type		Distance (
BB [$\chi_{1} \chi_{2}$]	SC/SC	BB/BB	SC/BB	O17-H19	H9-O17	H9-O18	H9-O5	H6-O10	H6-O17	H6-018
$\delta_{\text {D }}$ Backbone co	frmation									
$\delta_{\text {D }}\left[g^{+} g^{+}\right]^{\text {a,b }}$	1	-	3D	2.250	4.467	3.351	3.623	4.853	4.126	2.078
$\delta_{\mathrm{D}}\left[g^{+} a\right]^{\text {a,b }}$	1	_	3C	2.265	3.075	4.664	3.624	4.874	1.961	3.961
$\delta_{\text {D }}\left[g^{+} g^{-}\right]$	1	-	3D	2.247	4.876	3.084	3.608	4.760	3.630	2.151
$\delta_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.288	5.341	5.097	3.554	4.602	4.205	4.952
$\delta_{\mathrm{D}}\left[\mathrm{as}^{-}{ }^{-}\right.$	1	-	-	2.282	5.154	5.363	3.573	4.532	5.105	4.349
$\delta_{\text {D }}\left[g^{-} g^{-}\right]^{\text {a,b }}$	1	-	-	2.303	4.032	4.740	3.570	5.004	4.531	5.101
$\alpha_{\text {D }}$ Backbone co	formation									
$\alpha_{\text {D }}\left[g^{+}{ }^{+}{ }^{+}\right]$	1	-	-	2.283	3.329	4.602	4.456	2.800	5.109	5.092
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	1	-	-	2.268	4.793	3.475	4.453	2.713	5.081	4.996
$\alpha_{\mathrm{D}}\left[\mathrm{ag}^{+}\right]$	1	-	-	2.274	5.453	4.439	4.428	3.070	5.888	4.999
$\alpha_{\text {D }}\left[a^{-}{ }^{-}\right]$	1	-	-	2.278	4.445	5.421	4.424	3.143	5.063	5.913
$\alpha_{\text {D }}\left[g^{-} s\right]$	1	-	-	2.261	4.199	2.721	4.438	2.974	6.132	5.031
$\alpha_{\text {D }}\left[g^{-} a\right]$	1	-	-	2.275	2.528	4.295	4.437	2.993	5.048	6.198
ε_{D} Backbone co	frmation									
$\varepsilon_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1	-	3D	2.293	4.062	4.881	3.321	2.932	3.782	2.030
$\varepsilon_{\mathrm{D}}\left[g^{+} s^{-}\right]$	1	-	3 C	2.279	5.051	4.461	2.990	3.281	1.942	3.740
$\varepsilon_{\mathrm{D}}\left[s^{-} a\right]$	1	-	3 C	2.268	4.856	5.512	2.783	4.718	1.966	3.800
$\varepsilon_{\mathrm{D}}\left[s^{-}{ }^{-}-\right]$	1	-	3D	2.273	5.203	4.879	2.763	4.444	3.960	2.025

[^2]${ }^{\mathrm{b}}$ This result was obtained from an optimization fully converged under regular B3LYP/6-31G(d) at (Z-MATRIX).

Table 13
The relative distances of potential hydrogen bonds of N-acetyl-L-aspartic acid N^{\prime}-methylamide in its exo form for all its stable backbone ($\gamma_{\mathrm{L}}, \beta_{\mathrm{L}}$, $\delta_{L}, \varepsilon_{L}, \gamma_{D}, \delta_{D}, \alpha_{D}$, and ε_{D}) conformations computed at the B3LYP/6-31G(d) level of theory. No conformers were found for the α_{L} backbone and hence no hydrogen bond distances for the α_{L} backbone could be tabulated

Final conform.$\text { BB }\left[\chi_{1} \chi_{2}\right]$	Interaction type		Distance (A)							
	BB/BB	SC/BB	H9-O5	H9-O17	H9-O18	H19-O5	H6-O10	H6-O17	H6-O18	H19-O10
γ_{L} Backbone conformation										
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1B	2 C	3.906	2.344	3.376	1.749	1.917	5.528	5.068	5.421
$\gamma_{\mathrm{L}}\left[g^{+} g^{+}\right]$	1B	2 C	3.899	2.342	3.371	1.748	1.916	5.515	5.065	5.430
$\gamma_{\mathrm{L}}\left[\mathrm{ag}^{-}\right]$	1B	2 C	3.776	4.780	4.809	1.746	1.940	5.610	4.866	5.454
$\gamma_{\mathrm{L}}\left[\mathrm{g}^{-} \mathrm{s}^{-}\right]$	1B	2A	3.880	2.044	3.796	4.863	1.929	5.381	5.973	5.902
β_{L} Backbone conformation										
$\beta_{\mathrm{L}}\left[g^{+} g^{+}\right]^{\text {a,b }}$	1A	-	2.175	3.850	3.943	3.124	5.015	4.888	3.465	5.396
$\beta_{\mathrm{L}}\left[\mathrm{g}^{+}{ }^{-}\right.$]	1A	2D, 2F	2.156	4.717	4.271	5.117	5.000	1.977	3.699	1.717
$\beta \mathrm{b}_{\mathrm{L}}[a a]$	1A	2D	2.046	4.983	5.598	5.767	5.090	1.937	3.847	4.422
$\beta_{\mathrm{L}}\left[s^{-} \mathrm{g}^{+}\right]$	1A	2F	2.133	5.371	4.819	5.168	5.023	2.434	3.829	1.827
δ_{L} Backbone conformation										
$\delta_{\mathrm{L}}\left[s^{-} g^{+}\right]^{\text {a,b }}$	-	2F	3.532	5.467	4.663	4.779	4.121	5.934	5.150	1.773
$\delta_{\mathrm{L}}\left[g^{-} s\right]$	-	2F	3.844	4.562	4.047	4.677	3.770	6.205	5.302	1.841

Table 13 (continued)

Final conform. $\mathrm{BB}\left[\chi_{1} \chi_{2}\right]$	Interaction type		Distance (\AA)							
	BB/BB	SC/BB	H9-O5	H9-O17	H9-O18	H19-O5	H6-O10	H6-O17	H6-O18	H19-O10

ε_{L} Backbone conformation										
$\varepsilon_{\mathrm{L}}\left[g^{-} g^{+}\right]$	1A	-	2.297	4.853	3.402	4.295	4.115	5.002	5.195	3.253
γ_{D} Backbone conformation										
$\gamma_{\mathrm{D}}\left[g^{+} g^{+}\right]$	1B	-	4.044	4.364	4.806	3.506	1.810	4.106	2.731	3.086
$\gamma_{\mathrm{D}}\left[s^{+} g^{-}\right]$	1B	2F	3.776	5.537	4.829	4.588	2.225	3.746	2.565	1.713
$\gamma_{\mathrm{D}}[a a]$	1B	-	3.677	4.549	5.637	5.103	1.975	4.773	4.615	4.654
$\gamma_{\mathrm{D}}\left[\mathrm{a}^{-}\right]$	1B	-	3.678	5.186	5.266	3.181	1.934	4.846	3.378	3.970
$\gamma_{\mathrm{D}}\left[s^{-} g^{-}\right]$	1B	2C	4.214	4.995	4.763	1.716	1.896	5.732	4.943	5.059
$\gamma_{\mathrm{D}}\left[g^{-} a\right]$	1B	-	4.140	2.740	4.465	5.415	1.876	5.060	5.391	4.661
$\delta_{\text {D }}$ Backbone conformation										
$\delta_{\mathrm{D}}\left[g^{+} a\right]^{\mathrm{a}, \mathrm{b}}$	-	2D	3.620	3.076	4.641	5.666	4.848	1.942	3.960	4.337
$\delta_{\mathrm{D}}\left[g^{+} g^{-}\right]^{\text {a,b }}$	-	2E	3.497	4.848	3.182	4.451	4.853	3.305	2.248	3.376
$\delta_{\text {D }}\left[s^{-} g^{+}\right]$	-	2 F	3.450	5.599	4.753	4.740	4.693	5.019	5.204	1.745
$\delta_{\mathrm{D}}\left[g^{-} s\right]^{\mathrm{a}, \mathrm{b}}$	-	2 F	3.425	5.149	4.371	4.654	5.131	4.703	5.027	1.717
$\alpha_{\text {D }}$ Backbone conformation										
$\alpha_{\mathrm{D}}\left[g^{+} g^{+}\right]$	-	2C	4.422	3.685	4.547	1.812	3.005	5.525	4.956	3.173
$\alpha_{\mathrm{D}}\left[g^{+} g^{-}\right]$	-	-	4.430	4.908	3.525	4.794	2.764	5.396	5.086	3.222
$\alpha_{\mathrm{D}}\left[s^{-} g^{-}\right]$	-	2C	4.438	4.677	4.988	1.711	3.000	6.042	5.158	4.608
$\alpha_{\mathrm{D}}\left[g^{-} a\right]$	-	-	4.435	2.514	4.288	4.733	3.024	5.034	6.237	4.866
ε_{D} Backbone conformation										
$\varepsilon_{\mathrm{D}}[a a]$	-	2D	2.792	4.800	5.647	5.834	4.824	1.986	3.740	4.491
$\varepsilon_{\mathrm{D}}\left[g^{-} g^{+}\right]$	-	2 F	2.727	4.660	4.241	4.776	5.273	4.242	5.246	1.760

${ }^{\text {a }}$ After 200 iterations under B3LYP/6-31G(d) at (TIGHT, Z-MATRIX), the force has converged, but the displacement did not converge completely.
${ }^{\mathrm{b}}$ This result was obtained from an optimization fully converged under regular B3LYP/6-31G(d) at (Z-MATRIX).
at lower levels (i.e. at RHF/3-21G) may still be significant. If this is the case, then ab initio computational studies can be carried out with less time and less energy in the future. This way, computations on amino acids, peptides, molecules and proteins can be carried out with even higher efficiency, enhancing research development in pharmacological and biomedical studies.

6. Conclusions

Using quantum chemical calculations at the RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d) ab initio levels, the conformation preference for both
the endo and the exo forms of N -acetyl-L-aspartic acid N^{\prime}-methylamide were determined. At RHF/3-21G, a total of 49 stable conformers was found for the endo form and a total of 37 stable conformers for the exo form. At RHF/6-31G(d), a total of 40 stable conformers was found for the endo form and a total of 31 stable conformers for the exo form. And lastly at B3LYP/6-31G(d), a total of 37 stable conformers for the endo form and a total of 27 stable conformers for the exo form were found. All relative energies, including the stabilization exerted by the sidechain on the backbone, were calculated for all stable conformers.

Various $\mathrm{SC} / \mathrm{SC}(\mathrm{HO} \cdots \mathrm{O}=\mathrm{C})$, $\mathrm{BB} / \mathrm{BB} \quad(\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$) and $\mathrm{BB} / \mathrm{SC}(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C} ; \mathrm{N}-\mathrm{H} \cdots \mathrm{OH})$

Fig. 20. Computed stabilization energies at RHF/3-21G for the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.

Fig. 21. Computed stabilization energies at RHF/3-21G for the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.

Fig. 22. Computed stabilization energies at RHF/6-31G(d) for the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.

Fig. 23. Computed stabilization energies at RHF/6-31G(d) for the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.
$\Delta \mathbf{E}^{\text {stabil }}(\mathbf{k c a l}) \gamma_{\mathrm{L}}$

镸

Fig. 24. Computed stabilization energies at B3LYP/6-31G(d) for the endo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.

Fig. 25. Computed stabilization energies at B3LYP/6-31G(d) for the exo form of N-acetyl-L-aspartic acid N^{\prime}-methylamide with respect to the γ_{L} and β_{L} backbone conformation of N-acetyl-glycine- N^{\prime}-methylamide.

Fig. 26. Trends illustrating the correlation between hydrogen-bonded distance and ring size (RS) for the endo form of N-acetyl-L-aspartic acid N^{t}-methylamide at (a) RHF/3-21G; (b) RHF/6-31G(d); and (c) B3LYP/6-31G(d) levels of theory. Note: HQ may be $\mathrm{H}-\mathrm{N}$ or $\mathrm{H}-\mathrm{O}$.

Fig. 27. Trends illustrating the correlation between hydrogen-bonded distance and ring size (RS) for the exo form of N-acetyl-L-aspartic acid N^{\prime} methylamide at (a) RHF/3-21G; (b) RHF/6-31G(d); and (c) B3LYP/6-31G(d) levels of theory. Note: HQ may be $\mathrm{H}-\mathrm{N}$ or $\mathrm{H}-\mathrm{O}$.

Fig. 28. A graph showing the correlation between the torsional angles ($\chi_{1}, \chi_{2}, \chi_{3}, \omega_{0}, \omega_{1}, \phi, \psi$) optimized for N-acetyl-L-aspartic acid N^{\prime} methylamide: (a) RHF/6-31G(d) vs. RHF/3-21G for the endo form; (b) B3LYP/6-31G(d) vs. RHF/6-31G(d) for the endo form; (c) B3LYP/6$31 \mathrm{G}(\mathrm{d})$ vs. RHF/3-21G for the endo form; (d) RHF/6-31G(d) vs. RHF/3-21G for the exo form; (e) B3LYP/6-31G(d) vs. RHF/6-31G(d) for the exo form; (f) B3LYP/6-31G(d) vs. RHF/3-21G for the exo form.
(a)

(b)

(c)

Fig. 29. A graph showing the correlation between the torsional angles ($\chi_{1}, \chi_{2}, \omega_{0}, \omega_{1}, \phi, \psi$) optimized at the different levels of theory for N -acetyl-L-aspartic acid N^{\prime}-methylamide: (a) RHF/6-31(d) vs. RHF/3-21G; (b) B3LYP/6-31G(d) vs. RHF/6-31G(d); (c) B3LYP/6-31G(d) vs. RHF/3-21G. Note that the χ_{3} results have been omitted in this plot and that the optimization results for both endo and exo forms of N-acetyl-Laspartic acid N^{\prime}-methylamide were combined to generate the plots.

Fig. 30. A graph showing the correlation between the ΔE values ($\mathrm{kcal} / \mathrm{mol}$) optimized at the different levels of theory for N-acetyl-L-aspartic acid N^{\prime}-methylamide: (a) RHF/6-31(d) vs. RHF/3-21G; (b) B3LYP/6-31G(d) vs. RHF/6-31G(d); (c) B3LYP/6-31G(d) vs. RHF/3-21G. Note that optimization results for both endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide were combined to generate the plots.
were analyzed. There was no SC/SC interaction in the carboxyl group of the exo aspartic acid residue, indicating that the sidechain may involve with external hydrogen bonding to stabilize the amino acid or with other stabilizing forces in a larger molecule. Both internal and external hydrogen bondings are significant when the aspartyl residue participates in intra- or inter-molecular interactions, such as in the RGD tripeptide. This way, the presence or absence of these stabilizing forces may directly affect the folding pattern of a peptide segment such as the RGD moiety. In this work, the stable $g^{-} s^{-}$and $g^{-} g^{+}$found, respectively, at the α_{L} and ε_{L} backbones may represent novel geometries in which the aspartyl residue partakes during such peptide folding. In addition, while the $\mathrm{BB} / \mathrm{BB}$ interaction can be considered as an internal stabilizing factor for the exo forms of the aspartic acid residue, its sidechain can participate in external interactions with other substrates. This phenomenon can be applied to the docking of a specific molecule to receptors that express the aspartic acid residue on its surface.

There also exists a trend between the hydrogen bond distance and ring size for both the endo and exo forms of N-acetyl-L-aspartic acid N^{\prime}-methylamide at all three levels of theory; where the shorter the hydrogen bond distance, the greater the RS. Finally, there is a remarkably high correlation between torsional angles ($R^{2}=0.9937$ for RHF/6$31 \mathrm{G}(\mathrm{d})$ versus $\mathrm{RHF} / 3-21 \mathrm{G} ; R^{2}=0.9967$ for B3LYP/6-31G(d) versus RHF/6-31G(d); $R^{2}=$ 0.9914 for B3LYP/6-31G(d) versus $\mathrm{RHF} / 3-21 \mathrm{G}$) and between ΔE values $\left(R^{2}=0.9424\right.$ for RHF/631G(d) versus RHF/3-21G; $R^{2}=0.9108$ for B3LYP/6-31G(d) versus RHF/6-31G(d); $R^{2}=$ 0.9434 B3LYP/6-31G(d) versus RHF/3-21G) optimized at different levels of theory, suggesting that ab initio calculations carried at lower levels, such as RHF/3-21G, are still significant.

Acknowledgements

The authors would like to express their gratitude for the generous allocation of CPU time provide by the National Cancer Institute (NCI) at the Frederick Biomedical Supercomputing Center.

References

[1] M.L. Lopez-Rodriguez, B. Vicente, X. Deupi, S. Barrondo, M. Olivella, M.J. Morcillo, B. Behamu, J.A. Ballesteros, J. Salles, L. Pardo, Mol. Pharmacol. 62 (2002) 15.
[2] M.T. Makhija, V.M. Kulkarni, J. Comput. Aid. Mol. Des. 15 (2001) 961.
[3] I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Proteins 47 (2002) 409.
[4] M. Glick, D.D. Robinson, G.H. Grant, W.G. Richards, J. Am. Chem. Soc. 124 (2002) 2337.
[5] J. Zhu, H. Fan, H. Liu, Y. Shi, J. Comput. Aid. Mol. Des. 15 (2001) 979.
[6] R. Bitetti-Putzer, D. Joseph-McCarthy, J.M. Hogle, M. Karplus, J. Comput. Aid. Mol. Des. 15 (2001) 935.
[7] A.W. Ravna, O. Edvardsen, J. Mol. Graph. Model. 20 (2001) 133.
[8] O.A. Santos-Filho, R.K. Mishra, A.J. Hopfinger, J. Comput. Aid. Mol. Des. 15 (2001) 787.
[9] A. Percel, J.G. Ángyán, M. Kajtár, W. Viviani, J.L. Rivail, J.F. Marcoccia, I.G. Csizmadia, J. Am. Chem. Soc. 113 (1991) 6256.
[10] M.A. McAllister, A. Perczel, P. Császár, W. Viviani, J.L. Rivail, I.G. Csizmadia, J. Mol. Struct. (Theochem) 288 (1993) 161.
[11] M.A. McAllister, A. Perczel, P. Császár, I.G. Csizmadia, J. Mol. Struct. (Theochem) 288 (1993) 181.
[12] A. Perczel, M.A. McAllister, P. Császár, I.G. Csizmadia, Can. J. Chem. 72 (1994) 2050.
[13] M. Cheung, M.E. McGovern, T. Jin, D.C. Zhao, M.A. McAllister, A. Perczel, P. Császár, I.G. Csizmadia, J. Mol. Struct. (Theochem) 309 (1994) 151.
[14] A.M. Rodriguez, H.A. Baldoni, F. Suvire, R. Nieto-Vasquez, G. Zamarbide, R.D. Enriz, Ö. Farkas, A. Perczel, I.G. Csizmadia, J. Mol. Struct. (Theochem) 455 (1998) 275.
[15] M. Berg, S.J. Salpietro, A. Perczel, Ö. Farkas, I.G. Csizmadia, J. Mol. Struct. (Theochem) 504 (2000) 127.
[16] M.A. Zamora, H.A. Baldoni, J.A. Bombasaro, M.L. Mak, A. Perczel, Ö. Farkas, R.D. Enriz, J. Mol. Struct. (Theochem) 540 (2001) 271.
[17] M.A. Zamora, H.A. Baldoni, A.M. Rodriguez, R.D. Enriz, C.P. Sosa, A. Perczel, A. Kucsman, O. Farkas, E. Deretey, J.C. Vank, I.G. Csizmadia, Can. J. Chem. 80 (2002) 832.
[18] A. Perczel, Ö. Farkas, I.G. Csizmadia, J. Am. Chem. Soc. 117 (1995) 1653.
[19] H.A. Baldoni, G.N. Zamarbide, R.D. Enriz, E.A. Jauregui, Ö. Farkas, A. Perczel, S.J. Salpietro, I.G. Csizmadia, J. Mol. Struct. (Millennium Volume) 500 (2000) 97.
[20] Ö. Farkas, M.A. McAllister, J.H. Ma, A. Perczel, M. Hollósi, I.G. Csizmadia, J. Mol. Struct. (Theochem) 369 (1996) 105.
[21] A. Perczel, Ö. Farkas, I.G. Csizmadia, Can. J. Chem. 75 (1997) 1120.
[22] I. Jakli, A. Perczel, Ö. Farkas, M. Hollosi, I.G. Csizmadia, J. Mol. Struct. (Theochem) 455 (1998) 303.
[23] H.A. Baldoni, A.M. Rodriguez, G. Zamarbide, R.D. Enriz, Ö. Farkas, P. Csaszar, L.L. Torday, C.P. Sosa, I. Jakli, A. Perczel,
M. Hollosi, I.G. Csizmadia, J. Mol. Struct. (Theochem) 465 (1999) 79.
[24] J.C. Vank, C.P. Sosa, A. Perczel, I.G. Csizmadia, Can. J. Chem. 78 (2000) 395.
[25] A. Perczel, Ö. Farkas, I.G. Csizmadia, J. Comput. Chem. 17 (1996) 821.
[26] A. Perczel, Ö. Farkas, I.G. Csizmadia, J. Am. Chem. Soc. 118 (1996) 7809.
[27] I. Jakli, A. Perczel, Ö. Farkas, C.P. Sosa, I.G. Csizmadia, J. Comput. Chem. 21 (2000) 626.
[28] W. Viviani, J.-L. Rivail, A. Perczel, I.G. Csizmadia, J. Am. Chem. Soc. 115 (1993) 8321.
[29] S.J. Salpietro, A. Perczel, Ö. Farkas, R.D. Enriz, I.G. Csizmadia, J. Mol. Struct. (Theochem) 497 (2000) 39.
[30] S. Hatse, K. Princen, L.O. Gerlach, G. Bridger, G. Henson, E. De Clercq, T.W. Schwartz, D. Schols, Mol. Pharmacol. 60 (2001) 164.
[31] C. Demougeot, P. Garnier, C. Mossiat, N. Bertrand, M. Giroud, A. Beley, C. Marie, J. Neurochem. 77 (2001) 408.
[32] K. Chlebovská, O. Chlebovský, Mech. Ageing Dev. 108 (1999) 127.
[33] P. Fedoročko, N.O. Macková, Z. Šándorčínová-Hoferová, Z. Sedláková-Hoferová, P. Solár, O. Chlebovský, Mech. Ageing Dev. 119 (2000) 159.
[34] J.A. Contreras, M. Karlsson, T. Østerlund, H. Laurell, A. Svensson, C. Holm, J. Biol. Chem. 271 (1996) 31426.
[35] G.F. Short III, A.L. Laikhter, M. Lodder, Y. Shayo, T. Arslan, S.M. Hecht, Biochemistry 39 (2000) 8768.
[36] R. Hu, J. Bekisz, H. Schmeisser, P. McPhie, K. Zoon, J. Immunol. 167 (2001) 1482.
[37] R. Hoffmann, D.J. Craik, K. Bokonyi, I. Varga, L. Otvos Jr., J. Pept. Sci. 5 (1999) 442.
[38] D. Saadat, D.H. Harrison, Biochemistry 37 (1998) 10074.
[39] J. Rotonda, M. Garcia-Calvo, H.G. Bull, W.M. Geissler, B. McKeever, N.A. Thornberry, J.W. Becker, Chem. Biol. 8 (2001) 357.
[40] M.J. Collins, E.R. Waite, A.C. van Duin, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 354 (1999) 51.
[41] M.A. Berg, G.A. Chass, E. Deretey, A.K. Füzéry, B.M. Fung, D.Y.K. Fung, H. Henry-Riyad, A.C. Lin, M.L. Mak, A. Mantas, M. Patel, I.V. Repyakh, M. Staikova, S.J. Salpietro, T.-H. Tang, J.C. Vank, Ö. Perczel, L.L. Farkas, Z. Torday, I.G. Székely, J. Mol. Struct. (Theochem) 500 (2000) 5.
[42] E. Ruoslahti, M.D. Pierschbacher, Science 238 (1987) 491.
[43] M.K. Magnusson, S.S. Hong, P. Boulanger, L. Lindholm, J. Virol. 75 (2001) 7280.
[44] N. Okada, Y. Tsukada, S. Nakagawa, H. Mizuguchi, K. Mori, T. Saito, T. Fujita, A. Yamamoto, T. Hayakawa, T. Mayumi, Biochem. Biophys. Res. Commun. 282 (2001) 173.
[45] C. Hay, H. De Leon, J.D. Jafari, J.L. Jakubczak, C.A. Mech, P.L. Hallenbeck, S.K. Powell, G. Liau, S.C. Stevenson, J. Vasc. Res. 38 (2001) 315.
[46] C.D. Anuradha, S. Kanno, S. Hirano, Cell Biol. Toxicol. 16 (2000) 275.
[47] H. Ghandehari, R. Sharan, W. Rubas, W.M. Killing, J. Pharm. Pharm. Sci. 4 (2001) 32.
[48] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. AlLaham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. HeadGordon, C. Gonzalez, J.A. Pople, Gaussian 94, Revision D.2, Gaussian Inc., Pittsburgh, PA, 1995.
[49] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.x, Gaussian Inc., Pittsburgh, PA, 1998.
[50] J.C.P. Koo, G.A. Chass, A. Perczel, Ö. Farkas, L.L. Torday, A. Varro, J.G. Papp, I.G. Csizmadia, Eur. Phys. J. D. 20 (2002) 499-511.
[51] J.C.P. Koo, G.A. Chass, A. Perczel, Ö. Farkas, L.L. Torday, A. Varro, J.G. Papp, I.G. Csizmadia, J. Phys. Chem. A 106 (2002) 6999.
[52] M. Tarditi, M.W. Klipfel, A.M. Rodriguez, F.D. Suvire, G.A. Chasse, Ö. Farkas, A. Perczel, R.D. Enriz, J. Mol. Struct. (Theochem) 545 (2001) 29.
[53] M.F. Masman, M.G. Amaya, A.M. Rodriguez, F.D. Suvire, G.A. Chasse, Ö. Farkas, A. Perczel, R.D. Enriz, J. Mol. Struct. (Theochem) 543 (2001) 203.
[54] M.N. Barroso, E.S. Cerutti, A.M. Rodriguez, E.A. Jauregui, Ö. Farkas, A. Perczel, R.D. Enriz, J. Mol. Struct. (Theochem) 548 (2001) 21.

[^0]: * Corresponding author.

 E-mail address: joseph.koo@utoronto.ca (J.C.P. Koo) jan. lam@utoronto.ca (J.S.W. Lam), sal.salpietro@utoronto.ca (S.J. Salpietro), gchass@fixy.org (G.A. Chass), denriz@unsl.edu.ar (R.D. Enriz), pyro@phcol.szote.u-szeged.hu (L.L. Torday), varro@ phcol.szote.u-szeged.hu (A. Varro), papp@phcol.szote.u-szeged.hu (J.G. Papp).

[^1]: ${ }^{\text {a }}$ After 200 iterations under B3LYP/6-31G(d) at (TIGHT, Z-MATRIX), the force has converged, but the displacement did not converge completely.

[^2]: ${ }^{\text {a }}$ After 200 iterations under B3LYP/6-31G(d) at (TIGHT, Z-MATRIX), the force has converged, but the displacement did not converge completely.

