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ABSTRACT: Two reverse micelles (RMs) employing 1,4-bis-2-
ethylhexylsulfosuccinate (AOT) and two biobased solvents, p-
cymene (p-cym) or limonene (lim), have been formulated with the
aim to obtain systems more environmentally friendly. Both RMs
were studied by using different techniques such as dynamic light
scattering (DLS) and 1H NMR. Additionally, spectroscopy
techniques were used to obtain information such as critical micellar
concentration and aggregation number of the system investigated.
Our results show that both biobased solvents can be used to
generate AOT RMs. Interestingly, even the maximum amount of
water dispersed are similar for both RMs, and the sizes of the
systems are not identical, being that the RMs are formulated in lim
larger than in p-cym. Both the biobased solvent and RMs show interaction of the entrapped water and the interface; however, this
interaction is different depending on the solvent employed to prepare the RMs. Thus, the interaction water−surfactant at the
interface is weaker in p-cym/AOT than in lim/AOT RMs. We think that the different penetration of the external solvent to the
interfacial region is the main reason for the facts observed. In this sense, the polarity of these biobased solvents could explain why the
penetration of both biobased solvents is different, making the p-cym/AOT RMs less interactive and, therefore, with smaller droplets
sizes values. In summary, the different capacities of these biobased solvents to penetrate into the AOT interface allow us to obtain a
new interface with peculiar characteristics and therefore with diverse applications.
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■ INTRODUCTION

Reversed micelles (RMs) are organized systems of nanometric
size formed by three components, i.e., a polar solvent
(generally water), a surfactant, and some nonpolar solvent
which form a thermodynamically stable and optically trans-
parent solution.1 Due to the diverse applications of RMs,1,2 in
the past decade there has been much interest in assessing the
nature of the surfactants and of nonpolar solvents that can be
part of these organized systems.3−5 One of the surfactants
more often used to form RMs is the anionic sodium 1,4-bis-2-
ethylhexylsulfosuccinate (AOT, Scheme 1).1 Diverse RMs
using AOT and different organic nonpolar solvents, aromatic
and aliphatic, have been reported.6 The results show that the
quantity of water solubilized in these systems can be up to W0
= [H2O]/[surfactant] ∼ 60, depending on the nonpolar
solvent and temperature.6 Nevertheless, replacing these toxic
and volatile petroleum-based solvents (used as nonpolar
solvents in RMs) by more environmentally friendly alternatives
is a challenge to generate RMs more biocompatible and with
less impact on the environment.7,8 Given the above, recently
two nontoxic lipophilic oils such as methyl laurate (ML) and
isopropyl myristate (IPM) have been used to formulate

different environmentally friendly RMs. The formation of the
corresponding AOT RMs and some properties of these system
such asW0, droplets size values, CMC, and Nagg, among others,
depending strongly on the chemical structure of the external
solvent.3,4,7 However, the search for new nonpolar and
nontoxic solvents for the elaboration of more RMs still
remains of interest. In this context, solvents derived from
biomass, named as biobased solvents, could be a good
alternative for this purpose. These new solvents are obtained
from natural resources (such as corn, beans, citrus fruit peels,
among others).9 Some examples include, glycerol, ethyl lactate,
p-cymene (p-cym), and limonene (lim), among others.10 Due
to its peculiar characteristics, these biobased solvents have
shown to be much safer solvents for both human beings and
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the environment, in comparison with those petroleum-based
solvents.11 In particular, p-cym and lim come from citrus fruit
peels, and they are considered as low polar solvents with weak
hydrogen bond basicity. Both of them have optimal character-
istics as solvents capable of successfully replacing nonpolar
petroleum-based solvents.12 To date, there are several reports
indicating the benefits of using biobased solvents.13,14

Nevertheless, the use of this kind of solvent in a
compartmentalized system (such as reverse micelles) has not
been explored.
Therefore, considering that the change in the nature of the

external solvent can affect the properties in the RMs interface,
we wanted to evaluate the use of two biobased solvents derived
from citrus fruit (p-cym and lim) as an external solvent in AOT
RMs. In this sense, four objectives are raised: (i) study the use
of p-cym and lim to formulate AOT RMs; (ii) obtain the
critical micellar concentration (CMC) for p-cym and lim/
AOT/water RMs by UV−vis and emission spectroscopy; (iii)
evaluate the water encapsulation and the water- interface
interaction by dynamic light scattering (DLS) and 1H NMR in
both AOT RMs; (iv) obtain the Nagg for both RMs by emission
spectroscopy; and (iv) compare our results with AOT RMs
prepared in benzene and n-heptane, among others.

■ RESULTS AND DISCUSSION
In the present work we evaluate two different biobased
nonpolar solvents (p-cym and lim) to generate biocompatible
RMs, using the well-known anionic surfactant AOT. In this
sense, the mixture of the anionic surfactant and the biobased
solvents were explored, first in the absence of water and later
with addition of water. In absence of polar solvent, AOT
showed large solubility in both biobased solvents, at least until

0.2 M. Next, we explored if the presence of water on the
mixture allowed us to generate stable homogeneous solutions.
As it can be observed in Figure S1, transparent and
homogeneous solutions were obtained in both biobased
systems when the surfactant was present, but turbid and
opalescent solutions formed when AOT was absent and the
biobased solvents were only mixed with water. Table 1

summarizes the W0
max (the maximal [H2O] dissolved) values

obtained in both biobased systems. Larger values of W0 were
not possible to obtain due to when more water is added a
turbid solution is detected (Figure S2). Additionally, tradi-
tional nonpolar solvents used to form AOT RMs are included
in Table 1. Thus, a W0

max value of 17 was obtained in both
biobased/AOT/water solutions, and interestingly, they were
able to dissolve more water than RMs formulated in benzene
and toluene.15

It is interesting to investigate if some property of the
nonpolar solvent has influence on the amount of water
content. In this sense, Abuin et al. considered the polarity/

Scheme 1. Structures of the Surfactant AOT, the Biobased Solvents (p-cym and lim), and the Molecular Probes (QB and
Safranine T)

Table 1. Comparison ofW0
max Values Reached by AOT RMs

([AOT] = 0.2 M; T = 25 °C)

nonpolar solvent W0
max

n-heptane 50a

cyclohexane 21a

lim 17
p-cym 17
toluene 12a

benzene 12a

aData obtained from ref 15.
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polarizability parameter (π*)16 of the external solvent to
explain the W0

max values reached in different aqueous AOT
RMs.15 In Figure 1, we plot several W0

max values for AOT RMs
included our data.

As it was observed, when the nonpolar solvent has a very low
π* value, the AOT RMs can disperse a large amount of [H2O].
In our cases, p-cym and lim have intermediate values between
the classical aliphatic solvent n-heptane and the aromatic
benzene or toluene.
In order to characterize these novels RMs, we used two

molecular probes to obtain valuable information. Thus, the
absorption probe QB and the fluorescent probe Safranine T
were selected.
QB. The microenvironment of these novel RMs was

explored using the very sensitive molecular probe QB.17 QB
is an absorption probe that monitors simultaneously the
polarity and the hydrogen bond donor ability through the
exploration of their two bands, B1 and B2, respectively. Similar
methodology was used to investigate different AOT RMs.18−20

Figure 2 shows the plot of the QB behavior as a function of
[AOT] in p-cym/AOT RMs solution evaluated at W0 = 0. We
performed the absorption experiments varying the [AOT] in
the range of 0−0.2 M due to the fact that QB is perfectly
soluble in neat p-cym. A similar procedure was performed for
the lim/AOT system (results not shown). Figure 2 shows that
both B1 and B2 bands shift to lower wavelengths when the
amount of AOT increases. This fact denotes a rise in the
polarity around the QB. Moreover, taking into account that an
isosbestic point in the absorption profiles is not detected, QB is
located exclusively in the interface of the RMs when the system
is formed.18−20 Similar results were obtained for lim/AOT
RMs.
The profile of the λB1 maximum band (as polarity sensor)

obtained at different [AOT] for both biobased solvent/AOT
systems is plotted in Figure S3. Additionally, the corresponding
CMC values for both AOT systems were determined from
these data. Table 2 summarizes the data collected using QB as
the molecular probe. As it was observed, CMC values of 10−3

M were obtained in both RMs, which are similar to those
reported for AOT RMs formulated in solvents such as benzene
or n-heptane.21

Safranine T. We also explored the behavior of the
florescence probe Safranine T (ST) in both RMs. As a sensor
of the formation of the organized media, the stock shift of ST
was evaluated varying the [AOT].22−25 Figure 3 shows the

emission and excitation bands of ST in p-cym/AOT RMs
varying [AOT] at W0 = 0. A similar plot for lim/AOT RMs is
included in the Supporting Information section (see Figure
S4). The values of the stock shift of ST (defined as Δν) in
both systems is plotted in Figure S5A and B. From this figure,
it can also be seen that the CMC values can be obtained (see

Figure 1. Profile obtained between the W0
max values corresponding to

AOT RMs and the polarity/polarizability parameter (π*) of nonpolar
solvent used. Data obtained from ref 15.

Figure 2. Absorption spectra of QB varying the [AOT] in p-cym/
AOT RMs in the absence of water (W0 = 0). [QB] = 3 × 10−4 M.

Table 2. CMC Values of p-cym/AOT and lim/AOT RMs
Obtained from QB and ST Spectroscopic Behavior at W0 =
0

RMs QBa STb

p-cym/AOT 2.4 ± 0.5 × 10−3 M 3.2 ± 0.7 × 10−3 M
lim/AOT 2.2 ± 0.4 × 10−3 M 2.5 ± 0.8 × 10−3 M

aMean value obtained from spectral changes of B1 band (Figure S3).
bMean value obtained from stock shift (Figure S5).

Figure 3. ST emission and excitation spectra varying the [AOT] in p-
cym/AOT RMs. W0 = 0. [ST] = 2 × 10−6 M. T = 25 °C.
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values in Table 2). Similar CMC values between ST and QB
were obtained.
DLS. Considering the CMC values obtained from the

molecular probes QB and ST, the droplet sizes of both
biobased solvents/AOT solutions at [AOT] > 10−3 M by DLS
technique were evaluated. Figure 4 shows the diameter (Dapp)

values of the droplets acquired in the biobased solvents/AOT
solutions at [AOT] = 0.2 M varying the water content.
Additionally, the polydispersity index (PDI) values obtained
for these measurements are included in Table S1. As it can be
observed, only one population in all cases was detected.
Additionally, small PDI values (Table S1) were obtained,
confirming the uniformity of the organized media formed.
As it is observed from Figure 4, an increase in the droplets

sizes and linear tendency in both RMs is detected.
Interestingly, the sizes are not identical for both RMs, being
that the RMs formulated in lim larger than in p-cym.
Additionally, the differences in size appear more important
when the water content increases. Thus, when W0 = 3, the
droplets size for p-cym/AOT RMs is 2.7 nm and for lim/AOT
RMs is 3.6 nm. At a large W0, e.g., at W0 = 17, the sizes are 5.6
and 8.7 nm, respectively.
The DLS data exposed the sizes of the biobased AOT RMs,

which were interpreted taking into account the magnitude of
the external solvent penetration toward the interfacial zone. It
is known that if the solvent can penetrate the interface, it alters
the interfacial organization and, in consequence, the size. Thus,
we think that p-cym can penetrate more than lim, altering the
volume of the hydrocarbon region (v), changing the effective
packing parameter (p) of the surfactant. This parameter is
determined by the chemical structure of the amphiphile as p =
v/alc, where lc is the length of the hydrocarbon chain and a is
the area of polar headgroup of the surfactant.26 Consequently,
if some factor on p is altered, the droplet size changes. For
example, a reduction on p is suggested when the RM sizes
increase.27,28 Thus, in our RMs an increase in the biobased
solvent penetration increase the factor v (decreasing p) and
produce smaller droplets. In this sense, AOT RMs formulated
in traditional solvents (aromatic and aliphatic) or in
biocompatible solvents (IPM and ML)3 showed similar

behavior to the present work. Moreover, as it will be
demonstrated in the next sections, this phenomenon also
alters the interfacial properties of the RMs.
We believe that the penetration of the external solvent is a

crucial factor to alter the micellar interface. To reinforce this
idea, we determined the aggregation numbers (Nagg) of both
biobased solvent/AOT RMs at equal W0 (Table 3) using the
well-known methodology29 by emission spectroscopy using the
couple Ru(bpy)3Cl and K3Fe(CN)6. For a detailed procedure
see Figures S6 and S7.

As can be seen, at W0 = 10 the RMs formulated in lim
present a greater amount of AOT monomers (large Nagg) than
p-cym/AOT RMs. Assuming that both biobased solvent/AOT
RMs are practically spherical, we think that the differences of
the droplet sizes suggest a dissimilar interfacial conformation.
Thus, as p-cym penetrates more, the interface needed less
surfactant molecules to entrap water.3

1H NMR. Our systems present several protons sensitive to
the microenvironment, as displayed in Figures S8 and S9. In
this sense, we monitored them as a function of the water
content. Specifically, we analyze the chemical shifting of the
protons corresponding to the entrapped water and to the polar
headgroup of the anionic surfactant (I and I′, Scheme 1).

Protons of Entrapped Water. Figure 5 shows how the
variation of W0 affects the proton chemical shift values of
entrapped water in both biobased AOT RMs. From the figure,
a downfield shifting as the amount of water entrapped
increases in both systems is detected; however, the value
reached is not similar. For example, in p-cym/AOT RMs,
changes from 4.02 ppm up to 4.81 ppm when the W0 varied

Figure 4. Effect of the water content (W0) on the Dapp values in p-
cym/AOT/water RMs (■) and lim/AOT/water RMs (●). T = 25
°C. [AOT] = 0.2 M.

Table 3. Aggregation Number (Nagg) Values Obtained for
the Biobased AOT RMs. T = 25 °C. W0 = 10.

RMs dapp (nm)a Nagg

p-cym/AOT/water 4.2 ± 0.4 134 ± 3
lim/AOT/water 6.3 ± 0.4 189 ± 6

aData obtained at W0 = 10 from Figure 4.

Figure 5. Effect of the water content on the chemical shifts of protons
of entrapped water inside of both biobased RMs. [AOT] = 0.2 M. For
comparison, the value of neat water () is also plotted.
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from 1 to 15 were observed. For lim/AOT RMs in the same
W0 range, the value changes from 3.82 ppm up to 4.58 ppm. As
it was noted from Figure 5, in the RMs formulated in p-cym
the proton of water entrapped with the maximumW0 evaluated
appears to be quite similar to the neat water.30 A different
situation for the system formulated with lim is observed, where
the chemical shift is 4.58 ppm at the W0 maximum evaluated.
Compared with neat water, the position upfield of the

protons of the entrapped water observed in our data was
described previously for similar AOT RMs formulated in
C6D6

30,31 and in C6D12.
32 Disruption of the normal hydrogen

bond structure of water as a consequence of the surfactant
interaction was invoked to explain the detected shifts. As
consequence of that, the water molecules interact less with
each other, appearing at a more upfield region. As W0
increases, the protons of water inside the organized media
begin to recover the hydrogen bond structure of neat solvent.
Thus, the chemical shifts of these H tend to the neat value. In
our cases, both the biobased solvent and RMs show water
molecules interacting with the anionic interface, and the
hydrogen bond structure is disrupted by this phenomena.
However, this interaction is quite different depending on the
biobased solvent employed to prepare the RMs. Thus, a
weaker interaction of water−surfactant at the interface in p-
cym/AOT as compared to that in lim/AOT RMs is suggested.
Protons of AOT Polar Head. The microenvironment

created in the biobased solvent/AOT RMs can be monitored
by following the chemical shift corresponding to the protons of
the polar headgroup of the surfactant.30,31 As it can be
observed in Figure S9A and B, when the water content
increases, an upfield shift of the signals of protons I and I′ of
AOT (see label in Scheme 1) is observed. Thus, in p-cym/
AOT RMs the H I signal appears at 4.70 ppm at W0 = 1 and
shifts to 4.55 ppm at W0 = 15, while the H I′ signal appears at
3.52 ppm at W0 = 1 and shifts to 3.46 ppm at W0 = 15. For the
AOT RMs formulated in lim, the signals changes in the same
W0 range from 4.41 ppm up to 4.27 ppm and from 3.25 to 3.19
ppm, respectively. Similar shifting was observed for AOT RMs
generated using traditional nonpolar solvents. For example,
Heatley30,31 reported that changing the W0 range from 1 to 5.3
in the systems C6D6/AOT/water resulted in the H I signal
shifting from 4.86 ppm, while the H I′ shifts from 3.64 to 3.55
ppm in the same range of W0. The increment of the spatial
separation between anion AOT and its counterion, due to the
interaction via hydrogen bond between the sulfonate group
and the entrapped water, was invoked to explain these data.
Several arguments were invoked in the past to explain the

different penetration of the external solvent in AOT RMs; one
of these was the value of the molar volume (Vm) of the
nonpolar solvents. For example, benzene has smaller Vm than
n-heptane, and the behavior of AOT RMs generated in both
nonpolar solvents was explained considering that the aromatic
solvent penetrated more than the aliphatic. As it can be
observed in Table 4, the Vm of p-cym is larger than lim;33 thus,
lim (minor Vm) should penetrate the AOT interface more than
p-cym, producing smaller RMs. However, our DLS results
show a Dapp value two units smaller for the p-cym/AOT system
in comparison to the Dapp value found for the lim/AOT
system. This fact evidences that the Vm is not the appropriated
factor to explain the results and that others such as polarity,
viscosity, and molecular geometry (long or branched hydro-
carbon chain) should be considered.

In this sense, the viscosity explains the nonpolar solvent
interface penetration. Thus, if the solvent is more viscous,
more penetration occurs into the interface.3

In our case, both biobased solvents have similar viscosity
values (see Table 4). As it was mentioned above, the π*
parameter was invoked before to explain facts such as why the
maximal W0 reached its value in the organized media.15 In this
sense, as it is shown in Table 4, p-cym appears as more polar
than lim, and consequently, its penetration to the interfacial
region is larger (see Scheme 2).
Thus, the dissimilar penetration of both biobased solvents,

which also perturb the water−surfactant interaction, can be
explained due to the polarity having a stronger effect than the
viscosity of these nonpolar solvents. Consequently, the p-cym/
AOT RMs are less interactive and smaller than those
formulated in lim. Finally, new interfaces with unexplored
physicochemical properties are generated due to the ability of
the biobased solvent to penetrate or not into the AOT
interface.

■ CONCLUSIONS
We demonstrated that biobased solvents such as p-cym and
lim can be used to generate more sustainable AOT RMs.
Interestingly, even the maximum amount of water dispersed is
similar for both RMs, and the sizes of the systems are not
identical, being that the RMs are formulated in lim larger than
in p-cym.
In both the biobased solvent and RMs, the confined water

showed that its hydrogen-bond structure was altered by the
interaction with the interface; however, this interaction is quite
different depending on the biobased solvent employed to
prepare the RMs. Thus, the interaction of water−surfactant at
the interface is weaker in p-cym/AOT than in lim/AOT RMs.
We think that the different penetration of the external solvent
to the interfacial region is the main reason for the facts
observed. In this sense, the polarity is more than the viscosity
or molar volume of these biobased solvents, explaining the
dissimilar penetration suggested in both RMs. Finally, the
possibility to formulate more friendly and versatile AOT RMs
extends the future applications of these organized systems.

■ EXPERIMENTAL SECTION
Materials. The surfactant sodium 1,4-bis (2-ethylhexyl) sulfosuc-

cinate (AOT) was provided by Sigma-Aldrich (>99% purity), and
prior to use it was dried under vacuum. p-cymene (99% purity) and
(R)-(+) limonene (97% purity), both provided by Sigma-Aldrich,
were dried before use in a vacuum oven at 70 °C for at least 12 h and
stored over molecular sieves. Labonco equipment model 90901-01
was used to generate Ultrapure water. 1-Methyl-8-oxyquinolinium
betaine (QB) was synthesized according to Ueda et al.21 Safranine T
(Merck, ≥85% purity), K3[Fe(CN)6] (Sigma-Aldrich, 99% purity),
and Ru(bpy)3Cl (Sigma-Aldrich, 97% purity) were used as received.

Methods. The preparation of the biobased solvents and AOT
RMs, the absorption, the emission, and NMR experiments are fully
described in the Supporting Information.

Table 4. Different Parameters Evaluated to Explain the
External Solvent Aot Rms Penetration (T = 25° C)

solvent Vm (cm3 mol−1)a viscosity (mPa s) π*c

p-cym 184.8 0.82a 0.39
lim 162.1 0.89b 0.16

aValues obtained from ref 33. bValue obtained from ref 34. cValues
obtained from ref 15.

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://dx.doi.org/10.1021/acssuschemeng.9b06578
ACS Sustainable Chem. Eng. 2020, 8, 5478−5484

5482

http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.9b06578/suppl_file/sc9b06578_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.9b06578/suppl_file/sc9b06578_si_001.pdf
pubs.acs.org/journal/ascecg?ref=pdf
https://dx.doi.org/10.1021/acssuschemeng.9b06578?ref=pdf


■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssuschemeng.9b06578.

Experimental procedure of the AOT RMs preparations;
absorption, emission and NMR experiments (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
Paulina Pavez − Facultad de Quiḿica y de Farmacia, Pontificia
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