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Abstract

We have reported a systematic search method, GASCOS, for open chain compounds. An extension to cyclic structures was

recently reported. In this paper, we propose a more complete range of tolerance for some of the bond angles of the cyclic

molecules studied. Speci®cally, we will accept that three consecutive bond angles associated with the ring closure condition can

vary their values between certain previously ®xed limits. We also introduce the concept of ªfamilyº which permit the

ªagglutinationº of neighborhood con®gurations when their number is too large. Two small systems, cyclopentane and cyclo-

hexane, were chosen to illustrate the GASCOS partially relaxed ring closure method in optimizing cyclic structures. q 2001

Elsevier Science B.V. All rights reserved.

Keywords: Systematic conformational search; Analytical ring closure conditions; Minimum energy conformational; Cyclic compounds;

Conformational space search

1. Introduction

Computer simulation has become an important tool

in studying the properties and behaviors of complex

biological molecules [1±3]. The use of ªcomputer-

assisted molecular designº (CAMD) [4] in displaying

the three-dimensional structure of molecules is of

invaluable help. It allows researches to quickly

grasp the essential features of interactions involving

numerous components of the complex. Molecular

computation is a powerful tool for the analysis and

understanding of the intimate mechanisms involved in

drug-action.

One of the problems associated with CAMD is the

identi®cation of a representative set of conformations

of a molecule. The principal problem is related to the

uncertainty over how to account for receptor ¯exibil-

ity without drastically increasing the computational

cost required. Obviously, one can de®ne many

receptor ªsnapshotsº and run through each in turn.

However, it must be taken into account that

even small changes in the active site of a receptor

in response to the ligand, e.g. rotation of an
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hydroxymethylene group in serine residue [5±7],

sulphydril methylene group in cysteine [8] or of the

carboxylate methylene in an aspartate [9], will have a

stabilizing effect on the ligand, but this is not taken

into account in most of the ®xed receptor models.

Such changes are too numerous and are considered

to be too small in their effect to be worthy of investi-

gation with multiple snapshots. Consequently, they

are not generally considered in design strategies.

When studying molecular conformations, there is a

tendency for chemists to be preoccupied with ®nding

the lowest energy conformation of a molecule.

However, it should be kept in mind that the most

¯exible molecules in solution, as well as in the gas

phase, exist in a variety of conformations. Also, when

one molecule interacts with another, such as an inhi-

bitor with an enzyme, it is not necessarily the

lowest energy conformation of each molecule

that occurs in the resulting complex. The confor-

mation that a molecule adopts at a binding site

may be several kilocalories above the global

energy minimum of the isolated molecule [10].

It is often desirable to select a manageable

number of conformations of a molecule to repre-

sent its accessible conformational space.

Global optimization methods aim to identify the

structure, which is presumed to be the solution of a

given problem. Methods such as simulated anneal-

ing and genetic algorithms are two particularly

popular examples being currently applied in mole-

cular modeling. Most global optimization methods

are stochastic: they inherently rely upon a random

exploration of the search space, albeit with sophis-

ticated mechanisms for directing the search

towards optimal solutions. However, random-

based methods provide no guarantee to ®nd the

optimal solution required. This is particularly

true if all conformations that are located only

within some energy cut-off (e.g. 5 kcal/mol

above the global minimum) are considered.

The alternative to the stochastic methods is the

systematic search. However, these methods have an

Achilles heel due to the combinatorial explosion in

the number of possibilities.

Thus, the systematic search is often believed to be

impractical for problems of biological interest.

Recently, we reported a systematic search method

[11], which is particularly useful for ¯exible

compounds. More recently, we introduced analytical

ring closure conditions [12] for the study of cyclic

molecules. However, taking into account that the

search of cyclic conformations is carried out from

rigid rotations of the atoms using discrete steps of

Du , the ®nal number of conformations to be obtained

might be too restrictive.

One of the aims of the work reported herein is to

show that it is practical to systematically explore the

conformational space of complex ¯exible cyclic

compounds.

In this paper, we propose a more complete range of

tolerance for some of the bond angles of the cyclic

molecule studied. Speci®cally, we will accept that

three consecutive bonds angles associated with the

ring closure can vary their values between certain

previously ®xed limits.

The extension of this procedure does introduce a

signi®cant increase in the number of geometries for

the cyclic con®gurations. Thus, in order to main-

tain a ªmanageableº number of con®gurations to

be optimized, we also introduce a new concept.

This is the concept of ªfamiliesº which permit

the ªagglutinationº of neighborhood con®gura-

tions. From these ªfamiliesº, we obtain the

ªseedsº which are subsequently used for the

geometrical optimizations using Molecular

Mechanics and ab initio calculations.
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Fig. 1. Ring closure procedure for cyclononane with speci®c

emphasis given to DC±C (C1±C9 bonding distance) and DC±C (C1±

C8 non-bonding distance), and the bond angles b 1, b 8 and b 9.



2. Mathematical background1

2.1. Ring closure conditions for cyclic molecules

Recently, we reported the basic equations needed to

establish the analytical conditions used to ®nd the

torsional angles that determine the cyclization of a

molecule [12]. We have chosen cyclononane as an

example. Thus, the location the last atom (C9), at

C±C bond distance from the ®rst atom (C1), result

in two possible values for the torsional angles, i.e.

the rotation about the C7±C8 bond.

However, this is not the only condition. We need

the bond angle b 1, formed by the C9±C1±C2 atoms,

to be located in a range of tolerance, Db 1, with respect

to the characteristic tetrahedral bond �bteth � 109:58�:
The restriction of the C1±C9 distance and the b 1

range in the interval �109:58 2 Db1; 109:58 1 Db1�;
predetermine all available molecular con®gurations

(Fig. 1).

The remaining bond angles are ®xed 109.58, as the

condition of the initial con®guration constructed.

In the present paper, we propose to introduce a new

tolerance interval on the next bond angle to be formed

by the C8±C9±C1 atoms (denoted b 9 in Fig. 1).

The value of this bond angle b 9 is ®xing the non-

bonding distance DC1±C8 between atoms C8´ ´ ´C1

because the separation between atoms C8±C9 and

C9±C1 are equivalent to the bond length of C±C.

Fixing a tolerance Db 9 to the bond angle b 9 as

follows:

�109:5 2 Db9; 109:5 1 Db9�; �1�
it is obvious that the separation distance between the

atoms C8´ ´ ´C1 can vary from a maximum value (for

b9 � 109:5 1 Db9) to a minimum value (for

b9 � 109:5 1 Db9).

It is easy to obtain these distances, applying the

cosine theorem:

D1 �
���������������������������������
2D2

C±C�1 2 cos�b9 2 Db9��
q

; �2a�

D2 �
���������������������������������
2D2

C±C�1 2 cos�b9 1 Db9��
q

: �2b�
Thus, it is possible to locate atom C8 at a variable

distance (DC1±C8) with respect to atom C1 satisfying

the following inequality:

D1 # DC1±C8 # D2: �3�
It is important to note that the above procedure is quite

different with respect to the previously used method,

in which the considered b 9 is ®xed. In the previous

case, only one DC1±C8 distance existed as a ®xed value.

In contrast, satisfying inequality (3) will permit us to

obtain a variation of b 9 as a function of the tolerance

®xed by Db 9 (Eq. (1)). It should be emphasized that in

order to obtain a cyclic structure, it is also necessary to
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1 All vectorial quantities are denoted, throughout this paper, by

bold letters.

Fig. 2. Ring closure procedure for cyclononane showing the rotation

of C9: (a) rotational cone along the bond C7±C8 which is associated

with the determination of the last torsional angle; (b) second rota-

tion of C9 along the C1±C8 direction.



satisfy all previous conditions imposed on the C9

atom.

In addition, it is possible to impose an analogous

tolerance interval condition on the bond angle b 8

de®ned by the atoms C7±C8±C9 (see Fig. 1). The

®rst step is to locate the C8 atom satisfying condition

(3). Then, we rotate C9 about the C7±C8 bond in

order to obtain a C1±C9 distance equal to a character-

istic C±C bond (Fig. 2a). The line joining the atoms

C1±C8 is determining a new direction of rotation for

the C9 atom (see Fig. 2b).

It can be observed that during the rotation about this

new direction along the line C1´ ´ ´C8, the angle b 9 is

maintained constant but the angles b 1 and b 8 are

changing.

Satisfying the following conditions:

b1 [ �109:58 2 Db1; 109:58 1 Db1�; �4a�

b8 [ �109:58 2 Db8; 109:58 1 Db8� �4b�

and ®xing a priori the respective tolerances Db 1 and

Db 8, we obtain a number of possible con®gurations of

the cyclic molecule.

It should be noted that the two remaining

conditions:

DC1±C9 � DC±C; �5a�

b9 [ �109:58 2 Db9; 109:58 1 Db9�; �5b�
were ®xed in the previous steps.

In conclusion, the general ring closure conditions

are:

1. The distance between the ®rst and last atom ®xed at

a characteristic bond length.

2. The tolerance interval conditions Db 1, Db 8 and

Db 9 for the respective bond angles are also ®xed.

(For convenience different tolerance values might

be chosen.)

3. The remaining bond angles are chosen from the

standard values (120 or 109.58), depending on

whether the atoms are sp2 or sp3 hybridized carbon.

2.2. Maximum and minimum distances in a rotation

During a rotation for any atom there is a maximum

proximity and maximum separation with respect to

any ®xed atom in the molecule. These separations

are de®ning the maximum and minimum distances

in a complete revolution of the torsional mode of

motion.

The evaluation of the range of distances between

minimum and maximum separation is very important

to avoid the superposition of atoms during the rotation

but, it is also important to con®rm the ful®llment of

condition (3). It is possible to know, in an analytic

form, the values of the minimum and maximum

distances and their respective torsional angles for

which they appear.

An equation for the determined distances was

recently reported in Ref. [11]. Here we use it to deter-

mine the variation of the distance between a ®xed

atom (i.e. C1 in Fig. 1) and another moving atom

(i.e. C8 in Fig. 1)

where

Ri
8 � initial position vector for atom C8, R1 �

position vector of atom C1 (®xed).

ri
8 � initial revolution radius vector of C8 around

the n̂ direction pointing along the C6±C7 bond,

associated with the previous rotation by O.

Pi
8 � n̂ £ ri

8 � cross product vector between the

direction of revolution vector n̂ (determined by

the C6±C7 atoms) and the initial revolution radius

vector ri
8 (Fig. 3).

If we identify Ri
8 with Ri

C; and consider that the C1

atom is at the origin of the coordinates system (i.e.

R1 � 0), then Eq. (6) becomes the same as the

previously reported Eq. (40b) in Ref. [11].

De®ning the new constants A, B and C as follows:

A � 2�Ri
8 2 R1�´Pi

8; �7a�

B � 2�Ri
8 2 R1 2 ri

8�´ri
8; �7b�

C � uRi
8 2 R1u2; �7c�
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DC1±C8 �
�������������������������������������������������������������������������������������
uRi

8 2 R1u2 1 2�Ri
8 2 R1 2 ri

8�´ri
8�cos u8 2 1�1 2�Ri

8 2 R1�´Pi
8 sin u8

q
�6�



we can now rewrite Eq. (6) in the following form:

DC1±C8 �
������������������������������������
C 1 B�cos u8 2 1�1 A sin u8

p
: �8�

Considering the extreme condition dDC1±C8=du8 � 0;

it is possible to solve (9) for the u 8 values:

dDC1±C8

du8

� A cos u8 2 B sin u8

2DC1±C8

� 0: �9�

Eq. (10a) determines the value of tg u 8, in terms of

constants A and B:

tg u8 � A

B
: �10a�

Although Eq. (10a) is derived for the eighth torsional

angle (u 8), the relationship is valid for any torsional

angle as de®ned for Eq. (10b):

tg u � A

B
�10b�

provided that A and B are de®ned correspondingly.

In a complete range (08, 3608), there are two values

for the angle having the same tangent. One of them

corresponds to the value of minimum distance and the

other to the maximum distance. We designate them as

umin and umax.

Replacing u 8 in Eq. (8) by the values of umin
8 and

umax
8 obtained, it is possible to calculate the minimal

and the maximal separation distances for the C8 atom

with respect to the C1 atom:

�DC1±C8�min �
������������������������������������������
C 1 B�cos u min

8 2 1�1 A sin u min
8

q
;

�11a�

�DC1±C8�max �
�������������������������������������������
C 1 B�cos u max

8 2 1�1 A sin u max
8

q
:

�11b�
These extreme values of distances permit us to know

the range of interatomic distance in any rotation

according to the following inequality:

�DC1±C8�min # DC1±C8 # �DC1±C8�max: �12�
It should be mentioned that this inequality (12), which

is given in terms of the torsional angle u , represents a

different condition for bracketing DC1±C8 than the

previous inequality (3), which was based on ®xed

values of bond lengths, bond angle b and bond

angle tolerance Db .

This point will be discussed in the next section. It

will be seen that both conditions (3) and (12) must be

met for successful ring-closure.

2.3. Interpreting the range of torsional angles in terms

of the minimum and maximum distances

It is important to determine the extreme values of

distances between two atoms, in order to know at

which range of torsional angles it is possible to ®nd

ring-closed con®gurations.

Fig. 4 represents a complete revolution with a

circumference in which the minimum (Dmin) and

maximum (Dmax) distances are located at the angles

umin and umax, respectively.

Both angles (umin and umax) have the same value of

tangent, therefore they cut the circumference into two

halves. As shown in Fig. 4, the distance Dmin corre-

sponds to umin and Dmax corresponds to umax. The

magnitude of the distances change according to the

following pattern:

1. When u changes from umin to umax, the distances

increase.

2. When u changes from umax to umin, the distances

decrease.

It is implicit in this ®gure that in a complete
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Fig. 3. Spatial view of the vectors de®ned in Eq. (6).



revolution, the interatomic distances D satisfy the

following relations:

Dmin # D # Dmax; �13�

D1 # D # D2: �14�
If we are interested in distances that are included in

the previously determined interval of condition (3):

D1 # D # D2 (for example the distances between

C1 and C8 atoms in cyclononane), different situations

are possible for the range of interatomic distances.

These are presented in terms of (13) and (14) as ®ve

different cases:

Case I: If D2 , Dmin; then there are no torsional

angles which determine an interatomic distance in

the range D1 # D # D2 , Dmin: This case corre-

sponds to Fig. 4.

Case II: If the opposite case is operative, namely

D1 # Dmin # D2 # Dmax; then there are intera-

tomic distances located in a interval Dmin # D #
D2: The range for the rotation is shown in Fig. 5 as a

zone marked by a bold - - - line. The torsional

angles that correspond to interatomic distances

greater than D2 are included in the non-shaded arc

of the circumference line in Fig. 5, possessing D2 as

extremes and including Dmax.

Case III: If D1 # Dmin # Dmax # D2; then there

are possible distances located in the entire range

of u (from u � 08 to u � 3608), because Eqs. (13)

and (14) are always satis®ed (Fig. 6).

Case IV: If Dmin # D1 # D2 # Dmax; then there

are two zones of angles which are determining

the possible interatomic distances. These intervals

are shown in Fig. 7 as zones marked by a bold - - -

line. The two complete non-shaded arcs of revolu-

tion S1 and S2 having the extremes D1 and D2,

respectively, are the zones of dihedrals which are

not accessible for the interatomic distances required

by Eqs. (13) and (14). The unmarked arcs of revo-

lution in Fig. 7 with D1 and D2 extremes containing

Dmin and Dmax, respectively, represent torsional
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Fig. 4. Complete revolution showing the location of minimum and

maximum distances. This ®gure also illustrates Case I.

Fig. 5. Range of rotation (Case II), denoted by the bold - - - line.

Fig. 6. Range of rotation (Case III), denoted by the bold - - - line.

Fig. 7. Range of rotation (Case IV), denoted by the bold - - - line.



angles resulting in distances out of the range of

interest.

Case V: If Dmin # D1 # Dmax # D2; then there is

one zone of possible angles (see shadowed zone of

Fig. 8). The non-shaded arc of revolution in Fig. 8

with D1 extremes containing Dmin, represents

torsional angles resulting in distances out of the

range of interest.

It should be noted that the fact that a distance is

located in a determined range does not necessarily

mean that we have an acceptable molecular con®gura-

tion. In order to obtain an acceptable molecular

con®guration, it is also necessary to satisfy the condi-

tions imposed on the bond angles b and the ring

closure condition for the last atom in order to locate

it within an acceptable interatomic distance.

Using the basic equations reported previously [12]:

�1 1 �A2
=B2��X2 2 �2AC=B2�X 1 �C=B�2 2 1 � 0;

�15�
where we set X � sin u and it is possible to determine

the torsional angles which can determine the D1 and

D2 distances of interest and then to vary the torsional

angle u in the range established for the above cases.

Maintaining a constant number of steps in the rotation

in those cases in which the range of the torsional

angles is reduced results in a lower value for the angu-

lar increment. It is necessary to apply exactly the same

criteria as above in order to avoid that a rotating atom

is superimposed with another non-bonding atom.

Thus, imposing a minimal distance condition, it is

possible to avoid any con®guration that is chemically

not acceptable (for example the distance for non-

bonded carbons lower than 1.53 AÊ ).

2.4. Generating the ªseed bedº

2.4.1. Initial conditions

The ®rst step in generating the atomic coordinates

of the possible molecular con®gurations, which

requires an ªinitial geometrical con®gurationº is as

follows:

1. The bonded atoms are separated by standard intera-

tomic distances.

2. The bond angles are considered characteristic bond

angles for trigonal planar or tetrahedral atoms.

The initial con®guration is constructed to be planar

and is regarded to be the ªstarting geometrical con®g-

urationº. We termed ªinitial geometrical con®gura-

tionº because all the torsional angles are set to be

zero degree. The last atom is not necessarily located

at a distance of a typical bond length; usually there is

superposition of atoms and thus it is not a chemically

acceptable con®guration.

This initial con®guration represents only the start-

ing point from which it is possible to begin the

rotations.

2.4.2. Torsional angles

In order to determine the position of rotating atoms,

we ®x three atoms (A1, A2 and A3) in the initial

coordinates and the ®rst rotation is that of the next

atom A4 (Fig. 9). Contrary to GASCOS searches for

open chain compounds, atom A3 is not rotated with
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Fig. 8. Range of rotation (Case V), denoted by the bold - - - line.

Fig. 9. Schematic spatial view of the torsional angles de®ning the

®rst and subsequent rotations.



respect to the direction A1±A2 in the cyclization

search. However, when we complete all the cycles

of rotations, we carry out the con®guration search

within the A1±A2±A3 plane, rotating all the bonds

with respect to the initial plane. Thus, starting with the

atom A4 we economize the calculation time and avoid

repeated con®gurations.

Subsequently, the next atoms A5,A6,¼,A(N 2 2)

are rotated in the second rotation, third rotation and so

on. Only the two ®nal atoms, including AN, are

submitted to the analytic closure conditions. Thus,

in a molecule of N atoms there are N 2 5 free rota-

tions. The ®ve rotations that are not free include three

rotations from the ®rst three atoms and two rotations

of the two last atoms associated with the ring closure.

Each rotation might be performed using different Du
steps. However, imposing conditions to avoid the

approach of one atom to another non-bonded atom

in the environment, it is possible to ®nd for u , a

range lower than 0±3608 and therefore the value of

the Du step will be lower too. Thus, it is possible to

maintain the number of steps of each rotation ®xed at

a constant value. Since the range of restriction of

torsional angles is variable, the Du steps of each rota-

tion are changing as a consequence of the geometrical

forms adopted by the molecule during the rotations.

For example, in cyclononane we ®x the atoms C1, C2

and C3 and rotate C4, C5, C6 and C7 (together with

their respective hydrogen atoms). The analytical

closure conditions are imposed to atoms C8 and C9.

If we choose for all rotations a step of Du � 208;
each revolution is completed in 18 steps. Keeping

constant the number of steps and satisfying the condi-

tion uinit , u , ufin and if:

ufin 2 uinit , 3608; �16�
then the variation in u is Du 0:

Du 0 � �ufin 2 uinit�=18 , 208: �17�
Thus, the maximum variation in u is in starting step

�Du � 208�; and also it is determining the correspond-

ing number of steps.

2.4.3. De®ning a geometrical con®guration

Once all the atoms are rotated in a sequential order

and the closing conditions are satis®ed, we obtain a

geometrical con®guration. A geometrical con®gura-

tion is characterized by the values of their dihedral

angles. If we have N atoms in a cyclic molecule,

N 2 5 dihedrals are obtained from the free rotation,

two dihedrals by rotations determined by the ®nal

closure conditions and the other three are determined

by the ®nal position of the two last atoms.

The values for the dihedral angles are de®ned,

according to the IUPAC convention, as follows:

1. Dihedral positive if 0 , dihedral , 1808.
2. Dihedral negative if 180 , dihedral , 3608. In this

case, the angle is presented as (dihedral 2 3608).

Thus, a geometrical con®guration is characterized by

both the absolute values of the dihedrals and their

respective signs. In order words, each geometrical

con®guration has only one succession of signs and

values which is characteristic.

In molecules where all the atoms are equivalent (for

example in all alicyclic hydrcarbons such as cyclono-

nane, where all the carbons are equivalent), it is possi-

ble to ®nd geometrical con®gurations with the same

succession of signs, but with the order permuted. In

that case the absolute values of the torsional angles are

similar, therefore we have practically the same

geometrical con®guration, with the only difference

that one of these con®gurations is spatially rotated

with respect to that of the reference. Thus, the spatial

orderings are irrelevant and therefore the way to

analyze the extent to which a molecule is ªfoldedº

is by performing a dihedral by dihedral evaluation.

For molecules having a heteroatom the comparison

must be carried out taking into account this different

feature.

It should be emphasized that all geometrical con®g-

urations possessing the same succession of signs for

their dihedrals (even when the absolute values are

different) are located in the same subspace on the

hyper-space N-dimensional of the molecule with N

torsional angles. The characters of geometrical

con®gurations and their respective positions in the

subspaces are conditions used to generate the

ªseedsº for the future calculations of energetic mini-

mization.

2.4.4. Separation of con®gurations in subspaces

The N-dimensional hyper-space of a cyclic mole-

cule possessing N torsional angles is divided to
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subspaces de®ned by a characteristic succession of

signs for the dihedrals of geometrical con®gurations.

The ®rst N 2 5 rotations are rotated in a

sequential order and, therefore, the corresponding

dihedrals are not repeated in the complete cycle of

all the rotations.

However, the ®ve dihedrals that remained are to be

re-determined by the closure conditions. It is possible

to obtain the same succession of signs and approxi-

mate values of dihedral angles, but in permuted

order with respect to the original order. In this

case, at least two (in general more) geometrical

con®gurations are included in the same subspace,

but they are representing ªpointsº separated by a

well-determined ªdistanceº. These ªpointsº have

ªcoordinatesº which are values of dihedral angles

in the hyper-space represented by the torsional

angles.

From a mathematical point of view, if a geometrical

con®guration is characterized by N dihedrals u0
k �k �

1;¼;N� and another geometrical con®guration

included in the same subspace is de®ned by uk �k �
1;¼;N�; it is possible to de®ne a ªseparation

distanceº between these con®gurations using an

extension of the Pythagorean theorem for the case

of a hyper-space, as:

Du �
�����������������XN
k�1

�uk 2 u0
k�2

vuut ; �18�

where previously we establish by comparison the

correspondence:

Dihedral uk ! Dihedral u0
k : �19�

Eq. (18) is de®ning a hyper-sphere in a subspace

possessing as a center the point determined by the N

dihedrals u0
k �k � 1;¼;N�:

For molecules possessing equivalent atoms (like for

example the nine carbons of cyclononane), it is not

possible to adopt the above de®nition in different

subspaces.

This is a direct consequence of the possible permu-

tations of the otherwise equivalent dihedrals making it

impossible to ®x any of the dihedral angles as initial.

In contrast to the above, in molecules possessing a

distinctive atom (i.e. a heteroatom) it is possible to

choose this atom like the initial atom and the applica-

tion of Eq. (18) will lead to a unique ®rst dihedral

angle. Thus, it is possible to establish a ªseparation

distanceº D among geometrical con®gurations in

different subspaces.

From Eq. (18), it is evident that Du ! 0 only when

uk ! u0
k �k � 1;¼;N�; this leads to a pair of super-

imposed con®gurations and they therefore represent a

unique con®guration. If only one of the dihedrals is

different, this is enough to obtain a ªnon-zero separa-

tion distanceº, i.e. Du ± 0:

In summary:

1. Geometrical con®gurations possessing the same

succession of signs of dihedrals can be represented

by ªpointsº in a subspace on the hyper-space of

con®gurations.

2. These ªpointsº are more or less separated from

each other in terms of their ªseparation distanceº

Du .

3. If Du � 08; then the ªpointsº have identical loca-

tions and therefore correspond to the same

con®guration.

Probably the most critical result of a systematic search

is that usually a huge number of geometrical con®g-

urations (with probably very few true energy minima)

are obtained.

It is reasonable to assume that ªpointsº located

close to each other could be converging to the same

minimum in a geometrical optimization process.

Thus, it is possible to ªagglutinateº near geometri-

cal con®gurations in order to lower the number of

seeds for the energy calculations. This process effec-

tively amounts to cluster analysis.

2.4.5. Considering neighborhood con®gurations

If Du should be in®nitesimally small, we would

have the highest precision in the conformational

search. When, a priori, a ®nite value of Du is used,

we are relinquishing some of that precision in the

search of geometrical con®gurations. The magnitude

of dihedral rotation is a discrete value in terms of Du
and, therefore, we have a difference with respect to the

ideal situation which would be the continuous varia-

tion (i.e. lim Du! du). On the basis of the above

considerations, we might be missing geometrical

con®gurations if some dihedral angles fall into the
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following range:

�j 2 1� Du # Dihedral # jDu

with j � 1;¼;m; where m � 3608=Du:
�20�

Some of these missed geometrical con®gurations

might be located within the same subspace.

Thus, the interdependence among consecutive

dihedrals is strong enough in order to prevent the

other geometrical con®gurations to be located in a

different subspace. Note that small variations in the

values of the ®rst dihedrals (®rst and second rotation)

involves signi®cant variations in the values of ®nal

dihedrals which determine that some con®gurations

might appear in different subspaces.

However, during the comparison of con®gurations

using dihedral permutations, it is possible to obtain

values for the dihedrals that belong to the interval

determined by Eq. (20).

If Du is at its maximum value, i.e. 208, that 208 will

correspond to the maximum inaccuracy, we de®ne a

hyper-sphere inside each subspace, which is deter-

mined by a succession of signs, possessing the follow-

ing ªradiusº:

DDu �
�����������������XN
k�1

�uk 2 u0
k�2

vuut � ���
N
p

Du: �21�

This equation allowed us to de®ne a ªclusterº of

geometries or ªgeometrical con®guration neighbor-

hoodº. We de®ne a ªneighborhood of geometrical

con®gurationsº as a single geometrical con®guration

included in the same subspace and located at a

ªdistanceº Du with respect to the con®guration of

reference which satisfy (Fig. 10):

Du # DDu: �22�
In other words if we centralize a hyper-sphere of

ªradiusº DDu at the point of the subspace de®ning

the reference con®guration, all the representative

ªpointsº of the con®guration located inside of the

hyper-sphere will represent a ªneighborhood of

geometrical con®gurationsº.

This ªagglutinationº of neighborhood geometrical

con®gurationsº permit us to de®ne a ªseedº which is

representative of the reference con®guration. It should

be emphasized that the creation of a ªneighborhood of

geometrical con®gurationsº is the result of lack of

precision caused by a non-in®nitesimal Du .

2.4.6. De®ning a ªfamilyº of geometrical

con®guration

Once all the cycles of the atomic rotations are

completed, we obtain a set of ninitial number of geome-

trical con®gurations. However, there are some that are

not acceptable due to atomic superposition, especially

of the non-bonding type H±H and C±H distances. At

this time, we perform a check of the ninitial con®gura-

tions and we discard those that satisfy:

1. non-bonded H±H distances lower than 1.01 AÊ ;

2. non-bonded C±H distances lower than 1.01 AÊ .

This selection gives a number n®nal (,ninitial) of geome-

trical con®gurations which are available to be used

like ªseedsº for the energetic calculations, because

they do not have atomic superposition which can

abort the calculation.

Nevertheless, the number of con®gurations n®nal is

still large enough to realize the minimization. We

need to reduce the n®nal, without the loss representativity

of the geometrical con®gurations initially obtained.

A ªfamilyº is formed by a number of ªneighbor-

hoods of geometrical con®gurationsº and only one

will represent the ªfamilyº.

In order to form the ªfamiliesº, we consider the

following steps:

1. Choose in a sequential order, one geometrical

con®guration from the n®nal structures.

2. Locate this con®guration in a subspace from the

succession of signs of dihedral angles.

3. Compare with the rest of con®gurations and calcu-

late Du (Eq. (18)). If it satis®es:

Du # DDu �
���
N
p

Du; �23�
then the con®guration belongs to the ªfamilyº.

4. All the geometrical con®gurations belonging to a

ªfamilyº are not considered as new generators of

new ªfamiliesº.

5. A geometrical con®guration belonging to a

ªfamilyº might also belong to another one. We

cannot exclude a con®guration belonging to a

ªfamilyº like a member of another ªfamilyº,

because we do not know ªa prioriº which of the
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Fig. 10. Flow chart of GASCOS for cyclic compounds.



n®nal con®gurations are the best generators of

ªfamiliesº.

6. Because each geometrical con®guration belonging

to one ªfamilyº is not a generator of a new

ªfamilyº, the above process permits us to obtain

a number of ªfamiliesº which are lower than the

initial number ninitial.

7. Only one geometrical con®guration is representa-

tive of a ªfamilyº. We call this representative

con®guration the ªseedº.

2.4.7. How to select the representative geometrical

con®guration for a ªfamilyº

Since all the members of a ªfamilyº belong to the

same subspace and since they are also neighboring

con®gurations, it is possible to establish a one-to-

one relationship for the dihedrals of the members

and the dihedrals of the con®guration generator of

the ªfamilyº.

We can take the average values of all the dihedrals

over all the members of the ªfamilyº and adopt this

value as the representative one of ªseedº.

If a ªfamilyº has nfamily members, the average value

of each dihedral u k �k � 1;¼;N� is:

�u i �

Xnfamily

j�1

uij

nfamily

; i � 1;¼;N; j � 1;¼; nfamily:

�24�
For a molecule with N atoms, the set of average

dihedrals:

� �u 1; �u 2;¼; �u N� �25�
represent an average geometrical con®guration

comprising all the geometrical con®gurations located

close to the generator con®guration. These are the

ªseedsº used later, for geometrical optimizations via

energy minimization.

2.4.8. Generating the cartesian coordinates which

represents ªseedsº

Once the set of average dihedrals representing the

ªfamiliesº are obtained, the next step is to determine

the cartesian coordinates governing the spatial order-

ing of atoms in the average geometrical con®guration.

Thus, the atoms of the molecular skeleton must be

located in order to reproduce the sequence:

Family j j � 1;¼; nfamily � �u 1j; �u 2j;¼; �uNj�:
�26�

Due to fact that there are conditions for the bond

angles b (imposed by the closure conditions) and

also that the comparison among dihedrals of geome-

trical con®gurations is performed by permuting their

order during the formation of ªfamiliesº, we are also

taking an average over the bond angles b .

Analogous to Eq. (24), if we have nfamily members in

the ªfamilyº, the average value of angles b are

de®ned by:

�b i �

Xnfamily

j�1

bij

nfamily

; i � 1;¼;N; j � 1;¼; nfamily:

�27�
With this set of average angles b k �k � 1;¼;N� :
� �b 1; �b 2;¼; �b N� �28�
we construct a planar initial geometrical form by

using typical bonds lengths.

This initial geometrical form determines the initial

coordinates for the atoms of the molecule, with the

atoms (for example H) joined to each atom of the

skeleton.

This initial geometrical form is submitted to the

torsions ®xed by the average dihedrals obtained

above in the process of the ªfamilyº construction.

3. Algorithm and computational details

In Fig. 10, we show a ¯ow chart of GASCOS used

for ¯exible cyclic compounds. The rectangle marked

with a dashed line in Fig. 10 indicates that cartesian

coordinates of the con®gurations which represent the

ªseedsº must be obtained. The details of this process

are given in Fig. 11.

The method adopted to generate the Cartesian coor-

dinates is as follows:

1. De®ne a ªstarting planar geometrical con®gura-

tionº using the set of average bond angles

� �b 1; �b 2;¼; �b N� and typical bond lengths.
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2. Only (N 2 5) atoms are submitted to the free rota-

tions of dihedrals. Thus, from N dihedrals, we

choose (N 2 5).

3. The two last atoms are submitted to the closing

conditions. Thus, we can close the ring.

4. The remaining three dihedral angles are deter-

mined by (1) and (2).

This process is submitted to the following proofs,

which is a subroutine in the calculation programs.

4. Illustration of the method

Two small systems, cyclopentane and cyclohexane,

were chosen to illustrate the GASCOS partially

relaxed ring closure method in optimizing cyclic

structures.

Cyclopentane is the simplest example because this

molecule has three originally ®xed atoms and two

atoms are involved in the closing condition. Although

the conformation of cyclopentane is determined by

the values of the ®ve dihedrals angles, it is possible

to represent the GASCOS process in a schematic way

in a 2D-space �w;c�; maintaining the rest of the dihe-

dral angles in approximately constant values (Fig. 12).

The analysis of cyclopentane has been carried out

in two steps:

1. First we use only the analytical ring closure condi-

tions. We obtain two different conformations

denoted by solid squares in Fig. 12.

2. In a second step we use the free rotation for the

atoms varying the torsional angles each by 18. We

obtain 21 seeds denoted by crosses in Fig. 12.

The families are shown as circles. This ®gure is

constructed in the �w;c� space. The radii of these

circles are the values of DDu and the center is the

average dihedrals � �w ; �c �:
The geometry of the seeds is denoted by a cross.
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Fig. 12. Schematic 2D-representation for the GASCOS results of cyclopentane. The analytical solutions are marked by B and ªseedsº by £ .

The families are shown by spheres with radii� �5�1=2�1� (from Eq. (21)) and their centers are denoted by shaded circles.



The conformations obtained by the analytic ring

closure conditions are shown as solid squares.

Cyclohexane is a bit more involved because in

addition to the three originally ®xed atoms and the

two atoms involved in the ring closure conditions,

there is one atom which has a variable position in

the GASCOS search. Thus, the process may be repre-

sented in a 3D-space �w;c; x� maintaining the rest of

dihedral angles in approximately constant values.

The analysis of cyclohexane was carried out in an

analogous fashion using the GASCOS procedure with

the analytical ring closure condition. In this case, the

angle of the free rotation was varied by 2.5 AÊ . Thus

we obtain 22 seeds (Fig. 13).

The families are shown as spheres. This ®gure is

constructed in the �w;c;x� space. The radii of these

spheres are the values of DDu and the center is the

average dihedrals � �w ; �c ; �x�: The geometry of the

seeds is marked by a cross. Previously published

MM2 geometry [13] are shown as solid squares. The

ab initio (HF/321G) optimized structure is located not

very far from the MM2 geometries.

All of these clearly give validity to the GASCOS as

an effective procedure for starting geometry to be used

for energy minimization.

5. Conclusions

Algorithms, which ®nd optimal solutions, are very

important in computational chemistry and in particu-

lar in molecular modeling. Thus, the development and

application of new methods using novel strategies

continues to be an area of signi®cant activity and

paramount importance.

The results reported here clearly reveal that

GASCOS is an effective procedure for the starting

geometry to be used for energy minimization.

In general, systematic search methods are tradi-

tional, subject to the effects of combinatorial explo-

sion. However, it is clear that the development of new

search techniques like GASCOS may provide a

method to directly and ef®ciently identify all solutions

of interest.
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Fig. 13. Schematic 3D-representation for the GASCOS results of cyclohexane. MM2 conformations reported in Ref. [13] are shown by B. The

ªseedsº are denoted by crosses ( £ ) and the families are shown by spheres with radii� �6�1=2�2:5�: The centers of the families are denoted by

shaded spheres.
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