Syntheses and Antitumor Targeting G1 Phase of the Cell Cycle of Benzoyldihydroisoquinolines and Related 1-Substituted Isoquinolines

Almudena Bermejo, ${ }^{\dagger}$ I nmaculada Andreu, ${ }^{\dagger}$ Fernando Suvire, ${ }^{\ddagger}$ Stephane Léonce, ${ }^{\S}$ Daniel H. Caignard, ${ }^{\S}$
Pierre Renard, ${ }^{\S}$ Alain Pierré, ${ }^{\S}$ Ricardo D. Enriz, \ddagger Diego Cortes,*,t and Nuria Cabedo ${ }^{\dagger}$
Departamento de Farmacología, Laboratorio de Farmacognosia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina, and Laboratoire Servier, 92415 Courbevoie, France

Recei ved J anuary 23, 2002

Abstract

A series of 1-substituted 3,4-dihydroisoquinol ines were synthesized and tested in vitro against the leukemia L 1210 cell line to evaluate their ability to perturb the cell cycle by arresting cells in the G1 phase. 1-Benzoylimines, 1-phenylimines, and 1-alkylimines were synthesized. The most powerful cytotoxic derivatives, 1-benzoyl-3,4-dihydroisoquinolines (1-26), were obtained from amides I via 1-benzyl-3,4-dihydroisoquinoline in good yield by a direct selective oxidation of the benzylic carbon of the corresponding imines through $10 \% \mathrm{Pd} / \mathrm{C}$ in acetonitrile. SAR studies let us to identify the essential structural features for cytotoxic activity. The most bioactive compounds (with $\mathrm{IC}_{50}<5 \mu \mathrm{M}$) were BzDHIQ (13, 22, 21, 8, 9, 11, 1, 20, 6, and 19), and they are characterized by the following: (i) An α-ketoimine moiety is necessary for potent antiprol iferative activity (1-phenyl- and 1-alkyl-3,4-di hydroisoquinoline derivatives, 34-40, are less active). (ii) An hydrophobic, benzyloxy, al kyloxy, or allyloxy group at the C-6 position seems to be relevant for cytotoxicity. (iii) Regarding the influence of the benzoylic moiety, both the unsubstituted ($\mathbf{1 3}, \mathbf{8}, \mathbf{9}, \mathbf{1 1}, \mathbf{1}$, and $\mathbf{6}$) and the 3^{\prime}-monosubstituted ($\mathbf{2 2}, \mathbf{2 1}, \mathbf{2 0}$, and $\mathbf{1 9}$) compounds were more potent than compounds with other substitutions.

Introduction

Isoquinoline alkaloids have a variety of powerful biological activities, including inhibition of cellular proliferation and development changes. Herein, we are describing the synthesis of a large number of isoquinoline compounds in order to establish a structureactivity relationship for novel agents against malignant tumors.

Our previous studies on isoquinoline alkaloids have been directed toward the synthesis and characterization of dopaminergic 1-benzyltetrahydroisoquinolines (BTHIQs). Some natural and synthetic BTHIQs recently reported by our group have shown affinity for dopamine receptors from striatal membranes, and in some cases, they showed inhibition of dopamine uptake by striatal synaptosomes. ${ }^{1-4}$ In this way, we described the synthesis of (R)-nor-roefractine, a monophenolic unmethyl ated BTHIQ, ${ }^{2}$ and also the syntheses of racemic monophenolic N -alkyl-BTHIQs, ${ }^{3}$ as well as the enantioselective syntheses of pairs of dopaminergic (1S)- and (1R)BTHIQs using (R)- and (S)-phenylglycinol as the chiral source. ${ }^{4}$

As a part of our search for new antitumor agents as inhibitors of the mitochondrial electron-transport chain, ${ }^{5-7}$ we reported for the first time, the cytotoxic mechanism of a synthetic N -protected isoquinoline, the N-diisopropyl phosphoryl-BTHIQ, which was found to be a new class of inhibitor of mitochondrial respiratory chain targeting complexes I and III. ${ }^{8}$ To further explore

[^0]the cytotoxic activity of 1 -substituted isoquinoline derivatives, a series of this type of compound were synthesized and tested in vitro against the leukemia L 1210 cell line. Their ability to perturb the cell cycle by accumulating cells in the G1 phase was also evaluated.
Therefore, we describe herein the syntheses of (i) 1-benzoylimines, i.e., 1-benzoyl-3,4-dihydro-isoquinolines, 1-benzoylisoquinolines, and N-methyl-1-benzoyl-3,4-di hydroisoquinolines; (ii) 1-phenylimines, i.e., 1-phen-yl-3,4-dihydroi soquinol ines; and (iii) 1-alkylimines, i.e., 1-alkyl-3,4-dihydroisoquinolines. The 1-benzoylimine derivatives were prepared directly by selective oxidation with Pd / C in acetonitrile from corresponding benzylic imines previously obtained by standard methods. $2,3,9$
Cell cycle inhibitors or modulators are highly promising new therapeutic agents against human cancers. The G1 phase of the cell cycle is an important period where several complex signals interact to decide the cell fate: proliferation, quiescence, differentiation. Malfunction of cell cycle control in the G1 phase is a critical event for tumorigenesis and tumor progression. ${ }^{10}$ Therefore, agents with the ability to arrest cells in the G1 phase can be considered as a new type of efficient drug against tumors, and they might be exploited for biomedical research and antitumor therapy.
This paper describes the discovery of novel antitumor isoquinolines targeting the G1 phase of the cell cyde, including the design, synthesis, and the structureactivity relationship.

Results and Discussion

Chemistry. We have planned our synthetic routes by considering the preparation of the isoquinoline or 3,4-

Scheme 1. Preparation of β-(3-Benzyloxy-4-methoxyphenyl)ethylamine ${ }^{\text {a }}$

a Reagents and conditions: (i) benzyl chloride, $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{EtOH}$, reflux, 5 h ; (ii) $\mathrm{H}_{3} \mathrm{CNO}_{2}, \mathrm{NH}_{4} \mathrm{OAc/AcOH}$, reflux, 4 h ; (iii) $\mathrm{LiH}_{4} \mathrm{Al}$, ether/THF (1:1), reflux, 2 h .
dihydroisoquinol ine moiety as a basic structural motive to carry out the synthesis of three series of isoquinoline compounds only differentiated at the 1 -substitution level: (i) 1-benzoylimines, i.e., 1-benzoyl-3,4-dihydroisoquinolines (BzDHIQ), 1-benzoylisoquinolines (BzIQ), and N -methyl-1-benzoyl-3,4-dihydroisoquinolines (NMeBzDHIQ); (ii) 1-phenylimines, i.e., 1-phenyl-3,4-dihydroisoquinolines (PhDHIQ); (iii) 1-alkylimines, i.e., 1-alkyl-3,4-dihydroisoquinolines (alkyl-DHIQ).

The general synthetic plan for these compounds was centered on the preparation of the appropriate amide (I, II, and III) by standard methods starting from 3-hydroxy-4-methoxybenzaldehyde (isovanillin, a) or 3-methoxy-4-hydroxybenzaldehyde (vanillin, b) or 3-hydroxybenzaldehyde (c). ${ }^{11,12}$ The corresponding β-phenylethylamine intermediates were prepared from these starting compounds (\mathbf{a}, \mathbf{b}, or \mathbf{c}), and then they were condensed with the appropriate acid chlorides under Schotten-Bauman conditions to obtain the expected N -phenylethylamides (I, II, and III). After a BischlerNapieralski cyclodehydration experiment (refluxing with POCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), each N -phenylethylamide was converted into the convenient imine 3,4-dihydroisoquinoline (see Schemes 1-3 and Tables 1 and 2). ${ }^{11,12}$
The syntheses of the 1-benzoyl-3,4-dihydroisoquinolines (BzDHIQ) (1-26 and 1a, 8a, 16a, 19a, and 23a derivatives) from amides I via 1-benzyl-3,4-dihydroisoquinoline was performed in a good yield by direct selective oxidation of the benzylic carbon of the corresponding imines through $10 \% \mathrm{Pd} / \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature for $1 \mathrm{~h} .9,13$ Under these conditions, the total oxidation of the pyridine ring of the BzDHIQ was not observed. So, oxidation at the exo benzylic carbon ($\mathrm{C}-\alpha$) is faster than at the endo position of the heterocycle. This method for the preparation of α-ketoimines was applied to a series of BDHIQs with several substitution patterns, both in the dihydroisoquinoline and the benzylic rings (see Scheme 2). The α-ketoimines obtained from an unsubstituted benzylic ring were furnished in typical 90% yields (1-15). However, when the BDHIQs mono or disubstituted on the benzene ring of the benzylic moiety were treated by the same reagents for 3 h , the corresponding α-ketoimines ($\mathbf{(1 6 - 2 6)}$ were obtained in a smaller yield.
To determine the relevance for cytotoxic activity of the total oxidation of the pyridine ring on this series of compounds, the aromatization of some of the α-ketoimines BzDHIQs was performed using 20% aqueous

Scheme 2. Preparation of 1-Benzoyl-3,4-dihydroisoquinoline and 1-Benzoylisoquinoline Derivativesa

[and 27a, 30a]
${ }^{\text {a }}$ Reagents and conditions: (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \%$ aqueous $\mathrm{NaOH}, 0$ ${ }^{\circ} \mathrm{C}$, room temp, 2 h ; (ii) POCl_{3}, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxed 1.5 h ; (iii) $\mathrm{CH}_{3} \mathrm{CN}, 10 \% \mathrm{Pd} / \mathrm{C}, 1-3 \mathrm{~h}$; (iv) $\mathrm{MeOH}, 20 \%$ aqueous KOH , room temp, 4 h ; (v) $\mathrm{CH}_{3} \mathrm{CN}$, IMe, refluxed, 30 min .

KOH . Under these conditions, compounds 27-33 (and 27a, 30a derivatives) were obtained in a good yield.
Starting from amides II and III, the 1-phenyl-3,4dihydroisoquinolines (34-36 and 34a derivative) and the 1 -alkyl-3,4-dihydroisoquinolines (37-40) were prepared under the previously described BischlerNapieralski cyclodehydration conditions.
All synthetic compounds are summarized in Schemes 2 and 3 and in Tables 1 and 2. The α-ketoimines obtained were stored as their salts.
The structures of all 1-benzoyl derivatives (1-33) were determined on the basis of their NMR spectral data and mass spectroscopic analysis. NMR data were compared between, for example, one of the BzDHIQs (1) and its Bzi Q homol ogue (27), consisting of an $\mathrm{A}_{2} \mathrm{~B}_{2}$ system [$\delta 3.90\left(\mathrm{t}, \mathrm{CH}_{2}-3\right.$) and $\delta 2.75\left(\mathrm{t}, \mathrm{CH}_{2}-4\right)$, ${ }^{3}{ }_{3} 3-4=$ 7.8 Hz for ${ }^{1} \mathrm{H}$ NMR for $\mathbf{1} ; \delta 42.2\left(\mathrm{CH}_{2}-3\right)$ and $\delta 25.3\left(\mathrm{CH}_{2}-\right.$ 4) for ${ }^{13} \mathrm{C}$ NMR for 1] or an aromatic AB system [$\delta 8.44$ (d, H-3) and $\delta 7.63$ (d, H-4), ${ }^{3}$ 3-4 $=5.5 \mathrm{~Hz}$ for ${ }^{1} \mathrm{H}$ NMR for 27; $\delta 139.3$ (C-3) and $\delta 121.7$ (C-4) for ${ }^{13} \mathrm{C}$ NMR for 27], assigned to the dihydropyridine or pyridine rings, respectively.
The remaining resonance signals in both related BzDHIQ- and BzI Q-type compounds were very close. Thus, a small downfield carbon signal about $\delta 195$ (δ

Scheme 3. Preparation of
1-Phenyl-3,4-dihydroisoquinoline and
1-Alkyl-3,4-dihydroisoquinoline Derivatives ${ }^{\text {a }}$

a Reagents and conditions: (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \%$ aqueous $\mathrm{NaOH}, 0$ ${ }^{\circ} \mathrm{C}$, room temp, 2 h ; (ii) POCl_{3}, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, refluxed 2 h .
193.9 for $\mathbf{1}$ and $\delta 194.9$ for $\mathbf{2 7}$) in the ${ }^{13} \mathrm{C}$ NMR spectrum indicated the existence of a quaternary carbon placed at the α-keto position, whereas a carbon signal about δ 165 ($\delta 164.3$ for $\mathbf{1}$ and $\delta 164.0$ for 27) was in accordance with the presence of a quaternary carbon at the C-1 position in both types of compounds.

On the other hand, the aromatic isoquinol ine signals in the ${ }^{1} \mathrm{H}$ NMR appeared as two singlet resonances due to protons $\mathrm{H}-5$ and $\mathrm{H}-8$ for the compounds derived from isovanillin (a) and vanillin (b), whereas compounds derived from 3-hydroxybenzaldehyde (c) showed an ABC system. Compound 1 showed two proton resonances at $\delta 6.97(\mathrm{~s}, \mathrm{H}-8)$ and $\delta 6.77(\mathrm{~s}, \mathrm{H}-5)$, compound 27 showed these methyne signals at $\delta 7.60(\mathrm{~s}, \mathrm{H}-8)$ and at $\delta 7.19$ (s, H-5), whereas compound 10 (with a monosubstituted isoquinoline ring) showed three proton resonances at $\delta 6.84$ (d, H-5, J $=2.2 \mathrm{~Hz}$), $\delta 6.80$ (dd, $\mathrm{H}-7, \mathrm{~J}=2.2$ and 8.4 Hz), and $\delta 7.31(\mathrm{~d}, \mathrm{H}-8, \mathrm{~J}=8.4$ $\mathrm{Hz})$. Finally, it is interesting to note that two of the benzylic protons are affected by the anisotropic effect of the carbonyl group. So, all synthesized α-ketoimines can be easily identified in ${ }^{1} \mathrm{H}$ NMR spectra by the presence of a characteristic deshielded dd signal at about $\delta 8.0$ ($\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$).

According to the general route described in Scheme 2, 1-phenylimines (34-36 and 34a derivative) and 1-alkylimines (37-40) were prepared from amides II and III, respectively. The presence of a 3,4-di hydroisoquinoline moiety in all prepared derivatives was indicated by NMR as described above for 1-benzoyl derivatives. Indeed, careful examination of the spectroscopic data lets us establish the placement of several substitutions introduced at the C-1 level (see Experimental Section).
Structure-Activity Relationship. All isoquinolines synthesized (compounds 1-40) were assayed in

Table 1. 1-Benzoyl-3,4-dihydroisoquinoline and 1-Benzoylisoquinoline Derivatives

compd	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}
1	OBn	OCH_{3}	H	H	H
1a	OH	OCH_{3}	H	H	H
2	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	OCH_{3}	H	H	H
3	$\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	OCH_{3}	H	H	H
4	$\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	OCH_{3}	H	H	H
5	$\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}$	OCH_{3}	H	H	H
6	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	OCH_{3}	H	H	H
7	$\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$	OCH_{3}	H	H	H
8	OCH_{3}	OBn	H	H	H
8a	OCH_{3}	OH	H	H	H
9	OCH_{3}	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	3 H	H	H
10	OBn	H	H	H	H
10a $\left(\mathrm{NCH}_{3}\right)$	OBn	H	H	H	H
11	$\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	H
12	$\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	H
13	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	H	H	H	H
14	$\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$	H	H	H	H
15	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOCH}_{3}$	H	H	H	H
16	OBn	OCH_{3}	OTs	H	H
16a	OBn	OCH_{3}	OH	H	H
17	OBn	OCH_{3}	OCH_{3}	H	H
18	OBn	H	OCH_{3}	H	H
19	OBn	OCH_{3}	H	OAc	H
19a	OBn	OCH_{3}	H	OH	H
20	OBn	OCH_{3}	H	OTs	H
21	OBn	OCH_{3}	H	OCH_{3}	H
22	OBn	H	H	OCH_{3}	H
23	OBn	OCH_{3}	H	H	OTs
23a	OBn	OCH_{3}	H	H	OH
24	OBn	H	H	H	OCH_{3}
25	OBn	OCH_{3}	H	OCH_{3}	OCH_{3}
25a $\left(\mathrm{NCH}_{3}\right)$	OBn	OCH_{3}	H	OCH_{3}	OCH_{3}
26	OBn	H	H	OCH_{3}	OCH_{3}
27	OBn	OCH_{3}	H	H	H
27a	OH	OCH_{3}	H	H	H
28	$\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}$	OCH_{3}	H	H	H
29	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	OCH_{3}	H	H	H
30	OCH_{3}	OBn	H	H	H
30a	OCH_{3}	OH	H	H	H
31	OBn	OCH_{3}	OH	H	H
32	OBn	OCH_{3}	H	OH	H
33	OBn	OCH_{3}	H	H	OH

Table 2. 1-Phenyl-3,4-dihydroisoquinoline and 1-Alkyl-3,4-dihydroisoquinoline Derivatives

PhDHIQ: 34-36
Alkyl-DHIQ: 37-40

compd	R_{1}	R_{2}	R_{3}
$\mathbf{3 4}$	OBn	OCH_{3}	H
34a	OH	OCH_{3}	H
$\mathbf{3 5}$	OBn	H	H
$\mathbf{3 6}$	OBn	OCH_{3}	OH
$\mathbf{3 7}$	OBn	OCH_{3}	CH_{3}
$\mathbf{3 8}$	$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	OCH_{3}	CH_{3}
$\mathbf{3 9}$	OBn	OCH_{3}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
$\mathbf{4 0}$	OBn	H	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

vitro for the ability to disturb the cell cydle and to inhibit L 1210 leukemia cell proliferation. Many of these compounds were found to possess significant activity at

Table 3. Inhibition of $L 1210$ Cell Proliferation by 1-Substituted I soquinoline Derivatives ${ }^{\text {a }}$

compd	$I C_{50}(\mu \mathrm{M})$	cells in G1 phase ${ }^{\text {b }}$
$\mathbf{1 3}$	1.0	$63 \%(5 \mu \mathrm{M})$
$\mathbf{2 2}$	1.4	
$\mathbf{2 1}$	2.5	
$\mathbf{8}$	3.6	$63 \%(5 \mu \mathrm{M})$
$\mathbf{9}$	3.7	
$\mathbf{1 1}$	3.8	$85 \%(10 \mu \mathrm{M})$
$\mathbf{1}$	4.1	$70 \%(25 \mu \mathrm{M})$
$\mathbf{2 0}$	4.1	
$\mathbf{6}$	4.5	$67 \%(5 \mu \mathrm{M})$
$\mathbf{1 9}$	4.7	$63 \%(25 \mu \mathrm{M})$
$\mathbf{1 9 a}$	5.3	$54 \%(10 \mu \mathrm{M})$
$\mathbf{3}$	6.1	$72 \%(25 \mu \mathrm{M})$
$\mathbf{1 0}$	6.5	$65 \%(25$
$\mathbf{3 8}$	7.7	
$\mathbf{4}$	9.4	
$\mathbf{1 0 a}$	9.8	
$\mathbf{5}$	11.1	
$\mathbf{3 3}$	11.5	
$\mathbf{3 2}$	11.6	
$\mathbf{2}$	11.9	
$\mathbf{1 2}$	11.9	
$\mathbf{1 8}$	12.3	
$\mathbf{2 5}$	13.0	
$\mathbf{7}$	13.1	

${ }^{\text {a }} \mathrm{IC}_{50}$ of remaining compound was $>10 \mu \mathrm{M}$. ${ }^{\mathrm{b}} 44 \%$ of untreated control cells were in G1 phase.
micromolar concentration. The results obtained for the most active compounds are summarized in Table 3. Ten of the listed compounds showed potent activity against L 1210 cell proliferation with IC_{50} values between 1.0 and $4.7 \mu \mathrm{M}$, and six more isoquinoline derivatives showed IC_{50} values between 5.3 and $9.8 \mu \mathrm{M}$. The remaining derivatives were less active with IC_{50} values greater than $10 \mu \mathrm{M}$. The ability to selectively disturb the G1 phase of the cell cycle, i.e., their capacity to arrest cells in the G1 phase (e.g., compound $\mathbf{1}$ induced the accumulation of 85% of cells at the G1 phase), suggests that these compounds would possess a therapeutic advantage.
These results have illustrated some general trends of the structure-activity relationship. Our observations al lowed us to establish that the most active compounds (with $\mathrm{IC}_{50}<5 \mu \mathrm{M}$) were BzDHIQ (13, 22, 21, 8, 9, 11, 1, 20, 6, and 19), and they showed the following: (i) The α-ketoimine moiety present in all these compounds is essential for the potent antiproliferative effect (1-phenyland 1-alkyl-3,4-dihydroisoquinoline derivatives, 34-40, are less active). (ii) A hydrophobic, benzyloxy, alkyloxy, or allyloxy group at the C-6 position seems to be relevant for cytotoxicity. However, the weak activity obtained for several compounds possessing a similar side chain (e.g., compounds 12 and 14) clearly indicates that the presence of this hydrophobic side chain would be a structural requirement but not by itself sufficient for perturbating the cell cycle. (iii) Regarding the influence of the benzoylic moiety, both the unsubstituted (13, 8, 9, 11, $\mathbf{1}$, and 6) and the 3^{\prime}-monosubstituted (22, 21, 20, and 19) compounds were more potent than compounds with

On the other hand, the compounds devoid of cytotoxic activity have a phenolic hydroxyl group (compounds 1 $\rightarrow \mathbf{1 a}$ and $\mathbf{8 \rightarrow 8} \mathbf{8}$). Particularly remarkable was the lack of activity obtained for 1-benzoyl isoquinoline compounds (27-33). The presence of a double bond at C-3/C-4, aromatizing ring B, produces profound electronic effects
in the N atom. This fact could explain the different activities obtained for some pairs of compounds, e.g., $\mathbf{1 / 2 7}, \mathbf{6 / 2 9}$, and $\mathbf{8 / 3 0}$. It is interesting to note that N -methyl-BzDHIQs (10a and 25a) were inactive. Thus, it seems to be reasonable to assume that the lack of cytotoxic activity of these compounds is a consequence of the nature of the interaction of the amine moiety.

In conclusion, a series of novel BzDHIQ, BzIQ, PhDHIQ, and alkyl-DHIQ compounds have been synthe sized. Among them, compounds 13, 22, 21, 8, 9, 11, 1, 20, 6, and 19 and some of their congeners exhibited remarkable ability to perturb the cell cycle by an accumulation of cells in the G1 phase. All these α-ketoimine derivatives were prepared by a simple and efficient method, through a direct selective oxidation of the benzylic carbon of the 1-benzyl-3,4-di hydroisoquinoline imine precursors.

Experimental Section

General Instrumentation. Melting points weretaken on a Cambridge microscope instrument coupled to a ReichertJ ung instrument. EIMS, HREIMS, MAB (Ar and N_{2}), and LSIMS were recorded on a VG Auto Spec Fisons spectrometer instrument. Liquid chromatography with mass spectrometry detection (LC-MSD) with an API (atmospheric pressure ionization) source configured as APCI (atmospheric pressure chemical ionization) or APIES (electrospray ionization) in positive or negative mode was conducted on a Hewlett-Packard (HP-1100). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with CDCl_{3} as sol vent on a Bruker AC-250, Bruker AC-300, Varian-Unity-300, or Varian-Unity-400 spectrometer. Multiplicities of ${ }^{13} \mathrm{C}$ NMR resonances were assigned by distortionless enhancement by polarization transfer (DEPT) experiments. NOESY, COSY 45, HMQC, HSQC, and HMBC data were recorded at 400 MHz (Varian-Unity 400). All reactions were monitored by analytical TLC with silica gel $60 \mathrm{~F}_{254}$ (Merck 5554). The residues were purified with a 60 H silica gel column (5-40 $\mu \mathrm{m}$, Merck 7736) and by flash chromatography (230$400 \mu \mathrm{~m}$, Merck 9385). Solvents and reagents were used as purchased from commercial sources. Quoted yields are for purified material. The HCl salts of the synthesized compounds were prepared from the corresponding base with $5 \% \mathrm{HCl}$ in MeOH .

Bioassays. Inhibition of Cellular Proliferation and Cell Cycle Effects. L 1210 cells were cultivated in RPMI 1640 medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, 50 units $/ \mathrm{mL}$ penicilin, $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and 10 mM of Hepes buffer (pH 7.4). Cells were exposed to graded concentrations of drug for 48 h . Cytotoxicity was measured by microculture tetrazolium assay. ${ }^{14}$ Results are expressed as IC_{50}, the concentration needed to reduce the optical density of treated cells by 50% with respect to the optical density of untreated controls.

For the cell cycle analysis, L 1210 cells were incubated for 21 h at $37^{\circ} \mathrm{C}$ with various drug concentrations. Cells were then fixed by 70% EtOH (v/v), washed, and incubated with PBS containing $100 \mu \mathrm{M}$ RNAse and $25 \mu \mathrm{~g} / \mathrm{mL}$ propidium iodide for 30 min at $20^{\circ} \mathrm{C}$. For each sample, 10^{4} cells were analyzed on an Epics XL flow cytometer (Beckman Coulter, France). Results are expressed as a percentage of cells accumulated in the G1 phase of the cell cycle.

General Procedure for Synthesis of β-Phenylethylamine Derivatives. These β-phenylethylamines were pre pared in three steps by standard methods starting from 3-hydroxy-4-methoxybenzaldehyde(isovanillin, a), 3-methoxy-4-hydroxybenzaldehyde (vanillin, b), or 3-hydroxybenzaldehyde (c). Herein, we describe, as an example, the preparation of the appropriate phenylethylamine (Scheme 1) used in the synthesis of compound $\mathbf{1}^{15-17}$ Similar yields were obtained on the preparation of the phenylethylamines used in the synthesis of all isoquinoline derivatives ($\mathbf{2 - 4 0}$).

O-Benzylisovanillin. A mixture of isovanillin (a, $1.0 \mathrm{~g}, 6.6$ $\mathrm{mmol})$, benzyl chloride ($1.6 \mathrm{~mL}, 13.9 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.65 \mathrm{~g}, 4.7 \mathrm{mmol})$ in EtOH (15 mL) was refluxed for 5 h. After being stirred, the reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then 5% aqueous $\mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ was added. The organic layer was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. Needles were obtained after crystallization from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ corresponding to O-benzylisovanillin (3-benzyloxy-4-methoxybenzaldehyde, $1.5 \mathrm{~g}, 94 \%$); mp $61-63{ }^{\circ} \mathrm{C}$ (lit. $61-64^{\circ} \mathrm{C}$). ${ }^{18}$

3-Benzyloxy-4-methoxy- β-nitrostyrene. A mixture of O-benzylisovanillin ($1.0 \mathrm{~g}, 4.1 \mathrm{mmol}$), nitromethane (0.7 mL , 12.9 mmol), and $\mathrm{NH}_{4} \mathrm{OAC}(0.8 \mathrm{~g}, 10.4 \mathrm{mmol}$) in AcOH (12.5 mL) was refluxed for 4 h . After cooling, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$. The organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. Yellow needles were obtained from EtOH corresponding to 3-benzyloxy-4-methoxy- β-nitrostyrene ($1.02 \mathrm{~g}, 88 \%$); mp $126-128^{\circ} \mathrm{C}$ (lit. $126-128^{\circ} \mathrm{C}$). ${ }^{2}$
β-(3-Benzyloxy-4-methoxyphenyl)ethylamine. A solution of 3-benzyloxy-4-methoxy- β-nitrostyrene ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol}$) in 14 mL of anhydrous THF was added dropwise to a wellstirred suspension of $\mathrm{LiAlH}_{4}(0.5 \mathrm{~g}, 13.2 \mathrm{mmol})$ in 20 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$ under nitrogen atmosphere and was refluxed for 2 h . After the solution was cooled, the excess reagent was destroyed by dropwise addition of $\mathrm{H}_{2} \mathrm{O}$ and 15% aqueous NaOH . After partial evaporation of the filtered portion, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic layers were treated with 5% aqueous HCl . The resulting aqueous acid layer was made basic (5% aqueous $\mathrm{NH}_{4}-$ $\mathrm{OH}, \mathrm{pH} \sim 9$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine ($2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness, and then β-(3-benzyloxy-4-methoxyphenyl)ethylamine (570 mg , 63%) was obtained as an oil. ${ }^{2}$

General Procedure for Synthesis of Amides I-III. Formation of the amides I was carried out under SchottenBaumann conditions using the appropriate acid chloride: phenylacetyl chloride or 2-OTs-, 3-OTs-, 3-OAc-, or 4-OTsphenylacetyl chloride (previously prepared in two steps from the corresponding phenylacetic acid or o -, m -, or p -hydroxyphenylacetic acid) or $\mathrm{o}-\mathrm{m}$-, p-methoxyphenylacetyl chloride or dimethoxyphenylacetyl chloride. Amides II and III were prepared by condensation of the corresponding O-benzylated β-phenylethylamines with benzoyl chloride or O-acetylsalicyloyl chloride or with acetyl chloride or pentanoyl chloride.

Herein, we describe, as an example, the preparation of the appropriate phenylacetamide (Scheme2) used in the synthesis of compound $1 .{ }^{3}$ Similar yields were obtained on the preparation of the phenylacetamides used in the synthesis of all isoquinoline derivatives (2-40).

N-(3-Benzyloxy-4-methoxyphenylethyl) phenylacetamide. An amount of 0.2 mL of phenylacetyl chloride (1.8 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of β-(3-benzyloxy-4-methoxyphenyl)ethylamine ($550 \mathrm{mg}, 2.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and 5% aqueous $\mathrm{NaOH}(3 \mathrm{~mL})$, with stirring at room temperature for 2 h . After the mixture was stirred, 2.5% aqueous HCl was added and the organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$) dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue obtained was purified with a silica gel flash column (hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc, 20:70:10) to afford N -(3-benzyloxy-4-methoxyphenylethyl)phenylacetamide ($552 \mathrm{mg}, 68 \%$) as white crystals obtained from EtOH; mp 111-113 ${ }^{\circ} \mathrm{C} .3^{3}$

General Procedure for Preparation of O-Alkylated Amides I-III. In the case of the preparation of O-alkyl- or O-allylamides I-III derivatives, the selective hydrol ysis of the O-benzyl protecting group, placed at the C-3 or C-4 position on amides (see Schemes 2 and 3), ${ }^{17}$ was carried out, and subsequent O-alkylation or O-allylation was made by the appropriate alkyl or allyl bromide, chloride, or iodide. ${ }^{19} \mathrm{~A}$ solution of the appropriate amide, e.g., N -(3-benzyloxy-4-
methoxyphenylethyl)phenylacetamide ($500 \mathrm{mg}, 1.33 \mathrm{mmol}$), was refluxed for 4 h with a mixture of equal vol umes of EtOH and concentrated $\mathrm{HCl}(100 \mathrm{~mL})$. The reaction mixture was concentrated to dryness and redissol ved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was made basic (15% aqueous $\mathrm{NH}_{4} \mathrm{OH}$). The organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10$ mL), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness, and then the O-debenzylated amide I was obtained, N-(3-hydroxy-4-methoxyphenylethyl)phenylacetamide ($370 \mathrm{mg}, 97 \%$). Then, a solution of N -(3-hydroxy-4-methoxyphenylethyl)phenylacetamide ($370 \mathrm{mg}, 1.29 \mathrm{mmol}$) was refluxed for 10 h with iodoethane ($0.2 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg}$, 2.9 mmol) in dry $\mathrm{Me}_{2} \mathrm{CO}(10 \mathrm{~mL})$. The reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then 5% aqueous $\mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ was added. The organic layer was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2$ $\times 10 \mathrm{~mL}$), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness, and then, N-(3-ethoxy-4-methoxyphenylethyl)phenylacetamide was obtained ($246 \mathrm{mg}, 60 \%$), ${ }^{3}$ which is the amide I used for the preparation of compound 2.
General Procedure for Synthesis of 1-Benzoyl-3,4dihydroisoquinolines (Compounds 1-26). Herein, we describe, as an example, the preparation of the appropriate 1-benzyl-3,4-dihydroisoquinolines ${ }^{3}$ used in the synthesis of the corresponding 1-benzoyl-3,4-di hydroisoquinolines (compound 1, Scheme 2).

A solution of the appropriate amide, e.g., N -(3-benzyloxy-4-methoxyphenylethyl) phenylacetamide ($500 \mathrm{mg}, 1.33 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was treated with $\mathrm{POCl}_{3}(0.5 \mathrm{~mL}, 5.4$ $\mathrm{mmol})$ and refluxed for 3 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, made basic (5% aqueous $\mathrm{NH}_{4} \mathrm{OH}$), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give a brown oil. This residue was purified with a 60 H silica gel column $\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2}-\mathrm{MeOH}, 96: 4\right)$ to afford the corresponding 1-benzyl-6-benzyloxy-7-methoxy-3,4-di hydroisoquinoline ($415 \mathrm{mg}, 87 \%$). Yellow crystals were obtained when the HCl salt was prepared from $5 \% \mathrm{HCl}$ in MeOH ; mp 178-181 ${ }^{\circ} \mathrm{C} .{ }^{3}$ This BDHIQ (150 $\mathrm{mg}, 0.42 \mathrm{mmol}$) was treated with $\mathrm{CH}_{3} \mathrm{CN}(70 \mathrm{~mL})$ and 10% $\mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$, with stirring at room temperature for 1 h . The reaction mixture was filtered over Celite and concentrated. The residue obtained was purified with a 60 H silica gel column (hexane-EtOAc, 60:40) to yield 1-benzoyl-6-benzyloxy-7-meth-oxy-3,4-dihydroisoquinoline, 1 ($141 \mathrm{mg}, 90 \%$). The α-ketoimines obtained from an unsubstituted benzylic ring were furnished in typical 90% yields (1-15). However, when the BDHIQs mono- or disubstituted on the benzene ring of the benzylic moiety were treated by the same reagents for 3 h , the corresponding α-ketoimines ($\mathbf{1 6} \mathbf{- 2 6}$) were obtained in lesser yield.
General Procedure for Synthesis of 1-Benzoylisoquinolines (Compounds 27-33). A solution of 1-benzoyl-3,4-dihydroisoquinoline, e.g., 1-benzoyl-6-benzyloxy-7-methoxy-3,4-di hydroisoquinoline ($\mathbf{1}, 98 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in MeOH (5 mL) and treated with 20% aqueous $\mathrm{KOH}(5 \mathrm{~mL}$). The mixture was stirred at room temperature for 4 h . The reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was subjected to a 60 H silica gel column (hexane-EtOAc, 60:40) to afford 1-benzoyl-6-benzyloxy-7-methoxyisoquinoline, 27 ($39 \mathrm{mg}, 41 \%$) (Scheme 2).
General Procedure for Synthesis of 1-Phenyl-3,4dihydroisoquinolines (Compounds 34-36) and 1-Alkyl-3,4-dihydroisoquinolines (Compounds 37-40). A solution of the appropriate amide, e.g., N -(3-benzyloxy-4-methoxyphenylethyl) phenylformamide ($300 \mathrm{mg}, 0.9 \mathrm{mmol}$, the amide II used for the preparation of compound 34), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was treated with $\mathrm{POCl}_{3}(0.4 \mathrm{~mL}, 3.6 \mathrm{mmol})$ and refluxed for 2 h. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, made basic, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and concentrated to give a brown oil. This residue was purified with a 60 H silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$

EtOAc-MeOH, 80:14:20) to afford 1-phenyl-6-benzyloxy-7-methoxy-3,4-di hydroisoquinoline, 34 ($40 \mathrm{mg}, 13 \%$) (Scheme 3).

General Procedure for N-Methylation of BzDHIQ. Synthesis of 10a and 25a. A solution of the appropriate 1-benzoyl-3,4-dihydroisoquinoline, e.g., 1-benzoyl-6-benzyloxy-7,3',4'-trimethoxy-3,4-dihydroisoquinoline (25, $40 \mathrm{mg}, 0.09$ mmol) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and treated with iodomethane $(50 \mu \mathrm{~L}) .{ }^{20}$ The mixture was refluxed for 30 min . The reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. This residue was subjected to a silica gel flash column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95\right.$: 5) to afford N -methyl-1-benzoyl-6-benzyloxy-7, $3^{\prime}, 4^{\prime}$-trimethoxy-3,4-dihydroi soquinol ine, 25a ($39 \mathrm{mg}, 94 \%$).

General Procedure for O-Deacetylation. Synthesis of 19a. A solution of 1-benzoyl-6-benzyloxy-7-methoxy-3'-acetoxy-3,4-dihydroi soquinoline ($\mathbf{1 9}, 94 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O} 3: 2$ (5 mL) and 15% aqueous $\mathrm{NaHCO}_{3}(1.6 \mathrm{~mL})$, and the solution was refluxed for 3 h . The reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 2.5% aqueous HCl was added. The organic solution was washed with brine $(2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ ($2 \times 10 \mathrm{~mL}$), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was subjected to a 60 H silica gel column (hexane-EtOAc, 60:40) to afford 1-benzoyl-6-benzyl-oxy-7-methoxy-3'-hydroxy-3,4-dihydroisoquinoline, 19a (38 mg , 45\%).

General Procedure for O-Detosylation. Synthesis of 16a and 23a. A solution of 1-benzoyl-6-benzyl oxy-7-methoxy-2'-tosyloxy-3,4-dihydroisoquinoline ($\mathbf{1 6}, 97 \mathbf{~ m g}, 0.18 \mathrm{mmol}$) was refluxed in EtOH (10 mL) and 15% aqueous $\mathrm{KOH}(10 \mathrm{~mL})$ for 2 h . The reaction mixture was concentrated to dryness and redissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 2.5% aqueous HCl was added. The organic solution was washed with brine (2×10 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was subjected to a 60 H silica gel column ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc, 96:4) to afford 1-benzoyl-6-benzyloxy-7-methoxy-2'-hydroxy-3,4-di hydroisoquinoline, 16a ($28 \mathrm{mg}, 40 \%$).

General Procedure for O-Debenzylation. Synthesis of 1a, 8a (BzDHIQ), 27a, 30a (BzIQ), and 34a (PhDHIQ). Selective hydrolysis of the benzyloxy protective groups of $\mathbf{1}$, 8, 27, 30, and 34, using the same procedure as above for O-debenzoylated amides I-III, led to 1a, 8a, 27a, 30a and 34a, respectively.

1-Benzoyl-6-benzyloxy-7-methoxy-3,4-dihydroisoquinoline, 1. The asterisk (*) indicates that the assignments were made by COSY 45, DEPT, and HMQC. ${ }^{1} \mathrm{H}$ NMR* (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03\left(\mathrm{dd}, \mathrm{J}=7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59(\mathrm{tt}, \mathrm{J}=$ $\left.7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.45\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.50-$ $7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 6.97$ (s, 1H, H-8), 6.77 (s, 1H, H-5), 5.21 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), 3.90 (t , J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7$), $2.75\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9$ (C- α), 164.3 (C-1), 150.9 (C-6), 148.2 (C-7), 136.4 and 135.5 (2C, C-1" and $\mathrm{C}-1^{\prime}$), 133.8 ($\mathrm{CH}-4^{\prime}$), 130.9 (C-4a), 130.4 (2C, CH-2', 6^{\prime}), 128.7 (2C, CH-3', 5^{\prime}), 128.6-127.2 (5C, OCH2Ph-6), 119.6 (C-8a), 112.7 (CH-5), 110.2 (CH-8), 70.8 $\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.2\left(\mathrm{OCH}_{3}-7\right)$, $42.2\left(\mathrm{CH}_{2}-3\right)$, $25.3\left(\mathrm{CH}_{2}-4\right)$; EIMS m / z (\%) 371 [M] ${ }^{+}$(36), 280 (61), 266 (4), 105 (25), 91 (100), 77 (27); $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$.

1-Benzoyl-6-hydroxy-7-methoxy-3,4-dihydroisoquinoline, la. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.03 (dd, J $\left.=7.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.60(\mathrm{tt}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.48\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, $6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.90\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-7\right), 2.78\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{*}(62.5 \mathrm{MHz}$, $\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}, 90: 10$) $\delta 194.3$ (C- α), 165.2 (C-1), 150.0 (C-6), 145.9 (C-7), 135.0 (C-1'), 134.1 (CH-4'), 131.6 (C-4a), 130.2 (2C, CH-2', 6^{\prime}), 128.5 (2C, CH-3', $\left.5^{\prime}\right), 118.1$ (C-8a), 114.5 (CH-5), 109.6 (CH-8), $55.9\left(\mathrm{OCH}_{3}-7\right), 42.6\left(\mathrm{CH}_{2}-3\right), 24.9\left(\mathrm{CH}_{2}-4\right)$; LSIMS m/z $282[\mathrm{MH}]^{+}$. EIMS m/z (\%) 281 [M] ${ }^{+}$(40), 253 (100), 176 (5), 159 (5), 145 (5), 105 (55), 91 (10), 77 (54); HREIMS m/z
281.10617 [M] ${ }^{+}$(281.10519 calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$), 250.08927 (250.08680 cal cd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}$), 105.03565 (105.03404 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 91.05542 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$), 77.03676 (77.03912 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-ethoxy-7-methoxy-3,4-dihydroisoquinoline, 2. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.01 (dd, J = 7.7, $1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 7.57 (td, J $=7.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.46 (t, J $\left.=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.92(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8), 6.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 4.13\left(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}-6\right)$, $3.90\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.78(\mathrm{t}$, $\left.\mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.47\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}-6\right.$); ${ }^{13} \mathrm{C}$ NMR* ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0$ (C- α), 164.4 (C-1), 151.0 (C-6), 147.7 (C-7), 135.5 (C-1'), 133.8 ($\mathrm{CH}-4^{\prime}$), 130.9 (C-4a), 130.4 (2C, CH-2', 6^{\prime}), 128.5 (2C, CH-3',5'), 119.1 (C-8a), 111.4 ($\mathrm{CH}-5$), $109.7(\mathrm{CH}-8), 64.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}-6\right), 56.0\left(\mathrm{OCH}_{3}-7\right), 47.3$ $\left(\mathrm{CH}_{2}-3\right), 25.3\left(\mathrm{CH}_{2}-4\right), 14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}-6\right)$; EIMS m/z (\%) 309 [M] ${ }^{+}$(55), 281 (100), 252 (27), 204 (3), 105 (30), 77 (27); $\mathrm{C}_{19} \mathrm{H}_{19}-$ NO_{3}.

1-Benzoyl-6-isobutyloxy-7-methoxy-3,4-dihydroisoquinoline, 3. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.03 (dd, J $\left.=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59$ (tt, J $=8.0,1.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.47$ (t, J $\left.=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.93$ (s, 1H, H-8), 6.73 (s, 1H, H-5), $3.91\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right.$), 3.83 (d, J $=$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.80(\mathrm{t}$, $\left.\mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 1.04$ $\left(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$; ${ }^{13} \mathrm{C}$ NMR* (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.0(\mathrm{C}-\alpha), 164.5(\mathrm{C}-1), 151.6(\mathrm{C}-6), 148.0(\mathrm{C}-7), 135.5$ (C-1'), 133.8 ($\mathrm{CH}-4^{\prime}$), 131.1 (C-4a), 130.4 (2C, CH-2', $\left.6^{\prime}\right), 128.5$ (2C, CH-3', 5^{\prime}), 119.1 (C-8a), 111.9 (CH-5), 110.4 (CH-8), 75.4 $\left(\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 56.3\left(\mathrm{OCH}_{3}-7\right), 47.3\left(\mathrm{CH}_{2}-3\right), 28.0$ (1 C , $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 25.4\left(\mathrm{CH}_{2}-4\right)$, $19.2\left(2 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$; EIMS m/z (\%) 337 [M]+ (57), 309 (50), 264 (22), 253 (100), 236 (23), 105 (52), 77 (44); $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$.

1-Benzoyl-6-isopentenyloxy-7-methoxy-3,4-dihydroisoquinoline, 4. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03\left(\mathrm{dd}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.60(\mathrm{tt}, \mathrm{J}=$ $\left.8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.47\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.95(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8), 6.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.52\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}-6\right), 4.63\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 3.92$ $\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.80(\mathrm{t}, \mathrm{J}=$ $\left.7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.79$ and $1.76\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\right.$ 6); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0(\mathrm{C}-\alpha), 164.5(\mathrm{C}-1), 151.1$ (C-6), $148.0(\mathrm{C}-7), 138.4\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 135.6\left(\mathrm{C}-1^{\prime}\right)$, 133.8 (CH-4'), 130.9 (C-4a), 130.2 (2C, CH-2', $\left.6^{\prime}\right), 128.5$ (2C, $\left.\mathrm{CH}-3^{\prime}, 5^{\prime}\right), 119.3\left(2 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right.$ and $\left.\mathrm{C}-8 \mathrm{a}\right), 111.9$ ($\mathrm{CH}-5$), $109.8(\mathrm{CH}-8), 65.8\left(\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 56.1\left(\mathrm{OCH}_{3}-\right.$ 7), $47.4\left(\mathrm{CH}_{2}-3\right), 25.8$ and $18.3\left(2 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$, 25.5 ($\mathrm{CH}_{2}-4$); LC-MS (APIES negative mode) $\mathrm{m} / \mathrm{z} 348[\mathrm{M}-1]^{+}$; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}$.

1-Benzoyl-6-(p-methoxy)benzyloxy-7-methoxy-3,4-dihydroisoquinoline, 5. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1}$ H NMR* ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (d , J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{b}^{\prime}$), 7.60 (m , $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.50-7.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ and $\left.\mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8), 6.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 6.78$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $5.13(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6$), $3.90\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right.$), 3.81 and $3.70\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6\right.$ and $\left.\mathrm{OCH}_{3}-7\right), 2.77(\mathrm{t}, \mathrm{J}=7.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C}$ NMR* ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0(\mathrm{C}-\alpha)$, 163.0 (C-1), 151.0 (C-6), 149.0 (C-7), 137.0 and 136.0 (2C, C-1" and C-1'), 130.4 (CH-4'), 129.0 (C-4a), 128.9-128.5 (8C, CH$2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$ and $\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6$), 119.0 (C-8a), 114.0 (CH-5), $110.2(\mathrm{CH}-8), 70.6\left(\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6\right)$, 56.2 and $56.1\left(\mathrm{OCH}_{3}-7\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6\right)$, $45.0\left(\mathrm{CH}_{2}-3\right)$, $23.5\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 402$ [MH] ${ }^{+} ; \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$.

1-Benzoyl-6-pentanyloxy-7-methoxy-3,4-dihydroisoquinoline, 6 . The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.60(\mathrm{tt}, \mathrm{J}=8.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.47 (t, J $\left.=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime} 5^{\prime}\right), 6.94(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8), 6.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 4.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3}-\right.$ $\mathrm{CH}_{3}-6$), $3.92\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right.$),
$2.80\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2^{-}}\right.$ $\left.\mathrm{CH}_{3}-6\right), 1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}-6\right), 0.93(\mathrm{t}, \mathrm{J}=7.0$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0$ (C- α), 164.4 (C-1), 151.4 (C-6), 147.9 (C-7), 135.6 (C-1'), 133.7 (C-4a), 131.0-128.5 (5C, CH-2' to 6'), 119.1 (C-8a), 111.7 (CH5), $110.0(\mathrm{CH}-8), 69.0\left(\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right), 56.2\left(\mathrm{OCH}_{3}-7\right), 47.3$ $\left(\mathrm{CH}_{2}-3\right), 28.7$ and $27.9\left(2 \mathrm{C}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}-6\right), 25.4\left(\mathrm{CH}_{2}-\right.$ 4), $22.4\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}-6\right)$, $13.9\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right)$; MAB (Ar) m/z 351 (34) [M] ${ }^{+}, 323$ (100); MAB (N_{2}) m/z 351 (22) [M] ${ }^{+}, 350$ (80), 349 (100); $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3}$.

1-Benzoyl-6-(trans-but-2-enoxy)-7-methoxy-3,4-dihydroisoquinoline, 7. The asterisk (*) indicates that the assignments were made by COSY 45. ${ }^{1} \mathrm{H} N \mathrm{NR}$ * (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.03\left(\mathrm{dd}, \mathrm{J}=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.61(\mathrm{td}, \mathrm{J}=$ 7.0, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.48$ (td, J $\left.=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$, $6.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.92-5.72(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6\right), 4.58\left(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CHCH}_{3}-6\right), 3.93\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ 7), $2.80\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.76$ (dd, J $=6.1,1.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6$); LC-MS (APIES positive mode) m / z $336[\mathrm{MH}]^{+}, 358[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$.

1-Benzoyl-6-methoxy-7-benzyloxy-3,4-dihydroisoquinoline, 8. The asterisk $(*)$ indicates that the assignments were made by COSY 45, DEPT, and HMQC. ${ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.46\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}-7\right), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.00(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}-7$), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-6\right), 3.90\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 3), $2.82\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{33} \mathrm{CNMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 193.7$ (C- α), 164.7 (C-1), 152.6 (C-6), 146.6 (C-7), 136.3 and 135.3 (2C, C-1" and $\left.\mathrm{C}-1^{\prime}\right)$, $134.0\left(\mathrm{CH}-4^{\prime}\right), 131.6(\mathrm{C}-4 \mathrm{a}), 130.3$ (2C, CH-2', 6^{\prime}), 128.5 (2C, CH-3', 5^{\prime}), 128.4-127.5 (5C, OCH ${ }_{2}$ Ph7), $118.9(\mathrm{C}-8 \mathrm{a}), 112.5(\mathrm{CH}-5), 110.9(\mathrm{CH}-8), 71.2\left(\mathrm{OCH}_{2} \mathrm{Ph}-\right.$ 7), $56.0\left(\mathrm{OCH}_{3}-6\right), 46.9\left(\mathrm{CH}_{2}-3\right), 25.3\left(\mathrm{CH}_{2}-4\right)$; $\mathrm{ElMS} \mathrm{m} / \mathrm{z}$ (\%) $371[M]^{+}(66), 280(67), 266$ (21), 174 (10), 105 (73), 91 (100), 77 (75); $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$.

1-Benzoyl-6-methoxy-7-hydroxy-3,4-dihydroisoquinoline, 8a. The asterisk $(*)$ indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.02 and 8.01 (2dd, $\mathrm{J}=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$), 7.56 (td, J $=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.43 (td, J $=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.92(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-6\right), 2.81(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-4$); ${ }^{13} \mathrm{C}$ NMR* ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9$ (C- α), 165.0 (C1), 149.3 (C-6), 144.3 (C-7), 135.3 (C-1'), 133.8 (CH-4'), 132.6 (C-4a), 130.5-130.3 (2C, CH-2', $\left.6^{\prime}\right), 130.1-129.9\left(2 \mathrm{C}, \mathrm{CH}-3^{\prime}, 5^{\prime}\right)$, 119.8 (C-8a), $113.0(\mathrm{CH}-5), 109.9(\mathrm{CH}-8), 56.0\left(\mathrm{OCH}_{3}-6\right), 47.1$ $\left(\mathrm{CH}_{2}-3\right), 25.4\left(\mathrm{CH}_{2}-4\right)$; EIMS m/z (\%) $281[\mathrm{M}]^{+}$(38), 264 (34), 253 (100), 176 (5), 105 (58), 91 (23), 77 (54); $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$.

1-Benzoyl-6-methoxy-7-pentanyloxy-3,4-di hydroisoquinoline, 9 . The asterisk $(*)$ indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.02\left(\mathrm{dd}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59(\mathrm{td}, \mathrm{J}=$ 7.5, 1.2 Hz, 1H, H-4'), 7.47 (tt, J $\left.=8.4,7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$, $6.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.94-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}-3\right.$ and $\left.\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-7\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-6\right), 2.81(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4$), 1.76 (quint, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2^{-}}$ $\left.\mathrm{CH}_{3}-7\right), 1.38-1.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}-7\right), 0.88(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-7\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.9(\mathrm{C}-\alpha)$, 164.5 (C-1), 152.1 (C-6), 147.1 (C-7), 135.5 (C-1'), 133.7 (CH$\left.4^{\prime}\right), 130.9$ ($\mathrm{C}-4 \mathrm{a}$), 130.3 (2C, $\left.\mathrm{CH}^{\prime} 2^{\prime}, 6^{\prime}\right), 128.4\left(2 \mathrm{C}, \mathrm{CH}-3^{\prime}, 5^{\prime}\right)$, 119.2 (C-8a), $111.2(\mathrm{CH}-5), 110.7(\mathrm{CH}-8), 69.1\left(1 \mathrm{C}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right.$ $\left.\mathrm{CH}_{3}-7\right), 55.9\left(\mathrm{OCH}_{3}-6\right), 47.2\left(\mathrm{CH}_{2}-3\right), 28.6,27.8$, and $22.3(3 \mathrm{C}$, $\left.\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-7\right), 25.3\left(\mathrm{CH}_{2}-4\right), 13.8\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-7\right)$; LC-MS (APIES positive mode) m/z 352 [MH] ${ }^{+}, 374$ [M + Na] ; HREIMS m/z $351.18318[M]^{+}\left(351.18344\right.$ calcd for $\mathrm{C}_{22} \mathrm{H}_{25}{ }^{-}$ NO_{3}), 280.09512 (280.097 37 cal cd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$), 264.10016 (264.102 45 calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}$), 105.04397 (105.034 04 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 77.02963 (77.039 12 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-benzyloxy-3,4-dihydroisoquinoline, 10. The asterisk ($*$) indicates that the assignments were made by COSY 45, DEPT, and HMQC. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.03 (dd, J $\left.=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.57(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime}\right), 7.45\left(\mathrm{tt}, \mathrm{J}=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}$,
$\left.\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.84(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.80$ (dd, J $=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2-}\right.$ Ph-6), $3.92\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.84(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.9$ (C- α), 164.6 (C1), 161.0 (C-6), 139.4 and 136.2 (2C, C-1" and $\mathrm{C}-1^{\prime}$), 135.4 (C4a), 133.7 ($\mathrm{CH}-4^{\prime}$), 130.3 (2C, $\left.\mathrm{CH}-2^{\prime}, 6^{\prime}\right), 128.5$ (2C, CH-3', $\left.5^{\prime}\right)$, 128.4-127.3 (5C, OCH 2 Ph-6), 128.0 (CH-8), 120.2 (C-8a), 114.2 $(\mathrm{CH}-5), 112.8(\mathrm{CH}-7), 69.9\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 47.0\left(\mathrm{CH}_{2}-3\right), 26.0$ ($\mathrm{CH}_{2}-4$); ElMS m/z (\%) 341 [M] ${ }^{+}$(17), 250 (27), 236 (4), 234 (6), 105 (18), 91 (100), 77 (18); $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$.

N-Methyl-1-benzoyl-6-benzyloxy-3,4-dihydroisoquinoline, 10a. The asterisk $(*)$ indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.31 (dd, J $\left.=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.80(\mathrm{tt}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.69\left(\mathrm{tt}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.40(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.26(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 7.14(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.87$ (dd, J $=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$ Ph-6), $4.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3 \mathrm{a}\right), 4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-3 \mathrm{~b}\right.$ and CH_{2-} 4a), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 3.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-4 \mathrm{~b}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR*}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.9(\mathrm{C}-\alpha), 169.8$ (C-1), 167.1 (C-6), 140.9 and 137.4 (2C, C-1" and C-1'), 134.6 (C-4a), 134.3 (CH-4'), 131.0 (2C, CH-2', 6^{\prime}), 128.6 (2C, CH-3', 5^{\prime}), 127.5 ($5 \mathrm{CH}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), 127.5 (CH-8), 115.8 (C-8a), $115.5(2 \mathrm{C}, \mathrm{CH}-5,7), 71.2\left(\mathrm{OCH}_{2}-\right.$ Ph-6), $52.6\left(\mathrm{CH}_{2}-3\right), 46.1\left(\mathrm{~N}-\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) m/z 357 [MH] ${ }^{+}, 356[\mathrm{M}]^{+}$; HREIMS m/z 356.16283 [M] ${ }^{+}\left(356.16505\right.$ calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{2}$), 252.13720 (252.138 84 calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}$), 161.08567 (161.084 06 calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}$), 105.03519 (105.03404 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 91.05425 (91.054 77 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$), 77.03664 (77.039 12 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-B enzoyl-6-isopentenyloxy-3,4-dihydroisoquinoline, 11. The asterisk $(*)$ indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR} *\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.03 (dd, J $\left.=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59(\mathrm{tt}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.47 (tt, J $\left.=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.30(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.77(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.74(\mathrm{dd}, \mathrm{J}=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $5.45\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 4.54\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 3.93$ $\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.85\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$, 1.79 and $1.74\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} *(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.1(\mathrm{C}-\alpha), 164.8$ (C-1), 161.3 (C-6), 139.4, 138.8 and $135.5\left(3 \mathrm{C}, \mathrm{C}-1^{\prime}, \mathrm{C}-4 \mathrm{a}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$, $133.8\left(\mathrm{CH}-4^{\prime}\right), 130.3$ (2C, CH-2',6'), 128.5 (3C, CH-3', 5', 8), 120.0 (C-8a), $119.0\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 114.1(\mathrm{CH}-5), 112.7$ (CH-7), $64.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 47.1\left(\mathrm{CH}_{2}-3\right), 26.2$ $\left(\mathrm{CH}_{2}-4\right), 25.8$ and $18.2\left(2 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-6\right) ; L \mathrm{C}-\mathrm{MS}$ (APCI negative mode) m/z $318[\mathrm{M}-1]^{+} ; \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}$.

1-Benzoyl-6-isobutyloxy-3,4-dihydroisoquinoline, 12. The asterisk $(*)$ indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}\left(400 \mathrm{MHz}^{\prime} \mathrm{CDCl}_{3}\right) \delta 8.03$ (dd, $\left.\mathrm{J}=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.58\left(\mathrm{tt}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, 7.46 (t, J $\left.=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, $6.77(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.72(\mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7), 3.93\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.74(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 2.85\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.08(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 1.02\left(\mathrm{~d}, \mathrm{~J}=6,5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.1(\mathrm{C}-\alpha), 164.8$ (C-1), 161.7 (C-6), 139.4 and 135.5 (2C, C-1' and C-4a), 133.7 (CH-4'), 130.3 (2C, CH-2', 6'), 128.5 (3C, CH-3', $5^{\prime}, 8$), 119.9 (C$8 \mathrm{a}), 113.9(\mathrm{CH}-5), 112.5(\mathrm{CH}-7), 74.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$, $47.1\left(\mathrm{CH}_{2}-3\right), 28.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right), 26.2\left(\mathrm{CH}_{2}-4\right), 19.1$ (2C, $\left.\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-6\right)$; LC-MS (APCI negative mode) m/z 306 $[\mathrm{M}-1]^{+} ; \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$.

1-Benzoyl-6-pentanyloxy-3,4-dihydroisoquinoline, 13. The asterisk $(*)$ indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ (dd, $\left.\mathrm{J}=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $7.46\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8)$, 6.76 (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.72$ (dd, J $=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-7), 3.98\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right), 3.93(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), $2.86\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.79$ (sex., $\left.\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}-6\right), 1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2^{-}}\right.$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}-6\right), 0.93\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}^{*}\left(100 \mathrm{MHz}_{\mathrm{H}} \mathrm{CDCl}_{3}\right) \delta 185.0(\mathrm{C}-\alpha), 165.3(\mathrm{C}-1), 160.0(\mathrm{C}-$
6), 138.7 and 135.8 (2C, C-1' and C-4a), 133.1 ($\mathrm{CH}-4^{\prime}$), 130.6 (2C, CH-2', 6'), 128.9 (3C, CH-3', $5^{\prime}, 8$), 118.8 (C-8a), 114.2 (CH5), $111.8(\mathrm{CH}-7), 68.5\left(\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right)$, $47.3\left(\mathrm{CH}_{2}-3\right), 29.1$, 28.4, and $22.7\left(3 \mathrm{C}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right)$, $26.5\left(\mathrm{CH}_{2}-4\right)$, 14.3 (1C, $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right) ; \mathrm{MAB}(\mathrm{Ar}) \mathrm{m} / \mathrm{z} 321$ (35) [M] ${ }^{+}, 293$ (100), 250 (10), 234 (30); MAB (N_{2}) m/z 321 (53) [M] ${ }^{+}, 319$ (100), 293 (17), 234 (6); HREIMS m/z 321.17216 [M] ${ }^{+}$(321.17288 calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$), 293.17655 (293.177 96 calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}$), 250.08711 (250.08680 calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}_{2}$), 234.0918 (234.09189 calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NO}$), 105.03200 (105.034 04 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 77.03771 (77.03912 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-(trans-but-2-enoxy)-3,4-dihydroisoquinoline, 14. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.03 (dd, J $=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 7.58 (td, J $=8.0,1.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.46\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.29(\mathrm{dd}, \mathrm{J}=$ 8.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.77 ($\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $6.70(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 5.87-5.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6\right)$, 4.49 (dd, J $=4.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6$), $3.93(\mathrm{t}$, J $\left.=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.85\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.76$ (dd, J = 6.2, $1.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6$); ${ }^{13} \mathrm{C} \mathrm{NMR*} \mathrm{(75}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0(\mathrm{C}-\alpha), 164.8(\mathrm{C}-1), 161.1$ (C-6), 139.4 and 135.5 (2C, C-1' and C-4a), 133.7 (CH-4'), 131.1 and 125.4 (2C, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}-6\right), 130.3-128.4\left(5 \mathrm{C}, \mathrm{CH}-2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right.$, and 8), $124.9(\mathrm{C}-8 \mathrm{a}), 114.1(\mathrm{CH}-5), 112.3(\mathrm{CH}-7), 68.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CHCH}_{3}-6\right), 47.1\left(\mathrm{CH}_{2}-3\right), 26.1\left(\mathrm{CH}_{2}-4\right), 17.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\right.$ $\mathrm{CHCH}_{3}-6$); LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 306[\mathrm{MH}]^{+}, 305$ [M] ${ }^{+}, 328$ [M + Na] ${ }^{+}$; HREIMS m/z $305.14250[\mathrm{M}]^{+}$(305.141 58 calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$), 234.09240 (234.09189 calcd for $\mathrm{C}_{16} \mathrm{H}_{12^{-}}$ NO), 105.031 11 (105.03404 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 77.03717 (77.039 12 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-0-methyl-pentanoate-3,4-dihydroisoquinoline, 15. The asterisk ($*$) indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.01 (dd, J $\left.=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.59$ (tt, J $=7.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.47 (td, J $\left.=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.29(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.76(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.72(\mathrm{dd}, \mathrm{J}=$ 8.5, $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}-6\right)$, $3.93\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOCH}_{3}-\right.$ 6), $2.85\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2^{-}}\right.$ $\left.\mathrm{COOCH}_{3}-6\right), 1.83\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}-6\right) ;{ }^{13} \mathrm{C}$ NMR* ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0(\mathrm{C}-\alpha), 173.7\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-\right.$ $\mathrm{OCH}_{3}-6$), 164.8 ($\mathrm{C}-1$), $161.3(\mathrm{C}-6), 139.5\left(\mathrm{C}-1^{\prime}\right), 135.5(\mathrm{C}-4 \mathrm{a})$, 133.7 (CH-4'), 130.3 (2C, CH-2', 6^{\prime}), 128.5 (CH-8), 128.4 (2C, $\mathrm{CH}-3^{\prime}, 5^{\prime}$), 120.1 (C-8a), 113.9 (CH-5), 112.5 (CH-7), 67.5 (1 C , $\left.\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}-6\right), 51.5\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOCH}_{3}-6\right), 47.1$ $\left(\mathrm{CH}_{2}-3\right), 33.5,28.5$, and $21.5\left(3 \mathrm{C}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}-6\right), 26.1$ $\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 366[\mathrm{MH}]^{+}$; $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-7-methoxy-2-tosyloxy-3,4-dihydroisoquinoline, 16. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82$ (dd, J $=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), $7.48-$ $7.30\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-2^{\prime}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}-6\right)$, 7.12-7.04 (m, $4 \mathrm{H}, \mathrm{H}-3^{\prime} 4^{\prime}, 5^{\prime}$, and $\mathrm{H}-8$), $6.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}-\right.$ Ph-6), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 3.72\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right)$, $2.61\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-2^{\prime}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.8$ (C- α), 163.7 (C-1), 150.6 (C-6), 147.9 (C-7), 147.1 and 145.4 (3C, C-2', $1^{\prime \prime \prime}$ and $4^{\prime \prime \prime}$), 136.6 and 135.1 (2C, C-1' and C-1"), 131.8 (C-4a), 131.5-122.8 ($13 \mathrm{CH}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH} 3-2^{\prime}, \mathrm{OCH}_{2} \mathrm{Ph}-6$, and $\mathrm{H}-3^{\prime}$ to $\mathrm{H}-6^{\prime}$), 119.3 (C-8a), $112.2(\mathrm{CH}-5), 111.3(\mathrm{CH}-8), 70.7\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.1$ $\left(\mathrm{OCH}_{3}-7\right), 47.6\left(\mathrm{CH}_{2}-3\right), 24.9\left(\mathrm{CH}_{2}-4\right), 21.6\left(\mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-2^{\prime}\right)$; EIMS m/z (\%) 541 [M] ${ }^{+}$(15), 450 (6), 386 (11), 368 (67), 278 (11), 91 (100), 77 (3); $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NSO}_{6}$.

1-Benzoyl-6-benzyloxy-7-methoxy-2-hydroxy-3,4-dihydroisoquinoline, 16a. The asterisk ($*$) indicates that the assignments were made by COSY $45 .{ }^{1} \mathrm{H} N M \mathrm{~N}^{*}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71\left(\mathrm{dd}, \mathrm{J}=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.53(\mathrm{td}, \mathrm{J}=7.8$, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.44-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.04$ (dd, J $\left.=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.88$ (td, J $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 6.83 (s, 1H, H-8), 6.76 (s, 1H, H-5), $5.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right)$, $3.87\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.77(\mathrm{t}$, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;$ LSIMS m/z $388[\mathrm{MH}]^{+} ; \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-7,2'-dimethoxy-3,4-dihydroisoquinoline, 17. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.81\left(\mathrm{dd}, \mathrm{J}=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.51(\mathrm{td}, \mathrm{J}=8.0$, $\left.1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.48-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.06$ (td, J = $\left.8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.80(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}-7$), $3.76\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right.$), $3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-2^{\prime}\right), 2.68\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 195.3(\mathrm{C}-\alpha), 165.8(\mathrm{C}-1), 159.3$ ($\mathrm{C}-2^{\prime}$), 150.4 ($\mathrm{C}-6$), 147.9 (C-7), 136.6 (2C, C-1', $1^{\prime \prime}$), 134.5 and 130.9 (2C, CH-4' and 6^{\prime}), 128.6-127.0 (5CH, OCH $\left.2 \mathrm{Ph}-6\right), 127.9$ (C-4a), 120.9 ($\mathrm{CH}-5^{\prime}$), 119.6 (C-8a), 112.5 (CH-3'), 111.9 (CH-5), 110.2 (CH8), $70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.1$ and $55.5\left(2 \mathrm{C}, \mathrm{OCH}_{3}-7\right.$ and $\mathrm{OCH}_{3}-$ $\left.2^{\prime}\right), 47.2\left(\mathrm{CH}_{2}-3\right), 25.3\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 402[\mathrm{MH}]^{+}, 424[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-2-methoxy-3,4-dihydroisoquinoline, 18. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.83 (dd, $\left.\mathrm{J}=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.50$ (ddd, $\mathrm{J}=7.8,1.8,0.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $7.45-7.36$ (m,6H, $\mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\mathrm{H}-8$), 7.05 (td, J = 7.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $6.92\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$), $6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-5)$, $5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.79$ (t, J $\left.=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-2^{\prime}\right), 2.78(\mathrm{t}, \mathrm{J}=7.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C}$ NMR* ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0(\mathrm{C}-\alpha)$, 166.1 (C-1), 160.6 (C-2'), 159.3 (C-6), 139.7 and 136.9 (2C, C-1' and $\mathrm{C}-1^{\prime \prime}$), 134.5 and 130.9 ($2 \mathrm{C}, \mathrm{CH}-4^{\prime}$ and $\mathrm{CH}-6^{\prime}$), 128.6-127.1 (6C, $\mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\mathrm{CH}-8$), 127.0 (C-4a), 120.8 ((CH-5'), 120.1 (C-8a), 113.9 (CH-3'), $112.6(\mathrm{CH}-5), 111.8(\mathrm{CH}-7), 69.9\left(\mathrm{OCH}_{2}-\right.$ Ph-6), $55.5\left(\mathrm{OCH}_{3}-2^{\prime}\right), 47.0\left(\mathrm{CH}_{2}-3\right), 26.2\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) m/z $372[\mathrm{MH}]^{+}, 394[\mathrm{M} \mathrm{+} \mathrm{Na]}$; HREIMS m/z $371.15176[M]^{+}$(371.15214 calcd for $\mathrm{C}_{24} \mathrm{H}_{21^{-}}$ NO_{3}), 341.13222 (341.14158 cal cd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$), 280.09635 (280.09737 calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$), 105.03263 (105.03404 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), $91.05610\left(91.05477\right.$ calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$), 77.03702 (77.039 12 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-benzyloxy-7-methoxy-3'-acetoxy-3,4-dihydroisoquinoline, 19. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1}$ H NMR* $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90\left(\mathrm{dt}, \mathrm{J}=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.78$ $\left(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.52-7.31\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-5^{\prime}, 4^{\prime}\right.$ and $\mathrm{OCH}_{2} \mathrm{Ph}-6$), 6.96 (s, 1H, H-8), 6.75 (s, 1H, H-5), $5.21(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}-6$), $3.93\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right.$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ 7), $2.74\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}-3^{\prime}\right)$; ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.5(\mathrm{C}-\alpha), 169.1\left(\mathrm{OCOCH}_{3}-\right.$ 3^{\prime}), 163.9 (C-1), 150.8 (C-6), 150.6 (C-3'), 148.1 (C-7), 136.9 and 136.3 (2C, C-1' and C-1"), 130.9 (C-4a), 129.5-127.1 (7 C, CH$5^{\prime}, 6^{\prime}$ and $\mathrm{OCH}_{2} \mathrm{Ph}-6$), 123.2 (2C, $\left.\mathrm{CH}-2^{\prime}, 4^{\prime}\right)$, 119.4 (C-8a), 112.6 ($\mathrm{CH}-5$), $110.0(\mathrm{CH}-8), 70.7\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.2\left(\mathrm{OCH}_{3}-7\right), 47.3$ $\left(\mathrm{CH}_{2}-3\right), 25.2\left(\mathrm{CH}_{2}-4\right), 21.0\left(\mathrm{CH}_{3} \mathrm{OCO}-3^{\prime}\right) ;$ EIMS m$/ \mathrm{z}$ (\%) 429 [M] ${ }^{+}$(20), 386 (9), 370 (20), 338 (37), 296 (23), 280 (9), 268 (14), 266 (9), 121 (15), 91 (100), 77 (4); HREIMS m/z 429.15801 $[\mathrm{M}]^{+}\left(429.15762\right.$ calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5}\right), 91.05475$ (91.054 77 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$), 77.04022 (77.03912 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Benzoyl-6-benzyloxy-7-methoxy-3-hydroxy-3,4-dihydroisoquinoline, 19a. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.21\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-2^{\prime}, 4^{\prime}-6^{\prime}\right.$ and $\mathrm{OCH}_{2} \mathrm{Ph}-$ 6), $6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\right.$ 6), $3.80\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right.$), 3.78 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-7$), 2.68 $\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{CNMR}{ }^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.7$ (C- α), 165.9 (C-1), 157.0 (C-3'), 151.5 (C-6), 148.4 (C-7), 136.2 and 135.9 (2C, C-1' and C-1"), 130.8 (C-4a), 129.7-117.2 (9C, $\mathrm{C}-2^{\prime}, 4^{\prime}-6^{\prime}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 119.2$ (C-8a), 112.6 (CH-5), 110.4 $(\mathrm{CH}-8), 70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.2\left(\mathrm{OCH}_{3}-7\right)$, $46.2\left(\mathrm{CH}_{2}-3\right), 25.1$ ($\mathrm{CH}_{2}-4$); EIMS m/z (\%) 387 [M] ${ }^{+}$(14), 370 (7), 296 (17), 268 (12), 266 (7), 121 (10), 105 (3), 91 (100), 77 (4); $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-7-methoxy-3-tosyloxy-3,4-dihydroisoquinoline, 20. The asterisk ($*$) indicates that the assignments were made by COSY $45 .{ }^{1} \mathrm{H}$ NMR* (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92$ and $7.70\left(2 \mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}\right.$ $\left.3^{\prime}\right), 7.6-7.27\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right.$ and $\left.\mathrm{H}-2^{\prime}, 4^{\prime}-6^{\prime}\right), 6.93(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8$), 6.75 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), $5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.85(\mathrm{t}, \mathrm{J}=$ $\left.7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.70(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$,
$\left.2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-\mathrm{3}^{\prime}\right) ;$ EIMS m/z (\%) 541 [M]+ (14), 387 (7), 384 (45), 370 (21), 294 (20), 121 (5), 91 (100), 77 (4); $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NSO}_{6}$.

1-Benzoyl-6-benzyloxy-7,3'-dimethoxy-3,4-dihydroisoquinoline, 21. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.55\left(\mathrm{dd}, \mathrm{J}=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$, $7.48-7.31(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{H}-\mathrm{L}^{\prime}, 4^{\prime}$ and $\mathrm{OCH}_{2} \mathrm{Ph}-6$), 7.17 (dd, J $=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 6.96 (s, 1H, H-8), 6.78 (s, 1H, H-5), 5.29 (s, 2H, OCH 2 Ph-6), $3.90\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.90$ and $3.74\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-7\right.$ and $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 2.77\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR*} \mathrm{(100}$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8$ ($\mathrm{C}-\alpha$), 164.4 (C-1), 159.7 (C-3'), 150.8 (C6), 148.1 (C-7), 136.8 and 136.4 (2C, C-1' and C-1"), 130.9 (C$4 a)$, 129.5-127.1 (6C, CH-5' and $\mathrm{OCH}_{2} \mathrm{Ph}-6$), 123.6 (CH-6'), 120.6 and 113.9 (2C, CH-2', 4'), 119.6 (C-8a), 112.6 (CH-5), 110.1 (CH-8), $70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.2$ and $55.4\left(2 \mathrm{C}, \mathrm{OCH}_{3}-7\right.$ and $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 47.2\left(\mathrm{CH}_{2}-3\right)$, $25.3\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 402[\mathrm{MH}]^{+}, 424[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-3'methoxy-3,4-dihydroisoquinoline, 22. The asterisk (*) indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.59-7.28 (m,9H,OCH ${ }_{2} \mathrm{Ph}-6$ and $\left.\mathrm{H}-8,2^{\prime}, 4^{\prime}, 6^{\prime}\right), 7.13(\mathrm{dd}, \mathrm{J}=$ 8.2, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 6.85 (d, J $=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.80 (dd, $\mathrm{J}=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.93(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right), 2.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}-4$); ${ }^{13} \mathrm{C}$ NMR* ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8$ (C- α), 164.8 (C-1), 161.1 (C-6), 159.7 (C-3'), 139.5, 136.7, and 136.2 (3C, $\mathrm{C}-1^{\prime}, \mathrm{C}-1^{\prime \prime}$, and $\mathrm{C}-4 \mathrm{a}$), 129.5-127.4 (7C, OCH $2 \mathrm{Ph}-6$ and $\mathrm{CH}-$ $5^{\prime}, 8$), 123.5 ($\mathrm{C}-6^{\prime}$), 120.5 and 114.3 (2C, CH-2', 4^{\prime}), 120.3 (C$8 \mathrm{a})$, $113.7(\mathrm{CH}-5), 112.9(\mathrm{CH}-7), 69.9\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 55.5\left(\mathrm{OCH}_{3}-\right.$ 3'), $47.0\left(\mathrm{CH}_{2}-3\right), 26.1\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) m/z 372 [MH] ${ }^{+}, 394$ [M + Na] ${ }^{+}$; HREIMS m/z 371.15053 [M] ${ }^{+}$ (371.15214 calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$), 280.09685 (280.09737 calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$), 135.04488 (135.04461 calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}$), 91.04983 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Benzoyl-6-benzyloxy-7-methoxy-4-tosyloxy-3,4-dihydroisoquinoline, 23. The asterisk (*) indicates that the assignments were made by COSY $45 .{ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.48-7.30(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-4^{\prime}$ and $\mathrm{OCH}_{2} \mathrm{Ph}-6$), 6.93 (s, $1 \mathrm{H}, \mathrm{H}-8$), 6.77 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{H}-5), 6.62\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\right.$ 6), $3.88\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.80$ ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OS}(\mathrm{O})_{2} \mathrm{PhCH}_{3}-4^{\prime}\right)$; $\mathrm{LC}-$ MS (APIES positive mode) m/z $542[\mathrm{MH}]^{+} ; \mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NSO}_{6}$.

1-Benzoyl-6-benzyloxy-7-methoxy-4'-hydroxy-3,4-dihydroisoquinoline, 23a. The asterisk ($*$) indicates that the assignments were made by COSY $45 .{ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.43(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.38\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.33(\mathrm{~d}, \mathrm{~J}=$ $\left.6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 6.93$ (s, 1H, H-8), 6.77 (s, 1H, H-5), 6.62 (d, $\left.\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 5.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.88(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.80(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}-4$); EIMS m/z (\%) 387 [M]+ (70), 371 (100), 357 (50), 294 (45), 280 (42), 268 (47), 172 (37), 121 (44), 91 (57), 77 (12); $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-4'-methoxy-3,4-dihydroisoquinoline, 24. The asterisk (*) indi cates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.01 (d, J $\left.=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.42-7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\right.$ 6), 7.28 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $6.92(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}-3^{\prime}, 5^{\prime}\right), 6.83(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.78(\mathrm{dd}, \mathrm{J}=8.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.90(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-3$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-4^{\prime}\right), 2.83\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right.$); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.6$ (C- α), 164.9 (C-1), 164.1 (C-4'), 160.9 (C-6), 139.4 and 136.2 (2C, C-1" and C-1'), 130.0 (C-4a), 128.5-128.4 (2C, CH-2', 6^{\prime}), 128.4-127.3 ($5 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}-$ 6), 128.0 (CH-8), 120.3 (C-8a), 114.1 (CH-5), 113.7 (2C, CH$\left.3^{\prime}, 5^{\prime}\right)$, $112.7(\mathrm{CH}-7), 69.9\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 55.4\left(\mathrm{OCH}_{3}-4^{\prime}\right), 46.9$ $\left(\mathrm{CH}_{2}-3\right), 26.0\left(\mathrm{CH}_{2}-4\right)$; EIMS m/z (\%) 371 [M]+ (68), 343 (65), 280 (73), 135 (78), 91 (100), 77 (27); LC-MS (APCI negative mode) m/z 370 [M - 1] ${ }^{+}$; LC-MS (APCI positive mode) m/z 372 [MH] ${ }^{+}$; HREIMS m/z 371.15316 [M] ${ }^{+}$(371.15214 calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{3}$), 280.09840 (280.097 37 calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$),
135.04351 (135.04461 calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}$), 91.05388 (91.054 77 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Benzoyl-6-benzyloxy-7,3,4-trimethoxy-3,4-dihydroisoquinoline, 25. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.65\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.58(\mathrm{dd}, \mathrm{J}=8.4,2.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.41$ (dd, J $\left.=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.34$ (td, $\left.\mathrm{J}=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.28$ (dd, J $=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime \prime}\right), 6.92$ (s, 1H, H-8), 6.84 ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 6.75 (s , $1 \mathrm{H}, \mathrm{H}-5), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right)$, 3.92 and $3.90\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-\right.$ 3^{\prime} and $\left.\mathrm{OCH}_{3}-4^{\prime}\right), 3.86\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}-7\right), 2.72\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{13} \mathrm{C}$ NMR* $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 192.7(\mathrm{C}-\alpha)$, $164.5(\mathrm{C}-1)$, 154.1 and 149.1 (2C, C-3' and C-4'), 150.8 (C-6), 148.2 (C-7), 136.4 (C-1"), 130.8 (C-4a), 128.7-127.1 (5C, OCH 2 Ph-6), 128.6 (C-1'), 126.5 (CH-6'), 119.8 (C-8a), 112.6 ($\mathrm{CH}-5$), $111.2,110.2$ and 110.1 (3C, $\mathrm{CH}-5^{\prime}, 2^{\prime}, 8$), $70.7\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.2,56.1$, and $55.9\left(3 \mathrm{C}, \mathrm{OCH}_{3}-7, \mathrm{OCH}_{3}-3^{\prime}\right.$, and $\left.\mathrm{OCH}_{3}-4^{\prime}\right), 47.2\left(\mathrm{CH}_{2}-3\right), 25.3\left(\mathrm{CH}_{2}-4\right) ;$ EIMS m/z (\%) 431 [M] ${ }^{+}$(82), 400 (75), 340 (63), 312 (64), 268 (39), 165 (71), 91 (100); HREIMS m/z 431.17449 [M] ${ }^{+}$(431.17327 calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{5}$), 340.12134 (340.11850 calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{5}$), 265.10610 (265.110 28 calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$), 165.05610 (165.055 17 calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}$), 91.05461 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

N-Methyl-1-benzoyl-6-benzyloxy-7,3', $\mathbf{4}^{\prime}$-trimethoxy-3,4dihydroisoquinoline, 25a. The asterisk (*) indicates that the assignments were made by COSY 45, NOESY, and DEPT. ${ }^{1} \mathrm{H}$ $\mathrm{NMR}^{*}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12$ (dd, J $=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 7.57 (brd, J $\left.=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.42-7.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\right.$ 6), $7.13\left(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 6.67$ (s, 1H, H-8), 5.28 (s, 2H, OCH 2 Ph-6), 4.88 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-3 \mathrm{a}$), 4.27 (m, 1H, CH $\mathrm{C}_{2}-4 \mathrm{a}$), 4.07 (m, $1 \mathrm{H}, \mathrm{CH}_{2}-3 \mathrm{~b}$), 4.01 and $3.98(2 \mathrm{~s}, 6 \mathrm{H}$, $\mathrm{OCH}_{3}-3^{\prime}$ and $\mathrm{OCH}_{3}-4^{\prime}$), 3.78 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-7$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-$ N), 3.17 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}-4 \mathrm{~b}$); ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.7$ (C- α), 169.9 (C-1), 157.4 (C-4'), 150.3 (C-6), 149.1 (C-7), 142.0 (C-3'), 134.7 and 134.1 (2C, C-1"and C-4a), 128.8-112.2 (10C, $\mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\left.\mathrm{CH}-5,8,2^{\prime}, 5^{\prime}, 6^{\prime}\right)$, 124.4 (C-1'), 115.5 (C-8a), 71.6 $\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.7$ and $56.3\left(3 \mathrm{C}, \mathrm{OCH}_{3}-3^{\prime}, \mathrm{OCH}_{3}-4^{\prime}\right.$ and $\mathrm{OCH}_{3}-$ 7), $52.5\left(\mathrm{CH}_{2}-3\right), 46.1\left(\mathrm{CH}_{3}-\mathrm{N}\right), 26.4\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 446[\mathrm{M}]^{+}, 447$ [MH]+; HREIMS m/z 446.19619 [M] ${ }^{+}\left(446.19675\right.$ calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}\right), 282.14861$ (282.149 40 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}$), 91.05401 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Benzoyl-6-benzyloxy-3',4'dimethoxy-3,4-dihydroisoquinoline, 26. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.66\left(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.58(\mathrm{dd}, \mathrm{J}=8.4,2.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.42-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.28(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.87 (brs, $1 \mathrm{H}, \mathrm{H}-5$), 6.85 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 6.80 (dd, J $=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 5.10 (s, 2H, OCH $2 \mathrm{Ph}-6$), 3.94 and $3.93\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}-3^{\prime}\right.$ and $\left.4^{\prime}\right), 3.90(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}-3$), $2.83\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.8(\mathrm{C}-\alpha), 164.9(\mathrm{C}-1), 161.0(\mathrm{C}-6), 154.1$ and 149.1 (2C, C-3' and C-4'), 139.4 and 136.2 (2C, C-1" and C-1'), 128.6-126.4 (7C, OCH ${ }_{2} \mathrm{Ph}-6$ and $\mathrm{CH}-6^{\prime}, 8$), 128.1 (C-4a), 120.5 (C-8a), 114.3, 112.9, 111.1, and 109.9 (4C, CH-5,7,2', 5^{\prime}), 69.9 $\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.1$ and $55.4\left(2 \mathrm{C}, \mathrm{OCH}_{3}-3^{\prime}\right.$ and $\left.\mathrm{OCH}_{3}-4^{\prime}\right), 46.9$ $\left(\mathrm{CH}_{2}-3\right), 26.1\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APCI negative mode) $\mathrm{m} / \mathrm{z} 400$ [M - 1]+; HREIMS m/z 401.16198 [M]+ (401.162 71 calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}$), 310.10741 (310.10793 calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}$), 165.05562 (165.055 17 cal cd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}$), 91.05420 (91.054 77 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Benzoyl-6-benzyloxy-7-methoxyisoquinoline, 27. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (d, J $=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.94 (dd, J $=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime},^{\prime}$), 7.63 (d, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.49(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4^{\prime}$), 7.47-7.30 (m, 7H, H-3', 5', and OCH $2 \mathrm{Ph}-6$), 7.19 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{H}-5$), 5.33 (s, 2H, OCH $2 \mathrm{Ph}-6$), 3.95 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-7$); ${ }^{13} \mathrm{C}^{2}$ NMR* ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9$ (C- α), $164.0(\mathrm{C}-1)$, 152.6 (C-6), 151.7 (C-7), $139.3(\mathrm{CH}-3), 137.0$ and 135.7 (2C, C-1" and $\mathrm{C}-1^{\prime}$), 134.1 (C-4a), 133.5 ($\mathrm{CH}-4^{\prime}$), 130.8 (2C, $\mathrm{CH}^{\prime} 2^{\prime}, 6^{\prime}$), 128.7-127.3 (7C, $\mathrm{CH}-3^{\prime}, 5^{\prime}$ and $\left.\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 123.0(\mathrm{C}-8 \mathrm{a}), 121.7$ (CH-4), 106.6 (CH5), $104.2(\mathrm{CH}-8), 70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.1\left(\mathrm{OCH}_{3}-7\right)$; EIMS m/z
(\%) 369 [M] (55), 354 (25), 338 (100), 278 (65), 264 (5), 105 (40), 91 (47), 77 (52); $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3}$.

1-Benzoyl-6-hydroxy-7-methoxyisoquinoline, 27a. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{*}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44$ (d, J $=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), \delta 7.95\left(\mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, δ 7.64 (s, 1H, H-8), $\delta 7.63$ (d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $\delta 7.60$ (tt, J $\left.=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), \delta 7.47\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), \delta$ 7.28 (s, 1H, H-5), 3.94 (s, 3H, OCH $3_{3}-7$); ${ }^{13} \mathrm{C} \mathrm{NMR*} \mathrm{(} 62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 195.4(\mathrm{C}-\alpha), 174.0(\mathrm{C}-1), 150.1(\mathrm{C}-6), 149.3(\mathrm{C}-7), 139.7$ (CH-3), 136.9 (C-1'), 134.4 (C-4a), 133.4 (CH-4'), 130.8 (2C, CH$2^{\prime}, 6^{\prime}$), 128.3 (2C, CH-3', 5^{\prime}), 122.6 (C-8a), 121.6 (CH-4), 108.3 (CH-5), 103.6 (CH-8), $56.0\left(\mathrm{OCH}_{3}-7\right)$; EIMS m/z (\%) 279 [M] ${ }^{+}$ (83), 264 (96), 251 (73), 236 (100), 188 (2), 105 (40), 91 (15), 77 (61); $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$.

1-Benzoyl-6-(p-methoxy)benzyloxy-7-methoxyisoquinoline, 28. The asterisk ($*$) indi cates that the assignments were made by COSY $45 .{ }^{1} \mathrm{H} N \mathrm{NR}^{*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.44(\mathrm{~d}, \mathrm{~J}=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.95 (dd, J $\left.=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.64$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), $7.61(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $7.50-7.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right.$ and $\left.3^{\prime \prime}, 5^{\prime \prime}\right), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 6.90$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}$), $5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{p}-\mathrm{OCH}_{3}-6$), 3.83 (s, 3H, OCH ${ }_{3}$-7); LSIMS m/z 400 [MH]; EIMS m/z 399 [M] , 278 (55), 122 (64), 105 (53), 77 (100); $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}$.

1-Benzoyl-6-pentanyloxy-7-methoxyisoquinoline, 29. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45$ (d, J $=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.96 (ddd, J $\left.=8.0,2.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, $7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.63(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.60(\mathrm{dt}, \mathrm{J}=$ $\left.7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.48$ (dt, J = 8.0, 7.4, 1.2 Hz, $2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}$), $7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 4.18\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right)$, $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 1.56\left(\mathrm{p}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2^{-}}\right.$ $\left.\mathrm{CH}_{3}-6\right), 1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}-6\right), 0.96(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.4$ (C- α), 162.0 (C-1), 152.9 (C-6), 151.5 (C-7), 139.9 (CH-3), 137.1 and 134.0 ($2 \mathrm{C}, \mathrm{C}-4 \mathrm{a}$ and $\mathrm{C}-1^{\prime}$), $133.3-128.3$ ($5 \mathrm{C}, \mathrm{CH}-2^{\prime}-6^{\prime}$), 122.9 (C-8a), 121.5 (CH-4), 105.5 (CH-5), 104.0 (CH-8), 69.1 $\left(\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right), 56.0\left(\mathrm{OCH}_{3}-7\right), 28.5-22.4\left(3 \mathrm{C}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3}-\right.$ $\left.\mathrm{CH}_{3}-6\right), 13.9\left(\mathrm{O}^{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 350[\mathrm{MH}]^{+}, 372[\mathrm{M}+\mathrm{Na}]^{+} ; \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}$.

1-Benzoyl-6-methoxy-7-benzyloxyisoquinoline, 30. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44$ (d, J $=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.95\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.73(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8), 7.63(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.59(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.46\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}-7$), 7.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$), 5.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-7$), 4.01 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}-6\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3(\mathrm{C}-\alpha), 155.0$ (C-1), 152.9 (C-6), 150.2 (C-7), 140.0 (CH-3), 136.9 and 135.7 (2C, C-1" and C-1'), 133.9 (C-4a), 133.3 (CH-4'), 130.6 (2C, CH$2^{\prime}, 6^{\prime}$), 128.5-127.6 (7C, CH-3', 5^{\prime} and $\mathrm{OCH}_{2} \mathrm{Ph}-7$), 122.7 (C-8a), 121.4 (CH-4), 105.5 (CH-5), $104.8(\mathrm{CH}-8), 70.6\left(\mathrm{OCH}_{2} \mathrm{Ph}-7\right)$, 55.9 ($\mathrm{OCH}_{3}-6$); EIMS m/z (\%) 369 [MH] ${ }^{+}$(43), 278 (54), 264 (8), 105 (10), 91 (100), 77 (15); HREIMS m/z 369.13574 [M] ${ }^{+}$ (369.13650 calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3}$), 278.07919 (278.08172 calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{3}$), 264.10405 (264.102 45 cal cd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{2}$), 91.05320 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Benzoyl-6-methoxy-7-hydroxyisoquinoline, 30a. The asterisk $(*)$ indicates that the assignments were made by COSY 45. ${ }^{1 \mathrm{H}} \mathrm{NMR}$ * ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36$ ($\mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), 7.87 (dd, J $\left.=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.63(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.57\left(\mathrm{td}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.54(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8), 7.44\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$, 4.04 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}-6$); EIMS m/z (\%) $279[\mathrm{M}]^{+}$(87), 262 (100), 250 (90), 235 (40), 174 (10), 105 (40), 91 (73), 77 (62); HREIMS $\mathrm{m} / \mathrm{z} 279.08928[\mathrm{M}]^{+}$(279.08954 calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$), 262.08779 (262.08680 calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{2}$), 105.04108 (105.034 04 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 77.03657 (77.03912 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$.

1-Benzoyl-6-benzyloxy-7-methoxy- 2 -hydroxyisoquinoline, 31. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.44(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.61(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$,
7.53 (dd, J = 8.0, < 1.0, 1H , H-6'), 7.49-7.42 (m, 5H, OCH ${ }_{2} \mathrm{Ph}-$ 6), 7.40 (s, 1H, H-8), 7.36 (dd, 1H, J = 8.0, $<1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 7.09\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.82(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 5.33 (s, 2H, OCH $2 \mathrm{Ph}-6$), 3.95 (s, $3 \mathrm{H}, \mathrm{OCH}_{3-}$ 7); ${ }^{13} \mathrm{C}$ NMR* $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.0$ (C- α), 163.8 (C-1), 152.4-151.5 (3C, C-6,7 and C-2'), 139.9 (CH-3), 137.1 (CH4^{\prime}), 135.7 ($\left(-1^{\prime \prime}\right), 134.1,118.9$, and 118.3 (3C, CH-3', $\left.6^{\prime}, 5^{\prime}\right), 132.0$ and 130.1 ($2 \mathrm{C}, \mathrm{C}-1^{\prime}$ and $\mathrm{C}-4 \mathrm{a}$), 128.8-128.3 ($5 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), 121.4 (CH-4), 119.6 (C-8a), 106.6 (CH-5), 103.7 (CH-8), 70.8 ($\mathrm{OCH}_{2} \mathrm{Ph}-6$), 56.1 ($\mathrm{OCH}_{3} \mathrm{O}-7$); EIMS m/z (\%) 386 [MH] ${ }^{+}$(95), $385[\mathrm{M}]^{+}(30), 368$ (43), 356 (72), 294 (17), 277 (7), 266 (100), 105 (7), 91 (38), 77 (61); $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-7-methoxy-3'-hydroxyisoquinoline, 32. The asterisk (*) indicates that the assignments were made by COSY 45. ${ }^{1} \mathrm{H} N M \mathrm{R}^{*}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.50-7.38$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\mathrm{H}-2^{\prime}, 6^{\prime}$), 7.35 (d, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.25 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 7.10 (s, 1H, H-8), 7.01 (s, 1H, H-5), 6.87 (dd, J $=8.0,2.3 \mathrm{~Hz}$, 1H, H-4'), 5.35 (s, 2H, OCH 2 Ph-6), 3.95 (s, 3H, OCH 3 -7); LCMS (APIES negative mode) $\mathrm{m} / \mathrm{z} 348[\mathrm{M}-1]^{+} ; \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4}$.

1-Benzoyl-6-benzyloxy-7-methoxy-4'-hydroxyisoquinoline, 33. The asterisk ($*$) indicates that the assignments were made by COSY 45. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.70\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.62(\mathrm{~d}, \mathrm{~J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.49(\mathrm{dd}, \mathrm{J}=7.2,1.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.41$ (td, J = $\left.7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.35(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 6.69\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$, 5.33 (s, 2H , OCH $2 \mathrm{Ph}-6$), $3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right.$); LC-MS (APIES negative mode) $\mathrm{m} / \mathrm{z} 384[\mathrm{M}-1]^{+} ; \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4}$.

1-Phenyl-6-benzyloxy-7-methoxy-3,4-dihydroisoquinoline, 34. The asterisk (*) indicates that the assignments were made by COSY 45. ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.30$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\mathrm{H}-2^{\prime}$ to $\mathrm{H}-6^{\prime}$), 6.82 and $6.80(2 \mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-8$ and $\mathrm{H}-5), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.79(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2}-3$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 2.67\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C}$ NMR* $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1$ (C-1), 150.6 (C-6), 148.1 (C-7), 139.5 and 137.1 (2C, C-1" and C-1'), 132.9 (C-4a), 129.7127.0 (10C, $\mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\mathrm{CH}-2^{\prime}-6^{\prime}$), 122.4 (C-8a), 112.9 and 112.7 (2C, CH-5 and CH-8), $71.3\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right)$, $56.7\left(\mathrm{OCH}_{3}-7\right)$, $48.0\left(\mathrm{CH}_{2}-3\right)$, $26.3\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) m / z 344 [MH] ${ }^{+}$; HREIMS m/z 343.15690 [M] (343.15723 calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$), 252.10478 (252.10245 calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}$), 91.05426 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Phenyl-6-hydroxy-7-methoxy-3,4-dihydroisoquinoline, 34a. The asterisk ($*$) indicates that the assignments were made by COSY 45. ${ }^{1 \mathrm{H}} \mathrm{NMR*}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62$ (dd, J $\left.=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.53-7.42\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}, 4^{\prime}\right.$, and $\left.5^{\prime}\right)$, $6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 3.80(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-3\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-6\right), 2.76\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right)$; ${ }^{13} \mathrm{C}$ NMR* $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.4(\mathrm{C}-1), 145.8$ (2C, C-6,7), 137.0 ($\mathrm{C}-1^{\prime}$), 134.1 (C-4a), 130.2 ($\mathrm{CH}-4^{\prime}$), 129.2 ($2 \mathrm{C}, \mathrm{CH}-\mathrm{C}^{\prime}, 6^{\prime}$), 128.3 (2C, CH-3', 5'), 118.9 (C-8a), 114.5 (CH-5), 112.0 (CH-8), $56.1\left(\mathrm{OCH}_{3}-7\right)$, $45.7\left(\mathrm{CH}_{2}-3\right)$, $25.9\left(\mathrm{CH}_{2}-4\right)$; LC-MS (APIES positive mode) m/z $254[\mathrm{MH}]^{+}, 276[\mathrm{M}+\mathrm{Na}]^{+}$; HREIMS m/z $253.10989[\mathrm{M}]^{+}\left(253.11028\right.$ calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$), 237.07977 (237.07898 calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}$), 77.03835 (77.039 12 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

1-Phenyl-6-benzyloxy-3,4-dihydroisoquinoline, 35. The asterisk ($*$) indicates that the assignments were made by COSY 45. ${ }^{1} \mathrm{H}$ NMR* $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70$ (dd, J $=7.5,1.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.62$ (td, J $\left.=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.54$ (d , J $\left.=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 7.36(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 6.97$ (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.90(\mathrm{dd}, \mathrm{J}=$ 8.6, 2.5 Hz, 1H, H-7), 5.16 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), $4.00(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), 3.06 (t, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4$); ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}^{*}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$ (C-1), 163.0 (C-6), 141.8 and 136.5 (2C, C-1' and C-1"), 130.9 (C-4a), 129.1 (CH-8), 128.8-127.8 (10C, $\mathrm{OCH}_{2} \mathrm{Ph}-6$ and $\left.\mathrm{CH}-2^{\prime}-6^{\prime}\right)$, 121.8 (C-8a), 114.6 (CH-5), 113.3 ($\mathrm{CH}-7$), $70.6\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 47.0\left(\mathrm{CH}_{2}-3\right)$, $27.1\left(\mathrm{CH}_{2}-4\right)$; $\mathrm{LC}-\mathrm{MS}$ (API ES positive mode) m/z 314 [MH]+; HREIMS m/z 313.14612 [M] (313.14666 calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$), 222.08992 (222.091 89 calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}$), 105.03487 (105.034 04 calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$), 91.05641 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Phenyl-6-benzyloxy-7-methoxy-2'-hydroxy-3,4-dihydroisoquinoline, 36. The asterisk ($*$) indicates that the assignments were made by COSY $45, \mathrm{HMQC}$, and HMBC . ${ }^{1} \mathrm{H}$ NMR* $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60$ (dd, J $\left.=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$, 7.48 (dd, J $\left.=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.40(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.32\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 7.30(\mathrm{dd}, \mathrm{J}=8.0$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.05(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 6.83$ (dd, J $\left.=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.82(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-5$), 5.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7$), 3.70 (t, J $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.63\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right) ;{ }^{13} \mathrm{C}$ NMR* ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4$ (C-1), 162.4 (C-2'), 150.4 (C6), 147.4 (C-7), 136.4 ($\mathrm{C}-1^{\prime \prime}$), 132.9 (C-4a), 131.6 (CH-4'), 130.2 (CH-6'), 128.6 (2C, CH-3", $5^{\prime \prime}$), 128.1 ($\mathrm{CH}-4^{\prime \prime}$), 127.2 ($2 \mathrm{C}, \mathrm{CH}-$ $\left.2^{\prime \prime}, 6^{\prime \prime}\right), 120.4$ (C-8a), 118.4 (CH-3'), 118.0 ($\left(-1^{\prime}\right), 117.1$ (CH-5'), $112.8(\mathrm{CH}-8), 112.5(\mathrm{CH}-5), 70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right)$, $56.3\left(\mathrm{OCH}_{3}-7\right)$, $44.9\left(\mathrm{CH}_{2}-3\right), 26.1\left(\mathrm{CH}_{2}-4\right)$; EIMS m/z (\%) 359 [M] ${ }^{+}$(100), 344 (5), 328 (20), 268 (45), 238 (15); HREIMS m/z 359.15133 [M] ${ }^{+}$ (359.152 14 calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3}$), 328.13411 (328.13375 calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}$), 268.09779 (268.09737 calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{3}$), 91.05416 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Methyl-6-benzyloxy-7-methoxy-3,4-dihydroisoquinoline, 37. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR}^{*}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.29 (m, 5H, OCH 2 Ph-6), $7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.81(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-5$), 5.25 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right.$), $3.80(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}-3$), $2.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 2.86$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}-1$); ${ }^{13} \mathrm{C}^{2}$ NMR* ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7$ (C-1), 155.4 (C-6), 149.1 (C-7), 135.0 (C-1'), 132.7 (C-4a), 128.8-127.2 (5C, OCH ${ }_{2} \mathrm{Ph}-6$), 118.1 (C8a), 112.2 (CH-5), $111.6(\mathrm{CH}-8), 71.1\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.4\left(\mathrm{OCH}_{3}-\right.$ 7), $40.7\left(\mathrm{CH}_{2}-3\right), 25.1\left(\mathrm{CH}_{2}-4\right)$, $19.6\left(\mathrm{CH}_{3}-1\right)$; LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 282[\mathrm{MH}]^{+}$; HREIMS m/z 281.14019 [M] ${ }^{+}$ (281.141 58 calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$), 190.08540 (190.08680 calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}$), 91.05528 (91.054 77 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$).

1-Methyl-6-pentanyloxy-7-methoxy-3,4-dihydroisoquinoline, 38. The asterisk (*) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-$ CD_{3} OD 90:10) $\delta 7.12$ (s, 1H, H-8), 6.77 (s, 1H, H-5), 4.11 (m, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right), 3.69(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-3\right), 3.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}-1\right)$, $2.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-4\right), 1.88-0.93$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right), 0.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right) ;{ }^{13} \mathrm{C}$ NMR* ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0$ (C-1), 156.3 (C-6), 149.0 (C7), 133.0 (C-4a), 117.6 (C-8a), 111.6 and 111.5 (2C, CH-5 and $\mathrm{CH}-8), 69.6\left(\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6\right)$, $56.5\left(\mathrm{OCH}_{3}-7\right), 40.0\left(\mathrm{CH}_{2}-3\right)$, 28.4-25.3 (4C, $\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}-6$ and $\left.\mathrm{CH}_{2}-4\right)$, $22.3\left(\mathrm{CH}_{3}-1\right)$, $13.9\left(1 \mathrm{C}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}-6\right)$; LC-MS (APIES positive mode) m / z 262 [MH] ${ }^{+}$; $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$.

1-Butyl-6-benzyloxy-7-methoxy-3,4-dihydroisoquinoline, 39. The asterisk ($*$) indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H}$ NMR* $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.33 (m, 5H, OCH 2 Ph-6), 7.07 (s, 1H, H-8), 6.76 (s, 1H, $\mathrm{H}-5), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}-7\right.$), 3.67 (t, J $\left.=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3\right), 2.86\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2^{-}}\right.$ 1), 2.67 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-4$), $1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2}-1$), $1.45\left(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-1\right), 0.95(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-1$); ${ }^{13} \mathrm{C} \mathrm{NMR}^{*}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.0$ (C-1), 148.7 (2C, C-6,7), 136.6 (C-1'), 132.4 (C-4a), 129.1 (2C, CH-2', 6^{\prime}), 128.6 ($\mathrm{CH}-4^{\prime}$), 127.6 ($2 \mathrm{C}, \mathrm{CH}-3^{\prime}, 5^{\prime}$), 120.0 (C8a), 112.9 (CH-5), $110.6(\mathrm{CH}-8), 71.3\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 56.9\left(\mathrm{OCH}_{3}-\right.$ 7), $35.2\left(\mathrm{CH}_{2}-3\right), 30.2-23.0\left(4 \mathrm{C}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}-1\right.$ and $\left.\mathrm{CH}_{2}-4\right), 14.3$ (1C, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}-1$); LC-MS (APIES positive mode) $\mathrm{m} / \mathrm{z} 323$ $[\mathrm{M}]^{+}, 322[\mathrm{M}-1]^{+} ; \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$.

1-Butyl-6-benzyloxy-3,4-dihydroisoquinoline, 40. The asterisk $(*)$ indicates that the assignments were made by COSY 45 and DEPT. ${ }^{1} \mathrm{H} \mathrm{NMR*}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ (d, j $=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), $7.39-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ph}-6), 7.01$ (dd, J $=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.92(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.18(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}-6$), 3.86 (t, J $=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-3$), 3.21 (t , J $=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-1$), $3.01\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ 4), $1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-1\right)$, $1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}-1\right), 0.93\left(\mathrm{t}\right.$, J $=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-1$); ${ }^{31} \mathrm{C}^{2}$ NMR* $\left(100 ~ M H z, C D C l_{3}\right) \delta 177.1(\mathrm{C}-1), 165.2(\mathrm{C}-6), 140.6$ (C-1'), 135.0 (C-4a), 132.1 (CH-8), 128.8-127.4 (5C, OCH $2 \mathrm{Ph}-6$), 117.7 (C8a), $115.1(\mathrm{CH}-7), 114.7(\mathrm{CH}-5), 70.6\left(\mathrm{OCH}_{2} \mathrm{Ph}-6\right), 40.4\left(\mathrm{CH}_{2}-\right.$ 3), 32.1, 31.0, and $22.5\left(3 \mathrm{C}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}-1\right)$, $25.9\left(\mathrm{CH}_{2}-4\right), 13.6$
(1C, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$-1); LC-MS (APIES negative mode) m/z 292 [M - 1] ${ }^{+}, 293$ [M] ${ }^{+}$. HREIMS m/z 293.17747 [M] ${ }^{+}$(293.177 96 calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}$), 251.12906 (251.131 01 cal cd for $\mathrm{C}_{17} \mathrm{H}_{17}-$ NO), 202.11968 (202.123 19 cal cd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}$), 160.07234 (160.07624 calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}$), 91.04977 (91.05477 calcd for $\mathrm{C}_{7} \mathrm{H}_{7}$), 77.03394 (77.0391 25 calcd for $\mathrm{C}_{6} \mathrm{H}_{5}$).

References

(1) Protais, P.; Arbaoui, J .; Bakkali, E. H.; Bermejo, A.; Cortes, D. Effects of Various Isoquinoline Alkaloids on in Vitro ${ }^{3} \mathrm{H}$-Dopamine Uptake. J. Nat. Prod. 1995, 58, 1475-1484.
(2) Cabedo, N.; Protais, P.; Cassels, B. K.; Cortes, D. Synthesis and Dopamine Receptor Selectivity of the Benzyltetrahydroisoquinoline, (R)-(+)-nor-Roefractine. J. Nat. Prod. 1998, 61, 709-712.
(3) Andreu, I.; Cortes, D.; Protais, P.; Cassels, B. K.; Chagraoui, A.; Cabedo, N. Preparation of Dopaminergic N-Alkyl-benzyltetrahydroisoquinolines Using a "One-Pot" Procedure in Acid Medium. Bioorg. Med. Chem. 2000, 8, 889-895.
(4) Cabedo, N.; Andreu, I.; Ramírez de Arellano, M. C.; Chagraoui, A.; Serrano, A.; Bermejo, A.; Protais, P.; Cortes, D. Enantioselective Syntheses of Dopaminergic (R)- and (S)-Benzyltetrahydroisoquinolines. J. Med. Chem. 2001, 44, 1794-1801.
(5) Bermejo, A.; Tormo, J. R.; Cabedo, N.; Estornell, E.; Figadère, B.; Cortes, D. Enantiospecific Semisynthesis of (+)-Almuhep-tolide-A, a Novel Natural Heptolide Inhibitor of Mammalian Mitochondrial Respiratory Chain. J. Med. Chem. 1998, 41, 5158-5166.
(6) Gallardo, T.; Zafra-Polo, M. C.; Tormo, J. R.; González, M. C.; Franck, X.; Estornell, E.; Cortes, D. Semisynthesis of Antitumoral Acetogenins: SAR of Functionalized Alkyl-Chain BisTetrahydrofuranic Acetogenins, Specific Inhibitors of Mitochondrial Complex I. J. Med. Chem. 2000, 43, 4793-4800.
(7) Peris, E.; Cavé, Ad.; Estornell, E.; Zafra-Polo, M. C.; Figadère, B.; Cortes, D.; Bermejo, A. Semisynthesis of New Tetrahydrofuranic Alkyl Ester and Furano-Pyrone Derivatives as Inhibitors of the Mitochondrial Complex I. Tetrahedron 2002, 58, 13351342.
(8) Andreu, I.; Cabedo, N.; Tormo, J. R.; Bermejo, A.; Mello, R.; Cortes, D. Synthesis of N-Diisopropyl Phosphoryl Benzyltetrahydroisoquinoline, a New Class of Mitochondrial Complexes I and III. Bioorg. Med. Chem. Lett. 2000, 10, 1491-1494.
(9) Cortes, D.; Cabedo, N.; Andreu, I.; Bermejo, A.; Atassi, G.; Pierre, A.; Caignard, D.H.;Renard, P.NouveauxDérivésd'I soquinoléines, leur Procedé de Préparation et les Compositions Pharmaceutiques qui les contiennent (New Derivatives of I soquinolines, Their Synthesis and Pharmaceutical Composition). World Patent P2000/000185, 28.01.2000, 2000.
(10) Owa, T.; Y oshino, H.; Okauchi, T.; Y oshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of Novel Antitumor Sulfamides Targeting G1 Phase of the Cell Cycle. J. Med. Chem. 1999, 42, 3789-3799.
(11) Kubota, S.; Masui, T.; Fujita, E.; K upchan, S. M. The Structure and Total Synthesis of Takatonine. J . Org. Chem. 1966, 31, 516520.
(12) Kametani, T.; Kobari, T.; Fukimoto, K.; Fujihara, M. Studies on the Synthesis of Heterocycle Compounds. An Alternative Total Synthesis of Petaline. J. Chem. Soc. C 1971, 1796-1800.
(13) Andreu, I.; Cabedo, N.; Atassi, G.; Pierre, A.; Caignard, D. H.; Renard, P.; Cortes, D.; Bermejo, A. An Efficient Method for the Preparation of Antitumoral α-Keto-imines Benzyldihydroisoquinolines by Selective Benzylic Oxidation with C/Pd in Acetonitrile. Tetrahedron Lett. 2002, 43, 757-759.
(14) Pierré, A.; Dunn, T. A.; Kraus-Berthier, L.; Léonce, S.; SaintDizier, D.; Regnier, G.; Dhainaut, A.; Bizzari, J. P.; Atassi, G. In Vitro and in Vivo Circumvention of Multidrug Resistance by Servier 9788, a Novel Triazinoaminopiperidine Derivative. I. Invest. New Drugs 1992, 10, 137-141.
(15) Shamma, M. The Isoquinoline Alkaloids. Chemistry and Pharmacology; Academc Press: New York, 1972; pp 45-89.
(16) Ammar, H. A.; Schiff, P. L., J r.; Slatkin, D. J. Synthesis of 7,7Dimethylaporphine Alkaloids. Heterocycles 1983, 20, 451-454.
(17) Chen, C. M.; Fu, Y. F.; Yang, T. H. Synthesis of (\pm)-annonelliptine and (\pm)-anomoline. J. Nat. Prod. 1995, 58, 1767-1771.
(18) Meyers, A. I.; Guiles, J. The asymmetric total synthesis of (+)reticuline. Heterocycles 1998, 28, 295-301.
(19) Dubery, I. A.; Louw, A. E.; Van-Heerden, F. R. Synthesis and Evaluation of 4-(3-M ethyl-2-butenoxy)-isonitrosoacetophenone, a Radiation-I nduced Stress Metabolite in Citrus. Phytochemistry 1999, 50, 983-989.
(20) Orito, K.; M iyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. Synthesis of Phthalideisoquinoline and Protoberberine AIkaloids and Indolo [2,1-a]isoquinolines in a Divergent Route I nvolving Palladium (O)-Catalized Carbonylation. J. Org. Chem. 1999, 64, 6583-6596.
J M 020831A

[^0]: * To whom correspondence should be addressed. Phone: (34) 96.386.49.75. Fax: (34) 96.386.49.43. E-mail: dcortes@uv.es.
 ${ }^{+}$Universidad de Valencia.
 \ddagger Universidad Nacional de San Luis.
 § Laboratoire Servier.

