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Abstract: 

It is possible to obtain greater productivity of a production system by overlapping the operations 

required to process a manufacturing order. This methodology, known as lot streaming, requires to 

divide the production order (lot) into small sublots. In this article, we study production systems 

that include machines that operate in batch mode (processing a group of units at the same time) 

and single processing machines (processing one unit at a time) arranged in a flow shop 

configuration, i.e., all jobs must go through the same production stages in the same order. The 



 

obtained results show that addressing the problem with consistent sublots (a common sublot size 

used for the whole process) is inefficient. On the other hand, addressing the problem considering 

the sizing of sublots for each machine (variable sublots), greatly improves the quality of the 

solution but is very costly computationally (limiting the size of the problem that can be solved). 

Therefore, a decomposition procedure is proposed on the decision of sublots sizing. This procedure 

greatly improves the solution obtained using consistent sublots and does so at a much lower 

computational cost than the variable sublots approach. 
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owadays, it is imperative for manufacturing companies to run efficiently in order to 

remain competitive in the global market. The emergence of new technologies, 

continuous improvement in product quality, and changing customer requirements 

have all motivated the pursuit of shorter production cycles, which demand effective production 

plans that minimize work in process and cycle time and fulfill customer demands. Due to the nature 

of batch production, the use of appropriately sized lots in shop floor production planning is vital 

to achieving those objectives. Lot streaming is a technique that divides a given production lot into 

smaller sublots to allow them to be processed in an overlapping manner in a multi-stage production 

system (Biskup & Feldmann, 2006). This technique can effectively influence the flow of a batch 

(or lot) of jobs over the machines by determining the appropriate size of the sublots (also called 

transfer lots) (Sarin & Jaiprakash, 2007). Processing different sublots of the same job in an 

overlapping fashion during different production stages improves the job flow through the system. 

While traditional scheduling problems assume that jobs or lot sizes are fixed, lot streaming 

problems can be considered as sequencing problems where the sizes of processing sublots are 

N 



 

decision variables. 

Lot streaming improves the power of local decision making at the shop floor control level, and 

production may be accelerated without requiring additional investment in new machines. 

Furthermore, this technique can be implemented and quickly adjusted to current job requirements. 

This technique has been implemented by Toyota and Dell, among others (Defersha & Chen, 2010; 

Cheng, Mukherjee, & Sarin, 2013), and has been widely studied and researched in various 

production environments.  

While the benefits of using lot streaming techniques are well known, the literature frequently limits 

its use to consistent sublots over all the production process (Cheng et al., 2013). This means that 

the sublots keep a fixed size for all the machines of the production system. This additional 

constraint can limit the impacts of the lot streaming technique as the sublot sizing technique does 

not allow enough flexibility to appropriately size the sublot to each machine within the production 

system. To overcome this limitation, it is possible to use variables sublots where the sizing of the 

sublots is decided for each individual machine allowing for reconfiguration of the sublots. Biskup 

& Feldmann (2006) first acknowledged the negative impact of restricting the solution to consistent 

sublots and found that when the number of sublots is small, the impact could be higher. 

Subsequently, in Feldmann & Biskup (2008), the authors presented additional evidence of variable 

sublots improving the production makespan. However, this improvement in system’s performance 

brings a considerable increase in the difficulty of solving the scheduling problem since the problem 

now requires the size of the sublots to be determined (Rossit, Tohmé, Frutos, Bard, & Broz, 2016).  

The variable sublot approach, which modifies the size of the sublot according to the production 

stage, is of vital importance for production systems that have both batch machines (which process 

several product units at the same time) and unit processing machines (which process one single 



 

product at a time). In these cases, batch machines can process more than one unit at the same time 

while observing the maximum capacity of the machine, and the processing time is independent of 

the batch quantity processed. Examples of such production systems are millwork workshops where 

a press acts over hot plates with pressure to glue two or more parts together. This machine has a 

limited capacity, i.e., an upper bound on the sublot size that has to be processed, but the processing 

time is independent of its size. Another similar example can be found in the metallurgical industry 

where ovens used to perform heat treatments require a certain amount of time that is independent 

of the sublot size to be processed. Other industrial examples of heterogeneous (batch/single unit) 

processes are multi-layer ceramic capacitor manufacturing process, manufacturing of integrated 

circuits, and numerically controlled routers for cutting metal sheets or printed circuit boards (Koh, 

Koo, Kim, & Hur, 2005). 

In heterogeneous systems, generating consistent sublots for the entire production process may 

decrease overall efficiency. Furthermore, such systems include machines that usually involve setup 

times, which increases the potential inefficiencies (Biskup & Feldmann, 2006). Operations 

management in heterogeneous production systems is usually not a straightforward task and 

generally requires the support of Information Technology (IT) tools for decision making such as 

those provided by the SIEMENS PREACTOR business unit or SAP's integrated management 

systems (Bożek & Wysocki, 2015). These tools generate production schedules for diverse 

production environments, handle the requirements of necessary materials and scheduling 

resources, and have a direct interface to link to Enterprise Resource Planning (ERP) systems. 

However, in production environments with batch production machines and other unit processing 

machines, the available commercial software does not solve the batch sizing problem and requires 

the scheduler to define the size of the sublots. This lack of support for the production management 



 

function requires an adequate approach to address it. It is clear that incorrect sublot sizing would 

waste time generating bottlenecks by creating sublots that are too big for the batch machine, 

forcing previously scheduled jobs to wait for other jobs to arrive in order to be processed at the 

batch stage, or create small sublots that involve an excessive number of production runs in the 

batch machines such that jobs must wait until the batch machine is freed. The complexity of the 

sublot sizing decision increases as the production process involves batches of multiple products 

and the machine setups depend on the product previously processed. Sequence-dependent setup 

times impact production decisions as they involve non-productive operations that have to be 

performed on machines in addition to the job’s processing time. These may include but are not limited 

to cleaning and fixing activities and loading of parts to machines (Ruiz & Maroto, 2006; Pan & Ruiz, 

2012; Ciavotta, Minella, & Ruiz, 2013). Production in which setups depend on the sequence is more 

common than production in which they do not since the latter is a particular case of the sequence 

dependent one. This feature extends the scope of our work to many real-world industrial cases 

where the setup of the machines depends on the product scheduled previously. Ultimately, 

sequence independent setup times are a special case of sequence dependent setup times.  

That is why it is necessary to generate tools that support this decision process without disregarding 

the scheduling problem, and this is studied in this article for flow shop manufacturing 

environments. Flow shop production systems consist of a set of jobs and machines in which all 

jobs must be processed on all machines in the same order, i.e., all jobs go through machine 1 first, 

then machine 2 and so on successively. 

Specifically, the flow shop scheduling problem that combines unit and batch processing machines 

is studied in this article. To approach this problem, lot streaming strategies are proposed, which 

allow dividing production lots into sublots. As was previously explained, the configuration of these 



 

sublots may significantly influence the performance of the production schedule.  

To analyze the efficiency of lot streaming strategies, the solutions obtained by the ideal approach 

(variable sublots) are compared with the results of consistent sublots. This analyzes the case in 

which the scheduler selects "simplistic" solutions and to measure the impact that such a strategy 

can have on the performance of the system. However, the computational effort required by the 

variable sublots approach constrains the analysis. For dealing with this matter, a new procedure is 

proposed which allows decomposing the production system into three parts. This new approach 

reduces the computational effort without significantly worsening the objective function. The 

proposed decomposition method is extensively tested. 

Literature Review 

One of the original works on this topic was contributed by Trietsch & Baker (1993) who proposed 

a scheme for classifying the different features of the lot streaming problem, focusing mainly on 

flow shop configurations. Flow shop configurations are relevant because they are appropriate to 

improve manufacturing productivity and, for that reason, they account for more than a quarter of 

real-world production facilities (Pan et al., 2011; Toncovich, Rossit, Frutos, & Rossit, 2019). The 

work of Trietsch & Baker (1993) generated multiple research efforts to develop methods to solve 

the lot streaming problem. The first meta-heuristics to address the problem were presented by 

Kumar, Bagchi, & Sriskandarajah (2000) and Yoon & Ventura (2002). Kumar, Bagchi, & 

Sriskandarajah (2000) implemented the first meta-heuristics to address production systems with lot 

streaming techniques, and Yoon & Ventura (2002) applied genetic algorithms to solve a flow shop 

scheduling problem with lot streaming. Since then, several new approaches and algorithms have 

been applied to lot streaming scheduling problems. Tseng & Liao (2008) applied a particle swarm 



 

optimization algorithm to solve lot streaming scheduling problems, and Pan, Tasgetiren, 

Suganthan, & Chua (2011) similarly implemented a discrete artificial bee colony algorithm. Pan 

& Ruiz (2012) used an estimation of distribution algorithm for flow shop with lot streaming, and 

more recently, Han, Gong, Sun, & Pan (2014) addressed a multi- objective lot streaming flow shop 

with a modified Non-Dominated Sorting Genetic Algorithm II (NSGA-II) algorithm. More 

recently, Han, Gong, Jin, & Pan (2016) contribute a stochastic blocking multi-objective approach 

to solve the problem, and in Rossit, Tohmé, Frutos, Bard, & Broz (2016), lot streaming techniques 

are extended to address non-permutation flow shop scheduling problems. Zhang et al. (2017) 

proposed a mathematical model and an effective modified migrating birds optimization (EMBO) 

algorithm to solve the problem of hybrid flowshop hybridizing with lot streaming with the 

objective of minimizing the total flow time. Han, Gong, Jin, & Pan (2017) proposed an 

evolutionary multiobjective robust scheduling algorithm to solve the blocking lot-streaming flow 

shop (BLSFS) scheduling problem with machine breakdowns. Gong, Han, & Sun (2018) presented 

a hybrid multi-objective discrete artificial bee colony (HDABC) algorithm for the blocking lot-

streaming flow shop (BLSFS) scheduling problem with two conflicting criteria: the makespan and 

the earliness time. Meng, Pan, Li, & Sang (2018) considered an integrated lot-streaming flow shop 

scheduling problem in which lot-splitting and job scheduling are needed to be optimized 

simultaneously. They present an improved migrating birds optimization (IMMBO) to minimize 

the maximum completion time or makespan. 

Considering specifically contributions that address lot streaming with variable sublots, Martin 

(2009) was among the first to make significant advances by proposing a novel hybrid approach to 

optimize this problem through a combination of a Mixed Integer Programming (MIP) solver, 

CPLEX, and evolutionary algorithms. A similar method was proposed by Defersha & Chen (2010) 



 

where a flow shop with setups and variables sublots is solved with an algorithm based on a MIP 

solver (CPLEX) and a hybrid genetic algorithm. In Defersha & Chen (2012), a hybrid flexible flow 

shop problem is tackled, and an improved version of the previous algorithm is proposed that can 

be run on a parallel computing platform.  

Recently, there have been efforts to address production systems that combine batch production 

machines and unit processing machines from the lot streaming approach. In this regard, Li, Meng, 

Li, & Tian (2016) addressed a similar problem in a job shop scheduling environment (a 

configuration where each job has its own work route and not all jobs go through the same machines 

in the same order) while considering transfer times between different manufacturing cells. Their 

production process consisted of several unit processing machines and a single batch processing 

machine, which belongs to an intermediate step of the production process for all the products. The 

problem was solved by an Ant Colony Optimization (ACO) algorithm. In order to cope with the 

effects of the batch processing machine positioned in the middle of a set of unit production 

machines, the authors propose to minimize idle time of the batch processing machine. Sequence 

dependent setup times were not considered, and transfer times between machines within the same 

cell were considered negligible. This assumption represents a reasonable simplification since the 

transfers from one cell to another have a greater impact than the movement within the cell. 

However, scheduling problems that exclusively consider operations within a single cell or a flow 

shop system may be significantly impacted by transfer times. In Li, Li, Meng, & Tian (2015), the 

same problem is solved by using a hyperheuristic based in an ACO algorithm and dispatching 

rules. These authors studied the implementation of several strategies to both schedule the jobs in 

the unit machines and form the batches to be processed in the batch processing machine. 

To the best of our knowledge, Li et al. (2015) and Li et al. (2016) are the only published works 



 

approach scheduling problems combining unit and batch processing machines. There are substantial 

dissimilarities between the problems studied by these authors and the scheduling problem analyzed 

in this article. Firstly, while Li et al. (2015) and Li et al. (2016) study job shop configurations, this 

article deals with flow shop configurations. Although the flow shop scheduling problem is a special 

case of the job shop scheduling problem (since considering individual operations routes for each 

job does not necessarily prevent the routes from being the same), there are additional aspects that 

should be considered. For instance, generally speaking, flow shop systems process higher 

production volumes than job shop systems (Pinedo, 2002). Therefore, complete lots belonging to 

the same product or job are processed rather than isolated product units and, consequently the 

implementation of lot sizing strategies throughout the production system, and not only in the batch 

processing machine, may have a considerable influence on scheduling performance. In addition, 

prior work does not consider sequence dependent setup times, which are studied in this article.  

 

Problem Definition and Methodologies Description 

The problem under study in this article consists of a flow shop system where one of the machines 

is a batch processing type and the remainder of the machines are single product processors. This 

type of production scenario is commonly found in the millwork and metallurgical industries and 

wherever production systems are arranged in the form of a production line where a batch 

processing operation is required. The flow shop system includes a group of n jobs that must be 

processed by a set of m machines. The flow shop scheduling problem is a combinatorial 

optimization scheduling problem in the NP-Complete class (Garey, Johnson, & Sethi, 1976). All 

jobs require processing by all machines and in the same technological order, i.e., the first operation 

on the first machine, the second operation on the second machine and so on. In this case study, one 



 

of the machines is a batch workstation, where the processing times are independent of the size of 

the sublot that must be processed. In the remainder of the article, this machine is called as the 

“limiting machine.” The sequence of the jobs and size of the sublots must be determined to 

minimize the production makespan (completion time) of the schedule. The setup times are 

sequence dependent, and there are fixed sublot transfer times between machines to represent the 

problem in a realistic way. 

Initially, we show that if the problem is addressed using the classic approach (consistent sublots, 

here referred to as the “simple method”), the final obtained solution may be considerably worse in 

terms of the makespan objective than if this problem is addressed by means of the variable sublots 

approach (referred to as the “ideal method”). Nonetheless, the ideal method leads to a significant 

and fast rise in the computing time, considerably limiting the size of the problem that can be solved. 

Therefore, a new approach (the “partitioned method”) is proposed by which the sizing of the 

sublots is decomposed into stages. The first stage is comprised of the first machine up to the 

machine before the limiting machine, the second stage consists of just the limiting machine, and 

the third stage includes the remaining machines after the limiting machine. This segmentation is 

represented in Exhibit 1. The sublots sizes are defined for each stage, where the sublots of the 

following stage can be formed only by units that belong to a sublot that has already finished its 

processing in the previous stage. This aids in the tracking of the work orders and the evolution of 

the production plan. 

Insert Exhibit 1 Production system and its stages.  

As discussed in the Introduction, considering lot streaming strategies implies that the sublot size 

to be processed is a decision variable which the scheduler can control. Thus, the decision of the 

size of sublots is added to the classic scheduling problem related to selecting job sequence. That 



 

being said, deciding the size of a given sublot implies, in a certain way, determines the time this 

sublot will require on each machine. Considering that the metrics used to assess schedule 

performance are generally related to time, makespan is used as a performance measure and the 

dependency between the sublot sizes and the performance of a given schedule is clear. Therefore, 

it is not possible to separate these decisions in a hierarchical way, where the job sequence or the 

sublot sizes is set and then the other set of variables are determined considering the solution of the 

first problem. Furthermore, it is not clear which decision should be made first. Consequently, to 

solve the problem optimally, it is necessary to adopt a thorough approach by handling both 

decisions simultaneously. By proceeding in this manner, a software like CPLEX can find the 

optimal solution to the problem committing the optimal job sequence and sublot sizing. The 

decomposition procedure presented in this article can be implemented with any other mixed integer 

linear programming (MILP) solver including those based on metaheuristic optimization.  

Formulation of the Lot Streaming Models 

In this section, the mathematical formulations of the three employed methods are developed based 

on the guidelines of Sarin & Jaiprakash (2007) and Feldmann & Biskup (2008). It was necessary 

to formulate the mathematical models since the problem has not yet been addressed in the 

literature. First, the ideal method is described in detail, and then the partitioned and simple methods 

are presented as reformulations of the ideal method. 

Model 1: Ideal Method - M1 

This method (M1) implements the pure variable sublots approach, which allows complete 

flexibility to size the sublots. In each machine of the production process, the sublots can be 

rearranged, and therefore, this method can provides the optimal solution. 



 

Parameters and sets: 

i: index for the sublots, i = 1, 2, …, l. j: index for the jobs, j = 1, 2, …, n. 

k: index for machines, k = 1, 2, …, m. 

m*: machine that has processing times which are independent from the size of the sublot (limiting 

machine), m* ≠ 1, m. 

pjk: unit processing time of the job j on machine k if k ≠ m* and the sublot processing time of the 

job j on machine k if k = m*. 

Uj: number of units of job j to be processed. 

tjj'k: set up time of job j’ on machine k after having processed job j, j ≠ j’. t'jk: set up time of job j 

on machine k if job j is scheduled first. 

fjk: fixed sublot transfer time of any sublot of job j from machine k to machine k + 1, k < m 

(including m*). 

T: processing capacity of machine m*.  

G: an arbitrarily large number. 

Variables: 

sijk: size of sublot i from job j on machine k (integer variable). 

cijk: completion time of sublot i of job j on machine k (continuous variable). 

cmax: total completion time (makespan) (continuous variable). 

wijk: binary variable which takes the value 1 if sublot i from job j is larger than 0 on machine k and 

0 otherwise. 

xi’ijk: binary variable which takes the value 1 if sublot i from job j starts its processing on machine 

k not before than the completion time of sublot i’ from the same job on machine k-1 and 0 

otherwise, k ≠ 1. 



 

qjj’: binary variable which takes the value 1 if job j is scheduled immediately before than job j’, j 

≠ j’. 

Objective function: 

min 𝑧 = 𝑐𝑚𝑎𝑥  (1) 

Constraints: 

𝑐𝑚𝑎𝑥 ≥ 𝑐𝑙𝑗𝑚;  ∀𝑗  (2) 

∑ 𝑠𝑢𝑗𝑘 = 𝑈𝑗;  ∀(𝑗, 𝑘)𝑛
𝑢=1   (3) 

𝑐1𝑗𝑘 − 𝑝𝑗𝑘𝑠1𝑗𝑘 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑘
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗 )𝑡′

𝑗𝑘] + 𝐺(1 − 𝑥𝑖′1𝑗𝑘) ≥

𝑐𝑖′𝑗(𝑘−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1);  ∀(𝑖′, 𝑗, 𝑘): 𝑘{1, 𝑚∗}  

(4) 

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗 )𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗𝑚∗) ≥

𝑐𝑖′𝑗(𝑚∗−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1);  ∀(𝑖′, 𝑗)  

(5) 

𝑐𝑖𝑗𝑘 − 𝑝𝑗𝑘𝑠𝑖𝑗𝑘 + 𝐺(1 − 𝑥𝑖′𝑖𝑗𝑘) ≥ 𝑐𝑖′𝑗(𝑘−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1);  ∀(𝑖, 𝑖′, 𝑗, 𝑘): 𝑖 ≠

1, 𝑘{1, 𝑚∗}  

(6) 

𝑐𝑖𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤𝑖𝑗 + 𝐺(1 − 𝑥𝑖′𝑖𝑗𝑚∗) ≥ 𝑐𝑖′𝑗(𝑚∗−1) + 𝑓𝑗(𝑘−1)𝑤𝑖′𝑗(𝑘−1);  ∀(𝑖, 𝑖′, 𝑗): 𝑖 ≠ 1  (7) 

∑ 𝑠𝑢𝑗(𝑘−1)
𝑖′−1
𝑢=1 − ∑ 𝑠𝑢𝑗𝑘

𝑖
𝑢=1 + 𝐺. 𝑥𝑖′𝑖𝑗𝑘 ≥ 0; ∀(𝑖, 𝑖′, 𝑗, 𝑘): 𝑘 ≠ 1  (8) 

𝑐𝑙𝑗𝑘 ≤ 𝑐1𝑗′𝑘 − 𝑝𝑗′𝑘. 𝑠1𝑗′𝑘 − 𝑡𝑗𝑗′𝑘 + 𝐺(1 − 𝑞𝑗𝑗′); ∀(𝑗, 𝑗′, 𝑘): 𝑗 ≠ 𝑗′, 𝑘 ≠ 𝑚∗ (9) 

𝑐𝑙𝑗𝑘 ≤ 𝑐1𝑗′𝑘 − 𝑝𝑗′𝑘. 𝑠1𝑗′𝑘 − 𝑡𝑗𝑗′𝑘 + 𝐺(1 − 𝑞𝑗𝑗′); ∀(𝑗, 𝑗′, 𝑘): 𝑗 ≠ 𝑗′, 𝑘 ≠ 𝑚∗ (10) 

𝑠𝑖𝑗𝑚∗ ≤ 𝑇; ∀(𝑖, 𝑗) (11) 



 

𝑠𝑖𝑗𝑚∗ ≤ 𝑤𝑖𝑗𝐺; ∀(𝑖, 𝑗) (12) 

𝑐1𝑗1 − 𝑝𝑗1𝑠1𝑗1 ≥ 𝑡′
𝑗1; ∀𝑗 (13) 

𝑐(𝑖+1)𝑗1 − 𝑝𝑗1𝑠(𝑖+1)𝑗1 = 𝑐𝑖𝑗1;  ∀(𝑖, 𝑗): 𝑖 ≠ 𝑙 (14) 

𝑐(𝑖+1)𝑗𝑘 − 𝑝𝑗𝑘𝑠(𝑖+1)𝑗𝑘 ≥ 𝑐𝑖𝑗𝑘;  ∀(𝑖, 𝑗, 𝑘): 𝑖 ≠ 𝑙, 𝑘{1, 𝑚∗} (15) 

𝑐(𝑖+1)𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤(𝑖+1)𝑗 ≥ 𝑐𝑖𝑗𝑚∗;  ∀(𝑖, 𝑗): 𝑖 ≠ 𝑙 (16) 

The objective function in Equation (1) is used to minimize the production schedule finishing 

time (or makespan). Constraint (2) expresses that the makespan cannot be less than the finishing 

time of the last sublot of each job processed on the last machine. With Constraint (3), it is 

established that the sum of the sublot sizes of a given job in a given machine must be equal to the 

lot size of that particular product. Constraints (4) and (5) determine whether the starting time of 

the first sublot of a particular job occurs after the finishing time of another sublot from the same 

job in two consecutive machines. Constraints (6) and (7) are similar to the two previous ones, but 

the comparison of sublots times is made with the sublot that is not the first sublot of the job. 

Constraint (8) indicates that, for a given job, no sublot can contain units that belong to those 

sublots of the precedent machine that have not been processed yet. With Constraints (9) and (10), 

the impossibility of the existence of intermingling of sublots is imposed. Constraints (11) and 

(12) limit the sublot size to be processed on the “limiting machine” and determine the values of 

the binary variables wijk. Constraints (13), (14), (15) and (16) limit the possibility of processing 

more than a single sublot at a time on each machine.  

Model 2: Partitioned method - M2 



 

The partitioned method (M2) separates the decision of sizing the sublots to three stages instead of 

sizing sublots in every machine as in the previously discussed ideal method (M1). Each stage contains 

a set of machines as described in Exhibit 1. Within each stage or group of machines, the sublots 

can be reconfigured and re-sized. The sublots are reconfigured with units of products that belong 

to sublots that have already been processed in the previous stage. Compared to the ideal M1 method, 

the partitioned method (M2) explores smaller feasible regions, and its solution approximates the 

ideal method’s solution. This model represents a new approach to solve the problem and 

constitutes one of the main contributions of this article. The accuracy of the M2 approximation is 

assessed in the experimental section of this article. 

The key differences of the M2 model with respect the M1 model resides in the integer variables s and 

binary variables x. A new set h is necessary to represent the stages for the sublot sizing decisions 

where the set h is defined as {1, 2, 3}. Thus, variables s and x must be rewritten. 

sijh: size of sublot i from job j to be processed on the group of machines h (h = 1, 2, 3). 

xi’ijh: binary variable which takes value 1 if sublot i from job j starts its processing on machine h + 

m* – 1 after (or at the same time) that sublot i’ of the same job finishes its processing on machine 

h + m* – 2 and 0 otherwise, h < 3. 

 

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗 )𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗1) ≥

𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1;  ∀(𝑖′, 𝑗)  

(17) 

𝑐1𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤1𝑗 − [∑ 𝑞𝑢𝑗𝑡𝑢𝑗𝑚∗
𝑛
𝑢=1,𝑢≠𝑗 + (1 − ∑ 𝑞𝑢𝑗

𝑛
𝑢=1,𝑢≠𝑗 )𝑡′

𝑗𝑚∗] + 𝐺(1 − 𝑥𝑖′1𝑗1) ≥

𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1;  ∀(𝑖′, 𝑗)  

(18) 

𝑐𝑖𝑗(𝑚∗+1) − 𝑝𝑗(𝑚∗+1)𝑠𝑖𝑗3 + 𝐺(1 − 𝑥𝑖′𝑖𝑗2) ≥ 𝑐𝑖′𝑗𝑚∗ + 𝑓𝑗𝑚∗𝑤𝑖′𝑗2;  ∀(𝑖, 𝑖′, 𝑗)  (19) 



 

𝑐𝑖𝑗𝑚∗ − 𝑝𝑗𝑚∗𝑤𝑖𝑗 + 𝐺(1 − 𝑥𝑖′𝑖𝑗1) ≥ 𝑐𝑖′𝑗(𝑚∗−1)+𝑓𝑗(𝑚∗−1)𝑤𝑖′𝑗1;  ∀(𝑖, 𝑖′, 𝑗)  (20) 

∑ 𝑠𝑢𝑗𝑔
𝑖′−1
𝑢=1 − ∑ 𝑠𝑢𝑗(𝑔+1)

𝑖
𝑢=1 + 𝐺. 𝑥𝑖′𝑖𝑗𝑔 ≥ 0; ∀(𝑖, 𝑖′, 𝑗, 𝑔)  (21) 

 

Model 3: Simple method - M3 

The simple method (M3) considers consistent sublots, i.e. the size of the sublot does not change at 

any stage or machine. As a result, the feasible region explored is smaller than that M1 and M2 

methods. In this case, the integer variable s is indexed only on the sublots and jobs’ sets, and the 

binary variable x is removed. 

Computational Experiments 

The experimental design aims to evaluate the performance of the M2 model as a method of solving 

the problem. To this end, M2 is compared with M3 (the simple solution of using a single sublot 

size throughout the whole process) to evaluate whether the usage of the proposed decomposition 

method M2 is advantageous or not. We will also compare M2 with M1 (variable sublots for all 

stages of the process) that provides the ideal solution to the problem but at the highest 

computational cost. The intention is to evaluate different problem sizes (combinations of number 

of machines and jobs) to be able to draw comprehensive conclusions from the application of the 

three models (M1, M2, and M3). As a scheme to generate these problems, we use the well-known 

instances in the flow shop literature (Taillard, 1993), which defines multiple cases using a 

maximum of twenty machines understanding that an industrial flow shop system usually has a 

smaller number of machines. In this article, we use twenty as the maximum number of machines. 

Exhibit 2 shows the multiple problems and the cases under which it was possible to find a solution 

for each model.  



 

Insert Exhibit 2 Instances tested by each model. 

Flow shop problems are NP-hard for m > 3 (Garey et al. 1976), and the size of the feasible solution 

space is proportional to (n!). Due to this property, an accurate MIP solver cannot solve problems 

with a very large number of jobs. In this work, we solve instances of up to nine jobs (as shown in 

Exhibit 2), where it can be seen that six different sizes of machines were used (3, 5, 7, 9, 15, and 

20) and four jobs (3, 5, 7, and 9), and nineteen distinct instances were tested for the M2 and M3 

models, while M1 was able to solve thirteen of the nineteen instances (M1 could not solve the 15 

and 20 machine instances).  

Simultaneously, for each instance, multiple maximum quantities of sublots were evaluated (i.e., 

different sizes of the set i), using a maximum of 2, 3, 4 and 5 sublots per job. This experimentation 

makes sense because it is necessary to know how many sublots are necessary to obtain the greatest 

benefit from the overlapping of operations proposed by the lot streaming approach. On the one 

hand, excessive lot streaming implies a multiplication of the fixed transfer times (fjk) as well as an 

increase in the computation time by increasing the number of variables related to each sublot. 

However, on the other hand, insufficient lot steaming limits the ability of overlapping operations, 

thus reducing the associated benefits.  

In addition, the influence of the batch machine within the production system was evaluated, thus 

analyzing if the proposed partitioning procedure is dependent on the relative position of the batch 

machine within the set of machines. If the proposed procedure provides good results only when 

the batch machine is in an intermediate position within all stages of the flow shop, then this result 

must be studied. Nevertheless, if the M2 method achieves good results regardless of where the 

batch machine is located, the potential of the M2 partitioning strategy increases. First, this analysis 

was performed considering the batch machine positioned at the "beginning" of the system, that is, 



 

within the first third of the set of machines. Then it was located at an “intermediate” position, and 

finally at the "end" position (within the last third of the set of machines). Exhibit 3 provides the 

detail of where the batch machine was placed.  

The computer used to perform the experimental work is a desktop with an Intel Core i7 processor 

with 16 GB RAM memory and a 64-bit operating system. The solver software is CPLEX 12.6.0, 

and the M1, M2, and M3 models were written in Pyomo (Hart, Watson, & Woodruff, 2011; Hart, 

Laird, Watson, & Woodruff, 2012). For the data and model management, Solver Studio for Excel 

was used (Mason, 2013). 

Insert Exhibit 3 Detailed position of the limiting machine for each instance. 

Parameter Specifications 

Regarding the parameter generation, the following ranges were considered, based on an adaptation 

of the benchmark data of Taillard (1993) to the problem at hand: 

i) The number of units for each lot of each job, Uj, was taken from a uniform distribution 

over the interval [20,50]. 

ii) The unit processing times, pjk if k ≠ m* (limiting machine), were considered uniformly 

distributed over [1,10]. Note that the combination of parameters Uj and pjk resemble 

Taillard’s (1993) job processing time feature, where no job division was considered. 

iii) The sublot processing time on the limiting machine, pjk if k = m* (limiting machine), varies 

uniformly between 100 and 300. 

iv) The limiting machine capacity, T, was taken from a uniform distribution on the interval 

[25,50]. (Notice that the capacity of the limiting machine can be smaller than the lot of units 

to process, then, the limiting machine would, also, require sublot sizing. This case is more 



 

general than considering the limiting machine with capacity enough for the complete lot.) 

v) The set up times, t'jk and tjj'k, vary from 45 to 85. (The highest setup time was selected in 

order to have an approximate 6:1 ratio between the highest possible processing time of an 

entire job and the highest set up time. The lowest setup time was selected so that the sum 

of two setup times could never be lower than another) 

vi) The fixed sublot transfer times, fjk, are drawn from a uniform distribution on the interval 

[10,20] for each experiment.  

To avoid possible random correlation of parameters, five distinct parameter scenarios were 

analyzed for each instance (varying combinations of the number of machines, jobs, and sublots). 

The range of variation of the parameters introduced before was selected to represent a wide variety 

of production systems. For instance, parameter pjk represents the possibility of having products with 

processing times up to ten times greater than the processing times of other products that are 

produced within the same system. 

Results and discussion 

In this section, the results obtained from the experiments that were carried out to test the proposed 

models are presented and divided in subsections. 

In the first subsection, General results, the overview of the results of the proposed lot streaming 

procedure is shown. Then, in Variations of makespan values with the number of machines and 

jobs, it is shown whether the variations of the makespan obtained by the methods depend on the 

size of the problem. In Computing time, we analyze the computational effort required by each 

method, and in the Impact of the number of machines and jobs on lot streaming implementations 

subsection, the detail of the impact of those factors on the makespan is discussed. Then, if the 



 

number of sublots is a significant factor is presented in the subsection Number of sublots available in 

the production system. Finally, it is studied whether the position of the limiting machine influences 

the results or not.  

General results 

The values shown in Exhibit 4 are the average of the five problems solved for each instance with 

a maximum of four sublots for each job with the limiting machine placed in the intermediate 

position. In Exhibit 4, the cells filled with a hyphen (-) correspond to the instances for which no 

valid solution could be found (no feasible solution was found during an hour of computing or the 

gap of the incumbent solution was too high). From Exhibit 4, the makespans for the instances of 

three machines are the same for the three methods (M1, M2, and M3). Comparing M1 and M2, 

this result is logical since the solutions explored by both methods are the same (the three stages of 

M2 overlap with the three machines). However, the fact that makespans of M1 and M3 are identical 

is not as logical, but it can be guessed that the system is too simple and the impact of the limiting 

machine in sublot sizing is preponderant enough to influence the problem solution. For larger 

instances, it can be seen that M2 performs quite similar to M1. For the cases of five machines, M2 

yields M1’s makespan and clearly outperforms M3. This tendency is intensified for instances with 

more machines. Nevertheless, for 7 and 9 machines, the comparison between M1 and M2 in some 

instances cannot be made because, in the computation time limit established, M1 does not converge 

to a good solution in some cases and the resulting gap is too large. This is the reason why in some 

instances of 7 and in all the instances of 9 machines, the average makespan of M2 outperforms the 

average makespan of M1. 

Insert Exhibit 4 Average makespan values in the case where the limiting machine is in the middle 



 

position and the maximum number of sublots per job is 4.  

Another result shown in Exhibit 4, which are meaningful because the best results were produced 

with four sublots, is that the computational effort required by M1 is corroborated as it cannot solve 

the instances with the larger number of machines (15 and 20 machines). Moreover, for some of 

the instances, M1 reported no optimal solution after an hour of computing; in these cases, M2 

found a better solution. For the larger instances, M2 provides much better solutions than M3. For 

example, in the cases of 20 machines, the difference goes from 3335 for M2 and 3705 for M3 (3 

jobs) to 4807 and 5651 (7 jobs). These discrepancies between methods seem to show that there is a 

dependency on the size of the instance. 

Variation of makespan values with the number of machines and jobs 

As previously mentioned, the makespan gaps among the methods depend on the size of the 

instance. To provide additional insight into this result, Exhibit 5 presents the relation between the 

makespan and the number of jobs for the case of 9 machines and 4 sublots, and Exhibit 6 presents 

the relation between the makespan and the number of machines for the case of 5 jobs and 4 sublots. 

These images show the dependency of the results on the proposed models as the number of jobs 

or the number of machines vary respectively.  

Insert Exhibit 5 Makespan vs the number of jobs for a production system consisting of 9 machines 

and 4 sublots. 

 

Insert Exhibit 6 Makespan vs the number of machines in a production system consisting of 5 jobs 

and 4 sublots. 



 

From Exhibit 5, it can be seen that M2 is a competent approximation of M1 and that M3 provides 

worse solutions than M1. Regarding M2 and M3, the solutions are quite dissimilar with M2 much 

improved. In addition, it is perceived from the slopes of the three curves that the three methods keep 

a similar gap among them, which means that for a given number of machines, the number of jobs 

will not increase the gaps among M3 and the other two methods. From Exhibit 6, it is shown again 

that M2 approximates M1 in a good manner. In regards to M3, the gap with respect to M1 and M2 

is slight for small instances but increases as the number of machines increases. The shape of the 

three curves is similar; however, the slope for M3 is steeper, indicating that the number of machines 

apparently impacts the gap between M3 and M2. 

Computing time 

To study computational performance of the three methods, we analyzed the computational time 

required by each approach to perform the experiments as shown in Exhibits 7 and 8 (computational 

time is presented on a logarithmic scale to provide a better perspective of the relationships). Exhibit 

7 illustrates the computing time as a function of the number of jobs for the case of 9 machines and 

4 sublots, and Exhibit 8 illustrates the change of computing time against the number of machines 

considering 3 jobs and 4 sublots. The asterisk (*) indicates that the time limit was reached in more 

than one of the five problems. 

Insert Exhibit 7 Computing time as a function of the number of jobs to be sequenced, for the case 

of 9 machines and 4 sublots. 

Insert Exhibit 8 Computing time as a function of the number of machines in the production system 

for the case of 3 jobs and 4 sublots. 



 

Exhibit 7 shows that the M3 method requires less computing time to solve the problem, as was 

expected. The slope of M1 was anticipated as a large increase in computational time occurs when 

the number of jobs increases. A notable aspect of M2 is that its computation time values are lower 

than those of M1. Moreover, the M2 slope is flatter than the M1 slope, in particular for instances 

with more jobs. This implies that the presented decomposition method is an effective method for 

reducing the required computational effort. Exhibit 8 shows the difficulty MI faces when solving 

problems with a larger number of machines. As M2 and M3 computing times remain lower than 

ten seconds even for twenty machines, M1 reaches its time limit with nine machines. The result 

that the computation times for M2 and M3 are more or less constant is explained by the fact that 

only additional continuous decision variables are added as the number of machines increases (those 

corresponding to the completion times), but no additional integer decision variables are needed, thus 

maintaining the problem with approximately the same degree of complexity. 

Impact of the number of machines and jobs on lot streaming implementations 

In this subsection, we analyzed the makespan obtained by the three methods and varying numbers 

of jobs and machines. For this, the dependency between the makespan improvement of M1 and 

M2 with respect to M3 is studied when considering four sublots. In Exhibit 9, the makespan 

improvement is related to the number of machines where the dashed lines represent M2 

improvements and the solid lines show M1 improvements. Similarly, Exhibit 10 shows the 

improvements linked to the number of jobs.  

Insert Exhibit 9 M1 and M2 makespan improvement over M3, as a function of the number of 

machines, with 4 sublots per job. 

Insert Exhibit 10 M1 and M2 makespan improvement over M3, as a function of the number of 



 

jobs, with 4 sublots per job. 

Exhibit 9 suggests that the greater number of machines, the larger makespan improvements of M1 and 

M2 over M3, considering that the transfer time between stations is equal to zero and that there is no 

variability. In fact, this tendency between the improvement of the solution and the number of machines 

is observed in every curve (different number of jobs). In addition, the slope of the curves indicates that 

the impact of fewer jobs is greater than that of more jobs, and it flattens as the number of machines 

increases. Exhibit 10 shows the improvement of the makespan against the number of jobs, and we 

observe that for the greater number of machines, the incorporation of more jobs increases the difference 

between M2 and M3 makespans. From Exhibits 9 and 10, it is observed that M1 and M2 provide very 

similar results, which may suggest that M2 is a good approach to solve this type of problem.  It is 

observed that as the number of machines increases, the beneficial effects of lot streaming also 

increase as the greater number of machines, the greater the percentage of reductions in makespan. 

This can be inferred from the fact that an increase in workflow due to the lot streaming strategy 

generates benefits, which are accumulated over a greater number of machines. However, these 

inferences cannot be considered conclusive and present an opportunity to future analysis. 

Number of sublots available in the production system 

The effect of the number of maximum sublots per job is analyzed and presented in Exhibit 11, 

which shows the evolution of the makespan against the number of maximum sublots in the cases 

of M2 and M3 with five machines and the limiting machine in the intermediate position. 

Insert Exhibit 11 M2 and M3 makespan as a function of the number of maximum sublots per job 

in the case of 5 machines. 



 

Exhibit 11 indicates that the makespan decreases as each lot is split into more sublots. However, 

this decrease is not consistent as it seems to be saturated with three sublots for M3 and with five 

for M2. Furthermore, M2 has a larger makespan decrease than M3 under the same problem 

conditions, resulting a better makespan. Exhibit 12 compares the improvement obtained with M1 

and M2 against the number of sublots available when considering a production system with five 

machines. 

Insert Exhibit 12 Improvement of M1 and M2 as a function of the number of sublots available in 

the case of 5 machines. 

Exhibit 12 again shows how similar are the results of M1 and M2 are with regards to the 

improvement achieved. Moreover, with more sublots available, the improvement is higher but in 

a decreasing manner. The improvement limit seems to be reached more quickly in cases with more 

jobs. However, the number of sublots has a larger impact on M2 than on M1, and the makespan 

improvement is lower for the cases with more jobs. For M1, it seems that the makespan 

improvement is indifferent to the number of jobs as all the improvements are around 1 to 2%. 

Influence of the limiting machine position 

As a final analysis, the position of the limiting machine and its impact on the performance of the 

proposed method M2 is investigated. Exhibit 13 presents the case of nine machines and four 

sublots and captures when the best and worst makespans are generated regarding the position of 

the limiting machine for the same scenario (column “Problem”) with a “B” for the best value, “W” 

for the worst, and “0” otherwise. Both M2 and M3 methods are assessed in this manner. 

Insert Exhibit 13 Makespan values varying the limiting machine position. 



 

For M2, the best makespan value is obtained in approximately half of the scenarios when the 

limiting machine is at the ending position. In addition, the ending position results in the worst result 

in two of the scenarios. It is worth noting that in M3, unlike M2, more than half of the results have 

the highest makespan value with the limiting machine being at the ending position. For the 

intermediate position of the limiting machine, M2 returned the best makespan in two cases. An 

examination of the relative improvements of M2 average makespan values with respect to the M3 

values are shown in Exhibit 14. 

Insert Exhibit 14 Relative improvements of M2 for different positions of the limiting machine. 

In twelve of the seventeen instances studied, M2 improves with respect to M3 to the greatest extent 

when the limiting machine is at the ending position. Not only that, but when it is placed in the 

intermediate position, the best improvement is never achieved. From these results, we can infer that 

M2 obtains the largest differences with respect to M3 when the limiting machine is at the ending 

position, thus indicating that M3 is inefficient for this kind of system. When the limiting machine is 

at the beginning position, M3 is still inefficient but not as bad as when in the ending position. The 

percentage values of Exhibit 14 indicate that M2 is a suitable method since its improvements over 

M3 are in a consistent range. 

Implications for Engineering Managers 

The proposed methods are tools that support decision making in short term production planning. These 

tools complement other management tools such as ERP systems and production scheduling systems 

by providing a lot streaming sizing tool. Commercial software packages do not provide a tool for 

guiding lot size in a quantitative or rigorous manner as they simply adopt the size indicated by the 

scheduler. Therefore, our research goes beyond these applications by providing support for job 



 

sequencing and lot sizing. 

Production and operations engineering managers examine planning data to make operational 

decisions on the assignment of orders to a system of machines and equipment. Our research 

provides value to them as it provides new knowledge and guidance on lot streaming, such as 

number of sublots and number of machines. Once the limiting machines are detected, number of 

sublots is defined, and workload of the current orders are considered, the methods described in this 

article can be selectively implemented to obtain a compromise between the quality of the sequence 

and the computational effort involved to obtain it. 

This study is particularly important in a production system where its capacity and performance are 

tightly related such as those mentioned in the introduction where the presence of a batch machine 

impacts decisively in the production capacity. Performance measures that consider delivery dates 

can be highly influenced by the manner in which capacity is managed. In addition, the ideas 

presented in this work can show if further efforts on improving schedules generated by more 

sophisticated lot streaming techniques will result in comparable reductions in the total completion 

time of the orders or not. 

Our work presents a set of results that have, by themselves, a special significance for production 

managers as an inefficient makespan implies an inefficient use of the production system. In this 

sense, the first insight that a production manager obtains from our results is that system efficiency is 

very responsive to the lot / sublot sizing decisions adopted. It is not enough to make that decision 

strictly considering only the limiting machine since our results show that high losses of efficiency 

are experienced when addressing this decision problem in a rudimentary way (M3) , resulting in 

efficiency losses of more than 10% in terms of the makespan objective (Exhibit 6). This inefficiency 

implies that production plans require more time in the manufacturing system to produce the same 



 

quantity. On the other hand, it is also important to consider the computational resources that may be 

required to solve this type of problem as shown by the computation times of M1. In this sense, the 

M2 approach has ample advantages when solving the same instances in much shorter computation 

times without significant losses in solution quality. Furthermore, larger instances can be solved with 

M2 when M1 could not provide a practical solution. Our results show that the decomposition 

strategy provides very good results in reasonable computation times. Therefore, dividing decisions 

into stages yields better results than those obtained when considering only the limiting machine.  

Conclusions 

This work was motivated by the gap in flow shop lot streaming and scheduling literature on 

addressing production systems with heterogeneous machines. In this article, the authors fill this 

gap by presenting and comparing three comprehensive mathematical models for flow shop lot 

streaming scheduling in production systems where one of the machines has processing times that 

are independent of the sublot size that must be processed. The first model (M1) uses the variable 

sublots approach in the entire system and yielded the best results but required excessive 

computational effort to solve the problem. Thus, a decomposition method (M2) is developed and 

compared to the classic consistent sublots approach found in the literature (M3). 

One important conclusion of this article is that the consistent sublot approach (M3) considerably 

limits the quality of the final solution, resulting between 5% and 15% of inferior quality than the 

ideal solution to the problem (variable sublots or M1) in terms of the makespan objective. 

Furthermore, the larger the system in terms of the number of machines and jobs, the poorer the 

solution quality. Nevertheless, it is shown that the variable sublots approach demands a 

considerable computational effort, thus becoming intractable to solve.  



 

The developed decomposition procedure (M2) results in an efficient and accurate technique for 

managing the production systems under consideration. It considerably reduces the computational 

effort and provides very good solutions, similar to the variable sublots approach (M1). Regarding 

the performance of the decomposition procedure, the M2 method obtains fast computational 

processing times while the number of machines increases.  With regards to the number of jobs 

increasing, the computational time tends to increase but at a slower rate than the variable sublot 

(M1) method. In addition, the decomposition M2 method performed properly under different 

production settings when the location of the limiting machine was varied.  

Moreover, several managerial implications are detailed that are related to production planning 

decision support for engineering managers where current IT tools are lacking.  Future research will 

develop meta-heuristic algorithms to solve the proposed problem for larger instances and apply 

the partitioning procedure to other production systems. 
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