

This is an Accepted Manuscript of an article published by Taylor & Francis in
Engineering Management Journal on Jan 24, 2019

available online: https://doi.org/10.1080/10429247.2018.1522221

Lot Streaming Flow Shop with a Heterogeneous Machine

Augusto Ferraro

Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca

(8000), Argentina

augusto.ferraro@uns.edu.ar

Daniel Rossit*

Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca

(8000), Argentina

INMABB-UNS-CONICET, Av. Alem 1253, Bahía Blanca (8000), Argentina

daniel.rossit@uns.edu.ar

Adrián Toncovich
Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca

(8000), Argentina

atoncovi@uns.edu.ar

Mariano Frutos
Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca

(8000), Argentina

IIESS UNS-CONICET, San Andrés 800, Bahía Blanca (8000), Argentina

mfrutos@uns.edu.ar

* Corresponding author. Tel.: +54 (0291) 4595101 - Ext.: 3245. Fax: +54 (0291) 4595119

E-mail: daniel.rossit@uns.edu.ar (D. Rossit)

Abstract:

It is possible to obtain greater productivity of a production system by overlapping the operations

required to process a manufacturing order. This methodology, known as lot streaming, requires to

divide the production order (lot) into small sublots. In this article, we study production systems

that include machines that operate in batch mode (processing a group of units at the same time)

and single processing machines (processing one unit at a time) arranged in a flow shop

configuration, i.e., all jobs must go through the same production stages in the same order. The

obtained results show that addressing the problem with consistent sublots (a common sublot size

used for the whole process) is inefficient. On the other hand, addressing the problem considering

the sizing of sublots for each machine (variable sublots), greatly improves the quality of the

solution but is very costly computationally (limiting the size of the problem that can be solved).

Therefore, a decomposition procedure is proposed on the decision of sublots sizing. This procedure

greatly improves the solution obtained using consistent sublots and does so at a much lower

computational cost than the variable sublots approach.

Keywords: Flow Shop, Lot Streaming, Makespan, Sequence Dependent Setups, Decomposition

owadays, it is imperative for manufacturing companies to run efficiently in order to

remain competitive in the global market. The emergence of new technologies,

continuous improvement in product quality, and changing customer requirements

have all motivated the pursuit of shorter production cycles, which demand effective production

plans that minimize work in process and cycle time and fulfill customer demands. Due to the nature

of batch production, the use of appropriately sized lots in shop floor production planning is vital

to achieving those objectives. Lot streaming is a technique that divides a given production lot into

smaller sublots to allow them to be processed in an overlapping manner in a multi-stage production

system (Biskup & Feldmann, 2006). This technique can effectively influence the flow of a batch

(or lot) of jobs over the machines by determining the appropriate size of the sublots (also called

transfer lots) (Sarin & Jaiprakash, 2007). Processing different sublots of the same job in an

overlapping fashion during different production stages improves the job flow through the system.

While traditional scheduling problems assume that jobs or lot sizes are fixed, lot streaming

problems can be considered as sequencing problems where the sizes of processing sublots are

N

decision variables.

Lot streaming improves the power of local decision making at the shop floor control level, and

production may be accelerated without requiring additional investment in new machines.

Furthermore, this technique can be implemented and quickly adjusted to current job requirements.

This technique has been implemented by Toyota and Dell, among others (Defersha & Chen, 2010;

Cheng, Mukherjee, & Sarin, 2013), and has been widely studied and researched in various

production environments.

While the benefits of using lot streaming techniques are well known, the literature frequently limits

its use to consistent sublots over all the production process (Cheng et al., 2013). This means that

the sublots keep a fixed size for all the machines of the production system. This additional

constraint can limit the impacts of the lot streaming technique as the sublot sizing technique does

not allow enough flexibility to appropriately size the sublot to each machine within the production

system. To overcome this limitation, it is possible to use variables sublots where the sizing of the

sublots is decided for each individual machine allowing for reconfiguration of the sublots. Biskup

& Feldmann (2006) first acknowledged the negative impact of restricting the solution to consistent

sublots and found that when the number of sublots is small, the impact could be higher.

Subsequently, in Feldmann & Biskup (2008), the authors presented additional evidence of variable

sublots improving the production makespan. However, this improvement in system’s performance

brings a considerable increase in the difficulty of solving the scheduling problem since the problem

now requires the size of the sublots to be determined (Rossit, Tohmé, Frutos, Bard, & Broz, 2016).

The variable sublot approach, which modifies the size of the sublot according to the production

stage, is of vital importance for production systems that have both batch machines (which process

several product units at the same time) and unit processing machines (which process one single

product at a time). In these cases, batch machines can process more than one unit at the same time

while observing the maximum capacity of the machine, and the processing time is independent of

the batch quantity processed. Examples of such production systems are millwork workshops where

a press acts over hot plates with pressure to glue two or more parts together. This machine has a

limited capacity, i.e., an upper bound on the sublot size that has to be processed, but the processing

time is independent of its size. Another similar example can be found in the metallurgical industry

where ovens used to perform heat treatments require a certain amount of time that is independent

of the sublot size to be processed. Other industrial examples of heterogeneous (batch/single unit)

processes are multi-layer ceramic capacitor manufacturing process, manufacturing of integrated

circuits, and numerically controlled routers for cutting metal sheets or printed circuit boards (Koh,

Koo, Kim, & Hur, 2005).

In heterogeneous systems, generating consistent sublots for the entire production process may

decrease overall efficiency. Furthermore, such systems include machines that usually involve setup

times, which increases the potential inefficiencies (Biskup & Feldmann, 2006). Operations

management in heterogeneous production systems is usually not a straightforward task and

generally requires the support of Information Technology (IT) tools for decision making such as

those provided by the SIEMENS PREACTOR business unit or SAP's integrated management

systems (Bożek & Wysocki, 2015). These tools generate production schedules for diverse

production environments, handle the requirements of necessary materials and scheduling

resources, and have a direct interface to link to Enterprise Resource Planning (ERP) systems.

However, in production environments with batch production machines and other unit processing

machines, the available commercial software does not solve the batch sizing problem and requires

the scheduler to define the size of the sublots. This lack of support for the production management

function requires an adequate approach to address it. It is clear that incorrect sublot sizing would

waste time generating bottlenecks by creating sublots that are too big for the batch machine,

forcing previously scheduled jobs to wait for other jobs to arrive in order to be processed at the

batch stage, or create small sublots that involve an excessive number of production runs in the

batch machines such that jobs must wait until the batch machine is freed. The complexity of the

sublot sizing decision increases as the production process involves batches of multiple products

and the machine setups depend on the product previously processed. Sequence-dependent setup

times impact production decisions as they involve non-productive operations that have to be

performed on machines in addition to the job’s processing time. These may include but are not limited

to cleaning and fixing activities and loading of parts to machines (Ruiz & Maroto, 2006; Pan & Ruiz,

2012; Ciavotta, Minella, & Ruiz, 2013). Production in which setups depend on the sequence is more

common than production in which they do not since the latter is a particular case of the sequence

dependent one. This feature extends the scope of our work to many real-world industrial cases

where the setup of the machines depends on the product scheduled previously. Ultimately,

sequence independent setup times are a special case of sequence dependent setup times.

That is why it is necessary to generate tools that support this decision process without disregarding

the scheduling problem, and this is studied in this article for flow shop manufacturing

environments. Flow shop production systems consist of a set of jobs and machines in which all

jobs must be processed on all machines in the same order, i.e., all jobs go through machine 1 first,

then machine 2 and so on successively.

Specifically, the flow shop scheduling problem that combines unit and batch processing machines

is studied in this article. To approach this problem, lot streaming strategies are proposed, which

allow dividing production lots into sublots. As was previously explained, the configuration of these

sublots may significantly influence the performance of the production schedule.

To analyze the efficiency of lot streaming strategies, the solutions obtained by the ideal approach

(variable sublots) are compared with the results of consistent sublots. This analyzes the case in

which the scheduler selects "simplistic" solutions and to measure the impact that such a strategy

can have on the performance of the system. However, the computational effort required by the

variable sublots approach constrains the analysis. For dealing with this matter, a new procedure is

proposed which allows decomposing the production system into three parts. This new approach

reduces the computational effort without significantly worsening the objective function. The

proposed decomposition method is extensively tested.

Literature Review

One of the original works on this topic was contributed by Trietsch & Baker (1993) who proposed

a scheme for classifying the different features of the lot streaming problem, focusing mainly on

flow shop configurations. Flow shop configurations are relevant because they are appropriate to

improve manufacturing productivity and, for that reason, they account for more than a quarter of

real-world production facilities (Pan et al., 2011; Toncovich, Rossit, Frutos, & Rossit, 2019). The

work of Trietsch & Baker (1993) generated multiple research efforts to develop methods to solve

the lot streaming problem. The first meta-heuristics to address the problem were presented by

Kumar, Bagchi, & Sriskandarajah (2000) and Yoon & Ventura (2002). Kumar, Bagchi, &

Sriskandarajah (2000) implemented the first meta-heuristics to address production systems with lot

streaming techniques, and Yoon & Ventura (2002) applied genetic algorithms to solve a flow shop

scheduling problem with lot streaming. Since then, several new approaches and algorithms have

been applied to lot streaming scheduling problems. Tseng & Liao (2008) applied a particle swarm

optimization algorithm to solve lot streaming scheduling problems, and Pan, Tasgetiren,

Suganthan, & Chua (2011) similarly implemented a discrete artificial bee colony algorithm. Pan

& Ruiz (2012) used an estimation of distribution algorithm for flow shop with lot streaming, and

more recently, Han, Gong, Sun, & Pan (2014) addressed a multi- objective lot streaming flow shop

with a modified Non-Dominated Sorting Genetic Algorithm II (NSGA-II) algorithm. More

recently, Han, Gong, Jin, & Pan (2016) contribute a stochastic blocking multi-objective approach

to solve the problem, and in Rossit, Tohmé, Frutos, Bard, & Broz (2016), lot streaming techniques

are extended to address non-permutation flow shop scheduling problems. Zhang et al. (2017)

proposed a mathematical model and an effective modified migrating birds optimization (EMBO)

algorithm to solve the problem of hybrid flowshop hybridizing with lot streaming with the

objective of minimizing the total flow time. Han, Gong, Jin, & Pan (2017) proposed an

evolutionary multiobjective robust scheduling algorithm to solve the blocking lot-streaming flow

shop (BLSFS) scheduling problem with machine breakdowns. Gong, Han, & Sun (2018) presented

a hybrid multi-objective discrete artificial bee colony (HDABC) algorithm for the blocking lot-

streaming flow shop (BLSFS) scheduling problem with two conflicting criteria: the makespan and

the earliness time. Meng, Pan, Li, & Sang (2018) considered an integrated lot-streaming flow shop

scheduling problem in which lot-splitting and job scheduling are needed to be optimized

simultaneously. They present an improved migrating birds optimization (IMMBO) to minimize

the maximum completion time or makespan.

Considering specifically contributions that address lot streaming with variable sublots, Martin

(2009) was among the first to make significant advances by proposing a novel hybrid approach to

optimize this problem through a combination of a Mixed Integer Programming (MIP) solver,

CPLEX, and evolutionary algorithms. A similar method was proposed by Defersha & Chen (2010)

where a flow shop with setups and variables sublots is solved with an algorithm based on a MIP

solver (CPLEX) and a hybrid genetic algorithm. In Defersha & Chen (2012), a hybrid flexible flow

shop problem is tackled, and an improved version of the previous algorithm is proposed that can

be run on a parallel computing platform.

Recently, there have been efforts to address production systems that combine batch production

machines and unit processing machines from the lot streaming approach. In this regard, Li, Meng,

Li, & Tian (2016) addressed a similar problem in a job shop scheduling environment (a

configuration where each job has its own work route and not all jobs go through the same machines

in the same order) while considering transfer times between different manufacturing cells. Their

production process consisted of several unit processing machines and a single batch processing

machine, which belongs to an intermediate step of the production process for all the products. The

problem was solved by an Ant Colony Optimization (ACO) algorithm. In order to cope with the

effects of the batch processing machine positioned in the middle of a set of unit production

machines, the authors propose to minimize idle time of the batch processing machine. Sequence

dependent setup times were not considered, and transfer times between machines within the same

cell were considered negligible. This assumption represents a reasonable simplification since the

transfers from one cell to another have a greater impact than the movement within the cell.

However, scheduling problems that exclusively consider operations within a single cell or a flow

shop system may be significantly impacted by transfer times. In Li, Li, Meng, & Tian (2015), the

same problem is solved by using a hyperheuristic based in an ACO algorithm and dispatching

rules. These authors studied the implementation of several strategies to both schedule the jobs in

the unit machines and form the batches to be processed in the batch processing machine.

To the best of our knowledge, Li et al. (2015) and Li et al. (2016) are the only published works

approach scheduling problems combining unit and batch processing machines. There are substantial

dissimilarities between the problems studied by these authors and the scheduling problem analyzed

in this article. Firstly, while Li et al. (2015) and Li et al. (2016) study job shop configurations, this

article deals with flow shop configurations. Although the flow shop scheduling problem is a special

case of the job shop scheduling problem (since considering individual operations routes for each

job does not necessarily prevent the routes from being the same), there are additional aspects that

should be considered. For instance, generally speaking, flow shop systems process higher

production volumes than job shop systems (Pinedo, 2002). Therefore, complete lots belonging to

the same product or job are processed rather than isolated product units and, consequently the

implementation of lot sizing strategies throughout the production system, and not only in the batch

processing machine, may have a considerable influence on scheduling performance. In addition,

prior work does not consider sequence dependent setup times, which are studied in this article.

Problem Definition and Methodologies Description

The problem under study in this article consists of a flow shop system where one of the machines

is a batch processing type and the remainder of the machines are single product processors. This

type of production scenario is commonly found in the millwork and metallurgical industries and

wherever production systems are arranged in the form of a production line where a batch

processing operation is required. The flow shop system includes a group of n jobs that must be

processed by a set of m machines. The flow shop scheduling problem is a combinatorial

optimization scheduling problem in the NP-Complete class (Garey, Johnson, & Sethi, 1976). All

jobs require processing by all machines and in the same technological order, i.e., the first operation

on the first machine, the second operation on the second machine and so on. In this case study, one

of the machines is a batch workstation, where the processing times are independent of the size of

the sublot that must be processed. In the remainder of the article, this machine is called as the

“limiting machine.” The sequence of the jobs and size of the sublots must be determined to

minimize the production makespan (completion time) of the schedule. The setup times are

sequence dependent, and there are fixed sublot transfer times between machines to represent the

problem in a realistic way.

Initially, we show that if the problem is addressed using the classic approach (consistent sublots,

here referred to as the “simple method”), the final obtained solution may be considerably worse in

terms of the makespan objective than if this problem is addressed by means of the variable sublots

approach (referred to as the “ideal method”). Nonetheless, the ideal method leads to a significant

and fast rise in the computing time, considerably limiting the size of the problem that can be solved.

Therefore, a new approach (the “partitioned method”) is proposed by which the sizing of the

sublots is decomposed into stages. The first stage is comprised of the first machine up to the

machine before the limiting machine, the second stage consists of just the limiting machine, and

the third stage includes the remaining machines after the limiting machine. This segmentation is

represented in Exhibit 1. The sublots sizes are defined for each stage, where the sublots of the

following stage can be formed only by units that belong to a sublot that has already finished its

processing in the previous stage. This aids in the tracking of the work orders and the evolution of

the production plan.

Insert Exhibit 1 Production system and its stages.

As discussed in the Introduction, considering lot streaming strategies implies that the sublot size

to be processed is a decision variable which the scheduler can control. Thus, the decision of the

size of sublots is added to the classic scheduling problem related to selecting job sequence. That

being said, deciding the size of a given sublot implies, in a certain way, determines the time this

sublot will require on each machine. Considering that the metrics used to assess schedule

performance are generally related to time, makespan is used as a performance measure and the

dependency between the sublot sizes and the performance of a given schedule is clear. Therefore,

it is not possible to separate these decisions in a hierarchical way, where the job sequence or the

sublot sizes is set and then the other set of variables are determined considering the solution of the

first problem. Furthermore, it is not clear which decision should be made first. Consequently, to

solve the problem optimally, it is necessary to adopt a thorough approach by handling both

decisions simultaneously. By proceeding in this manner, a software like CPLEX can find the

optimal solution to the problem committing the optimal job sequence and sublot sizing. The

decomposition procedure presented in this article can be implemented with any other mixed integer

linear programming (MILP) solver including those based on metaheuristic optimization.

Formulation of the Lot Streaming Models

In this section, the mathematical formulations of the three employed methods are developed based

on the guidelines of Sarin & Jaiprakash (2007) and Feldmann & Biskup (2008). It was necessary

to formulate the mathematical models since the problem has not yet been addressed in the

literature. First, the ideal method is described in detail, and then the partitioned and simple methods

are presented as reformulations of the ideal method.

Model 1: Ideal Method - M1

This method (M1) implements the pure variable sublots approach, which allows complete

flexibility to size the sublots. In each machine of the production process, the sublots can be

rearranged, and therefore, this method can provides the optimal solution.

Parameters and sets:

i: index for the sublots, i = 1, 2, …, l. j: index for the jobs, j = 1, 2, …, n.

k: index for machines, k = 1, 2, …, m.

m*: machine that has processing times which are independent from the size of the sublot (limiting

machine), m* ≠ 1, m.

pjk: unit processing time of the job j on machine k if k ≠ m* and the sublot processing time of the

job j on machine k if k = m*.

Uj: number of units of job j to be processed.

tjj'k: set up time of job j’ on machine k after having processed job j, j ≠ j’. t'jk: set up time of job j

on machine k if job j is scheduled first.

fjk: fixed sublot transfer time of any sublot of job j from machine k to machine k + 1, k < m

(including m*).

T: processing capacity of machine m*.

G: an arbitrarily large number.

Variables:

sijk: size of sublot i from job j on machine k (integer variable).

cijk: completion time of sublot i of job j on machine k (continuous variable).

cmax: total completion time (makespan) (continuous variable).

wijk: binary variable which takes the value 1 if sublot i from job j is larger than 0 on machine k and

0 otherwise.

xi’ijk: binary variable which takes the value 1 if sublot i from job j starts its processing on machine

k not before than the completion time of sublot i’ from the same job on machine k-1 and 0

otherwise, k ≠ 1.

qjj’: binary variable which takes the value 1 if job j is scheduled immediately before than job j’, j

≠ j’.

Objective function:

min 𝑧 = 𝑐𝑚𝑎𝑥 (1)

Constraints:

𝑐𝑚𝑎𝑥 ≥ 𝑐𝑙𝑗𝑚; ∀𝑗 (2)

∑ 𝑠𝑢𝑗𝑘 = 𝑈𝑗; ∀(𝑗, 𝑘)𝑛
𝑢=1 (3)

𝑐1𝑗𝑘 − 𝑝𝑗𝑘𝑠1𝑗𝑘 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑘
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗)𝑡′

𝑗𝑘] + 𝐺(1 − 𝑥𝑖′1𝑗𝑘) ≥

𝑐𝑖′𝑗(𝑘−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1); ∀(𝑖′, 𝑗, 𝑘): 𝑘{1, 𝑚∗}

(4)

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗)𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗𝑚∗) ≥

𝑐𝑖′𝑗(𝑚∗−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1); ∀(𝑖′, 𝑗)

(5)

𝑐𝑖𝑗𝑘 − 𝑝𝑗𝑘𝑠𝑖𝑗𝑘 + 𝐺(1 − 𝑥𝑖′𝑖𝑗𝑘) ≥ 𝑐𝑖′𝑗(𝑘−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1); ∀(𝑖, 𝑖′, 𝑗, 𝑘): 𝑖 ≠

1, 𝑘{1, 𝑚∗}

(6)

𝑐𝑖𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤𝑖𝑗 + 𝐺(1 − 𝑥𝑖′𝑖𝑗𝑚∗) ≥ 𝑐𝑖′𝑗(𝑚∗−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1); ∀(𝑖, 𝑖′, 𝑗): 𝑖 ≠ 1 (7)

∑ 𝑠𝑢𝑗(𝑘−1)
𝑖′−1
𝑢=1 − ∑ 𝑠𝑢𝑗𝑘

𝑖
𝑢=1 + 𝐺. 𝑥𝑖′𝑖𝑗𝑘 ≥ 0; ∀(𝑖, 𝑖′, 𝑗, 𝑘): 𝑘 ≠ 1 (8)

𝑐𝑙𝑗𝑘 ≤ 𝑐1𝑗′𝑘 − 𝑝𝑗′𝑘. 𝑠1𝑗′𝑘 − 𝑡𝑗𝑗′𝑘 + 𝐺(1 − 𝑞𝑗𝑗′); ∀(𝑗, 𝑗′, 𝑘): 𝑗 ≠ 𝑗′, 𝑘 ≠ 𝑚∗ (9)

𝑐𝑙𝑗𝑘 ≤ 𝑐1𝑗′𝑘 − 𝑝𝑗′𝑘. 𝑠1𝑗′𝑘 − 𝑡𝑗𝑗′𝑘 + 𝐺(1 − 𝑞𝑗𝑗′); ∀(𝑗, 𝑗′, 𝑘): 𝑗 ≠ 𝑗′, 𝑘 ≠ 𝑚∗ (10)

𝑠𝑖𝑗𝑚∗ ≤ 𝑇; ∀(𝑖, 𝑗) (11)

𝑠𝑖𝑗𝑚∗ ≤ 𝑤𝑖𝑗𝐺; ∀(𝑖, 𝑗) (12)

𝑐1𝑗1 − 𝑝𝑗1𝑠1𝑗1 ≥ 𝑡′
𝑗1; ∀𝑗 (13)

𝑐(𝑖+1)𝑗1 − 𝑝𝑗1𝑠(𝑖+1)𝑗1 = 𝑐𝑖𝑗1; ∀(𝑖, 𝑗): 𝑖 ≠ 𝑙 (14)

𝑐(𝑖+1)𝑗𝑘 − 𝑝𝑗𝑘𝑠(𝑖+1)𝑗𝑘 ≥ 𝑐𝑖𝑗𝑘; ∀(𝑖, 𝑗, 𝑘): 𝑖 ≠ 𝑙, 𝑘{1, 𝑚∗} (15)

𝑐(𝑖+1)𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤(𝑖+1)𝑗 ≥ 𝑐𝑖𝑗𝑚∗; ∀(𝑖, 𝑗): 𝑖 ≠ 𝑙 (16)

The objective function in Equation (1) is used to minimize the production schedule finishing

time (or makespan). Constraint (2) expresses that the makespan cannot be less than the finishing

time of the last sublot of each job processed on the last machine. With Constraint (3), it is

established that the sum of the sublot sizes of a given job in a given machine must be equal to the

lot size of that particular product. Constraints (4) and (5) determine whether the starting time of

the first sublot of a particular job occurs after the finishing time of another sublot from the same

job in two consecutive machines. Constraints (6) and (7) are similar to the two previous ones, but

the comparison of sublots times is made with the sublot that is not the first sublot of the job.

Constraint (8) indicates that, for a given job, no sublot can contain units that belong to those

sublots of the precedent machine that have not been processed yet. With Constraints (9) and (10),

the impossibility of the existence of intermingling of sublots is imposed. Constraints (11) and

(12) limit the sublot size to be processed on the “limiting machine” and determine the values of

the binary variables wijk. Constraints (13), (14), (15) and (16) limit the possibility of processing

more than a single sublot at a time on each machine.

Model 2: Partitioned method - M2

The partitioned method (M2) separates the decision of sizing the sublots to three stages instead of

sizing sublots in every machine as in the previously discussed ideal method (M1). Each stage contains

a set of machines as described in Exhibit 1. Within each stage or group of machines, the sublots

can be reconfigured and re-sized. The sublots are reconfigured with units of products that belong

to sublots that have already been processed in the previous stage. Compared to the ideal M1 method,

the partitioned method (M2) explores smaller feasible regions, and its solution approximates the

ideal method’s solution. This model represents a new approach to solve the problem and

constitutes one of the main contributions of this article. The accuracy of the M2 approximation is

assessed in the experimental section of this article.

The key differences of the M2 model with respect the M1 model resides in the integer variables s and

binary variables x. A new set h is necessary to represent the stages for the sublot sizing decisions

where the set h is defined as {1, 2, 3}. Thus, variables s and x must be rewritten.

sijh: size of sublot i from job j to be processed on the group of machines h (h = 1, 2, 3).

xi’ijh: binary variable which takes value 1 if sublot i from job j starts its processing on machine h +

m* – 1 after (or at the same time) that sublot i’ of the same job finishes its processing on machine

h + m* – 2 and 0 otherwise, h < 3.

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗)𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗1) ≥

𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1; ∀(𝑖′, 𝑗)

(17)

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗)𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗1) ≥

𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1; ∀(𝑖′, 𝑗)

(18)

𝑐𝑖𝑗(𝑚∗+1) − 𝑝𝑗(𝑚∗+1)𝑠𝑖𝑗3 + 𝐺(1 − 𝑥𝑖′𝑖𝑗2) ≥ 𝑐𝑖′𝑗𝑚∗ + 𝑓𝑗𝑚∗𝑤𝑖′𝑗2; ∀(𝑖, 𝑖′, 𝑗) (19)

𝑐𝑖𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤𝑖𝑗 + 𝐺(1 − 𝑥𝑖′𝑖𝑗1) ≥ 𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1; ∀(𝑖, 𝑖′, 𝑗) (20)

∑ 𝑠𝑢𝑗𝑔
𝑖′−1
𝑢=1 − ∑ 𝑠𝑢𝑗(𝑔+1)

𝑖
𝑢=1 + 𝐺. 𝑥𝑖′𝑖𝑗𝑔 ≥ 0; ∀(𝑖, 𝑖′, 𝑗, 𝑔) (21)

Model 3: Simple method - M3

The simple method (M3) considers consistent sublots, i.e. the size of the sublot does not change at

any stage or machine. As a result, the feasible region explored is smaller than that M1 and M2

methods. In this case, the integer variable s is indexed only on the sublots and jobs’ sets, and the

binary variable x is removed.

Computational Experiments

The experimental design aims to evaluate the performance of the M2 model as a method of solving

the problem. To this end, M2 is compared with M3 (the simple solution of using a single sublot

size throughout the whole process) to evaluate whether the usage of the proposed decomposition

method M2 is advantageous or not. We will also compare M2 with M1 (variable sublots for all

stages of the process) that provides the ideal solution to the problem but at the highest

computational cost. The intention is to evaluate different problem sizes (combinations of number

of machines and jobs) to be able to draw comprehensive conclusions from the application of the

three models (M1, M2, and M3). As a scheme to generate these problems, we use the well-known

instances in the flow shop literature (Taillard, 1993), which defines multiple cases using a

maximum of twenty machines understanding that an industrial flow shop system usually has a

smaller number of machines. In this article, we use twenty as the maximum number of machines.

Exhibit 2 shows the multiple problems and the cases under which it was possible to find a solution

for each model.

Insert Exhibit 2 Instances tested by each model.

Flow shop problems are NP-hard for m > 3 (Garey et al. 1976), and the size of the feasible solution

space is proportional to (n!). Due to this property, an accurate MIP solver cannot solve problems

with a very large number of jobs. In this work, we solve instances of up to nine jobs (as shown in

Exhibit 2), where it can be seen that six different sizes of machines were used (3, 5, 7, 9, 15, and

20) and four jobs (3, 5, 7, and 9), and nineteen distinct instances were tested for the M2 and M3

models, while M1 was able to solve thirteen of the nineteen instances (M1 could not solve the 15

and 20 machine instances).

Simultaneously, for each instance, multiple maximum quantities of sublots were evaluated (i.e.,

different sizes of the set i), using a maximum of 2, 3, 4 and 5 sublots per job. This experimentation

makes sense because it is necessary to know how many sublots are necessary to obtain the greatest

benefit from the overlapping of operations proposed by the lot streaming approach. On the one

hand, excessive lot streaming implies a multiplication of the fixed transfer times (fjk) as well as an

increase in the computation time by increasing the number of variables related to each sublot.

However, on the other hand, insufficient lot steaming limits the ability of overlapping operations,

thus reducing the associated benefits.

In addition, the influence of the batch machine within the production system was evaluated, thus

analyzing if the proposed partitioning procedure is dependent on the relative position of the batch

machine within the set of machines. If the proposed procedure provides good results only when

the batch machine is in an intermediate position within all stages of the flow shop, then this result

must be studied. Nevertheless, if the M2 method achieves good results regardless of where the

batch machine is located, the potential of the M2 partitioning strategy increases. First, this analysis

was performed considering the batch machine positioned at the "beginning" of the system, that is,

within the first third of the set of machines. Then it was located at an “intermediate” position, and

finally at the "end" position (within the last third of the set of machines). Exhibit 3 provides the

detail of where the batch machine was placed.

The computer used to perform the experimental work is a desktop with an Intel Core i7 processor

with 16 GB RAM memory and a 64-bit operating system. The solver software is CPLEX 12.6.0,

and the M1, M2, and M3 models were written in Pyomo (Hart, Watson, & Woodruff, 2011; Hart,

Laird, Watson, & Woodruff, 2012). For the data and model management, Solver Studio for Excel

was used (Mason, 2013).

Insert Exhibit 3 Detailed position of the limiting machine for each instance.

Parameter Specifications

Regarding the parameter generation, the following ranges were considered, based on an adaptation

of the benchmark data of Taillard (1993) to the problem at hand:

i) The number of units for each lot of each job, Uj, was taken from a uniform distribution

over the interval [20,50].

ii) The unit processing times, pjk if k ≠ m* (limiting machine), were considered uniformly

distributed over [1,10]. Note that the combination of parameters Uj and pjk resemble

Taillard’s (1993) job processing time feature, where no job division was considered.

iii) The sublot processing time on the limiting machine, pjk if k = m* (limiting machine), varies

uniformly between 100 and 300.

iv) The limiting machine capacity, T, was taken from a uniform distribution on the interval

[25,50]. (Notice that the capacity of the limiting machine can be smaller than the lot of units

to process, then, the limiting machine would, also, require sublot sizing. This case is more

general than considering the limiting machine with capacity enough for the complete lot.)

v) The set up times, t'jk and tjj'k, vary from 45 to 85. (The highest setup time was selected in

order to have an approximate 6:1 ratio between the highest possible processing time of an

entire job and the highest set up time. The lowest setup time was selected so that the sum

of two setup times could never be lower than another)

vi) The fixed sublot transfer times, fjk, are drawn from a uniform distribution on the interval

[10,20] for each experiment.

To avoid possible random correlation of parameters, five distinct parameter scenarios were

analyzed for each instance (varying combinations of the number of machines, jobs, and sublots).

The range of variation of the parameters introduced before was selected to represent a wide variety

of production systems. For instance, parameter pjk represents the possibility of having products with

processing times up to ten times greater than the processing times of other products that are

produced within the same system.

Results and discussion

In this section, the results obtained from the experiments that were carried out to test the proposed

models are presented and divided in subsections.

In the first subsection, General results, the overview of the results of the proposed lot streaming

procedure is shown. Then, in Variations of makespan values with the number of machines and

jobs, it is shown whether the variations of the makespan obtained by the methods depend on the

size of the problem. In Computing time, we analyze the computational effort required by each

method, and in the Impact of the number of machines and jobs on lot streaming implementations

subsection, the detail of the impact of those factors on the makespan is discussed. Then, if the

number of sublots is a significant factor is presented in the subsection Number of sublots available in

the production system. Finally, it is studied whether the position of the limiting machine influences

the results or not.

General results

The values shown in Exhibit 4 are the average of the five problems solved for each instance with

a maximum of four sublots for each job with the limiting machine placed in the intermediate

position. In Exhibit 4, the cells filled with a hyphen (-) correspond to the instances for which no

valid solution could be found (no feasible solution was found during an hour of computing or the

gap of the incumbent solution was too high). From Exhibit 4, the makespans for the instances of

three machines are the same for the three methods (M1, M2, and M3). Comparing M1 and M2,

this result is logical since the solutions explored by both methods are the same (the three stages of

M2 overlap with the three machines). However, the fact that makespans of M1 and M3 are identical

is not as logical, but it can be guessed that the system is too simple and the impact of the limiting

machine in sublot sizing is preponderant enough to influence the problem solution. For larger

instances, it can be seen that M2 performs quite similar to M1. For the cases of five machines, M2

yields M1’s makespan and clearly outperforms M3. This tendency is intensified for instances with

more machines. Nevertheless, for 7 and 9 machines, the comparison between M1 and M2 in some

instances cannot be made because, in the computation time limit established, M1 does not converge

to a good solution in some cases and the resulting gap is too large. This is the reason why in some

instances of 7 and in all the instances of 9 machines, the average makespan of M2 outperforms the

average makespan of M1.

Insert Exhibit 4 Average makespan values in the case where the limiting machine is in the middle

position and the maximum number of sublots per job is 4.

Another result shown in Exhibit 4, which are meaningful because the best results were produced

with four sublots, is that the computational effort required by M1 is corroborated as it cannot solve

the instances with the larger number of machines (15 and 20 machines). Moreover, for some of

the instances, M1 reported no optimal solution after an hour of computing; in these cases, M2

found a better solution. For the larger instances, M2 provides much better solutions than M3. For

example, in the cases of 20 machines, the difference goes from 3335 for M2 and 3705 for M3 (3

jobs) to 4807 and 5651 (7 jobs). These discrepancies between methods seem to show that there is a

dependency on the size of the instance.

Variation of makespan values with the number of machines and jobs

As previously mentioned, the makespan gaps among the methods depend on the size of the

instance. To provide additional insight into this result, Exhibit 5 presents the relation between the

makespan and the number of jobs for the case of 9 machines and 4 sublots, and Exhibit 6 presents

the relation between the makespan and the number of machines for the case of 5 jobs and 4 sublots.

These images show the dependency of the results on the proposed models as the number of jobs

or the number of machines vary respectively.

Insert Exhibit 5 Makespan vs the number of jobs for a production system consisting of 9 machines

and 4 sublots.

Insert Exhibit 6 Makespan vs the number of machines in a production system consisting of 5 jobs

and 4 sublots.

From Exhibit 5, it can be seen that M2 is a competent approximation of M1 and that M3 provides

worse solutions than M1. Regarding M2 and M3, the solutions are quite dissimilar with M2 much

improved. In addition, it is perceived from the slopes of the three curves that the three methods keep

a similar gap among them, which means that for a given number of machines, the number of jobs

will not increase the gaps among M3 and the other two methods. From Exhibit 6, it is shown again

that M2 approximates M1 in a good manner. In regards to M3, the gap with respect to M1 and M2

is slight for small instances but increases as the number of machines increases. The shape of the

three curves is similar; however, the slope for M3 is steeper, indicating that the number of machines

apparently impacts the gap between M3 and M2.

Computing time

To study computational performance of the three methods, we analyzed the computational time

required by each approach to perform the experiments as shown in Exhibits 7 and 8 (computational

time is presented on a logarithmic scale to provide a better perspective of the relationships). Exhibit

7 illustrates the computing time as a function of the number of jobs for the case of 9 machines and

4 sublots, and Exhibit 8 illustrates the change of computing time against the number of machines

considering 3 jobs and 4 sublots. The asterisk (*) indicates that the time limit was reached in more

than one of the five problems.

Insert Exhibit 7 Computing time as a function of the number of jobs to be sequenced, for the case

of 9 machines and 4 sublots.

Insert Exhibit 8 Computing time as a function of the number of machines in the production system

for the case of 3 jobs and 4 sublots.

Exhibit 7 shows that the M3 method requires less computing time to solve the problem, as was

expected. The slope of M1 was anticipated as a large increase in computational time occurs when

the number of jobs increases. A notable aspect of M2 is that its computation time values are lower

than those of M1. Moreover, the M2 slope is flatter than the M1 slope, in particular for instances

with more jobs. This implies that the presented decomposition method is an effective method for

reducing the required computational effort. Exhibit 8 shows the difficulty MI faces when solving

problems with a larger number of machines. As M2 and M3 computing times remain lower than

ten seconds even for twenty machines, M1 reaches its time limit with nine machines. The result

that the computation times for M2 and M3 are more or less constant is explained by the fact that

only additional continuous decision variables are added as the number of machines increases (those

corresponding to the completion times), but no additional integer decision variables are needed, thus

maintaining the problem with approximately the same degree of complexity.

Impact of the number of machines and jobs on lot streaming implementations

In this subsection, we analyzed the makespan obtained by the three methods and varying numbers

of jobs and machines. For this, the dependency between the makespan improvement of M1 and

M2 with respect to M3 is studied when considering four sublots. In Exhibit 9, the makespan

improvement is related to the number of machines where the dashed lines represent M2

improvements and the solid lines show M1 improvements. Similarly, Exhibit 10 shows the

improvements linked to the number of jobs.

Insert Exhibit 9 M1 and M2 makespan improvement over M3, as a function of the number of

machines, with 4 sublots per job.

Insert Exhibit 10 M1 and M2 makespan improvement over M3, as a function of the number of

jobs, with 4 sublots per job.

Exhibit 9 suggests that the greater number of machines, the larger makespan improvements of M1 and

M2 over M3, considering that the transfer time between stations is equal to zero and that there is no

variability. In fact, this tendency between the improvement of the solution and the number of machines

is observed in every curve (different number of jobs). In addition, the slope of the curves indicates that

the impact of fewer jobs is greater than that of more jobs, and it flattens as the number of machines

increases. Exhibit 10 shows the improvement of the makespan against the number of jobs, and we

observe that for the greater number of machines, the incorporation of more jobs increases the difference

between M2 and M3 makespans. From Exhibits 9 and 10, it is observed that M1 and M2 provide very

similar results, which may suggest that M2 is a good approach to solve this type of problem. It is

observed that as the number of machines increases, the beneficial effects of lot streaming also

increase as the greater number of machines, the greater the percentage of reductions in makespan.

This can be inferred from the fact that an increase in workflow due to the lot streaming strategy

generates benefits, which are accumulated over a greater number of machines. However, these

inferences cannot be considered conclusive and present an opportunity to future analysis.

Number of sublots available in the production system

The effect of the number of maximum sublots per job is analyzed and presented in Exhibit 11,

which shows the evolution of the makespan against the number of maximum sublots in the cases

of M2 and M3 with five machines and the limiting machine in the intermediate position.

Insert Exhibit 11 M2 and M3 makespan as a function of the number of maximum sublots per job

in the case of 5 machines.

Exhibit 11 indicates that the makespan decreases as each lot is split into more sublots. However,

this decrease is not consistent as it seems to be saturated with three sublots for M3 and with five

for M2. Furthermore, M2 has a larger makespan decrease than M3 under the same problem

conditions, resulting a better makespan. Exhibit 12 compares the improvement obtained with M1

and M2 against the number of sublots available when considering a production system with five

machines.

Insert Exhibit 12 Improvement of M1 and M2 as a function of the number of sublots available in

the case of 5 machines.

Exhibit 12 again shows how similar are the results of M1 and M2 are with regards to the

improvement achieved. Moreover, with more sublots available, the improvement is higher but in

a decreasing manner. The improvement limit seems to be reached more quickly in cases with more

jobs. However, the number of sublots has a larger impact on M2 than on M1, and the makespan

improvement is lower for the cases with more jobs. For M1, it seems that the makespan

improvement is indifferent to the number of jobs as all the improvements are around 1 to 2%.

Influence of the limiting machine position

As a final analysis, the position of the limiting machine and its impact on the performance of the

proposed method M2 is investigated. Exhibit 13 presents the case of nine machines and four

sublots and captures when the best and worst makespans are generated regarding the position of

the limiting machine for the same scenario (column “Problem”) with a “B” for the best value, “W”

for the worst, and “0” otherwise. Both M2 and M3 methods are assessed in this manner.

Insert Exhibit 13 Makespan values varying the limiting machine position.

For M2, the best makespan value is obtained in approximately half of the scenarios when the

limiting machine is at the ending position. In addition, the ending position results in the worst result

in two of the scenarios. It is worth noting that in M3, unlike M2, more than half of the results have

the highest makespan value with the limiting machine being at the ending position. For the

intermediate position of the limiting machine, M2 returned the best makespan in two cases. An

examination of the relative improvements of M2 average makespan values with respect to the M3

values are shown in Exhibit 14.

Insert Exhibit 14 Relative improvements of M2 for different positions of the limiting machine.

In twelve of the seventeen instances studied, M2 improves with respect to M3 to the greatest extent

when the limiting machine is at the ending position. Not only that, but when it is placed in the

intermediate position, the best improvement is never achieved. From these results, we can infer that

M2 obtains the largest differences with respect to M3 when the limiting machine is at the ending

position, thus indicating that M3 is inefficient for this kind of system. When the limiting machine is

at the beginning position, M3 is still inefficient but not as bad as when in the ending position. The

percentage values of Exhibit 14 indicate that M2 is a suitable method since its improvements over

M3 are in a consistent range.

Implications for Engineering Managers

The proposed methods are tools that support decision making in short term production planning. These

tools complement other management tools such as ERP systems and production scheduling systems

by providing a lot streaming sizing tool. Commercial software packages do not provide a tool for

guiding lot size in a quantitative or rigorous manner as they simply adopt the size indicated by the

scheduler. Therefore, our research goes beyond these applications by providing support for job

sequencing and lot sizing.

Production and operations engineering managers examine planning data to make operational

decisions on the assignment of orders to a system of machines and equipment. Our research

provides value to them as it provides new knowledge and guidance on lot streaming, such as

number of sublots and number of machines. Once the limiting machines are detected, number of

sublots is defined, and workload of the current orders are considered, the methods described in this

article can be selectively implemented to obtain a compromise between the quality of the sequence

and the computational effort involved to obtain it.

This study is particularly important in a production system where its capacity and performance are

tightly related such as those mentioned in the introduction where the presence of a batch machine

impacts decisively in the production capacity. Performance measures that consider delivery dates

can be highly influenced by the manner in which capacity is managed. In addition, the ideas

presented in this work can show if further efforts on improving schedules generated by more

sophisticated lot streaming techniques will result in comparable reductions in the total completion

time of the orders or not.

Our work presents a set of results that have, by themselves, a special significance for production

managers as an inefficient makespan implies an inefficient use of the production system. In this

sense, the first insight that a production manager obtains from our results is that system efficiency is

very responsive to the lot / sublot sizing decisions adopted. It is not enough to make that decision

strictly considering only the limiting machine since our results show that high losses of efficiency

are experienced when addressing this decision problem in a rudimentary way (M3) , resulting in

efficiency losses of more than 10% in terms of the makespan objective (Exhibit 6). This inefficiency

implies that production plans require more time in the manufacturing system to produce the same

quantity. On the other hand, it is also important to consider the computational resources that may be

required to solve this type of problem as shown by the computation times of M1. In this sense, the

M2 approach has ample advantages when solving the same instances in much shorter computation

times without significant losses in solution quality. Furthermore, larger instances can be solved with

M2 when M1 could not provide a practical solution. Our results show that the decomposition

strategy provides very good results in reasonable computation times. Therefore, dividing decisions

into stages yields better results than those obtained when considering only the limiting machine.

Conclusions

This work was motivated by the gap in flow shop lot streaming and scheduling literature on

addressing production systems with heterogeneous machines. In this article, the authors fill this

gap by presenting and comparing three comprehensive mathematical models for flow shop lot

streaming scheduling in production systems where one of the machines has processing times that

are independent of the sublot size that must be processed. The first model (M1) uses the variable

sublots approach in the entire system and yielded the best results but required excessive

computational effort to solve the problem. Thus, a decomposition method (M2) is developed and

compared to the classic consistent sublots approach found in the literature (M3).

One important conclusion of this article is that the consistent sublot approach (M3) considerably

limits the quality of the final solution, resulting between 5% and 15% of inferior quality than the

ideal solution to the problem (variable sublots or M1) in terms of the makespan objective.

Furthermore, the larger the system in terms of the number of machines and jobs, the poorer the

solution quality. Nevertheless, it is shown that the variable sublots approach demands a

considerable computational effort, thus becoming intractable to solve.

The developed decomposition procedure (M2) results in an efficient and accurate technique for

managing the production systems under consideration. It considerably reduces the computational

effort and provides very good solutions, similar to the variable sublots approach (M1). Regarding

the performance of the decomposition procedure, the M2 method obtains fast computational

processing times while the number of machines increases. With regards to the number of jobs

increasing, the computational time tends to increase but at a slower rate than the variable sublot

(M1) method. In addition, the decomposition M2 method performed properly under different

production settings when the location of the limiting machine was varied.

Moreover, several managerial implications are detailed that are related to production planning

decision support for engineering managers where current IT tools are lacking. Future research will

develop meta-heuristic algorithms to solve the proposed problem for larger instances and apply

the partitioning procedure to other production systems.

Acknowledgment

Our thanks are due to the anonymous referees and the editors for their helpful comments and

critical analysis that helped us to improve this article.

References

Biskup, D., & Feldmann, M. (2006). Lot streaming with variable sublots: an integer programming

formulation. Journal of the Operational Research Society, 57(3), 296–303.

Bożek, A., & Wysocki, M. (2015). Flexible job shop with continuous material flow. International

Journal of Production Research, 53(4), 1273-1290.

Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence dependent setup times

permutation flowshop: A new algorithm and a comprehensive study. European Journal of

Operational Research, 227(2), 301–313.

Cheng, M., Mukherjee, N. J., & Sarin, S. C. (2013). A review of lot streaming. International

Journal of Production Research, 51(23–24), 7023–7046.

Feldmann, M., & Biskup, D. (2008). Lot streaming in a multiple product permutation flow shop

with intermingling. International Journal of Production Research, 46(1), 197–216.

Defersha, F. M., & Chen, M. (2010). A hybrid genetic algorithm for flowshop lot streaming with

setups and variable sublots. International Journal of Production Research, 48(6), 1705– 1726.

Defersha, F. M., & Chen, M. (2012). Mathematical model and parallel genetic algorithm for hybrid

flexible flowshop lot streaming problem. The International Journal of Advanced Manufacturing

Technology, 62(1–4), 249–265.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research, 1 (2), 117–129.

Gong, D., Han, Y., & Sun, J. (2018). A novel hybrid multi-objective artificial bee colony algorithm

for blocking lot-streaming flow shop scheduling problems. Knowledge-Based Systems, 148, 115–

130.

Han, Y. Y., Gong, D. W., Sun, X. Y., & Pan, Q. K. (2014). An improved NSGA-II algorithm for

multi-objective lot-streaming flow shop scheduling problem. International Journal of Production

Research, 52(8), 2211–2231.

Han, Y., Gong, D., Jin, Y., & Pan, Q. K. (2016). Evolutionary multi-objective blocking lot-

streaming flow shop scheduling with interval processing time. Applied Soft Computing, 42, 229–

245.

Han, Y., Gong, D., Jin, Y., & Pan, Q. (2017). Evolutionary Multiobjective Blocking Lot-Streaming

Flow Shop Scheduling With Machine Breakdowns. IEEE Transactions on Cybernetics, Article in

press. doi: 10.1109/TCYB.2017.2771213

Hart, W. E., Laird, C., Watson, J. P., & Woodruff, D. L. (2012). Pyomo–optimization modeling in

python (Vol. 67). Springer Science & Business Media.

Hart, W. E., Watson, J. P., & Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical

programs in Python. Mathematical Programming Computation, 3(3), 219–260.

Koh, S. G., Koo, P. H., Kim, D. C., & Hur, W. S. (2005). Scheduling a single batch processing

machine with arbitrary job sizes and incompatible job families. International Journal of

Production Economics, 98(1), 81–96.

Kumar, S., Bagchi, T. P., & Sriskandarajah, C. (2000). Lot streaming and scheduling heuristics for

m-machine no-wait flowshops. Computers & Industrial Engineering, 38(1), 149–172.

Li, D., Li, M., Meng, X., & Tian, Y. (2015). A hyperheuristic approach for intercell scheduling with

single processing machines and batch processing machines. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 45(2), 315–325.

Li, D., Meng, X., Li, M., & Tian, Y. (2016). An ACO-based intercell scheduling approach for job

shop cells with multiple single processing machines and one batch processing machine. Journal

of Intelligent Manufacturing, 27(2), 283–296.

Martin, C. H. (2009). A hybrid genetic algorithm/mathematical programming approach to the

multi-family flowshop scheduling problem with lot streaming. Omega, 37(1), 126–137.

Mason, A. J. (2013). SolverStudio: A New tool for better optimisation and simulation modelling

in Excel. INFORMS Transactions on Education, 14(1), 45–52.

Meng, T., Pan, Q.-K., Li, J.-Q., & Sang, H.-Y. (2018). An improved migrating birds optimization

for an integrated lot-streaming flow shop scheduling problem. Swarm and Evolutionary

Computation, 38, 64–78.

Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A discrete artificial bee

colony algorithm for the lot-streaming flow shop scheduling problem. Information Sciences,

181(12), 2455–2468.

Pan, Q. K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop

problems with setup times. Omega, 40(2), 166–180.

Pinedo, M. (2015). Scheduling. Springer.

Rossit, D., Tohmé, F., Frutos, M., Bard, J., & Broz, D. (2016). A non-permutation flowshop

scheduling problem with lot streaming: A Mathematical model. International Journal of Industrial

Engineering Computations, 7(3), 507–516.

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent

setup times and machine eligibility. European Journal of Operational Research, 169(3), 781–800.

Sarin, S. C., & Jaiprakash, P. (2007). Flow shop lot streaming. Springer Science & Business Media.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European journal of operational

research, 64(2), 278–285.

Toncovich, A. A., Rossit, D. A. Frutos, M., & Rossit D. G. (2019). Solving a multi-objective

manufacturing cell scheduling problem with the consideration of warehouses using a simulated

annealing based procedure. International Journal of Industrial Engineering Computations, 10(1),

1–16.

Trietsch, D., & Baker, K. R. (1993). Basic techniques for lot streaming. Operations Research,

41(6), 1065–1076.

Tseng, C. T., & Liao, C. J. (2008). A discrete particle swarm optimization for lot-streaming

flowshop scheduling problem. European Journal of Operational Research, 191(2), 360–373.

Yoon, S. H., & Ventura, J. A. (2002). An application of genetic algorithms to lot-streaming flow

shop scheduling. IIE Transactions, 34(9), 779–787.

Zhang, B., Pan, Q.-K., Gao, L., Zhang, X.-L., Sang, H.-Y., & Li, J.-Q. (2017). An effective

modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming.

Applied Soft Computing, 52, 14–27.

About the Authors

Augusto Ferraro got his undergraduate degree in Industrial Engineering in 2016 from the

Department of Engineering of Universidad Nacional del Sur, in Bahía Blanca, Argentina. He

performed research tasks oriented to study scheduling and production planning problems as a

scholar for one year before graduating. He currently works as supply-chain analyst for the Dow

Chemical Company.

Daniel Rossit is a postdoctoral fellow of CONICET (National Research Council of Argentina)

and Teaching Assitant at the Department of Engineering of the Universidad Nacional del Sur, in

Bahía Blanca, Argentina. He got an undergraduate degree in Industrial Engineering as well as a

Ph.D. in Engineering from his home university. His research is centered on operations research,

optimization and production.

Adrián Toncovich received his B.S. degree in Industrial Engineering and his M.S. degree in

Engineering from the Universidad Nacional del Sur (UNS), Argentina, in 2001, and 2006,

respectively. He is currently pursuing a Ph. D. degree in Engineering at the Universidad de

Zaragoza, Spain. He is currently an Associate Professor of Production Planning and Control in the

Department of Engineering at the UNS. His research interests include production planning and

scheduling, supply-chain management, and multicriteria decision-making.

Mariano Frutos is an Associate Researcher of CONICET (National Research Council of

Argentina) and Assistant Professor at the Department of Engineering of the Universidad Nacional

del Sur, in Bahía Blanca, Argentina. He got an undergraduate degree in Industrial Engineering as

well as a Master’s and a Ph.D. in Engineering from his home university. His research is centered

on scheduling problems in production and its treatment through metaheuristic methods.

Contact: Daniel Rossit, Área de Organización Industrial, Departamento de Ingeniería,

Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina; daniel.

rossit@uns.edu.ar; danielrossit@hotmail.com

