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ABSTRACT

This paper reports on the use of a comparatively simple statistical methodology to study local short time series
rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some
uncertainties affecting this business activity.

The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is
well known in many areas of application. When series are in the realm of business and economics, the statistical
methods popularized by the US Census Bureau and US National Bureau of Economic Research are used for seasonal
and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the
meteorological context, and this is done in this paper for a selection of monthly rainfall time series.

Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are
interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by
systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis
described in this paper. Copyright © 2000 Royal Meteorological Society.

KEY WORDS: rainfall in Argentina; unobservable components; X-12-ARIMA seasonal procedure; US National Bureau of Eco-
nomic Research; dating cyclical turning points

1. INTRODUCTION

1.1. General

The purpose of this paper is to report on the use of a simple statistical methodology to describe local
records of rainfall data coming in short series. The aim is to facilitate agricultural planning by helping to
reduce some of the risks associated with the activity.

The records are local since it is desirable to differentiate among geographical locations which are
comparatively close to each other in space, in so far as they differ in their climatic experiences. The series
to be studied are short, in the order of 15 or 20 years of monthly data, which are shorter than those used
in other types of meteorological studies.

The statistical methods that we use arose historically in the treatment of empirical time series. For
them, it was found useful to propose models of components associated with distinctive systems of causes:
trend, cycles, seasonal and irregular. It is postulated that these unobservable components are combined to
form an observable time series, in a multiplicative way, T·C·S·I, or in an additive way, T%+C%+S%+I%.
Other types of combinations have also been considered in the literature. See, for example, Nerlove et al.
(1979) for an interesting review, that includes early references to applications in astronomy, meteorology,
the study of diseases, and others.

Some authors have studied the presence of long-term trends in rainfall data, and tried to relate this to
more general issues of global climate change; see, for example, the analysis of annual data in Karl et al.
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(1996). However, for rainfall series as short as those considered here, we can safely disregard the effect of
trend components. Our rainfall series have large seasonal and random components, and cyclical
components. The seasonal component is large, and the variability of the data is different in the different
seasons, in the extreme case the dry season contains zeros.

Simple statistical methods to study these components are, for example, moving averages to estimate a
trend component, and the so-called ‘ratio (or difference) to moving average’ to estimate a seasonal
component. For series arising in the economics and business areas, these ideas led to the development in
the USA of computer programs identified as the X-11 family, which have been used for many years, in
various countries and by numerous researchers.

In a manner that parallels these developments, in the US National Bureau of Economic Research
(NBER) a procedure was developed and made computationally available, to assign dates to business
cycles. It is also true that these methods have been in use for many years, and a considerable amount of
experience has been accumulated.

In this paper we analyse monthly rainfall series by using modern versions of the X-11 seasonal
procedure and of the NBER business cycle analysis program. One main purpose of our study is to explore
how useful these methods are to deal with time series other than those of the economic area, for which
they were originally developed. Our basic argument is that for rainfall data (as well as for other
meteorological variables), the indicated decomposition has full meaning, and that flexible methods can
work reasonably well, in spite of the different nature of the component sources.

We use the seasonal and cyclical procedures in a descriptive way, in the sense that no attribution of
physical causes is attempted.

1.2. Some alternati6e statistical approaches

In the analyses we present in the following sections we show that our choice of statistical procedures
is adequate for our purposes. Several other statistical methods have been used in the literature, to deal
with various aspects of the description and analysis of rainfall and similar types of series. It is useful to
keep in mind two dichotomies: (a) deterministic versus stochastic components or models; (b) time versus
frequency domain analyses. Note that those we discuss are not causal procedures; as such, they will differ
from causal models developed by meteorologists.

To start our presentation, let us consider a very simple deterministic regression model for monthly
rainfall data, formed by the addition of the following components: (i) trend, modelled by a low degree
polynomial; (ii) cycle, modelled by a sinusoidal term with a given period; (iii) a stable seasonal pattern
represented by 12 constants; and (iv) random independent error terms. This seasonal component can also
be written as the sum of sine and cosine functions. In general this approach will prove to be too rigid.
Variants to allow for more flexibility include using other smoothing functions of time to model trend, a
sum of sinusoidal terms to model the presence of more than one cycle, and time trending seasonal
constants.

Non-deterministic trends can be dealt with by smoothing or filtering procedures, one of the most widely
used being moving averages, which can also be used in cyclical analysis. A stochastic formulation that is
frequently used is that of seasonal autoregressive integrated moving average (ARIMA) models, as
described in Box et al. (1994); they will take into account trends and seasonal effects. ARMA models can
be used in the regression context to give more flexibility to the error terms.

The structure of an observed time series can often be seen more clearly in the frequency domain, by
studying the estimated spectral density of a series, or of some of its transformations. There are several
statistical procedures to obtain these estimates. The analysis of seasonality and the effect of seasonal
adjustments can be evaluated in the frequency domain: spectral density estimates show peaks clearly at
seasonal frequencies, even in series with only moderately regular seasonal components (Nerlove, 1964).

Combinations of some of these elements have been used in the literature to study monthly series of
rainfall or similar questions. Kashyap and Ramachandra Rao (1976) considered ‘the class of autoregres-
sive models with deterministic sinusoidal terms added to them’ (p. 249) to model monthly river flows.

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 211–228 (2000)
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They compare their forecasting performances with ARMA and seasonal ARIMA models. These authors
present other case studies, some related to rainfall, and compare results of the analysis of daily, monthly
and yearly data. However, they do not emphasize cyclical analysis. Percival and Walden (1993) also study
river flows among other series, and emphasize the use of spectral methods, including tests of the
significance of periodicities. Burroughs (1992) considers studies of cycles based on monthly data, by ‘using
both spectral analysis and filtering techniques’ (p. 39); the results he studies are directly relevant to our
purposes, as will be commented on in Section 6.3.

There are many studies of trends and cycles based on annual data, that therefore do not have to deal
with the intra-annual seasonal variation. They use several of the types of models and methods we
discussed in the section. In general they search for cycles longer than those treated in our work.

Two useful sources of information are the book by Murphy and Katz (1985) and also the article by
Gani (1985).

2. STATISTICAL METHODS

2.1. Seasonal analysis

To perform a seasonal analysis of a given series, we used the X-12-ARIMA (Beta Version 1.0) program
of the US Bureau of the Census, made available in 1996 on the Internet (see also Findley et al., 1998).
This program uses an iterative semi-automatic procedure that works in stages. In the first stage, an
ARIMA model can be attempted for the series, so that if a reasonably good fit is achieved, 1 year of
predicted observations are added at one or both ends of the series. Stages two to four consist of the
following: a ‘trend–cycle’ component (trend and cycle are not separated in these programs) is estimated
by means of moving averages which are centred at a given observation for central data; this estimate is
used to define a detrended series, and this in turn to estimate a seasonal component responding to an
additive or multiplicative model, which must be specified by the user of the program. The estimated
seasonal component is used to define a seasonally adjusted series. In the second and third stages, the
seasonally adjusted series is the input of the following stage, and leads to new estimates of trend–cycle
and seasonal with procedures similar to those of the preceding stage. In the fourth and last stage, the
program uses the output of the third stage to automatically obtain the final estimates of trend–cycle and
seasonal components. In the third and fourth stages, trend–cycle moving averages can be of lengths 9, 13
or 23, a choice is made automatically by the program, but the user can alter this choice.

Program X-12-ARIMA incorporates the so-called ‘sliding spans’ methodology, which is a diagnostic
procedure that compares seasonal estimates obtained from partially overlapping subseries of the given
series, and aims at evaluating the reliability of the final estimates by computing and analysing a set of
statistical measures.

The complete output of the X-12-ARIMA program for monthly series, contains more than 50 tables,
each with 12n figures, where n is the number of years that are processed, plus a set of graphs and a set
of additional statistical measures. Some of the main results appear in the following tables: B1, original
series; D10, final seasonal factors; D11, final seasonally adjusted series; D12, final trend–cycle; D13, final
irregular series; F, summary measures; S, sliding spans. It is very convenient for the user that the program
allows that the output tables be transferred to independent archives, so that other tables or graphs can be
developed using any kind of software.

Processing a series with the X-12-ARIMA program leads to a set of summary measures (table F) to be
used to evaluate the quality of the seasonal fit. There are 11 quality control measures, the M-statistics,
with values between 0 and 3, and acceptance regions between 0 and 1. Each statistic evaluates a certain
characteristic of the seasonal analysis, and gives the user a measure of success along this direction. All
measures are combined to define a Q-statistic, a global measure of the quality achieved by the program
with the given series.

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 211–228 (2000)
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The X-11 method was described in detail in Shiskin et al. (1967). The ARIMA variant of X-11 is
described, for example, in Dagum (1983), and the sliding spans methodology in Findley et al. (1989).
Useful information about seasonal (and cyclical) adjustment procedures can be found in Mentz et al.
(1989), and in the recent paper with discussion (Ghysels et al., 1996). For a recent detailed description
of the final version of the new X-12-ARIMA package, see Findley et al. (1998).

The monthly rainfall series used in our study have some values equal to zero, which correspond to
months without rain. (However, they do not have long strings of zero values, as they might have in a
very dry region.) Under these circumstances, the computer program automatically chooses an additive
model. Since the multiplicative option tends to be more popular, we tried it with data transformed to
avoid the zero values, by adding a constant. However, the results were poor and are not included in
this report.

An analysis of other common transformations was also performed. Since logarithms are not feasible
due to the zero values, power transformations were explored. Powers 1/4, 1/2 and 3/4 of the observa-
tions were considered, and some results are given in Table I. It is apparent that not much is gained in
general by using these transformations. Also, graphs of the estimated seasonal components were
studied. The conclusion is that the original observations could be retained without much loss.

One reason for our preoccupation with the quality of the seasonal fit, is that it may affect the
cyclical analysis that is carried out with deseasonalized observations. Our conclusion is that if an X-11
type of seasonal adjustment is used, not much is expected to be gained by standard data transforma-
tions.

2.2. Cyclical analysis

Once the seasonal analysis is completed, series D11 and D12 are used to perform cyclical analyses,
for which we used the program ‘Turning Points Determination’ made available by the Center for
International Business Cycle Research (CIBCR) of Columbia University. It is based on the NBER
methodology. This program identifies the maxima and minima of a seasonally adjusted series, and
assigns dates to them. In the standard or ‘classical’ business cycle analysis of economic time series (the
option being the growth cycle analysis), this operation is performed with series D11, final seasonally
adjusted series; with our rainfall data we tend to rely more on the dates coming from the D12 series,
which is ‘irregular free’.

Cycles identified by these procedures can be qualified as short cycles, as compared with other
lengths considered in the literature for meteorological data. On the other hand, oscillations shorter
than 15 months are deemed irrelevant, and are not included into the dated cycles. For a description of
these procedures, see, for example, Bry and Boschan (1971) and for applications Mentz et al. (1989).
Considerations about the duration of the rainfall cycles will be made in Section 6.

After completing the cyclical analysis, the main results appear in tables, some of which facilitate
comparisons among locations.

3. DATA USED IN THE STUDY

Our initial motivation for this study was to generate information useful for some local agricultural
firms, and this explains the nature of the available data. We have rainfall series for four locations
in the State of Tucuman, Argentina, three in the central-northern part of the state, chosen
with reference to the Agricultural Experimental Station providing the information, one (Las Cejas)
is usually regarded as drier than the other (La Ramada). The fourth location in Tucuman (La
Cocha) is in the southern-most part of the state. For purposes of comparison, data from two
other states are considered, Santa Fe and La Pampa, which are part of the traditional Argentine
prairies.

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 211–228 (2000)
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A summary of the available information is as follows:

State Location Period Average
monthly
rainfall (mm)

Tucuman Agricultural Experimental Station (EEAOC) 1975–1995 93.2
Agricultural Experimental Station (EEAOC) 1982–1995 88.8
La Ramada 1975–1989 96.0
Las Cejas 1975–1989 69.5
La Cocha 1982–1995 81.1

Santa Fe 1975–1989 74.5
La Pampa 1975–1989 70.5

The first series has 21 years of monthly data, while the remaining series are 14- or 15-years long. The
second series is just a segment of the first one.

4. MAIN FINDINGS ON SEASONAL AND CYCLICAL ANALYSES

1. Results of the exploration of certain power transformations under the additive version of the
X-12-ARIMA seasonal program, are given in Table I. For each series, the results of processing the original
and the power transformations for 1/2, 1/4 and 3/4 are compared. This analysis leads us to retain the original
data for analysis, since differences are small.

2. As indicated in Section 1.1, rainfall data are known to be highly variable, so that in our terms,
controlling or eliminating the irregular component is expected to be a source of difficulty. Our results, in
terms of the goodness of fit statistics, confirm this general idea.

3. About the goodness of fit statistics mentioned in Section 2, high values for the F-statistic for the
presence of stable seasonality, and low values for the F-statistic for the presence of moving seasonality,
are an indication of a strong and comparatively regular seasonal component. Hence, the part of Table I
containing these F-statistics shows in general that our series are satisfactory in this respect.

An often-used indicator of the quality of a seasonal adjustment of a series, is the so-called ‘month of
cyclical dominance’ (MCD), which comes from relating the size of the irregular to that of the trend–cycle
component: a large MCD means that the movements of the irregular component are large enough to make
difficult a reliable estimation of trend–cycle. In our work we often find values higher than 6 for MCD,
when small values are 1 or 2, with 12 being the largest possible. In Table I, all reported MCDs are equal
to 12, which is the least favourable value.

We note that the number of M-statistics that exceed the threshold value of 1 varies from 1 to 7. The
summary measure Q, a weighted average of the 11 M-statistics, has values either smaller than 1 or slightly
larger. Further, the M7 statistic is never found to be larger than 1: ‘Values of M7 larger than 1 are usually
interpreted as evidence that the seasonal component is evolving too rapidly for the X-11 procedure’ (Findley,
1996).

Finally, Table I shows the measures associated with the sliding spans, which indicate uniformly that the
seasonal fits are considered poor. This points to difficulties in trying to predict or extrapolate seasonal effects.

4. In view of the preceding comments, we processed with the turning points program, not only the
seasonally adjusted series (D11), but also the final trend–cycle series (D12) in which the irregular has been
smoothed out.

5. A graphical analysis associated with the first (and longest) series mentioned in Section 3 is incorporated
as an example in Figures 1–4. Graphs are, in terms of the definitions introduced in Section 2, respectively,
those of series B1, D10, D11, and D12 with its dated turning points and superimposed average (mean) line.
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6. For the same series, Table II summarizes the distances among dates presented in the graph of series
D12. The mean, median and standard deviation of the cyclical durations are presented. Cycle durations
are measured peak–trough–peak and trough–peak–trough, which in cases of asymmetries need not
coincide.

7. Table III facilitates the comparison among the available series, of the average durations of cycles
estimated in the indicated way.

8. For the series reported in Table II, Table IV summarizes the information in the graphs of series D12
in a different way: cycles are now defined as comprising consecutive periods of permanence of the series
over and under the average line, which is shown in all graphs. It is thought that this is a manner
reasonably easy to understand, to exhibit the results of the analysis.

9. Besides the preceding analysis, there is a good deal of information in the graph of series D12. For
example, comparing the graphs for La Cocha (Tucuman) in Figure 5, where the risks associated with the
behaviour of rainfall are well known, with La Pampa in Figure 6, part of the traditional Argentine

Figure 1. Monthly rainfall in Agricultural Experimental Station (Tucuman). January 1975–December 1995. Original series

Figure 2. Monthly rainfall in Agricultural Experimental Station (Tucuman). January 1975–December 1995. Seasonal factor,
additive model, X-12-ARIMA
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Figure 3. Monthly rainfall in Agricultural Experimental Station (Tucuman). January 1975–December 1995. Seasonal adjusted
series, additive model, X-12-ARIMA

Figure 4. Monthly rainfall in Agricultural Experimental Station (Tucuman). January 1975–December 1995 trend–cycle component,
additive model, X-12-ARIMA, dated by CIBCR procedure, and superimposed mean line

prairies, we observe that the difference is not so much in the duration of the observed cycles as in the
amplitude of the movements of the series D12. Since the two graphs are drawn in the same scale, we
conclude that the risks associated with the cyclical behaviour of rainfall are much higher in La Cocha
than in La Pampa, in agreement with experience. In fact, La Pampa is, in a large proportion, a part
of an important area known precisely as ‘la pampa húmeda’ (humid prairies).
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5. FORECASTING

In trying to forecast one of our rainfall series, attention must be paid to its seasonal, trend and cyclical
components. The estimated seasonal components comprise table D10 of the output in the X-12-ARIMA
program, and appears in Figure 2 for one of the series. The corresponding analysis was presented in
Section 4. The X-12-ARIMA program also provides a ‘year ahead’ set of 12 estimates of the seasonal
component, that could be used in forecasting. In our case we recall a warning coming from the sliding
spans measures of fit (see Section 3).

More interesting is trying to forecast the other components. Trends and cycles are treated jointly in the
X-12-ARIMA program as the ‘trend–cycle’ component. The estimates appear in table D12, and are
shown in Figures 4–6 and 11 for various series. We recall that we disregard the contribution of trend, in
view of the limited lengths of our series. Hence, we take the indicated estimates as representing cyclical
components only. We aim at forecasting these by extending or extrapolating the corresponding series.

Table II. Monthly rainfall in Agricultural Experimental Station Obispo Colombres (Tucuman), January
1975–December 1995. Final turning points of trend–cycle component, additive model, X-12 ARIMA

dated by CIBCR procedure

(a) Peak–trough–peak analysis

Peaks Troughs Peaks Duration in months

Total cyclePeak–troughTrough–peakMonthsYear YearsMonthsYearsMonths

1976 11 1977 4 13 51975 1810
1977 207134 12197851978

1 1981 2 13 13 2619801978 12
1982 2 1984 2 121981 24 362
1984 111984 1985 6 9 7 162

1985 6 1987 2 1988 1 20 11 31
12 1991 2 111988 261 371988

1991 9 1992 10 71991 13 202
101992 1993 4 1994 3 6 11 17

1994 3
24.613.011.6Means

11.012.0 20.0Medians
Standard deviations 4.1 7.4 8.2

(b) Trough–peak–trough analysis

Troughs Peaks Troughs Duration in months

Year Months Years Months Peak–trough Trough–peak Total cycleYears Months

1977 4 1978 5 5 13 201976 11
261371198012197851978

1981 21980 1982 2 13 12 361
169241119842198421982

6 1987 2 71985 2011 311984
1988 1 1988 12 111987 11 372
1991121988 726919912 20

10 1993 4 131992 6 1791991
1994 3 111993 4

25.411.413.0Means
23.0Medians 11.0 11.5
8.44.47.4Standard deviations
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Table III. Final turning points of trend–cycle components, rainfall data, additive model, X-12-ARIMA. Dated by
CIBCR procedure

Locations Period Peak–trough–peak Trough–peak–trough

Trough– Peak– Peak–Total TotalTrough–
trough cyclepeak peak cycletrough

11.4 25.4Agricultural 1975–1995 11.4 15.0 24.6 13.0
Experimental
Station Obispo
Colombres

La Ramada 1975–1989 15.6 15.8 32.8 15.8 16.5 32.3
(Tucuman)

13.110.7 23.9 13.1 11.2 25.5Las Cejas 1975–1989
(Tucuman)

Agricultural 26.51982-1995 11.3 16.7 24.4 13.4 11.3
Experimental
Station Obispo
Colombres

La Cocha 30.31982–1995 14.2 14.2 28.4 14.2 15.3
(Tucuman)

24.811.012.81975–1989 25.712.812.8Santa Fe
28.5 31.216.416.516.41975–1989La Pampa 14.8

Table IV. Monthly rainfall in Agricultural Experimental Station Obispo Colombres (Tucuman), January 1975–
December 1995. Final turning points of trend–cycle component, additive model, X-12-ARIMA dated by CIBCR

procedure. Peak–trough–peak analysis referred to the mean

Under the mean Months of rainfallOver the mean

Start End Start End Over the Under the Total
cyclemean mean

Month MonthYearMonthYearMonthYear Year

1976 7 1976 8 19761975 125 14 4 18
3 1621461977 1978419781 1978

614419801019799 20197971978
1980 5 1981 23610 1751982111981

25 7 326 1984 7 1984 8 1985 31982
6 7 1341985 1985 10 1985 11 1986 6
3 9 127 1986 10 1986 11 1987 81986

3527891990619885198891987
481119917 12199161991101990

12 10 22121991 1992 12 1993 1 1993 11
1993 12 1994 5 1994 6 1995 10 5 16 21

Mean 20.48.911.5
20.07.012.0Medians

Standard deviations 6.3 7.1 7.6

To do this, we use the information given, for example, in Tables II and IV for one of the series. We
take as our main result the estimated average duration of the cycles. To agree with our purposes, we
resort to the duration reported in Table IV, which is based on periods of rainfall over or under the mean.
This average duration of cycles may differ slightly from those in Table II. At the end of a period of
observation (in our examples it is always the month of December), if the last dated turning point is a
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Figure 5. Monthly rainfall in La Cocha (Tucuman). January 1982–December 1995. Trend–cycle component, additive model,
X-12-ARIMA, dated by CIBCR procedure, and superimposed mean line

Figure 6. Monthly rainfall in La Pampa. January 1975–December 1989. Trend–cycle component, additive model, X-12-ARIMA,
dated by CIBCR procedure, and superimposed mean line
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Figure 7. Monthly rainfall in La Cocha (Tucuman), January 1982–December 1995, forecasted cycle December 1994–February 1997
and upper and lower 90% confidence limits (fourth degree polynomial)

peak, we extend from there for the estimated average duration of a cycle, and consider that in this period
a full cycle occurs ending in another dated peak. A parallel argument is used when the last dated turning
point is a trough. In another example, for the series appearing in Figure 5 we add a new cycle: this is
shown in Figure 8, and is calculated by the procedure we describe below. This will then indicate in which
months to expect extra high or low levels of rain, in addition to the seasonal pattern. This is what we
claim is of use in agricultural planning.

A ‘forecasted cycle’ is defined by the following steps: (i) two points are computed by averaging
amplitudes at peak dates and trough dates; (ii) one of these is considered twice, as end of a cycle and
beginning of the next one; (iii) two points are computed by averaging dates at which periods of
permanence over the mean are started and ended, respectively; (iv) to these five points polynomials of
degrees four, three and two are fitted and analysed. The forecasted cycle is that showing best fit on an
inspection basis.

A further question is how to measure the reliability of this forecasted cycle. A confidence band is
computed by the following steps: (i) confidence intervals are set at each of the five points mentioned
above, considering that three of them are means of the amplitudes of certain quantities of peaks and
troughs, and the other two are means of durations as those calculated in Tables II and III; (ii) for a
confidence coefficient of 90%, the Bonferroni procedure is used to set the confidence band, with the
t-table used to extract the needed values.

For La Cocha, Figure 7 shows the forecasted cycle which extends for 27 months (26.6), beginning at
the observed peak of December 1994, and extending until February 1997, with a fourth degree fit. We also
show upper and lower 90% confidence limits. Figure 8 shows this same forecasted cycle drawn
immediately after the trend–cycle component values reach December 1995. We note that we took a very
simple approach to the important issue of timing the beginning of a cycle.

6. ANALYSIS AND CONCLUSIONS

6.1. Comparing locations

An interesting question is how to compare results obtained for different locations. Two attempts in this
direction appear in Figures 9 and 10. Figure 9 is based upon the following idea: to stress the oscillatory
nature of the cycle component, graphs associated with it (e.g. Figure 4) are often presented with
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superimposed shaded strips covering the periods from one dated peak to the following dated trough. In
these periods we have decreasing parts of the graph. This is usually performed in business cycle analysis,
and will be used here for purposes of comparison.

In Figure 9 the dates assigned by the CIBCR cycle procedure to the turning points are compared for
six locations. The shaded areas for a given location, correspond to periods of decreasing rainfall, from
peak to trough. For example, for the series EEAOC (1975–1995), its diagram is an abridgement of Figure
4: most details are omitted, and only the dates appearing in Table II are retained.

Two series are said to coincide in a given month, if both are going from (dated) peaks to troughs, or
both from troughs to peaks. Figure 9 shows a good level of coincidence among the four locations in
Tucuman in the period when we have data for all of them (1982–1989), and among three locations for
another period (1975–1982). Santa Fe tends to coincide to some extent, but La Pampa shows larger
differences.

Figure 10 is based on the number of months of coincidence for the series in Figure 9, except La Pampa.
The measure reported is the proportion of the absolute difference between the number of series that
coincide and those that differ in a given month. For five series these differences can be 1 (three of a kind
and two of the other), 3 (four of a kind and one of the other) or 5 (all of the same kind), and hence the
proportions can be 0.20, 0.60 or 1.

6.2. Reference to El Niño

In studying meteorological variables, it pays to consider what is known as the El Niño phenomenon.
We have information about the Southern Oscillation Index (SOI), which is defined as the normalized
difference (i.e. difference divided into its standard deviation) between the pressure anomalies (monthly
means minus long-term means) in two locations, Tahiti and Darwin, as defined by Troup (1965).

Information about El Niño is frequently used in meteorological studies in the place of a possible causal
factor. In our case, and in view of the descriptive approach used throughout, we will only apply to the
SOI series the same kind of methods we have discussed so far.

Figure 11 presents the final result of applying to the SOI monthly series, from January 1975 to
September 1997, the seasonal and cyclical methods described in the previous sections, and therefore it is
the estimated trend–cycle component dated by the CIBCR procedure. The mean duration of the cycle is

Figure 8. Monthly rainfall in La Cocha (Tucuman). January 1982–December 1995. Trend–cycle component, additive model,
X-12-ARIMA, dated by CIBCR procedure. Superimposed mean line, forecasted cycle (fourth degree polynomial). December

1994–February 1997
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Figure 10. Proportion of coincidences among five series in Figure 9

35.7 months for peak–trough–peak and 34.2 months for trough–peak–trough, and the corresponding
median durations are 32 months in both cases. The means are comparable with those in Table III, being
very slightly larger.

In general, and in relation to our cyclical analysis of rainfall in the locations that we considered, we
expect some degree of relation between the SOI and rainfall in La Pampa. The direction of this relation
is that the lower value of the SOI should coincide with periods of high rainfall in La Pampa.

Figure 11. Monthly values of SOI January 1975–September 1997. Trend–cycle component, additive model, X-12-ARIMA, dated
by CIBCR procedure, and superimposed mean line
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The dates assigned to the SOI are compared with those of La Pampa in Figure 12, where Tu-
cuman’s EEAOC is also included for comparison. In 1975 and 1985, the dated troughs for the SOI
occur when La Pampa is in periods of increasing rainfall (i.e. going from trough to peak). In 1980
and 1982 the dated troughs for the SOI occur shortly before the beginning of the period of increasing
rainfall for La Pampa. We find reasonable agreement of these findings with what was expected. The
last period of decreasing rainfall reported for La Pampa covers from 1986 to 1988, and its relation to
the SOI is less clear.

The coincidences between the SOI and Tucuman’s EEAOC is much less regular and interesting than
for La Pampa, in agreement with what is expected.

6.3. Final comments

Information about weather variables and conditions are of great importance for agricultural man-
agement. Good forecasts of weather conditions are of real value since they help in reducing some of
the risks associated with the activity. Good forecasts may be used to program yearly agricultural
activities in such a way, that over a period of several years this anticipatory behaviour of the
programmers leads to important benefits, in comparison with a traditional program of some sort of
average behaviour over the years.

One important component of weather variables is the amount of rainfall, which in our case has
been observed monthly. Other (shorter) periods could also be considered, as has often been done in
practice. In our case we consider the description and analysis of monthly rainfall data for local areas,
understanding that, farms or groups of them may differ in weather conditions, even when they are not
too far apart. This has also been considered by other investigators, leading to the definition of areas
of certain radius, so that homogeneity of weather conditions holds within areas, and heterogeneity
between them. We have not explored this here.

The methods we have used deal, separately, with the seasonal and cyclical components, which are
assumed to enter as unobservables in a given time series. The new X-12-ARIMA package is a flexible
procedure for seasonal analysis, that can be very useful in the analysis of rainfall. Given the regularity
and importance of the seasonal components, even in the presence of a large random or irregular
component, we expect reasonable results of the proposed seasonal analysis.

The output of the seasonal adjustment program is an estimate of the trend–cycle component of a
series, that for the case of rainfall can be safely associated with the cyclical component, since trend is
not expected to be of practical significance.

The cycles that are considered through the use of the CIBCR program, are short in duration. This
is in agreement with the intuitive ideas behind our work, and is in agreement with standard meteoro-
logical analysis. In effect, Burroughs (1992), section 3.12, writes: ‘The QBO (quasi-biennial oscillation)
is the most widely observed feature in the records, and must clearly be regarded as a real feature of
almost all meteorological records’. The identification of the QBO is used for any periodicity in the
range 2.2–2.8 years (26.4–33.6 months), and is then consistent with our findings in Table IV and in
the duration of the cycles found in the SOI.

The analysis that we propose is then useful in interpreting the cyclical component of monthly
rainfall data. We have come to the point where we believe that for one of the local areas, and having
available short series (say, of up to 20 years of monthly data), a systematic statistical analysis of the
data will prove useful. The average duration of the estimated cycles, and the inspection of the
amplitude of the cyclical oscillations, will be useful indications for those engaged in the planning and
management aspects of agriculture. One drawback lies in the variability of the observations: our
indicators of quality tend to detect in the present cases even more variability than that for economic
series processed for Argentina. Hence, a word of caution in the interpretation of the results should be
expressed, as we pointed out in various parts of this work.
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