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Abstract

We count points over a finite field on wild character varieties of Riemann surfaces for singu-

larities with regular semisimple leading term. The new feature in our counting formulas is the

appearance of characters of Yokonuma–Hecke algebras. Our result leads to the conjecture that

the mixed Hodge polynomials of these character varieties agree with previously conjectured

perverse Hodge polynomials of certain twisted parabolic Higgs moduli spaces, indicating the

possibility of a P = W conjecture for a suitable wild Hitchin system.

1 Introduction

1.1 A conjecture

Let C be a complex smooth projective curve of genus g ∈ Z≥0, with divisor

D = p1 + · · ·+ pk + rp

where p1, . . . , pk, p ∈ C are distinct points, p having multiplicity r ∈ Z≥0 with k ≥ 0 and k+r ≥ 1.

For n ∈ Z≥0, let Pn denote the set of partitions of n and set P :=
⋃
n Pn. Let µ = (µ1, . . . , µk) ∈ Pkn

denote a k-tuple of partitions of n, and we write |µ| := n. We denote by Mµ,r
Dol the moduli space

of stable parabolic Higgs bundles (E, φ) with quasi-parabolic structure of type µi at the pole pi,

with generic parabolic weights and fixed parabolic degree, and a twisted (meromorphic) Higgs

field

φ ∈ H0 (C;End(E)⊗KC(D))

with nilpotent residues compatible with the quasi-parabolic structure at the poles pi (but no re-

striction on the residue at p). Then Mµ,r
Dol is a smooth quasi-projective variety of dimension dµ,r

with a proper Hitchin map

χµ,r : Mµ,r
Dol → Aµ,r

defined by taking the characteristic polynomial of the Higgs field φ and thus taking values in the

Hitchin base

Aµ,r := ⊕ni=1H
0(C;KC(D)i).
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As χµ,r is proper it induces as in [dCM] a perverse filtration P on the rational cohomology

H∗(Mµ,r
Dol) of the total space. We define the perverse Hodge polynomial as

PH(Mµ,r
Dol ; q, t) :=

∑
dim

(
GrPi (H

k(Mµ,r
Dol))

)
qitk.

The recent paper [CDDP] by Chuang–Diaconescu–Donagi–Pantev gives a string theoretical

derivation of the following mathematical conjecture.

Conjecture 1.1.1. We expect

PH(Mµ,r
Dol ; q, t) = (qt2)dµ,rHµ,r(q

−1/2,−q1/2t).

Here, Hµ,r(z, w) ∈ Q(z, w) is defined by the generating function formula

∑

µ∈Pk

(−1)r|µ|w−dµ,rHµ,r(z, w)

(1− z2)(1− w2)

k∏

i=1

mµi
(xi) = Log

(
∑

λ∈P

Hg,r
λ (z, w)

k∏

i=1

H̃λ(z
2, w2;xi)

)
. (1.1.2)

The notation is explained as follows. For a partition λ ∈ P we denote

Hg,r
λ (z, w) =

∏ (−z2aw2l)r(z2a+1 − w2l+1)2g

(z2a+2 − w2l)(z2a − w2l+2)
, (1.1.3)

where the product is over the boxes in the Young diagram of λ and a and l are the arm length and

the leg length of the given box. We denote by mλ(xi) the monomial symmetric functions in the

infinitely many variables xi := (xi1 , xi2 , . . . ) attached to the puncture pi. H̃λ(q, t;xi) denotes the

twisted Macdonald polynomials of Garsia–Haiman [GH], which is a symmetric function in the

variables xi with coefficients from Q(q, t). Finally, Log is the plethystic logarithm, see e.g. [HLV1,

§2.3.3.] for a definition.

The paper [CDDP] gives several pieces of evidence for Conjecture 1.1.1. On physical grounds

it argues that the left hand side should be the generating function for certain refined BPS invari-

ants of some associated Calabi–Yau 3-orbifold Y , which they then relate by a refined Gopakumar–

Vafa conjecture to the generating function of the refined Pandharipande–Thomas invariants of

Y . In turn they can compute the latter in some cases using the recent approach of Nekrasov–

Okounkov [NO], finding agreement with Conjecture 1.1.1. Another approach is to use another

duality conjecture—the so-called “geometric engineering”—which conjecturally relates the left

hand side of Conjecture 1.1.1 to generating functions for equivariant indices of some bundles on

certain nested Hilbert schemes of points on the affine plane C2. They compute this using work

of Haiman [Hai] and find agreement with the right hand side of Conjecture 1.1.1.

Purely mathematical evidence for Conjecture 1.1.1 comes through a parabolic version of the

P =W conjecture of [dCHM], in the case when r = 0. In this case, by non-abelian Hodge theory

we expect the parabolic Higgs moduli space Mµ

Dol := Mµ,0
Dol to be diffeomorphic with a certain

character variety Mµ
B , which we will define more carefully below. The cohomology of Mµ

B carries

a weight filtration, and we denote by

WH(Mµ
B ; q, t) :=

∑

i,k

dim
(
GrW2i (H

k(Mµ
B ))
)
qitk,

the mixed Hodge polynomial of Mµ
B . The P = W conjecture predicts that the perverse filtration

P on H∗(Mµ

Dol) is identified with the weight filtration W on H∗(Mµ
B ) via non-abelian Hodge

theory. In particular, P =W would imply PH(Mµ

Dol; q, t) =WH(Mµ
B ; q, t), and Conjecture 1.1.1

for r = 0; PH(Mµ
Dol; q, t) replaced with WH(Mµ

B ; q, t) was the main conjecture in [HLV1].
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It is interesting to recall what inspired Conjecture 1.1.1 for r > 0. Already in [HV, Section

5], detailed knowledge of the cohomology ring H∗(M(2),r
Dol ) from [HT] was needed for the com-

putation of WH(M(2)
B ; q, t). In fact, it was observed in [dCHM] that the computation in [HV,

Remark 2.5.3] amounted to a formula for PH(Mµ

Dol; q, t), which is the first non-trivial instance

of Conjecture 1.1.1. This twist by r was first extended for the conjectured PH(M(n),r
Dol ) in [Mo] to

match the recursion relation in [CDP]; it was then generalized in [CDDP] to Conjecture 1.1.1. We

notice that the twisting by r only slightly changes the definition of Hg,r(z, w) above and the rest

of the right hand side of Conjecture 1.1.1 does not depend on r.

It was also speculated in [HV, Remark 2.5.3] that there is a character variety whose mixed

Hodge polynomial would agree with the one conjectured for PH(Mµ,r
Dol ; q, t) above.

Problem 1.1.4. Is there a character variety whose mixed Hodge polynomial agrees with PH(Mµ,r
Dol ; q, t)?

A natural idea to answer this question is to look at the symplectic leaves of the natural Pois-

son structure on Mµ,r
Dol . The symplectic leaves should correspond to moduli spaces of irregular

or wild Higgs moduli spaces. By the wild non-abelian Hodge theorem [BB] those will be diffeo-

morphic with wild character varieties.

1.2 Main result

In this paper we will study a class of wild character varieties which will conjecturally provide a

partial answer to the problem above. Namely, we will look at wild character varieties allowing

irregular singularities with polar part having a diagonal regular leading term. Boalch in [B3]

gives the following construction.

Let G := GLn(C) and let T ≤ G be the maximal torus of diagonal matrices. Let B+ ≤ G

(resp. B− ≤ G) be the Borel subgroup of upper (resp. lower) triangular matrices. Let U = U+ ≤
B+ (resp. U− ≤ B−) be the respective unipotent radicals, i.e., the group of upper (resp. lower)

triangular matrices with 1’s on the main diagonal. We fix m ∈ Z≥0 and

r := (r1, . . . , rm) ∈ Zm>0

an m-tuple of positive integers. For a µ ∈ Pkn we also fix a k-tuple (C1, . . . , Ck) of semisimple

conjugacy classes, such that the semisimple conjugacy class Ci ⊂ G is of type

µi = (µi1, µ
i
2, . . . ) ∈ Pn;

in other words, Ci has eigenvalues with multiplicities µij . Finally we fix

(ξ1, . . . , ξm) ∈ (Treg)m

an m-tuple of regular diagonal matrices, such that the k +m tuple

(C1, . . . , Ck,Gξ1, . . . ,Gξm)

of semisimple conjugacy classes is generic in the sense of Definition 2.2.9. Then define

Mµ,r
B := {(Ai, Bi)i=1..n ∈ (G×G)g, Xj ∈ Cj , Cj ∈ G, (Sj2i−1, S

j
2i)i=1,...,rj ∈ (U− ×U+)

rj |
(A1, B1) · · · (Ag, Bg)X1 · · ·XkC

−1
1 ξ1S

1
2r1 · · ·S1

1C1 · · ·C−1
m ξmS

m
2rm · · ·Sm1 Cm = In}//G,

where the affine quotient is by the conjugation action of G on the matrices Ai, Bi, Xi, Ci and the

trivial action on Sji . Under the genericity condition as above, Mµ,r
B is a smooth affine variety of

dimension dµ,r of (2.2.14). In particular, whenm = 0, we have the character varietiesMµ
B = Mµ,∅

B

of [HLV1].

The main result of this paper is the following:
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Theorem 1.2.1. Let µ ∈ Pkn be a k-tuple of partitions of n and r be an m-tuple of positive integers and

Mµ,r
B be the generic wild character variety as defined above. Then we have

WH(Mµ,r
B ; q,−1) = qdµ,rHµ̃,r(q

−1/2, q1/2),

where

µ̃ := (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn

is the type of

(C1, . . . , Ck,Gξ1, . . . ,Gξm)

and

r := r1 + · · ·+ rm.

The proof of this result follows the route introduced in [HV, HLV1, HLV2]. Using a theorem of

Katz [HV, Appendix], it reduces the problem of the computation ofWH(Mµ,r
B ; q,−1) to counting

Mµ,r
B (Fq), i.e., the Fq points of Mµ,r

B . We count it by a non-abelian Fourier transform. The novelty

here is the determination of the contribution of the wild singularities to the character sum.

The latter problem is solved via the character theory of the Yokonuma–Hecke algebra, which

is the convolution algebra on

C[U(Fq)\GLn(Fq)/U(Fq)],

where U is as above. The main computational result, Theorem 4.3.4, is an analogue of a theorem

of Springer (cf. [GP, Theorem 9.2.2]) which finds an explicit value for the trace of a certain central

element of the Hecke algebra in a given representation.

This theorem, in turn, rests on a somewhat technical result relating the classification of the

irreducible characters of the group N = (F×
q )

n ⋊ Sn to that of certain irreducible characters of

GLn(Fq). To explain briefly, if Qn denotes the set of maps from Γ1 = F̂×
q (the character group

of F×
q ) to the set of partitions of total size n (see Section 3.7 for definitions and details), then

Qn parametrizes both IrrN and a certain subset of IrrGLn(Fq). Furthermore, both of these sets

are in bijection with the irreducible characters of the Yokonuma–Hecke algebra. Theorem 3.9.5

clarifies this relationship, establishing an analogue of a result proved by Halverson and Ram [HR,

Theorem 4.9(b)], though by different techniques.

Our main result Theorem 1.2.1 then leads to the following conjecture.

Conjecture 1.2.2. We have

WH(Mµ,r
B ; q, t) = (qt2)dµ,rHµ̃,r(q

−1/2,−tq−1/2).

This gives a conjectural partial answer to our Problem 1.1.4 originally raised in [HV, Remark

2.5.3]. Namely, in the cases when at least one of the partitions µi = (1n), we can conjecturally find

a character variety whose mixed Hodge polynomial agrees with the mixed Hodge polynomial of

a twisted parabolic Higgs moduli space. This class does not yet include the example studied in

[HV, Remark 2.5.3], where there is a single trivial partition µ = ((n)). We expect that those cases

could be covered with more complicated, possibly twisted, wild character varieties.

Finally, we note that a recent conjecture [STZ, Conjecture 1.12] predicts that in the case when

g = 0, k = 0,m = 1 and r = r1 ∈ Z>0, the mixed Hodge polynomial of our (and more general)

wild character varieties, are intimately related to refined invariants of links arising from Stokes

data. Our formulas in this case should be related to refined invariants of the (n, rn) torus links.

We hope that the natural emergence of Hecke algebras in the arithmetic of wild character varieties

will shed new light on Jones’s approach [Jo] to the HOMFLY polynomials via Markov traces on

the usual Iwahori–Hecke algebra and the analogous Markov traces on the Yokonuma–Hecke

algebra, c.f. [J1, CL, JP].
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The structure of the paper is as follows. Section 2 reviews mixed Hodge structures on the

cohomology of algebraic varieties, the theorem of Katz mentioned above, and gives the precise

definition of a wild character variety from [B3]. In Section 3 we recall the abstract approach

to Hecke algebras; the explicit character theory of the Iwahori–Hecke and Yokonuma–Hecke

algebras is also reviewed and clarified. In Section 4 we recall the arithmetic Fourier transform

approach of [HLV1] and perform the count on the wild character varieties. In Section 5 we prove

our main Theorem 1.2.1 and discuss our main Conjecture 1.2.2. In Section 6 we compute some

specific examples of Theorem 1.2.1 and Conjecture 1.2.2, when n = 2, with particular attention

paid to the cases when Mµ,r
B is a surface.

Acknowledgements. We thank Philip Boalch, Daniel Bump, Maria Chlouveraki, Alexander

Dimca, Mario Garcı́a-Fernández, Eugene Gorsky, Emmanuel Letellier, András Némethi, Loı̈c

Poulain d’Andecy, Vivek Shende, Szilárd Szabó and Fernando R. Villegas for discussions and/or

correspondence. We are also indebted to Lusztig’s observation [L, 1.3.(a)] which led us to study

representations of Yokonuma–Hecke algebras. This research was supported by École Polytech-

nique Fédérale de Lausanne, an Advanced Grant “Arithmetic and physics of Higgs moduli

spaces” no. 320593 of the European Research Council and the NCCR SwissMAP of the Swiss

National Foundation. Additionally, in the final stages of this project, MLW was supported by

SFB/TR 45 “Periods, moduli and arithmetic of algebraic varieties”, subproject M08-10 “Moduli

of vector bundles on higher-dimensional varieties”.

2 Generalities

2.1 Mixed Hodge polynomials and counting points

To motivate the problem of counting points on an algebraic variety, we remind the reader of some

facts concerning mixed Hodge polynomials and varieties with polynomial count, more details of

which can be found in [HV, §2.1]. Let X be a complex algebraic variety. The general theory of

[D1, D2] provides for a mixed Hodge structure on the compactly supported cohomology of X :

that is, there is an increasing weight filtration W• on Hj
c (X,Q) and a decreasing Hodge filtration

F • on Hj
c (X,C). The compactly supported mixed Hodge numbers of X are defined as

hp,q;jc (X) := dimC GrpFGrWp+qH
j
c (X,C),

the compactly supported mixed Hodge polynomial of X by

Hc(X ;x, y, t) :=
∑

hp,q;jc (X)xpyqtj ,

and the E-polynomial of X by

E(X ;x, y) := Hc(X ;x, y,−1).

We could also define the mixed weight polynomial

WH(X ; q, t) =
∑

dimC GrWk H
j
c (X,C)q

k/2tj = Hc(X ; q1/2, q1/2, t)

which specializes to the weight polynomial

E(q) :=WH(X ; q,−1) = E(X ; q1/2, q1/2).

One observes that the compactly supported Poincaré polynomial Pc(X ; t) is given by

Pc(X ; t) = Hc(X ; 1, 1, t).
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Suppose that there exists a separated scheme X over a finitely generated Z-algebra R, such

that for some embedding R →֒ C we have

X ×R C ∼= X ;

in such a case we say that X is a spreading out of X . If, further, there exists a polynomial PX(w) ∈
Z[w] such that for any homomorphism R → Fq (where Fq is the finite field of q elements), one

has

|X (Fq)| = PX(q),

then we say that X has polynomial count and PX is the counting polynomial of X . The motivating

result is then the following.

Theorem 2.1.1. (N. Katz, [HV, Theorem 6.1.2]) Suppose that the complex algebraic variety X is of

polynomial count with counting polynomial PX . Then

E(X ;x, y) = PX(xy).

Remark 2.1.2. Thus, in the polynomial count case we find that the count polynomial PX(q) =

E(X ; q) agrees with the weight polynomial. We also expect our varieties to be Hodge–Tate, i.e.,

hp,q;jc (X) = 0 unless p = q, in which case Hc(X ;x, y, t) = WH(X ;xy, t). Thus, in these cases

we are not losing information by considering WH(X ;xy, t) (resp. E(X ; q)) instead of the usual

Hc(X ;x, y, t) (resp. E(X ;x, y)).

2.2 Wild character varieties

The wild character varieties we study in this paper were first mentioned in [B2, §3 Remark 5], as

a then new example in quasi-Hamiltonian geometry—a “multiplicative” variant of the theory of

Hamiltonian group actions on symplectic manifolds—with a more thorough (and more general)

construction given in [B3, §8]. We give a direct definition here for which knowledge of quasi-

Hamiltonian geometry is not required; however, as we appeal to results of [B3, §9] on smoothness

and the dimension of the varieties in question, we use some of the notation of [B3, §9] to justify

the applicability of those results.

2.2.1 Definition

We now set some notation which will be used throughout the rest of the paper. Let G := GLn(C)

and fix the maximal torus T ≤ G consisting of diagonal matrices; let g := gln(C), t := Lie(T)

be the corresponding Lie algebras. Let B+ ≤ G (resp., B− ≤ G) be the Borel subgroup of upper

(resp., lower) triangular matrices. Let U = U+ ≤ B+ (resp., U− ≤ B−) be the unipotent radical,

i.e., the group of upper (resp., lower) triangular matrices with 1s on the main diagonal; one will

note that each of these subgroups is normalized by T.

Definition 2.2.1. We will use the following notation. For r ∈ Z>0, we set

Ar := G× (U+ ×U−)
r × T.

An element of Ar will typically be written (C, S, t) with

S = (S1, . . . , S2r) ∈ (U+ ×U−)
r,

where Si ∈ U+ if i is odd and Si ∈ U− if i is even. The group T acts on (U+ ×U−)
r by

x · S = (xS1x
−1, . . . , xS2rx

−1);
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the latter tuple will often be written simply as xSx−1.

We fix g, k,m ∈ Z≥0 with k +m ≥ 1. Fix also a k-tuple

C := (C1, . . . , Ck)

of semisimple conjugacy classes Cj ⊆ G; the multiset of multiplicities of the eigenvalues of each

Cj determines a partition µj ∈ Pn. Hence we obtain a k-tuple

µ := (µ1, . . . , µk) ∈ Pkn

which we call the type of C. Fix also

r := (r1, . . . , rm) ∈ Zm>0.

We will write r :=
∑m
α=1 rα. Now consider the product

Rg,C,r := (G×G)g × C1 × · · · × Ck ×Ar1 × · · · × Arm .

The affine variety Rg,C,r admits an action of G× Tm given by

(y, x1, . . . , xm) · (Ai, Bi, Xj , Cα, S
α, tα) =

(
yAiy

−1, yBiy
−1, yXjy

−1, xαCαy
−1, xαSαx

−1
α , tα

)
,

(2.2.2)

where the indices run 1 ≤ i ≤ g, 1 ≤ j ≤ k, 1 ≤ α ≤ m.

Now, fixing an element ξ = (ξ1, . . . , ξm) ∈ Tm, we define a closed subvariety of Rg,C,r by

Ug,C,r,ξ :=

{
(Ai, Bi, Xj , Cα, S

α, tα) ∈ Rg,C,r :

g∏

i=1

(Ai, Bi)

k∏

j=1

Xj

m∏

α=1

C−1
α ξαS

α
2rα · · ·Sα1 Cα = In,

tα = ξα, 1 ≤ α ≤ m

}
, (2.2.3)

where the product means we write the elements in the order of their indices:

d∏

i=1

yi = y1 · · · yd.

It is easy to see that Ug,C,r,ξ is invariant under the action of G × Tm. Finally, we define the

(generic) genus g wild character variety with parameters C, r, ξ as the affine geometric invariant theory

quotient

Mg,C,r,ξ
B := Ug,C,r,ξ/(G× Tm) = SpecC[Ug,C,r,ξ]G×Tm

. (2.2.4)

Since g will generally be fixed and understood, we will typically omit it from the notation. Fur-

thermore, since the invariants we compute depend only on the tuples µ and r, rather than the

actual conjugacy classes C and ξ, we will usually abbreviate our notation to Mµ,r
B and Uµ,r.

Remark 2.2.5. The space Ar defined at the beginning of Definition 2.2.1 is a “higher fission space”

in the terminology of [B3, §3]. These are spaces of local monodromy data for a connection with a

higher order pole. To specify a de Rham space—which are constructed in [BB], along with their

Dolbeault counterparts—at each higher order pole, one specifies a “formal type” which is the

polar part of an irregular connection which will have diagonal entries under some trivialization;

this serves as a “model” connection. The de Rham moduli space then parametrizes holomorphic

isomorphism classes of connections which are all formally isomorphic to the specified formal
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type. Locally these holomorphic isomorphism classes are distinguished by their Stokes data,

which live in the factor (U+ × U−)
r appearing in Ar. The factor of T appearing is the “formal

monodromy” which differs from the actual monodromy by the product of the Stokes matrices,

as appearing in the last set of factors in the expression (2.2.3). The interested reader is referred to

[B1, §2] for details about Stokes data.

Remark 2.2.6. As mentioned above, these wild character varieties were constructed in [B3, §8]

as quasi-Hamiltonian quotients. In quasi-Hamiltonian geometry, one speaks of a space with a

group action and a moment map into the group. In this case, we had an action on Rµ,r given in

(2.2.2) and the corresponding moment map Φ : Rµ,r → G× Tm would be

(Ai, Bi, Xj , Cα, Sα, tα) 7→




g∏

i=1

[Ai, Bi]

k∏

j=1

Xj

m∏

α=1

C−1
α tαS

α
2rα · · ·Sα1 Cα, t−1

1 , . . . , t−1
m


 .

Then one sees that Uµ,r = Φ−1((In, ξ
−1)) and so Mµ,r

B = Φ−1((In, ξ
−1))/(G × Tm) is a quasi-

Hamiltonian quotient.

Remark 2.2.7. By taking determinants in (2.2.3) we observe that a necessary condition for Uµ,r,

and hence Mµ,r
B , to be non-empty is that

k∏

j=1

det Cj ·
m∏

α=1

det ξα = 1, (2.2.8)

noting that detSαp = 1 for 1 ≤ α ≤ m, 1 ≤ p ≤ 2rα.

2.2.2 Smoothness and dimension computation

We recall [HLV1, Definition 2.1.1].

Definition 2.2.9. The k-tuple C = (C1, . . . , Ck) is generic if the following holds. If V ⊆ Cn is a

subspace stable by some Xi ∈ Ci for each i such that

k∏

i=1

det (Xi|V ) = 1 (2.2.10)

then either V = 0 or V = Cn. When, additionally,

ξ = (ξ1, . . . , ξm) ∈ Tm

we say that

C × ξ = (C1, . . . , Ck, ξ1, . . . , ξm)

is generic if

(C1, . . . , Ck,Gξ1, . . . ,Gξm)

is, where Gξi is the conjugacy class of ξi in G.

Remark 2.2.11. It is straightforward to see that the genericity of (C1, . . . , Ck) for a k-tuple of semi-

simple conjugacy classes can be formulated in terms of the spectra of the matrices in Ci as follows.

Let

Ai := {αi1, . . . , αin}
be the multiset of eigenvalues of a matrix in Ci for i = 1 . . . k. Then (C1, . . . , Ck) is generic if and

only if the following non-equalities (2.2.12) hold. Write

[A] :=
∏

α∈A

a
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for any multiset A ⊆ Ai. The non-equalities are

[A′
1] · · · [A′

k] 6= 1 (2.2.12)

for A′
i ⊆ Ai of the same cardinality n′ with 0 < n′ < n.

Theorem 2.2.13. For a generic choice of C×ξ (in the sense of Definition 2.2.9), the wild character variety

Mµ,r
B is smooth. Furthermore, the G× Tm action on Uµ,r is scheme-theoretically free. Finally, one has

dimMµ,r
B = (2g + k − 2)n2 − ‖µ‖2 + n(n− 1) (m+ r) + 2 =: dµ,r, (2.2.14)

where r :=
∑m

α=1 rα and

‖µ‖2 =
k∑

j=1

ℓj∑

p=1

(µjp)
2

for

µj = (µj1, . . . , µ
j
ℓj
).

The first statement is a special case of [B3, Corollary 9.9], the second statement follows from

the observations following [B3, Lemma 9.10], and the dimension formula comes from [B3, §9,

Equation (41)]. To see that our wild character varieties are indeed special cases of those con-

structed there, one needs to see that the “double” D = G ×G (see [B3, Example 2.3]) is a special

case of a higher fission variety, as noted at [B3, §3, Example (1)], and that D//C−1G ∼= C for a

conjugacy class C ⊂ G. Then one may form the space

Sg,k,r := D⊛Gg ⊛G D⊛Gk ⊛G Ar1 ⊛G · · ·⊛G Arm//G,

in the notation of [B3, §§2,3] and see that Mµ,r
B is a quasi-Hamiltonian quotient of the above

space by the group Gk × Tm at the conjugacy class (C × ξ), and is hence a wild character variety

as defined at [B3, p.342].

To see that the genericity condition given at [B3, §9, Equations (38), (39)] specializes to ours

(Definition 2.2.9), we observe that for G = GLn(C) the Levi subgroup L of a maximal standard

parabolic subgroup P corresponds to a subgroup of matrices consisting of two diagonal blocks,

and as indicated earlier in the proof of [B3, Corollary 9.7], the map denoted prL takes the deter-

minant of each factor. In particular, it takes the determinant of the relevant matrices restricted to

the subspace preserved by P . But this is the condition in Definition 2.2.9.

Finally, using [B3, §9, Equation (41)] and the fact that

dimU+ = dimU− =

(
n

2

)
,

it is straightforward to compute the dimension as (2.2.14).

3 Hecke Algebras

In the following, we describe the theory of Hecke algebras that we will need for our main results.

Let us first explain some notation that will be used. Typically, the object under discussion will be

a C-algebra A which is finite-dimensional over C. We will denote its set of (isomorphism classes

of) representations by RepA and the subset of irreducible representations by IrrA; since it will

often be inconsequential, we will often also freely confuse an irreducible representation with its

character. Of course, if A = C[G] is the group algebra of a groupG, then we often shorten IrrC[G]

to IrrG. We will also sometimes need to consider “deformations” or “generalizations” of these
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algebras. If H is an algebra free of finite rank over C[u±1] the extension C(u)⊗C[u±1]H of such an

algebra to the quotient field C(u) of C[u±1] will be denoted by H(u). Note that this abbreviates

the notation C(u)H in [CPA] and [GP, § 7.3]. Now, if z ∈ C× and θz : C[u
±1] → C is the C-algebra

homomorphism which takes u 7→ z, then we may consider the “specialization” C ⊗θz H of H to

u = z which we will denote by H(z).

3.1 Definitions and Conventions

LetG be a finite group andH ≤ G a subgroup. Given a subset S ⊆ G, we will denote its indicator

function by IS : G→ Z≥0, that is to say,

IS(x) =

{
1 x ∈ S

0 otherwise.

Let M be the vector space of functions f : G→ C such that

f(hg) = f(g)

for all h ∈ H, g ∈ G. Clearly, M can be identified with the space of complex-valued functions on

H\G and so has dimension [G : H ]. We may choose a set V of right H-coset representatives, so

that

G =
∐

v∈V

Hv. (3.1.1)

Such a choice gives a basis

{fv := IHv}v∈V (3.1.2)

of M . Furthermore, we have a G-action on M via

(g · f)(x) := f(xg). (3.1.3)

With this action, M is identified with the induced representation IndGH 1H of the trivial represen-

tation 1H on H .

The Hecke algebra associated to G and H , which we denote by H (G,H), is the vector space of

functions ϕ : G→ C such that

ϕ(h1gh2) = ϕ(g),

for h1, h2 ∈ H, g ∈ G. It has the following convolution product

(ϕ1 ∗ ϕ2)(g) :=
1

|H |
∑

a∈G

ϕ1(ga
−1)ϕ2(a) =

1

|H |
∑

b∈G

ϕ1(b)ϕ2(b
−1g). (3.1.4)

Furthermore, there is an action of H (G,H) on M , where, for ϕ ∈ H (G,H), f ∈ M, g ∈ G, one

has

(ϕ.f)(g) :=
1

|H |
∑

x∈G

ϕ(x)f(x−1g). (3.1.5)

One easily checks that this is well-defined (by which we mean that ϕ.f ∈M ).
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It is clear that H (G,H) may be identified with C-valued functions on H\G/H , and hence it

has a basis indexed by the double H-cosets in G. Let W ⊆ G be a set of double coset representa-

tives which contains e (the identity element of G), so that

G =
∐

w∈W

HwH. (3.1.6)

Then for w ∈ W, we will set

Tw := IHwH ;

these form a basis of H (G,H).

Proposition 3.1.7. [I, Proposition 1.4] Under the convolution product (3.1.4), H (G,H) is an associative

algebra with identity Te = IH . The action (3.1.5) yields a unital embedding of algebras H (G,H) →
EndCM whose image is EndGM . Thus we may identify

H (G,H) = EndG IndGH 1H .

Remark 3.1.8. (Relation with the group algebra) The group algebra C[G] may be realized as the

space of functions σ : G→ C with the multiplication

∗G : C[G]⊗C C[G] → C[G]

given by

(σ1 ∗G σ2)(x) =
∑

a∈G

σ1(a)σ2(a
−1x).

It is clear that we have an embedding of vector spaces

ι : H (G,H) →֒ C[G]

and it is easy to see that if ϕ1, ϕ2 ∈ H (G,H), we have

ι(ϕ1) ∗G ι(ϕ2) = |H |(ϕ1 ∗ ϕ2), (3.1.9)

where the right hand side is the convolution product in H (G,H). Furthermore, the inclusion

takes the identity element Te ∈ H (G,H) to IH , which is not the identity element in C[G]. Thus,

while the relationship between the multiplication in H (G,H) and that in C[G] will be important

for us, we should be careful to note that ι is not an algebra homomorphism. When we are dealing

with indicator functions for double H-cosets, we will write Tv, v ∈ W when we consider it as an

element of H (G,H), and in contrast, we will write IHvH when we think of it as an element of

C[G]. We will also be careful to indicate the subscript in ∗G when we mean multiplication in the

group algebra (as opposed to the Hecke algebra).

We will need some refinements regarding Hecke algebras taken with respect to different sub-

groups.

3.1.1 Quotients

LetG be a group,H ≤ G a subgroup and suppose thatH = K⋊L for some subgroupsK , L ≤ H .

Our goal is to show that there is a natural surjection H (G,K) ։ H (G,H). We note that since

K ≤ H , there is an obvious inclusion of vector spaces H (G,H) ⊆ H (G,K), when thought of as
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bi-invariant G-valued functions. We will write ∗K and ∗H to denote the convolution product in

the respective Hecke algebras. From (3.1.9), we easily see that for ϕ1, ϕ2 ∈ H (G,H)

ϕ1 ∗K ϕ2 = |L|(ϕ1 ∗H ϕ2). (3.1.10)

Let W = WK ⊆ G be a set of double K-coset representatives such that L ⊆ W ; note that

for ℓ ∈ L, KℓK = ℓK = Kℓ. If ℓ ∈ L and w ∈ W , then it follows from [I, Lemma 1.2] that

Tℓ ∗K Tw = Tℓw. From this it is easy to see that

E = EL :=
1

|L|
∑

ℓ∈L

Tℓ

is an idempotent in H (G,K). In fact, one notes that E = |L|−1IH = |L|−1
1H (G,H), thought of as

bi-invariant functions on G.

Lemma 3.1.11. If WK ⊆ NG(L) then E is central in H (G,K).

Proof. It is enough to show that for any w ∈W , E ∗K Tw = Tw ∗K E. One has

E ∗K Tw =
1

|L||K|

∑

ℓ∈L

Tℓ ∗K Tw =
1

|H |

∑

ℓ∈L

Tℓw =
1

|H |

∑

ℓ∈L

Tw(w−1ℓw) =
1

|H |

∑

m∈L

Twm = Tw ∗K E.

Proposition 3.1.12. If E is central in H (G,K) then there exists a surjective algebra homomorphism

H (G,K) → H (G,H) which takes 1H (G,K) to 1H (G,H), given by

α 7→ |L|(E ∗K α).

Proof. It is easy to check that this map is well-defined, i.e., that if α isK-bi-invariant, then |L|(E∗K
α) is H-bi-invariant. To see that it preserves the convolution product, one uses the fact that E is

a central idempotent and (3.1.10) to see that

|L| (E ∗K (α ∗K β)) = |L| ((E ∗K α) ∗K (E ∗K β)) = |L|(E ∗K α) ∗H |L|(E ∗K β).

By the remark preceding Lemma 3.1.11, this map preserves the identity. Finally, it is surjective,

for given ϕ ∈ H (G,H), as mentioned above, we may think of it as an element of H (G,K) and

we find |L|−1ϕ 7→ α.

3.1.2 Inclusions

Suppose now that G is a group L, H ≤ G are subgroups and let K := H ∩L. Assume H = K⋉U

for some subgroupU ≤ G and thatL ≤ NG(U). We write ∗K and ∗H for the convolution products

in H (L,K) and H (G,H), respectively.

Lemma 3.1.13. Suppose x, y ∈ L are such that x ∈ HyH . Then x ∈ KyK .

Proof. We write x = h1yh2 for some h1, h2 ∈ H . SinceH = K⋉U , we may write h1 = ku for some

k ∈ K , u ∈ U . Then x = ky(y−1uy)h2, but since y ∈ L ≤ NG(U), v := y−1uy ∈ U ≤ H and so

vh2 ∈ H . But also vh2 = (ky)−1x ∈ L, so vh2 ∈ K = H ∩ L, and hence x = ky(vh2) ∈ KyK .

Proposition 3.1.14. One has an inclusion of Hecke algebras H (L,K) →֒ H (G,H), taking 1H (L,K)

to 1H (G,H), given by ϕ 7→ ϕH , where

ϕH(g) :=
1

|K|
∑

x∈L

ϕ(x)IH (x−1g).
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Proof. It is clear that this is a map of vector spaces. To show that it preserves multiplication, let
ϕ1, ϕ2 ∈ H (L,K). Then

(ϕH
1 ∗H ϕ

H
2 )(g) =

1

|H |

∑

a∈G

ϕ1(a)ϕ2(a
−1

g) =
1

|H ||K|2

∑

x,y∈L
a∈G

ϕ1(y)IH(y−1
a)ϕ2(x)IH(x−1

a
−1

g)

=
1

|U ||K|3

∑

x,y∈L
a∈yH

ϕ1(y)ϕ2(x)IH(x−1
a
−1

g) =
1

|U ||K|3

∑

x,y∈L
h∈H

ϕ1(y)ϕ2(x)IH(x−1
h
−1

y
−1

g)

=
1

|U ||K|3

∑

x,y∈L
k∈K,u∈U

ϕ1(y)ϕ2(x)IH(x−1
k
−1

u
−1

y
−1

g).

Making the substitution x = k−1z, this becomes

(ϕH
1 ∗H ϕ

H
2 )(g) =

1

|U ||K|3

∑

y,z∈L
k∈K,u∈U

ϕ1(y)ϕ2(k
−1

z)IH(z−1
u
−1

y
−1

g)

=
1

|U ||K|2

∑

y,z∈L
u∈U

ϕ1(y)ϕ2(z)IH
(

(z−1
u
−1

z)z−1
y
−1

g
)

=
1

|K|2

∑

y,z∈L

ϕ1(y)ϕ2(z)IH
(

z
−1

y
−1

g
)

and now letting z = y−1x,

(ϕH1 ∗H ϕH2 )(g) =
1

|K|2
∑

x,y∈L

ϕ1(y)ϕ2(y
−1x)IH

(
x−1g

)
=

1

|K|
∑

x∈L

(ϕ1 ∗K ϕ2)(x)IH
(
x−1g

)

= (ϕ1 ∗K ϕ2)
H(g).

It is easy to see that 1H

H (L,K) = IHK = IH = 1H (G,H), so we do indeed get a map of algebras.

To see that it is injective, let V ⊆ L be a set of double K-coset representatives, so that

{TH (L,K)
x }x∈V is a basis of H (L,K). Lemma3.1.13 says that if W is a set of double H-coset

representatives in G, then we may take V ⊆ W . We write {TH (G,H)
w }w∈W for the corresponding

basis of H (G,H), with the subscripts denoting which Hecke algebra the element lies in. Then

we observe that

(TH (L,K)
x )H(x) =

1

|K|
∑

y∈L

TH (L,K)
x (y)IH(y−1x) =

1

|K|
∑

y∈KxK

IH(y−1x) > 0.

This says that the T
H (G,H)
x -component of (T

H (L,K)
x )H is non-zero, but since V ⊆ W , the set{

T
H (G,H)
x

}
x∈V

is linearly independent, and hence so is the image
{
(T

H (L,K)
x )H

}
x∈V

of the basis

of H (L,K).

3.2 Iwahori–Hecke Algebras of type An−1

Let G be the algebraic group GLn defined over the finite field Fq. Let T ≤ G be the maximal split

torus of diagonal matrices. There will be a corresponding root system with Weyl group Sn, the

symmetric group on n letters, which we will identify with the group of permutation matrices.

Let B ≤ G be the Borel subgroup of upper triangular matrices. Let the finite dimensional algebra

H (G,B) be as defined above. The Bruhat decomposition for G, with respect to B, allows us

to think of Sn as a set of double B-coset representatives, and hence {Tw}w∈Sn
gives a basis of

H (G,B). Furthermore, the choice of B determines a set of simple reflections {s1, . . . , sn−1} ⊆ Sn;

we will write Ti := Tsi . The main result of [I, Theorem 3.2] gave the following characterization

of H (G,B) in terms of generators and relations.
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(a) If w = si1 · · · sik is a reduced expression for w ∈ Sn, then Tw = Ti1 · · ·Tik . Hence H (G,B) is

generated as an algebra by T1, . . . , Tℓ.

(b) For 1 ≤ i ≤ ℓ, T 2
i = qTi + (q − 1)1.

3.2.1 A generic deformation

If u is an indeterminate over C, we may consider the C[u±1]-algebra Hn generated by elements

T1, . . . ,Tn−1 subject to the relations

(a) TiTj = TjTi for all i, j = 1, . . . , n− 1 such that |i − j| > 1;

(b) TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2;

(c) T
2
i = u · 1 + (u− 1)Ti;

Hn is called the generic Iwahori–Hecke algebra of type An−1 with parameter u. Setting u = 1, we

see that the generators satisfy those of the generating transpositions for Sn and [I, Theorem 3.2]

shows that for u = q these relations give the Iwahori–Hecke algebra above, so (cf. [CR, (68.11)

Proposition])

Hn(1) ∼= C[Sn] Hn(q) ∼= H (G,B). (3.2.1)

3.3 Yokonuma–Hecke Algebras

Let T ≤ B ≤ G be as in the previous example, let U ≤ B be the unipotent radical of B, namely, the

group of upper triangular unipotent matrices. Then the algebra H (G,U), first studied in [Y1],

is called the Yokonuma–Hecke algebra associated to G,B,T. Let N(T) be the normalizer of T in G;

N(T) is the group of the monomial matrices (i.e., those matrices for which each row and each

column has exactly one non-zero entry) and one has N(T) = T ⋊ Sn, where the Weyl group

Sn acts by permuting the entries of a diagonal matrix. We will often write N for N(T). By the

Bruhat decomposition, one may take N ≤ G as a set of double U-coset representatives. Section

3.1 describes how H (G,U) has a basis {Tv, v ∈ N(T)}.

3.3.1 A generic deformation

The algebra H (G,U) has a presentation in terms of generators and relations due to [Y1, Y2],

which we now describe and which we will make use of later on. For this consider the C[u±1]-

algebra Yd,n generated by the elements

Ti, i = 1, . . . , n− 1 and hj for j = 1, . . . , n

subject to the following relations:

(a) TiTj = TjTi for all i, j = 1, . . . , n− 1 such that |i − j| > 1;

(b) TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2;

(c) hihj = hjhi for all i, j = 1, . . . , n;

(d) hjTi = Tihsi(j) for all i = 1, . . . , n− 1, and j = 1, . . . , n, where si := (i, i+ 1) ∈ Sn;

(e) h
d
i = 1 for all i = 1, . . . , n;
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(f) T
2
i = ufifi+1 + (u − 1)eiTi for i = 1, . . . , n− 1, where

ei :=
1

d

d∑

j=1

h
j
ih

−j
i+1 (3.3.1)

for i = 1, . . . , n− 1, and

fi :=

{
h
d/2
i for d even,

1 for d odd
(3.3.2)

for i = 1, . . . , n.

In Theorem 3.4.3 below, we will see that H (G,U) arises as the specialization Yq−1,n(q).

Remark 3.3.3. The modern definition of Yd,n in terms of generators and relations takes fi = 1,

regardless of the parity of d (cf. [CPA] and [J2]). We decided to take that of [Y1] so that the

meaning of the generators is more transparent. Again, this will be clearer from Theorem 3.4.3

and its proof.

3.4 Some computations in H (G,U) and Yd,n(u)

We continue with the context of the previous subsection. There is a canonical surjection p : N →
Sn, which allows us to define the length of an element v ∈ N as that of p(v); we will denote this

by ℓ(v).

Lemma 3.4.1. If v1, v2 ∈ N are such that ℓ(v1v2) = ℓ(v1)+ ℓ(v2), then Tv1 ∗Tv2 = Tv1v2 . In particular,

if h ∈ T, v ∈ N then Th ∗ Tv = Thv.

Proof. This follows readily from [I, Lemma 1.2] using the fact that, in the notation there, for v ∈ N,

ind(v) = qℓ(v).

Our first task is to describe the relationship of Yd,n to H (G,U), as alluded to at the beginning

of Section 3.3.1. To do this, we follow the approach in [GP, (7.4),(8.1.6)]. For example, the u = 1

specialization of Yq−1,n gives

Yq−1,n(1) = C⊗θ1 Yq−1,n
∼= C[N] = C[(F×

q )
n ⋊Sn] (3.4.2)

the group algebra of the normalizer in G of the torus T (Fq).

Theorem 3.4.3. Let q be a prime power and fix a multiplicative generator tg ∈ F×
q . For t ∈ F×

q , let

hi(t) ∈ T be the diagonal matrix obtained by replacing the ith diagonal entry of the identity matrix by t.

Finally, we let si ∈ N denote the permutation matrix corresponding to (i, i+ 1) and

ωi := sihi(−1) = hi+1(−1)si ∈ N.

Then one has an isomorphism of C-algebras Yq−1,n(q) ∼= H (G,U) under which

Ti 7→ Tωi
∈ H (G,U) and hi 7→ Thi(tg) ∈ H (G,U).

Note that ωi is the matrix obtained by replacing the (2 × 2)-submatrix of the identity matrix

formed by the ith and (i+ 1)st rows and columns by

[
0 1

−1 0

]
.
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Proof. It is sufficient to show that Tωi
, Thj(tg) satisfy the relations prescribed for Ti, hj in Section

3.3.1. Lemma 3.4.1 makes most of these straightforward. The computation in [Y1, Théorème 2.4◦]

gives

T 2
ωi

= qThi(−1)hi+1(−1) +
∑

t∈F
×
q

Thi(t)hi+1(t−1)Tωi
,

which is relation (f) .

The longest element w0 ∈ W = Sn is the permutation
∏⌊n/2⌋
i=1 (i, n + 1 − i) (the order of the

factors is immaterial since this is a product of disjoint transpositions) and is of length
(
n
2

)
. We

may choose a reduced expression

w0 = si1 · · · si(n2)
. (3.4.4)

With the same indices as in (3.4.4), we define

ω0 := ωi1 · · ·ωi(n2)
∈ N, and T0 := Ti1 · · ·Ti(n2)

∈ Yd,n. (3.4.5)

Using the braid relations (a) and (b) and arguing as for Matsumoto’s Theorem [GP, Theorem

1.2.2], one sees that T0 is independent of the choice of reduced expression (3.4.4). Now, Lemma

3.4.1 shows that

Tω0 = Tωi1
· · ·Tωi

(n2)
∈ H (G,U)

and Theorem 3.4.3 shows that this corresponds to T0 ∈ Yq−1,n(q).

Lemma 3.4.6. The element T
2
0 is central in Yd,n. It follows, by specialization, that T 2

ω0
is central in

H (G,U).

Proof. Proceeding as in [GP, § 4.1], we define a monoid B
+ generated by

T1, . . . , Tn−1, h1, . . . , hn

and subject to the relations

(a) TiTj = TjTi for 1 ≤ i, j ≤ n− 1 with |i− j| > 1;

(b) TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2;

(c) hjTi = Tihsi(j) for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, where si := (i, i+ 1) ∈ Sn.

Observe that these are simply relations (a), (b) and (d) of those given for Yd,n in Section 3.3.1; one

can define the monoid algebra C[u±1][B+] of which Yd,n will be a quotient via the mapping

Ti 7→ Ti hj 7→ hj ,

for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

Letting

T0 := Ti1 · · · Ti(n2)
∈ C[u±1][B+],

it is enough to show that T0 is central in C[u±1][B+]. Arguing as in the proof of [GP, Lemma 4.1.9],

one sees that T2
0 commutes with each Ti, 1 ≤ i ≤ n− 1. Furthermore, relation (c) and (4.2.5) give

hjT
2
0 = T

2
0hw2

0(j)
= T

2
0hj ,

noting that w2
0 = 1 implies w0 = w−1

0 = si
(n2)

· · · si1 .
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The following will be useful when we look at representations.

Lemma 3.4.7. The element ei defined in (3.3.1) commutes with Ti in Yd,n(u).

Proof. By relation (d), we see that Ti(h
j
ih

−j
i+1) = (h−ji h

j
i+1)Ti. The Lemma follows by averaging

over j = 1, . . . , d and observing that both hi and hi+1 have order d.

Lemma 3.4.8. The elements T1, . . . ,Tn−1 ∈ Yd,n(u) are all conjugate.

Proof. From relation (f) in Section 3.3.1, we see that each Ti is invertible, with inverse

T
−1
i = u−1(Ti − (u − 1)ei)fifi+1.

Then

(TiTi+1Ti)Ti+1(TiTi+1Ti)
−1 = (TiTi+1Ti)Ti+1(Ti+1TiTi+1)

−1 = Ti,

and the statement follows by transitivity of the conjugacy relation.

3.5 The double centralizer theorem

The following is taken from [KP, § 3.2]. Let K be an arbitrary field, A a finite-dimensional algebra

over K and let W be a finite-dimensional (left) A-module. Recall that W is said to be semisimple

if it decomposes as a direct sum of irreducible submodules. If A is semisimple as a module over

itself then it is called a semisimple algebra; the Artin–Wedderburn theorem then states that any

such A is a product of matrix algebras over (finite-dimensional) division K-algebras. If U is a

finite-dimensional simple A-module, then the isotypic component of W of type U is the direct sum

of all submodules of W isomorphic to U . The isotypic components are then direct summands

of W and their sum gives a decomposition of W precisely when the latter is semisimple; in this

case, it is called the isotypic decomposition of W . We recall the following, which is often called the

“double centralizer theorem.”

Theorem 3.5.1. Let W a finite-dimensional vector space over K, let A ⊆ EndKM be a semisimple

subalgebra and let

A′ = EndAW := {b ∈ EndKW : ab = ba ∀a ∈ A},

be its centralizer subalgebra. Then A′ is also semisimple and there is a direct sum decomposition

W =

r⊕

i=1

Wi

which is the isotypic decomposition of W as either an A-module or an A′-module. In fact, for 1 ≤ i ≤ r,

there is an irreducible A-module Ui and an irreducible A′-module U ′
i such that if Di := EndAUi (this is a

division K-algebra by Schur’s lemma), then EndA′U ′
i
∼= Dop and

Wi
∼= Ui ⊗Di

U ′
i .

Remark 3.5.2. In the case where K is algebraically closed, then there are no non-trivial finite-

dimensional division algebras over K, and so in the statement above, the tensor product is over

K.

We are interested in the case where K = C (so that we are within the scope of the Remark),

H and G are as in Section 3.1, W = IndGH 1H is the induction of the trivial representation of

a subgroup H ≤ G to G and A is the image of the group algebra C[G] in EndCW . Then A

is semisimple and via Proposition 3.1.7, we know A′ = H (G,H). We can then conclude the

following.
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Corollary 3.5.3. The Hecke algebra H (G,H) is semisimple.

Furthermore, one observes that the kernel of the induced representation IndGH 1H is given by⋂
g∈G gHg

−1. Thus, applying Theorem 3.5.1 with A = H (G,H), since its commuting algebra is

the image of the G-action, we may state the following.

Corollary 3.5.4. If
⋂
g∈G gHg

−1 is trivial, one has

C[G] ∼= EndH (G,H) Ind
G
H 1H .

3.6 Representations of Hecke algebras

We return to the abstract situation of Section 3.1. By a representation of H (G,H) we will mean a

pair (W,ρ) consisting of a finite-dimensional complex vector space V and an identity-preserving

homomorphism ρ : H (G,H) → EndCW . Let (V, π) be a representation of G and let V H ⊆ V

be the subspace fixed by H . Then V H is a representation of the Hecke algebra H (G,H) via the

action

ϕ.v :=
1

|H |
∑

a∈G

ϕ(a)π(a) · v (3.6.1)

for ϕ ∈ H (G,H), v ∈ V H . It is easy to check that ϕ.v ∈ V H so that this is well-defined.

Note that upon choosing a basis vector for the trivial representation 1H ofH , we may identify

HomH(1H ,Res
G
H V ) ∼= V H

by taking an H-morphism to the image of the basis vector. Thus, we have defined a map DH :

RepG→ RepH (G,H)

(V, π) 7→ HomH(1H ,Res
G
H V ) ∼= V H .

Let us now set

Irr(G : H) :=
{
ζ ∈ IrrG : (ζ,1GH) > 0

}
, (3.6.2)

where ( , ) is the pairing on characters; the condition is equivalent to HomH(1H ,Res
G
H ζ) 6= 0. We

can now give the following characterisation of irreducible representations of H (G,H), which, in

the more general case of locally compact groups, is [BZ, Proposition 2.10].

Proposition 3.6.3. If (V, π) is an irreducible representation ofG, then V H is an irreducible representation

of H (G,H), and every irreducible representation of H (G,H) arises in this way, that is, DH restricts to

a bijection DH : Irr(G : H)
∼−→ IrrH (G,H).

Since C[G] and H (G,H) are semisimple, we can apply Theorem 3.5.1 to W = IndGH 1H . If we

denote the set of irreducible representations of G by IrrG, we find that

IndGH 1H =
⊕

V ∈IrrG
V H 6={0}

V ⊗ V H , (3.6.4)

with elements of G acting on the left side of the tensor product and those of H (G,H) acting on

the right. One has a consistency check here in that for an irreducible representation V of G, the

multiplicity of V in IndGH 1H is given by

dimHomG

(
IndGH 1H , V

)
= dimHomH

(
1H ,Res

G
H V

)
= dimV H ,

which the decomposition in (3.6.4) confirms.
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3.6.1 Traces

Let M ∼= IndGH 1H be as in Section 3.1. Observe that if X ∈ EndCM , then using the basis (3.1.2),

its trace is computed as

trMX =
∑

v∈V

(X.fv)(v).

Lemma 3.6.5. Let g ∈ G and ϕ ∈ H (G,H) and consider gϕ = ϕg ∈ EndC IndGH 1H (where g is

thought of as an element of EndC IndGH 1H via (3.1.3)). Then

tr(gϕ) =
1

|H |
∑

x∈G

ϕ(xgx−1) =
∑

V ∈Irr(G:H)

χV (g)χDH(V )(ϕ),

where χV is the character of the G-module V , and χDH (V ) is that of the H (G,H)-module DH(V ).

Proof. In the notation of (3.1.2),

|H |tr(gϕ) = |H |
∑

v∈V

(
(gϕ).fv

)
(v) = |H |

∑

v∈V

(ϕ.fv)(vg) =
∑

v∈V

∑

y∈G

ϕ(y)fv(y
−1vg)

=
∑

v∈V

∑

y−1vg∈Hv

ϕ(y) =
∑

v∈V

∑

y∈vgv−1H

ϕ(y) =
∑

v∈V

∑

h∈H

ϕ(vgv−1h−1)

=
∑

v∈V

∑

h∈H

ϕ
(
(hv)g(hv)−1

)
=
∑

x∈G

ϕ(xgx−1),

where we use (3.1.1) at the last line. On the other hand, if g, ϕ are as in the Lemma, then applying

gϕ = ϕg to the decomposition (3.6.4), we get

tr(gϕ) =
∑

V ∈Irr(G:H)

χV (g)χDH(V )(ϕ).

3.6.2 Induced representations

Let G, H , L, K and U be as in Section 3.1.2. Then one sees that L∩U is trivial and hence we may

define P := L⋉U . The inclusion H (L,K) →֒ H (G,H) given by Proposition 3.1.14 allows us to

induce representations from H (L,K) to H (G,H): if V is an H (L,K)-representation, then

Ind
H (G,H)
H (L,K) V := H (G,H)⊗H (L,K) V,

yielding a map RepH (L,K) → RepH (G,H).

We also have a “parabolic induction” functor: for V ∈ RepL, we define

RGLV := IndGP InflPL V, (3.6.6)

which gives a map RepL → RepG. Let Rep(G : H) denote the set of isomorphism classes of

(finite-dimensional) representations of G at least one of whose irreducible components lies in

Irr(G : H). Then we claim that if V ∈ Irr(L : K), then RGLV ∈ Rep(G : H) and hence RGL yields a

map

RGL : Irr(L : K) → Rep(G : H).

We know that V ∈ Irr(L : K) if and only if HomK(1K ,Res
L
K V ) 6= 0. The latter implies that

0 6= HomH(1H ,Res
P
H InflPL V ) = HomP (Ind

P
H 1H , Infl

P
L V ).
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Now, inducing to G in both factors1

0 6= HomG(Ind
G
P IndPH 1H , Ind

G
P InflPL V ) = HomG(Ind

G
H 1H , R

G
LV ) = HomH(1H ,Res

G
H R

G
LV ),

which proves the claim.

Our goal here is to show that the D-operators are compatible with these induction operations.

Here is the precise statement.

Proposition 3.6.7. Assume that
⋂
ℓ∈L ℓKℓ

−1 is trivial. Then the following diagram commutes:

Irr(L : K)

RG
L

��

DK // IrrH (L,K)

Ind

��

Rep(G : H)
DH // RepH (G,H).

Proof. By the assumption, Lemma 3.5.4 gives us

C[L] ∼= EndH (L,K) Ind
L
K 1K = IndLK 1K ⊗H (L,K)

(
IndLK 1K

)∗
.

Therefore, given V ∈ Irr(L : K), we may rewrite this as

V ∼= C[L]⊗C[L] V = IndLK 1K ⊗H (L,K)

(
IndLK 1K

)∗
⊗C[L] V, (3.6.8)

where now we are taking the L-action on the first factor IndLK 1K . Using

(
IndLK 1K

)∗
⊗C[L] V = HomL

(
IndLK 1K , V

)
= HomK

(
1K ,Res

L
K V

)
= DK(V ),

(3.6.8) gives

V ∼= IndLK 1K ⊗H (L,K) DK(V ).

Now, applying RGL to both sides, one gets

RGLV
∼= RGL

(
IndLK 1K ⊗H (L,K) DK(V )

)
= RGL

(
IndLK 1K

)
⊗H (L,K) DK(V ), (3.6.9)

as we had said that the L-action is on the first factor. Now, using the natural isomorphisms of

functors

InflPL IndLK = IndPH InflHK IndGP IndPH = IndGH

and the fact that InflHK 1K = 1H , we can simplify

RGL

(
IndLK 1K

)
= IndGP InflPL IndLK 1K = IndGP IndPH InflHK 1K = IndGH 1H

and so (3.6.9) becomes

RGLV
∼= IndGH 1H ⊗H (L,K) DK(V ).

Applying now the functor

DH = HomH

(
1H ,Res

G
H(−)

)

1If B ∈ IrrP , then 1IndB ∈ EndG(IndG
P B, IndG

P B), so HomP (B,ResGP IndGP B) 6= 0, and thus B is an irre-

ducible component of ResGP IndG
P B. It follows that if A and B are any P -representations with HomP (A,B) 6= 0 then

HomG(IndG
P A,HomG

P B) 6= 0.



21

to both sides, and again noting that the G-action in the right hand side is on the first factor, we

get

DH(RGLV ) ∼= HomH

(
1H ,Res

G
H IndGH 1H

)
⊗H (L,K) DK(V )

= EndG
(
IndGH 1H , Ind

G
H 1H

)
⊗H (L,K) DK(V )

= H (G,H)⊗H (L,K) DK(V ) = Ind
H (G,H)
H (L,K) DK(V ).

3.7 Character tables

We now review some facts about the character tables of some finite groups which will be used in

our counting arguments later. As a matter of notation, in this section and later, if A is an abelian

group, we often denote its group of characters by Â := Hom(A,C×).

3.7.1 Character table of GLn(Fq)

We follow the presentation of [Ma, Chapter IV]. Fix a prime power q. Let Γn := F̂×
qn be the dual

group of F×
qn . For n|m, the norm maps Nmn,m : F×

qm → F×
qn yield an inverse system, and hence

the Γn form a direct system whose colimit we denote by

Γ := lim−→Γn.

There is a natural action of the Frobenius Frobq : F
×
q → F

×
q , given by γ 7→ γq , restricting to each

F×
qn and hence inducing an on action each Γn and hence on Γ; we identify Γn with ΓFrobn

q . Let Θ

denote the set of Frobq-orbits in Γ.

The weighted size of a partition λ = (λ1, λ2, . . .) ∈ P is

n(λ) :=
∑

i≥1

(i− 1)λi =
∑

j≥1

(
λ′j
2

)

where, as usual, λ′ = (λ′1, λ
′
2, . . .) is the conjugate partition of λ, i.e., λ′i is the number of λj ’s not

smaller than i. The hook polynomial of λ is defined as

Hλ(q) :=
∏

�∈λ

(qh(�) − 1) (3.7.1)

where the product is taken over the boxes in the Ferrers’ diagram (cf. [Sta, 1.3]) of λ, and h(�) is

the hook length of the box � in position (i, j) defined as

h(�) := λi + λ′j − i− j + 1.

By [Ma, IV (6.8)] there is a bijection between the irreducible characters of GLn(q) and the set

of functions Λ : Θ → P which are stable under the Frobenius action and having total size

|Λ| :=
∑

γ∈Θ

|γ||Λ(γ)|

equal to n. Under this correspondence, the character χG
Λ corresponding to Λ has degree

∏n
i=1(q

i − 1)

q−n(Λ′)HΛ(q)
(3.7.2)
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where

HΛ(q) :=
∏

γ∈Θ

HΛ(γ)(q
|γ|) (3.7.3)

and

n(Λ) :=
∑

γ∈Θ

|γ|n(Λ(γ)). (3.7.4)

Remark 3.7.5. There is a class of irreducible characters of GLn(Fq), known as the unipotent char-

acters, which are also parametrized by Pn. Given λ ∈ Pn, the associated unipotent character

χG
λ is the one corresponding to, in the description above, the function Λλ : Θ → P , where Λλ

takes the (singleton) orbit of the trivial character in Γ1 to λ ∈ Pn and all other orbits to the empty

partition.

In fact, any ψ ∈ Γ1 = F̂×
q is a singleton orbit of Frobq and so we may view Γ1 as a subset of Θ.

Thus, if we let Qn denote the set of maps Λ : Γ1 → P of total size n, i.e.,

|Λ| =
∑

ψ∈Γ1

|Λ(ψ)| = n,

then Qn is a subset of the maps Θ → P of size n. The set of characters of GLn(Fq) corresponding

to the maps in Qn will also be important for us later.

The following description of the characters corresponding to Qn can be found in the work of

Green [Gr]. Suppose n1, n2 are such that n = n1 + n2. Let L = GLn1(Fq) × GLn2(Fq) and view

it as the subgroup of GLn(Fq) of block diagonal matrices, U12 ≤ G the subgroup of upper block

unipotent matrices, and P := L⋉U12 the parabolic subgroup of block upper triangular matrices.

The ◦-product − ◦ − : IrrGLn1(Fq)× IrrGLn2(Fq) → RepGLn(Fq) is defined as

χ1 ◦ χ2 = RG
L (χ1 ⊗ χ2) = IndG

P InflPL(χ1 ⊗ χ2). (3.7.6)

Now, given Λ ∈ Qn, we will often write ψ1, . . ., ψr ∈ Γ1 for the distinct elements for which

ni := |Λ(ψi)| > 0 (note that
∑
i ni = n) and λi := Λ(ψi). For each 1 ≤ i ≤ r, we have the

unipotent representation χG
λi

of GLni
(Fq), described above, as well as the character ψG

i := ψi ◦
det : GLni

(Fq) → F×
q → C×. Then the irreducible character χG

Λ of GLn(Fq) associated to Λ ∈ Qn

is

χG
Λ :=

(
χG
Λ(ψ1)

⊗ ψG
1

)
◦ · · · ◦

(
χG
Λ(ψr)

⊗ ψG
r

)
. (3.7.7)

The fact that it is irreducible is attributable to [Gr]. One may also think of the tuple of characters of

the GLni
(Fq) as yielding one on the product, which may be viewed as the Levi of some parabolic

subgroup of GLn(Fq). Then the above ◦-product is the parabolic induction of the character on

the Levi.

3.7.2 Character table of N

Recall that we have isomorphisms N ∼= T ⋊Sn = (F×
q )

n ⋊Sn. Our aim is to describe IrrN, but

let us begin with a description of the irreducible representations of each of its factors. One has

IrrT = T̂, the dual group. Furthermore, it is well known that IrrSn is in natural bijection with

the set Pn of partitions of n: to λ ∈ Pn one associates the (left) submodule of C[Sn] spanned by

its “Young symmetrizer” [FH, § 4.1]; we will denote the resulting character by χS

λ .

To describe IrrN explicitly, we appeal to [Se, § 8.2, Proposition 25], which treats the general

situation of a semidirect product with abelian normal factor. If ψ ∈ T̂ then ψ extends to a (1-

dimensional) character of T ⋊ Stabψ (noting that if we identify T̂ = (F̂×
q )

n, then Sn acts by
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permutations) trivial on Stabψ; so now, given χ ∈ Irr(Stabψ), we get ψ ⊗ χ ∈ Irr(T⋊ Stabψ).

The result cited above says that IndNT⋊Stabψ ψ ⊗ χ is irreducible and in fact all irreducible repre-

sentations of N arise this way (with the proviso that we get isomorphic representations if we start

with characters in the Sn-orbit of ψ).

If we write ψ = (ψ1, . . . , ψn) ∈ (F̂×
q )

n, then Stabψ ∼= Sn1 × · · · × Snr
, where the ni are the

multiplicities with which the ψj appear. Further, χ ∈ Irr(Stabψ) = IrrSn1 ×· · ·× IrrSnr
so is an

exterior tensor product χ = χS

λ1
⊗ · · · ⊗χS

λr
with λi ∈ Pni

. Thus, from Indψ⊗χ, we may define a

map Λ : Γ1 → P by setting Λ(ψj) = λi, where j is among the indices permuted by Sni
and Λ(ϕ)

to be the empty partition if ϕ ∈ F̂×
q does not appear in ψ. In this way, we get a map Λ : Γ1 → P

of total size n, i.e., an element of Qn defined in Remark 3.7.5.

Conversely, given Λ ∈ Qn, let ψi ∈ Γ1, ni and λi ∈ Pni
be as in the paragraph preceding

(3.7.7). Let Ti := (F×
q )

ni and set Ni := Ti ⋊Sni
. Observe that if ψ ∈ T̂ is defined by taking the ψi

with multiplicity ni, then
∏r
i=1 Ni = T⋊ Stabψ. Now, ψi defines a character of Ni by

(t1, . . . , tni
, σ) 7→

ni∏

j=1

ψi(tj),

and χS

λi
defines an irreducible representation of Sni

and hence of Ni. Hence we get

χNi

λi,ψi
:= χS

λi
⊗ ψi ∈ IrrNi.

Taking their exterior tensor product and then inducing to N gives the irreducible representa-

tion

χN
Λ := IndN∏Ni

⊗

i

χNi

λi,ψi
∈ IrrN. (3.7.8)

It is in this way that we will realize the bijection Qn
∼−→ IrrN.

It will be convenient to define for Λ ∈ Qn the function Λ̃ ∈ Qn as

Λ̃ (ψ) :=

{
Λ (ψ)′ for ψ odd,

Λ (ψ) for ψ even
(3.7.9)

where ψ is said to be even if ψ(−1Fq
) = 1C and odd otherwise.

3.8 Parameter sets for IrrHn

Here, we take up again the notation introduced at the beginning of Section 3.2. Given a partition

λ ∈ Pn, we will be able to associate to it three different characters: the unipotent character χG
λ

of G described in Remark 3.7.5, which we will see below is, in fact, an element of Irr(G : B); a

character χH
λ ∈ IrrH (G,B); and the irreducible character χS

λ of the symmetric group Sn. The

discussions in Sections 3.2 and 3.6 suggest that there are relationships amongst these and the

purpose of this section is indeed to clarify this.

To a partition ν ∈ Pn, say ν = (ν1, . . . , νℓ), one can associate a subgroup Sν := Sν1 × · · · ×
Sνℓ ≤ Sn and then consider the character τSν of the induced representation IndSn

Sν
1Sν

. Then

these characters are related to those of the irreducible representations χS

λ (see Section 3.7.1) by

the Kostka numbers Kλν [FH, Corollary 4.39], via the relationship

τSν =
∑

λ∈Pn

Kλνχ
S

λ . (3.8.1)

Also to ν ∈ Pn one can associate a standard parabolic subgroup Pν ≤ G whose Levi factor

Lν is isomorphic to GLν1(F1) × · · · × GLνℓ(Fq). Then one may consider the character τGν :=
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IndGPν
1Pν

of the parabolic induction of the trivial representation.2 Then if λ ∈ Pn and χG
λ denotes

the corresponding unipotent characters (as described in Remark 3.7.5), the following remarkable

parallel with representations of the symmetric group was already observed at [Ste, Corollary 1]:

τGν =
∑

λ∈Pn

Kλνχ
G
λ . (3.8.2)

In particular, as Kλλ = 1 for all λ ∈ Pn, we see that χG
λ is a component of τGλ and hence of τG(1n),

which is the character of IndGB 1B. This shows that

{
χG
λ : λ ∈ Pn

}
⊆ Irr(G : B). (3.8.3)

Let us now consider the specializations (3.2.1) of Hn corresponding to θq, θ1 : C[u±1] → C.

Since Hn(u) is split semisimple [CR, (68.12) Corollary], Tits’s deformation theorem ([CR, (68.20)

Corollary], [GP, 7.4.6 Theorem]) applies to give bijections

dθq : IrrHn(u)
∼−→ IrrHn(q) = IrrH (G,B) dθ1 : IrrHn(u)

∼−→ IrrHn(1) = IrrSn,

where a character X : Hn → C[u±1] (the characters of Hn(u) are in fact defined over C[u±1] by

[GP, Proposition 7.3.8]) is taken to its specialization Xz : Hn → C ⊗θz C[u±1] = C, for z = 1 or

z = q. We can thus define the composition

TB := dθq ◦ d−1
θ1

: IrrSn
∼−→ IrrH (G,B). (3.8.4)

Now, we have bijections (using Proposition 3.6.3 for the one on the left)

Irr(G : B)

DB

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

IrrSn

TB

xxqq
qq
qq
qq
qq

IrrH (G,B)

(3.8.5)

and since | IrrSn| = |Pn| all of the sets are of this size, so it follows that the inclusion in (3.8.3) is

in fact an equality

Irr(G : B) =
{
χG
λ : λ ∈ Pn

}
.

Furthermore, the following holds.

Proposition 3.8.6. [HR, Theorem 4.9(b)] For λ ∈ Pn, one has

DB(χ
G
λ ) = TB(χ

S

λ ).

Proof. [CR, (68.24) Theorem] states that the bijection D−1
B ◦TB : IrrSn

∼−→ Irr(G : B) satisfies

((
D−1

B ◦TB

)
(χS

λ ), τ
G
ν

)
=
(
χS

λ , τ
S

ν

)

for all ν ∈ Pn. But the right hand side is, from (3.8.1), Kλν , but then from (3.8.2), we must have

D−1
B ◦TB(χ

S

λ ) = χG
λ .

This allows us to unambiguously define, for each λ ∈ Pn, an irreducible representation χH
λ ∈

IrrH (G,B) by

χH
λ := DB(χ

G
λ ) = TB(χ

S

λ ).

2By [DM, Proposition 6.1], τGν depends only on the isomorphism class of Lν (rather than the parabolic Pν ) which in

turn depends only on ν.
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3.9 Parameter sets for IrrYd,n

In Section 3.7, we saw that the set Qn was used to parametrize both the irreducible represen-

tations of IrrN (Section 3.7.2) as well as a subset of those of G = GLn(Fq) (Remark 3.7.5). We

will see (in Remark 3.9.20) that this latter subset is in fact Irr(G : U), which by Proposition 3.6.3

yields the irreducible representations of H (G,U), and furthermore, that Tits’s deformation theo-

rem again applies to the generic Yokonuma–Hecke algebra, which gives a bijection of these with

IrrN. The purpose of this section is to establish, as in Section 3.8, the precise correspondence

between the relevant irreducible representations in terms of the elements of the parameter set

Qn.

Let us proceed with the argument involving Tits’s deformation theorem. Recall from Theo-

rem 3.4.3 that we have isomorphisms

H (G,U) ∼= Yq−1,n(q) and C[N] ∼= Yq−1,n(1)

by specialising Yq−1,n at u = q and u = 1, respectively. Thus, both H (G,U) ∼= Yq−1,n(q) and
C[N] ∼= Yq−1,n(1) are split semisimple by [CPA, Proposition 9] and Yd,n(u) is also split by [CPA,
5.2].3 Thus, the deformation theorem ([CR, (68.20) Corollary], [GP, 7.4.6 Theorem]) again applies
to yield bijections

dθq : IrrYq−1,n(u)
∼

−→ IrrYq−1,n(q) = IrrH (G,U) dθ1 : IrrYq−1,n(u)
∼

−→ IrrYq−1,n(1) = IrrN, (3.9.1)

where we denote by θq : C[u±1] → C the C-algebra homomorphism sending u to q. Again, [GP,

Proposition 7.3.8] applies to say that if X ∈ IrrYd,n(u), then in fact X : Yd,n → C[u±1], and the

bijections in (3.9.1) are in fact the specializations of X . We may put these together to obtain a

bijection

TU := dθq ◦ d−1
θ1

: IrrN → IrrH (G,U). (3.9.2)

Furthermore, [GP, Remark 7.4.4] tells us that

dθq (X ) = θq(X ) and dθ1(X ) = θ1(X ). (3.9.3)

In particular, the dimensions of the irreducible representations of H (G,U) and C[N] agree. Thus,

we may conclude from Wedderburn’s theorem that the Hecke algebra H (G,U) and the group

algebra C[N] are isomorphic as abstract C-algebras.

Defining DU : Irr(G : U) → IrrH (G,U) as in Proposition 3.6.3, we get a diagram like that at

(3.8.5):

Irr(G : U)

DU

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

IrrN

TU

xxrr
rr
rr
rr
rr
r

IrrH (G,U).

(3.9.4)

For every Λ ∈ Qn we will define a character XY

Λ ∈ IrrYd,n(u) (see (3.9.24) in Section 3.9.4

below) such that

XY

Λ ⊗θ1 C = dθ1
(
XY

Λ

)
= χN

Λ̃
∈ IrrN

3Strictly speaking [CPA] considers Yd,n(v) where v2 = u. However, one can define all irreducible representations in

[CPA, Proposition 5] of Yd,n(v) already over Yd,n(u) by a slight change in the defining formulas of [CPA, Proposition 5]

see [CPo, Theorem 3.7].
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is the one described in Section 3.7.2 for the modified Λ̃. This, together with the u = q specializa-

tion

XY

Λ ⊗θq C = dθq (XY

Λ ) = χH

Λ ∈ IrrH (G,U)

will satisfy

TU

(
χN
Λ̃

)
= χH

Λ .

As in Section 3.6, for a character χG
Λ ∈ Irr(G : U) one defines

DU

(
χG
Λ

)
:= HomU

(
1U,Res

G
U χ

G
Λ

)
,

namely, the subspace of U-invariants, as in Proposition 3.6.3.

Our definition of XY

Λ will be in such a way that the χG
Λ from Section 3.7.1 is mapped by DU to

the same χH
Λ , proving thus the main result of this section.

Theorem 3.9.5. Let the characters χG
Λ and χN

Λ̃
be those described in Sections 3.7.1 and 3.7.2, respectively.

Then, the set Qn parametrizes the pairs of irreducible representations (V, V U) from Proposition 3.6.3 in

such a way that the characters

χG
Λ ∈ Irr(G : U) and χN

Λ̃
∈ IrrN

satisfy

DU

(
χG
Λ

)
= TU

(
χN
Λ̃

)
∈ IrrH (G,U) .

Inspired by the construction of IrrN in Section 3.7.2, we establish a parallel with the technique

of parabolic induction to build the character table of G using the unipotent characters as building

blocks.

The rest of this section is devoted to studying more carefully the bijections DU,TU,DB and

TB. In Section 3.9.1 we prove the compatibility between them. In Section 3.9.2 we analyze their

behaviour with a twist by a degree one character. In Section 3.9.3 we check their interplay with

parabolic induction and exterior tensor products. Finally, in Section 3.9.4 we construct the char-

acter table of the generic Yokonuma–Hecke algebra, as a common lift of both IrrN and Irr(G : U).

3.9.1 From B to U

Let us start by checking the correspondence for the unipotent characters χG
λ in the H (G,U)-case

agrees with the one in the H (G,B)-case (cf. Remark 3.7.5). Taking G = G, H = B, K = U and

L = T in Proposition 3.1.12, noting that Lemma 3.1.11 applies as the set N of double U-coset

representatives normalizes T , we are provided with a surjective homomorphism H (G,U) ։

H (G,B), and hence we obtain an inflation map Infl : RepH (G,B) → RepH (G,U), taking

IrrH (G,B) to IrrH (G,U). We can then make the following precise statement.

Proposition 3.9.6. The following diagram is commutative

Irr(G : B)
_�

��

DB // IrrH (G,B)
_�

Infl

��

IrrSn
TBoo

_�

Infl

��

Irr(G : U)
DU // IrrH (G,U) IrrN

TUoo

(3.9.7)

where the top horizontal arrows are the bijections in (3.8.5), the bottom horizontal arrows those in (3.9.4),

the leftmost vertical arrow is the natural inclusion and the other two are the inflation maps.
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Proof. We know from Proposition 3.6.3 that DB maps χG
λ to the character χH

λ ∈ IrrH (G,B) given

by

χH

λ = HomB(1B,Res
G
B χ

G
λ ) = HomG(Ind

G
B 1B, χ

G
λ ).

We want to replace IndGB 1B by IndG
U 1U. Let us take a closer look at the latter. It is canonically

isomorphic to IndGB IndB
U 1U, but sinceB = U⋊T, IndB

U 1U = InflB
TC[T], where C[T] is the regular

representation of T. Since C[T] is the direct sum of the degree one characters φ : T → C×, the

group of which we denote by T̂, one gets InflB
TC[T] is the sum of the inflations φ : B → C×, hence

IndGU 1U =
⊕

φ∈T̂

IndGB φ,

and

HomG

(
IndGU 1U, χ

G
λ

)
=
⊕

φ∈T̂

HomG

(
IndGB φ, χ

G
λ

)
. (3.9.8)

For any φ ∈ T̂ one has

HomG

(
IndGB φ, Ind

G
B 1B

)
= HomB

(
φ,ResGB IndGB 1B

)

which by the Mackey decomposition becomes

∑

σ∈B\G/B

HomB

(
φ, IndB

B∩σ−1Bσ(1B∩σ−1Bσ)
)
=

∑

σ∈B\G/B

HomB∩σ−1Bσ

(
ResB

B∩σ−1Bσ φ,1B∩σ−1Bσ

)

where σ runs over a full set of B-double coset representatives. Since T ⊆ B ∩ σ−1Bσ acts non-

trivially on ResB
B∩σ−1Bσ(φ) for φ nontrivial, the only non-vanishing term in this last sum is the one

with φ = 1B.

Since χG
λ is a constituent of IndGB 1B, only one summand in the right hand side of (3.9.8) does

not vanish and we end up with

HomG(Ind
G
U 1U, χ

G
λ ) = HomG(Ind

G
B 1B, χ

G
λ ).

The irreducible H (G,U)-representation associated to χG
λ is

HomU

(
1U,Res

G
U χ

G
λ

)
= HomG(Ind

G
U 1U, χ

G
λ )

which is thus isomorphic to HomG(Ind
G
B 1B, χ

G
λ ) with the H (G,U)-module structure induced by

the surjection H (G,U) → H (G,B) coming from Proposition 3.1.12. This proves the commuta-

tivity of the left square in (3.9.7).

The right one is also commutative since all the non-horizontal arrows in

IrrHn(u)
_�

Infl

��

dθq

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

dθ1

%%❑
❑❑

❑❑
❑❑

❑❑
❑

IrrH (G,B)
_�

Infl

��

IrrSn
oo

TB

_�

Infl

��

IrrYn(u)
dθq

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

dθ1

%%❑
❑❑

❑❑
❑❑

❑❑
❑

IrrH (G,U) IrrN
TUoo

arise from taking tensor products.
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3.9.2 Twisting by characters of F×
q

In order to deal with character twists, we extend the Iwahori–Hecke algebra as follows. For

d, n ≥ 1 we introduce the C[u±1]-algebra Hd,n defined by

Hd,n := Hn[h]/(h
d − 1) = Hn ⊗C C[Cd],

where Cd is the cyclic group of order d and h ∈ Cd a generator. As usual, denote by Hd,n(u) the

corresponding C(u)-algebra C(u)⊗C[u±1] Hd,n.

Since Hd,n(u) is a tensor product of semisimple algebras it is also semisimple and its set of

characters is the cartesian product of those of its factors. Concretely, for λ ∈ Pn and ψ ∈ IrrC[Cd]

we define XHd,n

λ,ψ to be the exterior tensor product:

XHd,n

λ,ψ := XHn

λ ⊗ ψ ∈ IrrHd,n(u) = IrrHn(u)× IrrC[Cd] (3.9.9)

These are all the irreducible representations of Hd,n(u), and they all come from localizing certain

finitely generated representations of Hd,n that we also denote by XHd,n

λ,ψ .

There is a natural quotient

Yd,n ։ Hd,n (3.9.10)

that sends the hi ∈ Yd,n to h ∈ Hd,n and the Ti ∈ Yd,n to the Ti from Hn.

The u = 1 specialization gives

C⊗θ1 Hd,n ≃ C[Sn]⊗C C[Cd] = C[Sn × Cd]

and the u = q specialization gives

C⊗θq Hd,n ≃ H (G,B)⊗C C[Cd]

which in the d = q − 1 case gives

H (G,B)[F×
q ] ≃ H (G,B1),

where B1 = B ∩ SLn(Fq). Here one has

IrrH (G,B1) = IrrH (G,B)× IrrF×
q

and the u = q specialization of the natural map (3.9.10) becomes

H (G,U) ։ H (G,B)[F×
q ] (3.9.11)

where, for σ ∈ Sn and t ∈ T, the corresponding basis elements are mapped as follows:

Tσ ∈ H (G,U) 7→ Tσ ∈ H (G,B)

Tt ∈ H (G,U) 7→ det t ∈ F×
q ⊆ H (G,B)[F×

q ].

Remark 3.9.12. The Ti from Yq−1,n corresponds to ωi ∈ T ⋊ Sn, whereas the Ti from Hq−1,n

corresponds to σi ∈ Sn ⊆ F×
q × Sn. Therefore, the u = 1 specialization of (3.9.10) gives the

surjection

T⋊Sn ։ F×
q ×Sn (t, σ) ∈ T⋊Sn 7→ ((det t)(sgnσ), σ) ∈ F×

q ×Sn, (3.9.13)

where sgnσ = (−1)ℓ(σ) ∈ F×
q . For this reason we define

Ĩnfl : Irr
(
Sn × F×

q

)
→ IrrN
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as composition with the map (3.9.13). Thus, for χ
F
×
q S

λ,ψ := χS

λ ⊗ ψ ∈ Irr(F×
q ×Sn) and (t, σ) ∈ N,

we have

Ĩnfl

(
χ
F
×
q S

λ,ψ

)
(t, σ) = ψ ((sgnσ)(det t))χS

λ (σ). (3.9.14)

Remark 3.9.15. In general, we reserve the notation Infl for inflation by the natural quotient. In this

case it is

T⋊Sn ։ F×
q ×Sn

mapping (t, σ) ∈ T⋊Sn to (det t, σ). Therefore, by (3.9.14)

Ĩnfl

(
χ
F
×
q S

λ,ψ

)
(t, σ) = ψ(sgnσ) Infl

(
χ
F
×
q S

λ,ψ

)
(t, σ).

Since ψ ◦ sgn ∈ IrrSn is the sign representation when ψ is odd (i.e., a non-square) charac-

ter, and is trivial when ψ is even (i.e., the square of a character), and tensoring with the sign

representation amounts to taking the transpose partition λ′ we see that

Ĩnfl
(
χλ,ψ

)
=




Infl

(
χλ′,ψ

)
for ψ odd,

Infl
(
χλ,ψ

)
for ψ even,

where the superscripts F×
q S were omitted.

Remark 3.9.16. In any case we have

Ĩnfl

(
χ
F
×
q S

λ,ψ

)
(t) = ψ(det t)χS

λ (1) = Infl

(
χ
F
×
q S

λ,ψ

)
(t)

for t ∈ T ⊆ N, and

Ĩnfl

(
χ
F
×
q S

λ,ψ

)
(ωi) = χS

λ (si) = Infl

(
χ
F
×
q S

λ,ψ

)
(si)

where ωi, si ∈ N as in Theorem 3.4.3. Thus, by definition of the characters χN
Λ ∈ IrrZ≥0 for

Λ ∈ Qn in Section 3.7.2 and (3.7.9)

χN
Λ̃
(t) = χN

Λ(t) and χN
Λ̃
(ωi) = χN

Λ(si) (3.9.17)

for Λ ∈ Qn, t ∈ T, and ωi, si ∈ N as before.

Let χG
λ ∈ Irr(G : B) ⊆ Irr(G : U) be a unipotent character and let ψ ∈ Γ1 = F̂×

q . As in Remark

3.7.5, we have ψG := ψ ◦ det : G → C× and we consider the representation χG
λ ⊗ ψG. Since

U ⊆ kerψG, dim(χG
λ ⊗ ψG)U = dim(χG

λ )
U > 0, so χG

λ ⊗ ψG ∈ Irr(G : U). Thus, taking tensor

products gives a map Irr(G : B)× F̂×
q → Irr(G : U).

Proposition 3.9.18. Let ψ ∈ Γ1 be as above. Then the following diagram is commutative

Irr(G : B)
DB //

_�

−⊗ψ

��

IrrH (G,B)
_�

−⊗ψ

��

IrrSn
TBoo

_�

−⊗ψ

��

Irr(G : B)× F̂×
q

(DB,id)
//

_�

−⊗−

��

Irr
(
H (G,B)[F×

q ]
)

_�

Infl

��

Irr
(
Sn × F×

q

)(TB,id)
oo

_�

Ĩnfl

��

Irr(G : U)
DU // IrrH (G,U) IrrN.

TUoo
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Proof. The commutativity of the squares on the left largely comes from the formula (3.6.1) for

the action of the Hecke algebra, as well as noting that the H (G,U)-action factors through the

surjection onto H (G,B)[F×
q ] = H (G,B1), which comes from either (3.9.11) or Proposition 3.1.12.

The squares on the right are also commutative since all the non-horizontal arrows in

IrrHn(u)
_�

⊗ψ

��

dθq

uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦ dθ1

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

IrrH (G,B)
_�

⊗ψ

��

IrrSn
oo

TB

_�

⊗ψ

��

Irr
(
Hn(u)[F

×
q ]
)

_�

Infl

��

dθq

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

dθ1

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Irr
(
H (G,B)[F×

q ]
)

_�

Infl

��

Irr
(
Sn × F×

q

)
oo

(TB,id)

_�

Ĩnfl

��

IrrYn(u)
dθq

uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

dθ1

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

IrrH (G,U) IrrN
TUoo

arise from tensor products.

3.9.3 Parabolic induction

We now check that the parabolic induction of a product of irreducible representations is compat-

ible with the operations DU (coming from Section 3.6) and TU (defined at (3.9.2)).

Suppose n1, n2 are such that n = n1+n2. For i = 1, 2, let Gi := GLni
(Fq), and let Bi, Ui, and Ni

be the respective subgroups of Gi as described at the beginning of Section 3.3. Let L = G1 × G2

and we will view it as the subgroup of G = GLn(Fq) of block diagonal matrices; let U12 ≤ G

be the subgroup of upper block unipotent matrices and P := LU12 the corresponding parabolic

subgroup. If BL := L ∩ B, then its unipotent radical is UL = L ∩ U = U1 × U2. One may also

identify N1 ×N2 as a (proper) subgroup of N.

Remark 3.9.19. Observe that U = UL ⋉ U12 and that L normalizes U12, so that we, with G = G,

H = U, L = L, K = UL and U = U12, we are in the situation of Section 3.1.2, so that Proposition

3.1.14 gives an inclusion H (L,UL) →֒ H (G,U). Furthermore, the functor RG
L : RepL → RepG

defined at (3.6.6) is the usual parabolic induction functor.

Remark 3.9.20. For i = 1, 2, let ψ1, ψ2 ∈ F̂×
q be distinct and let λi ∈ Pni

. Then by the discussion

preceding Proposition 3.9.18, χG
λi
⊗ψGi

i ∈ Irr(Gi : Ui). Thus, Remark 3.9.19 makes the discussion

preceding Proposition 3.6.7 relevant: it says that
(
χG
λ1

⊗ ψG1
1

)
◦
(
χG
λi

⊗ ψGi

i

)
∈ Rep(G : U).

However, this ◦-product is irreducible, as mentioned in Remark 3.7.5, so in fact it lies in Irr(G : U).

By a straightforward inductive argument, we see that for every Λ ∈ Qn, one has χG
Λ ∈ Irr(G : U)

(as defined in Remark 3.7.5). We repeat the argument of Section 3.8 to show that Irr(B : G)

consists of precisely the unipotent representations: one has an inclusion
{
χG
Λ : Λ ∈ Qn

}
⊆ Irr(G : U),

but since | Irr(G : U)| = | IrrH (G,U)| = | IrrN| = |Qn| via the bijections DU and TU, we must

have equality.
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Remark 3.9.21. Since

HomUL

(
1UL ,Res

L
UL

(
χG1
1 ⊗ χG2

2

))
∼= HomU1

(
1U1 ,Res

G1

U1
χG1
1

)
⊗C HomU2

(
1U2 ,Res

G2

U2
χG2
2

)

as modules over the algebra

H (L,UL) ∼= H (G1,U1)⊗ H (G2,U2),

one has

DUL

(
χG1
1 ⊗ χG2

2

) ∼= DU1

(
χG1
1

)
⊗DU2

(
χG2
2

)
. (3.9.22)

Proposition 3.9.23. The following diagram is commutative:

Irr(G1 : U1)× Irr(G2 : U2)

−◦−

��

DUL // IrrH (L,UL)

Ind

��

Irr(N1 ×N2)
TULoo

Ind

��

Rep(G : U)
DU // RepH (G,U) RepN.

TUoo

Proof. Commutativity of the square on the left comes from Proposition 3.6.7 which applies by

Remark 3.9.19 and observing that
⋂
ℓ∈L ℓULℓ

−1 is trivial.

Let us take representations XY

1 ,XY

2 of Yq−1,n1(u) and Yq−1,n2(u) and denote their correspond-

ing u = 1 specializations by χN1
1 and χN2

2 , and their u = q specializations by χH1
1 and χH2

2 ,

respectively, so that

TUi
(χNi

i ) = χHi

i .

For i = 1, 2 we write χGi

i for the corresponding Gi representation, in such a way that χHi

i

agrees with

HomUi

(
1Ui

,ResGi

Ui
χGi

i

)

namely, the H (Gi,Ui)-representation DUi
(χGi

i ).

By (3.9.22), the commutativity of the rightmost square follows since the vertical and diagonal

arrows in

Irr
(
Yn1(u)⊗C(u) Yn2(u)

)

Ind

��

dθq

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

dθ1

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

IrrH (L,UL)

Ind

��

Irr(N1 ×N2)oo
TUL

Ind

��

RepYn(u)
dθq

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

dθ1

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

RepH (G,U) RepN
TUoo

come from taking tensor products. Namely

Ind
H (G,U)
H (L,UL)

TU

(
χN1
1 ⊗ χN2

2

)
= H (G,U)⊗

H (L,UL)
(χH1

1 ⊗ χH2
2 )

happens to be the u = q specialization of

Yn ⊗
Yn1⊗Yn2

(
XY

1 ⊗ XY

2

)
.
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Taking the u = 1 specialization gives

C[N]⊗
C[N1×N2]

(
χN1
1 ⊗ χN2

2

)
= IndNN1×N2

(
χN1
1 ⊗ χN2

2

)

proving thus

Ind
H (G,U)
H (L,UL)

TUL

(
χN1
1 ⊗ χN2

2

)
= TU

(
IndNN1×N2

(
χN1
1 ⊗ χN2

2

))
.

3.9.4 Proof of Proposition 3.9.5

We define a family of representations of Yq−1,n parametrized by Qn whose u = 1 specialization

matches that of Section 3.7.2, and whose u = q specialization gives the DU image of the characters

described in Remark 3.7.5.

Given a partition λ ⊢ n and ψ : F×
q → C× a character, let us define a representation XYq−1,n

λ,ψ

of Yq−1,n by inflating the Hq−1,n-representation XHn

λ ⊗ ψ from (3.9.9) via the natural quotient

(3.9.10).

Now, for Λ ∈ Qn, let ψi, λi, ni be as in the paragraph preceding (3.7.7) and consider the

C[u±1]-algebra

Y(ni) :=
⊗

i

Yq−1,ni

which may be embedded in Yq−1,n by a choice of ordering of the indices i. This has the represen-

tation

XY(ni)

Λ :=
⊗

i

XYq−1,ni

λi,ψi
,

where the tensor is over C[u±1], and we may define XY

Λ as the induced character

XY

Λ := Ind
Yq−1,n

Y(ni)
XY(ni)

Λ . (3.9.24)

We are now in position to prove Proposition 3.9.5.

Proof of Proposition 3.9.5. Take a Λ ∈ Qn and the corresponding pairs (λi, ψi) with Λ(ψi) = λi,

and define ni = |λi|. Let us write Ni = (F×
q )

ni ⋊Sni
, Gi = GLni

(Fq), L =
∏
iGi viewed as the

subgroup of block diagonal matrices of G, and UL the product of the upper triangular unipotent

subgroups.

Consider the Yq−1,n-representation XY

Λ defined in (3.9.24). Its u = 1 and u = q specializations

give, by the commutativity of the squares on the right in Proposition 3.9.18,

χN
Λ̃
:= IndN∏Ni

⊗

i

Ĩnfl
(
χ
Sni

λi
⊗ ψi

)
and χH

Λ := Ind
H (G,U)
H (L,UL)

⊗

i

Infl
(
χ
Hni

λi
⊗ ψi

)

regarding
∏
iNi as a subgroup of N embedded by the same choice of indices as Y(ni) is in Yq−1,n.

Therefore,

TU(χ
N
Λ̃
) = χH

Λ . (3.9.25)

The character χG
Λ ∈ Irr(G : U) was defined at (3.7.7). Applying DU, one gets, by Proposi-

tion 3.9.23 and an inductive argument,

DU(χ
G
Λ ) = Ind

H (G,U)
H (L,UL)

⊗

i

DUi
(χGi

λi
⊗ ψi) = Ind

H (G,U)
H (L,UL)

⊗

i

DBi
(χGi

λi
)⊗ ψi

= Ind
H (G,U)
H (L,UL)

⊗

i

χ
Hni

λi
⊗ ψi
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where we have used Proposition 3.9.18 and Proposition 3.9.6 for the following two equalities.

But this is exactly χH
Λ . So we may conclude by taking a second look at (3.9.25).

Remark 3.9.26. One can use this construction to give another proof of the splitting of Yd,n(u),

together with a list of their irreducible representations parametrized by the set

Qd,n :=



Λ : Ĉd → P :

∑

φ∈Ĉd

|Λ(φ)| = n



 ,

where Cd is the cyclic group with d elements.

Given a function Λ ∈ Qd,n we consider its set of pairs (ψi, λi) with Λ(ψi) = λi and ni = |λi|
adding up to n. Define

XY(ni)

Λ :=
⊗

i

XYd,ni

λi,ψi

for the C[u±1]-algebra Y(ni) :=
⊗

i Yd,ni
, where the XYd,n

λ,ψ stands for the inflation of the XHd,n

λ,ψ

from (3.9.9).

The induced characters XY

Λ := Ind
Yd,n(u)

Y(ni)
(u) X

Y(ni)

Λ are defined over C(u) since the XHn

λ are (cf.

[BC, Theorem 2.9]). We extend scalars to some finite Galois extension K/C(u) so that Yd,n be-

comes split. One can also extend the u = 1 specialization as in [GP, 8.1.6] and KYd,n becomes

isomorphic to K[Cnd ⋊Sn], being a deformation of C[Cnd ⋊Sn]. The specializations

χ
Cn

d ⋊Sn

Λ := dθ1(XY

Λ )

are all the irreducible characters of Cnd ⋊Sn as in Section 3.7.2 (invoking again [Se, § 8.2, Propo-

sition 25]). Therefore, Yd,n(u) is split semisimple and the XY

Λ is the full list of irreducibles.

4 Counting on wild character varieties

4.1 Counting on quasi-Hamiltonian fusion products

Here we describe the technique we use to count the points on the wild character varieties, which

was already implicitly used in [HV, HLV1]. The idea is to use the construction of the wild char-

acter variety as a quotient of a fusion product and reduce the point-counting problem to one on

each of the factors. Then the counting function on the entire variety will be the convolution prod-

uct of those on each of the factors. This can be handled by a type of Fourier transform as in the

references above.

4.1.1 Arithmetic harmonic analysis

In carrying out our computations, we will employ the technique of “arithmetic harmonic anal-

ysis,” which is an of analogue of the Fourier transform for non-abelian finite groups such as

GLn(Fq). This is described in [HLV1, §3], a part of which we reproduce here for the convenience

of the reader.

Let G be a finite group, IrrG the set of irreducible character of G, C(G•) the vector space of

class functions (i.e., functions which are constant on conjugacy classes) onG and C(G•) the space

of functions on the set IrrG. We define isomorphisms

F• : C(G•) → C(G•) F• : C(G•) → C(G•)
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by

F•(f)(χ) :=
∑

x∈G

f(x)
χ(x)

χ(e)
F•(F )(x) :=

∑

χ∈IrrG

F (χ)χ(e)χ(x).

Note that these are not quite mutually inverse, but will be up to a scalar; precisely,

F• ◦ F• = |G| · 1C(G•) F• ◦ F• = |G| · 1C(G•).

It is clear that C(G•) is a subspace of the group algebra C[G]; it is not difficult to verify that it

is in fact a subalgebra for the convolution product ∗G. We can define a product on C(G•) simply

by pointwise multiplication:

(F1 · F2)(χ) := F1(χ)F2(χ).

Then F• and F• have the important properties that

F•(f1 ∗G f2) = F•(f1) · F•(f2) |G| · F•(F1 · F2) = F•(F1) ∗G F•(F2) (4.1.1)

for f1, f2 ∈ C(G•), F1, F2 ∈ C(G•).

4.1.2 Set-theoretic fusion

Let G be a finite group, M a (left) G-set and µ :M → G an equivariant map of sets (where G acts

on itself by conjugation). We may define a function N : G→ Z≥0 by

N(x) :=
∣∣µ−1(x)

∣∣ .

The equivariance condition implies that m 7→ a · m gives a bijection µ−1(x) ↔ µ−1(axa−1) for

a, x ∈ G, and hence it is easy to see that N ∈ C(G•).

Suppose M1 and M2 are two G-sets and µ1 : M1 → G,µ2 : M2 → G are equivariant maps,

and let M :=M1 ×M2 and define µ :M → G by

µ(m1,m2) = µ1(m1)µ2(m2).

Then since for x ∈ G,

µ−1(x) =
∐

a∈G

µ−1
1 (a)× µ−1

2 (a−1x),

a straightforward computation gives

NM = NM1 ∗G NM2 . (4.1.2)

4.2 Counting via Hecke algebras

Recall the notation of Section 3.1. Let V ⊆ G be a set of double H-coset representatives as in

(3.1.6). Let k ∈ Z>0, x ∈ G and

v = (v1, w1, . . . , vk, wk) ∈ V 2k.

For h ∈ H we set

Nh(x,v) :=
{
(a, a1, . . . , ak) ∈ G× v1Hw1H × · · · × vkHwkH : axa−1 = ha1 · · ·ak

}
.

Often we will abbreviate N (x,v) := N1(x,v). We are interested in the function

N : G× V 2k → Z≥0

(x,v) 7→ |N (x,v)|. (4.2.1)
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Proposition 4.2.2. One has

N(x,v) =
|H |2k

|Hv1H | . . . |HvkH | tr (xTv1 ∗ Tw1 ∗ · · · ∗ Tvk ∗ Twk
) .

Proof. For h ∈ H , we have bijections

N (x,v) ↔ Nh(x,v) (a, a1, . . . , ak−1, ak) ↔ (ha, a1, . . . , ak−1, akh
−1)

and hence |N (x,v)| = |Nh(x,v)|. From this, we get

N(x,v) =
1

|H |
∑

h∈H

|Nh(x,v)|.

On the other hand, one sees that

∑

a∈G

(IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH) (axa−1)

=
∑

a∈G

∑

h∈G

IH(h) (Iv1Hw1H ∗G · · · ∗G IvkHwkH) (h−1axa−1)

=
∑

h∈H

∑

a∈G

(Iv1Hw1H ∗G · · · ∗G IvkHwkH) (h−1axa−1) =
∑

h∈H

|Nh(x,v)|.

Hence

N(x,v) =
1

|H |
∑

a∈G

(IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH) (axa−1). (4.2.3)

Therefore, if we set

ϕv := IH ∗G Iv1Hw1H ∗G · · · ∗G IvkHwkH

then Lemma 3.6.5 applied to (4.2.3) gives us

N(x,v) = tr(xϕv), (4.2.4)

To compute ϕv in H (G,H) we need

Lemma 4.2.5. For v, v1, w1 ∈ V , one has

(a) |H ∩ v−1Hv| = |H|2

|HvH| ;

(b) IH ∗G IvH = |H|2

|HvH| IHvH = IHv ∗G IH ;

(c) IH ∗G Iv1Hw1H = IHv1 ∗G IHw1H ;

(d) Iv1Hw1H ∗G IH = |H |Iv1Hw1H .

Proof. One finds in [I, §1] a bijection (H ∩ v−1Hv)\H↔H\HvH given by

(H ∩ v−1Hv)h 7→ Hvh.

This quickly yields (a).

Now we let x ∈ G and evaluate

(IH ∗G IvH) (x) =
∑

h∈G

IH(h)IvH(h−1x) =
∑

h∈H

IvH(h−1x).
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If x 6∈ HvH , then h−1x 6∈ vH for any h ∈ H , and so the above is zero. On the other hand, if

x = h0vh for some h0 ∈ H,h ∈ H , then the above evaluates to

∣∣{h ∈ H : h−1h0vh ∈ vH
}∣∣ =

∣∣{h ∈ H : v−1hv ∈ H
}∣∣ =

∣∣H ∩ v−1Hv
∣∣ = |H |2

|HvH | ,

using (a) for the last step. The second equation in (b) is proved similarly.

For (c), we have

(IHv1 ∗G IHw1H) (x) =
∑

a∈G

IHv1 (a)IHw1H(a−1x) =
∑

a∈H

IHv1 (hv1)IHw1H(v−1
1 h−1x)

=
∑

h∈H

IH(h)Iv1Hw1H(h−1x) = (IH ∗G Iv1Hw1H) (x).

Finally, for (d) we compute

(Iv1Hw1H ∗G IH) (x) =
∑

a∈G

Iv1Hw1H(xa−1)IH(a) =
∑

h∈H

Iv1Hw1H(xh−1) =
∑

h∈H

Iv1Hw1H(x)

= |H |Iv1Hw1H .

We can conclude the proof of Proposition 4.2.2 by noting that

IH ∗G Iv1Hw1H = IHv1 ∗G IHw1H =
|Hw1H |
|H |2

IHv1 ∗G IH ∗G Iw1H

=
|Hw1H |
|H |3

IHv1 ∗G IH ∗G IH ∗G Iw1H =
|H |

|Hv1H | IHv1H ∗G IHw1H

=
|H |2

|Hv1H |Tv1 ∗ Tw1 , (4.2.6)

using IH = IH∗GIH

|H| and (3.1.9) noting the relation between the two different products ∗G and ∗
explained in Remark 3.1.8. Thus, by Lemma 4.2.5(d) and (4.2.6)

ϕv =
1

|H |k IH ∗G Iv1Hw1H ∗G IH ∗G Iv2Hw2H ∗G · · · ∗G IH ∗G IvkHwkH

=
|H |2k

|Hv1H | . . . |HvkH |Tv1 ∗ Tw1 ∗ · · · ∗ Tvk ∗ Twk
.

This and (4.2.4) imply Proposition 4.2.2.

Remark 4.2.7. When k = 1 and v1 = 1, Proposition 4.2.2 gives a character formula for the cardi-

nality of the intersection of conjugacy classes and Bruhat strata and appears at [L, 1.3.(a)]. In fact,

the computation there is what led us to Proposition 4.2.2.

4.3 Character values at the longest element

From now on we will let G, T, B, U and N be as in Section 3.3. We need to compute certain values

of the characters of H (G,U).

Remark 4.3.1. Let (V, π) be a representation of Yd,n(u), and fix i ∈ [1, n− 1]. The element ei is the

idempotent projector to the subspace Vi of V where hih
−1
i+1 acts trivially and there is a direct sum

decomposition V = Vi
⊕
Wi, where Wi := ker ei. Lemma 3.4.7 shows that this decomposition is

preserved by Ti. Over Vi, the endomorphism Ti satisfies the following quadratic relation

Ti|2Vi
= u · 1 + (u− 1)Ti|Vi

(4.3.2)
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whereas over Wi it satisfies

Ti|4Wi
= u2 · 1. (4.3.3)

Theorem 4.3.4. For X ∈ IrrYd,n(u) the element T2
0 acts by scalar multiplication by

zX = ufX (4.3.5)

where fX :=
(
n
2

) (
1 + X1(ω)

X1(1)

)
and ω ∈ N is any of the ωi from Theorem 3.4.3 (all such are conjugate). In

particular, specializing to u = q, the central element T 2
ω0

∈ H (G,U) acts by the scalar qfX .

Proof. Let (V, π) be an irreducible representation affording X . In the notation of Remark 4.3.1,

(4.3.2) shows that the possible eigenvalues of Ti|Vi
are u and −1, and (4.3.3) shows that those of

Ti|Wi
are ±√

u, ±i√u. Thus,

X (Ti) = m+
1

√
u−m−

1

√
u+m⊕

1 i
√
u−m⊖

1 i
√
u−m0 +m2u,

where m+
1 ,m

−
1 ,m

⊕
1 ,m

⊖
1 ,m0 and m2 are the respective multiplicities of

√
u,−√

u, i
√
u,−i√u,−1

and u as eigenvalues of Ti.

Since X (Ti) ∈ C[u±1], we know m+
1 = m−

1 =: m1 and m⊕
1 = m⊖

1 =: m◦
1, and so we get

X (Ti) = −m0 +m2u (4.3.6)

dimV = X (1) = 2m1 + 2m◦
1 +m0 +m2 (4.3.7)

detπ(Ti) = (−1)m0(
√
u)m1(−√

u)m1(i
√
u)m

◦
1 (−i√u)m◦

1um2

= (−1)m0+m1um1+m
◦
1+m2 . (4.3.8)

Since T
2
0 is central, Schur’s Lemma implies that it acts by scalar multiplication by some zX ∈

C[u±1]. Let i1, . . . , i(n2)
be as in (3.4.4). Taking determinants we find

zdimV
X = detπ(T2

0) = det

(
π

(
Ti1 · · ·Ti(n2)

))2

= detπ(Ti)
n(n−1) (4.3.9)

for any 1 ≤ i ≤ n− 1 since the Ti are all conjugate (Lemma 3.4.8).

Now, under the specialization u = 1, Ti maps to ωi and so (4.3.6) gives

X1(ωi) = −m0 +m2. (4.3.10)

Substituting (4.3.8) into (4.3.9) gives

zdimV
X = u(

n

2)(2m1+2m◦
1+2m2) = u(

n

2)(2m1+2m◦
1+m0+m2−m0+m2) = u(

n

2)(X (1)+X1(ωi)),

where we use (4.3.7) and (4.3.10) for the last equality. Taking X (1)th roots, we find

zX = ζufX

where ζ is some root of unity and fX is as in the statement, recalling that X1(1) = X (1).

It remains to show that ζ = 1. We do this by specialising u = 1. We note that in this speciali-

sation θ1(T
2
0) = σ2

0 = 1 ∈ C[N]. Then

ζX (1) = θ1
(
X (T2

0)
)
= X1

(
θ1(T

2
0)
)
= X1(1)

by (3.9.3), and thus ζ = 1.
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Remark 4.3.11. For X = XΛ, Λ ∈ Qn, we have by Remark 3.9.16 and Theorem 3.9.5

fΛ := fX =

(
n

2

)(
1 +

X1(ω)

X (1)

)
=

(
n

2

)(
1 +

χN
Λ̃
(ω)

χN
Λ̃
(1)

)
=

(
n

2

)(
1 +

χN
Λ(s)

χN
Λ(1)

)
(4.3.12)

with s ∈ N any transposition.

Remark 4.3.13. With the modern definition of Yd,n (as in Remark 3.3.3) one can also define the

element Ts0 := Tsi1
. . .Tsi

(n2)
for any factorizationw0 = si1 . . . si(n2)

of the longest element of Sn,

as in (3.4.4). By the argument in Lemma 3.4.6 we have that T2
s0 is also central. For a Λ ∈ Qd,n

(as in Remark 3.9.26) and its associated irreducible representation of Yd,n(u), the same argument

from Theorem 4.3.4 proves that T2
s0 acts by scalar multiplication by ufΛ (as in (4.3.12)).

Therefore, this T2
s0 corresponds to our T2

0.

Lemma 4.3.14. Let Λ ∈ Qn and fΛ = fXΛ as in (4.3.12). Then we have the formula

fΛ =

(
n

2

)
+ n(Λ′)− n(Λ), (4.3.15)

with the notation of (3.7.4) from Section 3.7.1.

Proof. If λ ∈ Pn and χS

λ ∈ IrrSn is the corresponding irreducible character of Sn and s ∈ Sn is

a simple transposition then by [FH, Exercise 4.17 (c)] or [F, §7 (16.)],

χS

λ (s) =
2χS

λ (1)

n(n− 1)

r∑

i=1

((
bi + 1

2

)
−
(
ai + 1

2

))
(4.3.16)

where the ai and bi are the number of boxes below and to the right of the ith box of the diagonal

in the Young diagram of λ. By writing j − i in the box (i, j) and computing the sum in two ways

we see at once that

r∑

i=1

((
bi + 1

2

)
−
(
ai + 1

2

))
= n(λ′)− n(λ). (4.3.17)

From this and (4.3.16), we get that

(
n

2

)(
1 +

χS

λ (s)

χS

λ (1)

)
=

(
n

2

)
+ n(λ′)− n(λ).

It remains to prove the analogous formula for χN
Λ ∈ IrrN with Λ ∈ Qn.

Since we are working in N, we will omit the subscript and simply write χΛ. The description

of the character χΛ was given in Section 3.7.2 and in particular by the induction formula (3.7.8).

We will use the notation established there. We will make the further abbreviations N(ψ) :=

T× Stabψ =
∏
iNi and

χ
N(ψ)
Λ :=

⊗

i

χNi

λi,ψi
∈ IrrN(ψ)

χψΛ := χS

λ1
⊗ · · · ⊗ χS

λr
∈ Irr(Stabψ) = Irr(Sn1 × · · · ×Snr

).

In this notation, χΛ = IndN
N(ψ) χ

N(ψ)
Λ .

Let us evaluate χΛ at any transposition σ ∈ Sn ≤ T⋊Sn = N. Since

χ
N(ψ)
Λ (1) = χψΛ(1) and [N : T⋊ Stabψ] = [Sn : Stabψ]
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we have

χΛ(1) = χψΛ(1)[Sn : Stabψ]. (4.3.18)

Throughout the remaining of the proof, we will write g = ξπ ∈ T × Sn = N for a general

element of N. By (3.7.8) we have

χΛ(σ) =
1

|T⋊ Stabψ|
∑

g∈T⋊Stabψ

χ
N(ψ)
Λ (gσ) (4.3.19)

where χ
N(ψ)
Λ is extended by 0 outside of T⋊ Stabψ, and

gσ = gσg−1 = ξ(πσ)ξ−1 = ξ . (
πσ)(ξ−1) . (πσ).

Note that πσ ∈ Sn and hence (πσ)(ξ−1) ∈ T. When (πσ) ∈ Stabψ we have

ψ(ξ . (
πσ)(ξ−1)) = ψ(ξ)ψ((

πσ)(ξ−1)) = ψ(ξ)ψ(πσ)(ξ−1) = ψ(ξ)ψ(ξ−1) = 1.

Then

χ
N(ψ)
Λ =

{
χψΛ(

πσ) if πσ ∈ Stabψ

0 otherwise

and (4.3.19) becomes

χΛ(σ) =
1

|Stabψ|
∑

π∈Stabψ

χψΛ(
πσ) = IndSn

Stabψ(χ
ψ
Λ)(σ).

Since σ is a transpostion, the latter can be computed as

χΛ(σ) =
1

|Stabψ|

4∑

j=1


χS

λj
(πσ)

∏

i6=j

χS

λi
(1)


 |{π ∈ Sn : πσ is in the jth factor}| . (4.3.20)

The quantity in the summation is the order of the stabilizer of the set of transpositions s in the

jth factor of Stabψ = Sn1 × . . .×Snr
, acted upon by Sn. It is thus equal to

(
nj
2

)
2(n− 2)! =

(
nj
2

)(
n

2

)−1

n!

and (4.3.20) becomes

(
n

2

)
χΛ(σ)

χψΛ(1)
=

|Sn|
|Stabψ|

k∑

j=1

(
nj
2

)
χS

λj
(sj)

χS

λj
(1)

where sj ∈ Snj
is any transposition. By (4.3.18) this becomes

(
n

2

)
χΛ(σ)

χΛ(1)
=

k∑

j=1

(
nj
2

)
χS

λj
(sj)

χS

λj
(1)

and finally, by (4.3.16) and (4.3.17) this becomes

(
n

2

)
χΛ(σ)

χΛ(1)
=

k∑

j=1

n(λ′j)− n(λj) = n(Λ′)− n(Λ)

from which (4.3.15) follows.
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4.4 Counting at higher order poles

For r ∈ Z>0, v ∈ T and g ∈ G let us now define

N r
v (g) :=

∣∣∣∣∣

{
(a, S1, S2, . . . , S2r−1, S2r) ∈ G× (U+ ×U−)

r | aga−1 = v

r∏

i=1

(S2(r+1−i)S2(r−i)+1)

}∣∣∣∣∣ ,

where U+ := U and U− := U−(Fq), U− being the unipotent radical of B−, the Borel opposite to

B.

Theorem 4.4.1. We have

N r
v (g) =

∑

Λ∈Qn

χG
Λ(g)χ

H

Λ (Tv)q
rfΛ . (4.4.2)

Proof. Recall that the multiplication map T × U− × U+ → G is an open immersion and that

U− = ω0U+ω0, so that every element of ω0Uω0U has a unique factorization in to a pair from

U− ×U+ and similarly for vω0Uω0U and vU− ×U+. Thus, it follows that

N r
v (g) = N(g,v),

where v = (v1, w1, . . . , vr, wr) with v1 = vω0, vi = ω0 for i > 1 and wi = ω0 for all i. So by

Proposition 4.2.2 we have

N r
v (g) = N(g,v) =

∑

Λ∈Qn

χG
Λ(g)χ

H

Λ (Tvω0 ∗ Tω0 ∗ T 2r−2
ω0

) =
∑

Λ∈Qn

χG
Λ(g)χΛ(Tv ∗ T 2r

ω0
).

Theorem 4.3.4 states that T 2
ω0

acts by the scalar qfΛ in the irreducible representation corresponding

to Λ, and the result follows.

4.5 Values at generic regular semisimple Fq-rational elements

Here we compute our count function in the case when v ∈ Treg, i.e., when v has distinct eigen-

values.

Proposition 4.5.1. Let v ∈ Treg. Then

N r
v (g) =

∑

Λ∈Qn

χG
Λ(g)

χG
Λ(1)

(
qrfΛ

χG
Λ(v) |G|
χG
Λ (1)

)
χG
Λ(1)

2

|G| =
∑

χG
Λ∈IrrG

χG
Λ(g)

χG
Λ(1)

(
qrfΛ

χG
Λ (v) |G|
χG
Λ(1)

)
χG
Λ(1)

2

|G| .

(4.5.2)

where the first sum is over the characters χG
Λ ∈ IrrG defined in 3.7.1 for functions Λ ∈ Qn, while the

second sum is over all irreducible characters parametrised by Λ : Γ → P of size n.

Proof. For v ∈ T and g ∈ G set

N0
v (g) :=

∣∣{(a, u) ∈ G×U
∣∣ aga−1 = vu

}∣∣ /|U|. (4.5.3)

Then similarly as in the proof of Proposition 4.2.2 we compute

N0
v (g) =

1

|U|2
∑

h∈U

∣∣{(a, u) ∈ G×U | aga−1 = hvu
}∣∣ = 1

|U|2
∑

a∈G

(IU ∗G IvU) (aga
−1)

=
1

|U|
∑

a∈G

IUvU(aga
−1) = tr(gTv) =

∑

Λ∈Qn

χH

Λ (v)χG
Λ (g),
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using that U ∩ vUv−1 = U.

As v has different eigenvalues every matrix in the coset vU is conjugate to v and hence
∣∣{(a, u) ∈ G×U | aga−1 = vu

}∣∣ = |U|
∣∣{a ∈ G | aga−1 = v

}∣∣ = |U||CG(v)| (4.5.4)

from which
∑

Λ∈Qn

χH

Λ (v)χG
Λ (g) =

∑

χG∈IrrG

χG(v)χG(g). (4.5.5)

Since this is true for every g ∈ G we conclude

χG(v) =

{
χH
Λ (v) if χG = χG

Λ , for some Λ ∈ Qn

0 otherwise.
(4.5.6)

Now the first equation in Proposition 4.5.1 follows from Theorem 4.2.2. The second equation

follows as χG
Λ (v) = 0 unless Λ ∈ Qn.

4.6 Counting formulas for wild character varieties

For i = 1 . . . k let Ci ⊂ G be a semisimple conjugacy class with eigenvalues in Fq . As usual,

ICi
: G → C will denote its characteristic function. Fix g ∈ Z≥0 and define D : G → C by

D(g) = |µ−1(g)|, where µ : G×G → G is given by µ(g, h) = g−1h−1gh. Finally let m ∈ Z≥0, fix

r = (r1, . . . , rm) ∈ Zm>0

and for each j = 1 . . .m we fix vi ∈ Treg and consider the count function N ri
vi : G → C.

With this notation we have the following

Proposition 4.6.1.

D∗Gg ∗G IC1 · · · ∗G ICm
∗G N r1

v1 ∗G · · · ∗G N rk
vk (1)

=
∑

χ∈IrrG

( |G|
χ(1)

)2g m∏

j=1

(
χ(Cj) |Cj |
χ(1)

)
k∏

i=1

(
qrifχ

χ(vi) |G|
χ(1)

)
χ(1)2

|G| .

Proof. Recall that for a conjugacy class C we have the characteristic function

1C(g) =
|C|
|G|

∑

χ∈IrrG

χ(g)χ(C) =
∑

χ∈IrrG

χ(g)

χ(1)

(
χ(C) |C|
χ(1)

)
χ(1)2

|G| . (4.6.2)

By [HLV1, Lemma 3.1.3] we have that

D(g) =
∑

χ∈Irr G

χ(g)

χ(1)

( |G|
χ(1)

)2
χ(1)2

|G| . (4.6.3)

Combining Proposition 4.6.1, (4.6.2) and (4.6.3) with the usual arithmetic harmonic analysis of

§ 4.1.1 we get the theorem.

With this we have our final count formula:

Theorem 4.6.4. With notation as above let (C1, . . . , Cm) be of type µ = (µ1, . . . , µm) ∈ Pmn . Let

(C1, . . . , Cm, v1, . . . , vk) be generic and µ̃ = (µ1, . . . , µm, (1
n), . . . , (1n)) be its type. Finally denote

r = r1 + · · ·+ rk. Then

q − 1

|G||T|kD
∗Gg ∗G IC1 · · · ∗G ICm

∗G N r1
v1 ∗G · · · ∗G N rk

vk (1) = qdµ̃,rHµ̃,r(q
−1/2, q1/2)
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Here, “generic” is in the sense of Definition 2.2.9, which has an obvious analogue over an

arbitrary field.

Proof. Denote Cm+i = C(vi) then |C(vi)| = |G|
|T| as vi ∈ Treg. Furthermore let r = r1 + · · ·+ rk. This

way we get

q − 1

|G||T|kD
∗Gg ∗G IC1 · · · ∗G ICm

∗G N r1
v1 ∗G · · · ∗G N rk

vk (1)

=
q − 1

|G|
∑

χ∈IrrG

( |G|
χ(1)

)2g m∏

j=1

(
χ(Cj) |Cj |
χ(1)

)
k∏

i=1

(
qrifχ

χ(vi) |G|
χ(1)

|T|
)
χ(1)2

|G|

=
q − 1

|G|
∑

χ∈Irr G

qrfχ
( |G|
χ(1)

)2g m+k∏

j=1

(
χ(Cj) |Cj |
χ(1)

)
χ(1)2

|G| . (4.6.5)

As (C1, . . . , Cm, Cm+1, . . . , Cm+k) is assumed to be generic, we can compute exactly as in [HLV1,

Theorem 5.2.3]. The only slight difference is the appearance of qrfχ . We observe that the quantity

fΛ in (4.3.15) behaves well with respect to taking Log and the same computation as in [HLV1,

Theorem 5.2.3] will give Theorem 4.6.4.

Remark 4.6.6. In the definition of Hµ̃,r(z, w) in (1.1.2) we have a sign (−1)rn in the LHS and a sign

(−1)r in the RHS in (1.1.3). As µ̃ contains the partition (1n) one will not have to compute the

plethystic part of the Log function to get Hµ̃,r(z, w) and in this case the signs on the two sides

will cancel. That is why we do not see the sign in (4.6.5) in front of qrfχ .

5 Main theorem and conjecture

5.1 Weight polynomial of wild character varieties

Let µ ∈ Pkn and r ∈ Zm>0. Let Mµ,r
B be the generic complex wild character variety defined in

(2.2.4). Here we prove our main Theorem 1.2.1.

Proof of Theorem 1.2.1. The strategy of the proof is as follows. First we construct a finitely gen-

erated ring R over Z, which will have the parameters corresponding to the eigenvalues of our

matrices. Then we construct a spreading out of Mµ,r
B over R. We finish by counting points

over Fq for the spreading out, find that it is a polynomial in q and deduce that it is the weight

polynomial of Mµ,r
B by [HV, Appendix A].

As in [HLV1, Appendix A] first construct R the finitely generated ring of generic eigenvalues

of type µ̃, where

µ̃ = (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn .

In particular, we have variables {aij} ∈ R for i = 1, . . . , k +m and j = 1, . . . , l(µi) representing

the eigenvalues of our matrices. They are already generic in the sense that they satisfy the non-

equalities of aij1 6= aij2 when 0 < j1 < j2 ≤ l(µ̃i) and the ones in (2.2.12).

Generalising [HLV1, Appendix A] we consider the algebra A0 over R of polynomials in

n2(2g + k +m) + r(n2 − n) variables, corresponding to the entries of n× n matrices

A1, . . . , Ag;B1, . . . , Bg;X1, . . . , Xk, C1, . . . , Cm

and upper triangular matrices Si2j−1 and lower triangular matrices Si2j with 1 on the main diag-

onal for i = 1 . . .m and j = 1 . . . ri such that

detA1, . . . , detAk; detB1, . . . , detBk; detX1, . . . , detXk
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are inverted.

Let In be the n × n identity matrix, let ξi be the diagonal matrix with diagonal elements

ai+k1 , . . . , ai+kn for i = 1, . . . ,m. Finally, for elements A,B of a group, put (A,B) := ABA−1B−1.

Define I0 ⊆ A0 to be the radical of the ideal generated by the entries of

(A1, B1) · · · (Ag , Bg)X1 · · ·XkC
−1
1 ξ1S

1
2r1 · · ·S1

1C1 · · ·C−1
m ξmS

m
2rm · · ·Sm1 Cm − In,

(Xi − ai1In) · · · (Xi − airiIn), i = 1, . . . , k

and the coefficients of the polynomial

det(tIn −Xi)−
ri∏

j=1

(t− aij)
µi
j

in an auxiliary variable t. Finally, let A := A0/I0 and Uµ,r := Spec(A) an affine R-scheme.

Let φ : R → K be a map to a field K and let U φ
µ,r be the corresponding base change of Uµ,r to

K. A K-point of U φ
µ,r is a solution in GLn(K) to

(A1, B1) · · · (Ag , Bg)X1 · · ·XkC
−1
1 ξφ1S

1
2r1 · · ·S1

1C1 · · ·C−1
m ξφmS

m
2rm · · ·Sm1 Cm = In, (5.1.1)

where Xi ∈ Cφi and Cφi is the semisimple conjugacy class in GLn(K) with eigenvalues

φ(ai1), . . . , φ(a
i
ri)

of multiplicities µi1, . . . , µ
i
ri and ξφi ∈ T reg(K) is a diagonal matrix with diagonal entries

φ(ak+i1 ), . . . , φ(ak+in ).

By construction (Cφ1 , . . . , Cφk , ξ
φ
1 , . . . , ξ

φ
m) is generic.

Finally G = GLn × Tk acts on Uµ,r via the formulae (2.2.2). We take

Mµ,r = Spec(AG(R))

the affine quotient of Uµ,r by G(R). Then for φ : R → C the complex variety M φ
µ,r agrees with

our Mµ,r
B thus Mµ,r is its spreading out.

We need the following

Proposition 5.1.2. Let φ : R → K a homomorphism to a field K. Then if Ai, Bi, Xj, Cα ∈ GLn(K), a

solution to (5.1.1) representing a K-point in Uφµ,r is stabilized by

(y, x1, . . . , xm) ∈ Gφ = G ⊗φ K = GLn(K)⊗ T (K)m

then

y = x1 = · · · = xm ∈ Z(GLn(K))

is a scalar matrix. Equivalently, if D = {λIn, . . . , λIn} ≤ Gφ is the corresponding subgroup then

Gφ := Gφ/D acts set-theoretically freely on Uφµ,r.

Proof. By assumption

xαCαy
−1 = Cα (5.1.3)

thus the matrices y, x1, . . . , xm are all conjugate and split semisimple. Let λ ∈ K be one of their

eigenvalues and Vλ < Kn be the λ-eigenspace of y then by (5.1.3)Cα(Vα) ⊆ Kn is the λ-eigenspace
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of xα. As y commutes with all of Ai, Bi, Xj we see that they leave Vλ invariant. While xα com-

mutes with Sαi and ξα thus they leave Cα(Vλ) invariant or equivalently C−1
α Sαi Cα and C−1

α ξαCα
leave Vλ invariant. As Sαi is unipotent

det(C−1
α Sαi Cα|Vλ

) = 1

and the determinant of the equation (5.1.1) restricted to Vα gives

k∏

i=1

det(Xi|Vλ
)

m∏

α=1

det(ξα|Vλ
) = 1.

By assumption (Cφ1 , . . . , Cφk , ξ
φ
1 , . . . , ξ

φ
m) is generic. Thus, we get from (2.2.10) that Vλ = Kn.

Let now K = Fq a finite field and assume we have φ : R → Fq. Because G is connected

and G(K) acts freely on U φ
µ,r we have by similar arguments as in [HLV1, Theorem 2.1.5], [HV,

Corollaries 2.2.7, 2.2.8] and by Theorem 4.6.4 that

#M
φ
µ,r(Fq) =

#U φ
µ,r

#G(Fq)
= qdµ̃,rHµ̃,r(q

−1/2, q1/2).

As by construction Hµ̃,r(q
−1/2, q1/2) ∈ Q(q) and #M φ

µ,r(Fq) is an integer for all prime power q

we get that #M φ
µ,r(Fq) ∈ Q[q]. Katz’s Theorem 2.1.1 applies finishing the proof.

We have the following immediate

Corollary 5.1.4. The weight polynomial of Mµ,r
B is palindromic:

WH(Mµ,r
B ; q,−1) = qdµ,rWH(Mµ,r

B ; 1/q,−1).

Proof. This is a consequence of Theorem 1.2.1 and the combinatorial Lemma 5.2.4 proved below.

5.2 Mixed Hodge polynomial of wild character varieties

In this section we discuss Conjecture 1.2.2. First we recall the the combinatorics of various sym-

metric functions from [HLV1, §2.3]. Let

Λ(x) := Λ(x1, . . . ,xk)

be the ring of functions separately symmetric in each of the set of variables

xi = (xi,1, xi,2, . . . ).

For a partition, let λ ∈ Pn
sλ(xi), mλ(xi), hλ(xi) ∈ Λ(xi)

be the Schur, monomial and complete symmetric functions, respectively. By declaring {sλ(xi)}λ∈P

to be an orthonormal basis, we get the Hall pairing 〈 , 〉, with respect to which {mλ(xi)}λ∈P and

{hλ(xi)}λ∈P are dual bases. We also have the Macdonald polynomials of [GH]

H̃λ(q, t) =
∑

µ∈Pn

K̃λµsµ(x) ∈ Λ(x)⊗Z Q(q, t).

And finally we have the plethystic operators Log and Exp (see for example [HLV1, §2.3.3.]).
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With this we can define for µ = (µ1, . . . , µk) ∈ Pkn and r ∈ Z>0 the analogue of the Cauchy

kernel:

Ωg,rk (z, w) :=
∑

λ∈P

Hg,r
λ (z, w)

k∏

i=1

H̃λ(z
2, w2;xi) ∈ Λ(x1, . . . ,xk)⊗Z Q(z, w),

where the hook-function Hg,r
λ (z, w) was defined in (1.1.3). This way we can define

Hµ,r(z, w) := (−1)rn(z2 − 1)(1− w2)
〈
Log(Ωg,rk (z, w)), hµ1(x1)⊗ · · · ⊗ hµk(xk)

〉
,

which is equivalent with the definition in (1.1.2).

We have an alternative formulation of the polynomials Hµ,r(z, w) using only Cauchy func-

tions Ωg,0k for r = 0, which we learnt from F.R. Villegas.

Lemma 5.2.1. One has

Hµ,r(z, w) = (z2 − 1)(1− w2)
〈

Log
(
Ωg,0k+r(z, w)

)
, hµ(x)⊗ s(1n)(xk+1)⊗ · · · ⊗ s(1n)(xk+r)

〉
.

Proof. Recall [HLV3, Proposition 3.1, Lemma 3.3] that the operation

F 7→ [F ] = (−1)n〈F, s(1n)(x)〉

for F ∈ Λ(x)⊗Z Q(z, w) commutes with taking the Log, i.e.

[Log(F )] = Log([F ]). (5.2.2)

We also have

〈H̃λ(q, t;xi), s(1n)(xi)〉 = tn(λ)qn(λ
′),

which is [GH, I.16]. This implies

(−1)rn
〈
Ωg,0k+r(z, w), s(1n)(xk+1)⊗ · · · ⊗ s(1n)(xk+r)

〉
= Ωg,rk (z, w).

In turn (5.2.2) gives the result.

We can now claim Conjecture 1.2.2, which predicts the mixed Hodge polynomial

WH(Mµ,r
B ; q, t) = (qt2)dµ,rHµ̃,r(q

−1/2,−tq1/2), (5.2.3)

where again µ̃ = (µ1, . . . , µk, (1n), . . . , (1n)) ∈ Pk+mn and r = r1 + · · ·+ rm. Here we are going to

list some evidence and consequences of this conjecture. The main evidence for Conjecture 1.2.2

is naturally Theorem 1.2.1 showing the t = −1 specialization of (5.2.3) is true.

The first observation is the following

Lemma 5.2.4. Hµ,r(z, w) = Hµ,r(−w,−z)

Proof. As the Macdonald polynomials satisfy the symmetry

H̃λ′(w2, z2;x) = H̃λ(z
2, w2;x)

with λ′ the dual partition, and the Hook polynomials Hg,r
λ (z, w) = Hg,r

λ (w, z) = Hg,r
λ (−w,−z)

the result follows.

Together with Conjecture 1.2.2 this implies the following curious Poincaré duality

Conjecture 5.2.5. WH(Mµ,r
B ; q, t) = (qt)dµ,rWH(Mµ,r

B ; 1/(qt2), t).

Next we have
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Theorem 5.2.6. Let g = 0, k = 0, m = 1, r1 = 1 and n ∈ Z>1 then M∅,(1)
B = ∅. Correspondingly in

this case H(1n),1(z, w) = 0. In other words in this case Conjecture 1.2.2 holds.

Proof. As T × U− × U+ → G given by ξ, S1, S2 7→ ξS1S2 is an embedding, ξ1S1S2 = 1 implies

ξ1 = 1 /∈ Treg showing that M∅,1
B = ∅.

As s(1n) =
∑
λ∈Pn

K∗
(1n)λhλ, we get by Lemma 5.2.1 that

H(1n),1(z, w)

(z2 − 1)(1− w2)
= (−1)n

〈
Log

(
Ω0,1

1 (z, w)
)
, h(1n)(x1)

〉

=
〈

Log
(
Ω0,0

2 (z, w)
)
, h(1n)(x1)⊗ s(1n)(x2)

〉

=
∑

λ∈Pn

K∗
(1n)λ

〈
Log

(
Ω0,0

2 (z, w)
)
, h(1n)(x1)⊗ hλ(x2)

〉

= 0

The last steps follows from [HLV1, (1.1.4)] the orthogonality property of the usual Cauchy func-

tion Ω0,0
2 .

After the case in Theorem 5.2.6 the next non-trivial case is when g = 0, k = 1, m = 1, r = 1

and µ = (µ) ∈ Pn. The corresponding wild character variety M(µ),(1)
B is known by [B4, Corollary

9.10] to be isomorphic to a tame character variety Mµ′

B , where

µ′ = ((n′ − 1, 1), . . . , (n′ − 1, 1), µ′) ∈ Pn+1
n′

with n′ = n − µ1 and µ′ = (µ2, µ3, . . . ) ∈ Pn′ . Combining Boalch’s M(µ),(1)
B

∼= Mµ′

B with

Conjecture 1.2.2 we get the following combinatorial

Conjecture 5.2.7. With the notation as above H(µ,(1n)),1(z, w) = Hµ′(z, w).

Remark 5.2.8. In a recent preprint [Me, Corollary 7.2] Anton Mellit gives a combinatorial proof

of this conjecture. From our results we see that Theorem 1.2.1 and [B4, Corollary 9.10] imply the

t = −1 specialization

H(µ,(1n)),1(q
−1/2, q1/2) = Hµ′(q−1/2, q1/2).

When n = 2 we will check Conjecture 5.2.7, as well as our main Conjecture 1.2.2 in some

particular cases in the next section.

6 Examples when n = 2

In this section we set n = 2, g ∈ Z≥0, k +m > 0, r = (r1, . . . , rm) ∈ Zm>0, r = r1 + · · · + rm and

µ = ((12), . . . , (12)) ∈ Pm. Conjecture 1.2.2 in this case predicts that the mixed Hodge polynomial

WH(Mµ,r
B ; q, t) is given by

(qt2)dµ,rHµ̃,r(q
−1/2,−(qt2)1/2) =

(qt2 + 1)k+m(q2t3 + 1)2g(1 + qt)2g

(q2t2 − 1)(q2t4 − 1)
(6.1.9)

− 2k+m−1(qt2)2g+r−2+k+m(qt+ 1)4g

(q − 1)(qt2 − 1)

+
t−2r(qt2)2g+2r−2+k+m(q + 1)k+m(q2t+ 1)2g(1 + qt)2g

(q2 − 1)(q2t2 − 1)
.

Note, in particular, that the formula depends only on k +m and r.
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Substituting t = −1 gives by Theorem 1.2.1 the following

WH(Mµ,r
B ; q,−1) =(q + 1)k+m(q2 − 1)2g−2(q − 1)2g − 2k+m−1q2g+r−2+k+m(q − 1)4g−2

+ q2g+2r−2+k+m(q + 1)k+m(q2 − 1)2g−2(q − 1)2g (6.1.10)

Fix now g = 0 in the remainder of this section. Then from (2.2.14) we get that

dimMµ,r
B = 4(k − 2)− 2k + 2(m+ r) + 2 = 2(k + r +m)− 6. (6.1.11)

When k+ r+m < 3 the moduli spaces are empty and the corresponding formula in (6.1.9) gives

indeed 0.

When k +m + r = 3 then we have k = 0, m = 1 and r = 2 or k = m = r = 1 or k = 3 and

r = m = 0. In these cases we get 1 in (6.1.9). This corresponds to the fact that the moduli spaces

are single points in these cases. This follows as they are 0-dimensional by (6.1.11) and we have

WH(Mµ,r
B ; q,−1) = 1

by (6.1.10). In particular, we have that

H((12),(12)),1(z, w) = 1 = H((12),(12),(12))(z, w),

confirming Conjecture 5.2.7 when n = 2.

Finally when k +m + r = 4 the moduli spaces are 2-dimensional from (6.1.11). In the tame

case when k = 4 and m = 0 we get the familiar D̂4 case discussed at [HLV1, Conjecture 1.5.4]

with mixed Hodge polynomial

WH(M((12),(12),(12),(12))
B ; q, t) = 1 + 4qt2 + q2t2.

In fact the corresponding Higgs moduli space M((12),(12),(12),(12))
Dol served as the toy model in

[Hau] and has the same perverse Hodge polynomial.

We have four wild cases with k +m+ r = 4. When k = 2 and m = r = 1 (6.1.9) predicts

WH(M((12),(12)),(1))
B ; q, t) = 1 + 3qt2 + q2t2. (6.1.12)

We can prove this by looking at [VdPS, pp.2636] and read off the wild character variety of type

(0, 0, 1) given as an affine cubic surface f(x1, x2, x3) = 0 with leading term x1x2x3. By computa-

tion we find that f has isolated singularities, moreover the leading term has isolated singularities

at infinity. Thus [ST, Theorem 3.1] applies showing that M((12),(12)),(1))
B has the homotopy type

of a bouquet of 2-spheres. In particular it is simply connected and there is only one possibility

for the weights on H2(M((12),(12)),(1))
B ) to give the weight polynomial

WH(M((12),(12)),(1))
B ; q,−1) = 1 + 3q + q2,

which we know from (6.1.10), namely the one giving (6.1.12).

When k = 1, m = 1 and r = 2 the formula (6.1.9) predicts the mixed Hodge polynomial

WH(M(12),(2)
B ; q, t) = 1 + 2qt2 + q2t2. (6.1.13)

This again we can prove by looking at [VdPS, pp. 2636] the line of (0,−, 2) we get an affine cubic

surface with leading term x1x2x3. Again [ST, Theorem 3.1] implies that M(12),(2)
B is homotopic

to a bouquet of 2-spheres thus the only possible weights on H2(M(12),(2)
B ) to give the known

specialization

WH(M(12),(2))
B ; q,−1) = 1 + 2q + q2
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is the one claimed in (6.1.13).

When k = 0, m = r = 2; then we get again a cubic surface [VdPS, pp.2636] corresponding to

(1,−, 1) and thus the same

WH(M∅,(2,2)
B ; q, t) = 1 + 2qt2 + q2t2,

which we can prove in an identical way as above.

Finally when k = 0, m = 1 and r = 3 we get

WH(M∅,(3)
B ; q, t) = 1 + qt2 + q2t2.

Here the same argument applies using the explicit cubic equation in [VdPS, pp.2636] correspond-

ing to the case (−,−, 3).
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