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Abstract 

The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a 

mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of 

frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a 

mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and 

biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this 

work we combined different advanced spectroscopic analyses to explore the iron-binding properties 

of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we 

used EPR spectroscopy to address this key issue providing clear evidence of the formation of a 

complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron 

can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point 

out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold 

protein of the FeS clusters assembly machinery. To obtain insights on structure/function 

relationships relevant to understand the disease molecular mechanism(s), we extended our studies to 

four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability 

to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding 

features of the wild type protein. This supports the multifunctional nature of frataxin and the 

complex biochemical consequences of its mutations. 
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1. Introduction 

Frataxin (FXN) is a small highly conserved protein, found in both prokaryotic and 

eukaryotic organisms [1, 2], that was originally identified based on its link to Friedreich ataxia 

(FRDA; OMIM 229300), a neurodegenerative disease caused by an abnormal expansion of a GAA 

repeat in the first intron of the FXN gene, leading to a severe deficiency of the protein [3, 4]. FRDA 

is the most common inherited form of ataxia, clinically characterized by a progressive limb and gait 

ataxia, diabetes mellitus and hypertrophic cardiomyopathy, which is the main cause of death [5]. 

Although the majority of FRDA patients (i.e. >95%) are homozygous for the GAA expansion, a 

small but significant proportion of them (i.e. around 4%) are compound heterozygous for the 

expansion on one FXN allele and for a mutation on the other, including nonsense, missense, 

insertion and deletions [6, 7]. To date, out of the 40 reported pathogenic variants of FXN, at least 20 

different point mutations have been described, and it is worth noting that all clinically important 

mutations described in heterozygous FRDA patients affect highly conserved residues [6]. These 

patients present either the classical FRDA phenotype or an atypical, less severe clinical picture [6, 

8]. Contrary to the homozygous GAA expansion, which reduces FXN levels, these missense 

mutations are expected to directly affect the activity and/or structural properties of the expressed 

protein, as suggested by in vitro studies using recombinant mutant proteins [9, 10]. There are 

currently no options to prevent or specifically treat this disease, and life expectancy of patients is 

reduced to ~ 40-50 years. In fact, although FRDA has been unequivocally associated to FXN 

depletion, a clear cause-effect relationship is still elusive: the precise physiological function of the 

protein has not been clarified, as well as its specific contribution to the pathology onset and 

progression of both classical and atypical FRDA. Several potential roles have been proposed for 

FXN (reviewed in [11, 12]), essentially based on the structural/functional features of the protein. 

Genetic and biochemical studies carried out on several orthologues support a role of FXN as a 

multifunction protein involved in different (and likely related) aspects of intracellular iron 

metabolism, ranging from biogenesis of heme [13] and FeS clusters [14], to iron binding/storage 

[15] and iron chaperon activity [16]. All these possible functions of FXN are in agreement with the 

cardinal downstream biochemical features of FRDA cells, i.e. an impaired mitochondrial 

respiration, likely due to the decrease of the FeS clusters working as electrons shuttles through the 

respiratory chain, associated to iron overload and increased sensitivity to oxidative stress [17-19]. 

Some of these defects are probably secondary consequences of FeS clusters assembly defects, and a 

large body of data supports the idea that the complex phenotypes associated with FXN deficiency in 

humans as well as in other eukaryotes reflects, at least in part, an impaired capability to assemble 

these key cofactors (as reviewed in [20]). In fact, FXN depletion is associated with multiple deficit 
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of FeS proteins, especially mitochondrial aconitase and respiratory chain complexes [17] but also 

cytosolic enzymes [21]; this is usually accompanied by a general dysregulation of cellular iron 

homeostasis, leading to mitochondrial iron accumulation and cytosolic iron depletion [22, 23]. It is 

thus generally accepted that FXN is a mitochondrial protein involved in iron metabolism, however 

whether and how it directly participates in this pathway remains unclear and controversial. 

Human FXN is a nuclear-encoded protein, ubiquitously expressed at low levels, with the 

higher concentrations found in tissues strongly dependent on respiratory metabolism, such as heart, 

dorsal root ganglia sensory neurons and spinal cord [3]. It is an acidic iron-binding protein [1], 

synthesized in the cytosol as a precursor of 210 amino acids and then imported to the 

mitochondrion, where it undergoes to proteolytic maturation by a two-step process leading to an 

intermediate form of 19 kDa (residues 42-210) and finally to a mature form of 14 kDa (residues 81-

210) [24-26], which is widely accepted to be the most abundant species both in normal individuals 

and in patients. Sequence alignment of frataxins from different organisms showed two distinct 

regions: i) a N-terminal block of 70-90 residues, completely absent in prokaryotes and poorly 

conserved also among eukaryotes, with features typical of intrinsically unfolded proteins, and ii) a 

C-terminus encompassing a block of about 100-200 amino acids that is highly conserved in most 

organisms. The sequence identity of this region is as high as 25%, and the similarity is 40 to 70%, 

indicating that this is likely the functional portion of the protein. The three-dimensional crystal 

structure of a recombinant human FXN has been solved [27, 28] and indicates that the protein has 

indeed a N-terminal tail (residues 81-92) intrinsically unfolded and highly flexible, and a C-terminal 

domain folded in a mixed, compact -sandwich, with two -helixes packing against an 

antiparallel -sheet. Several highly conserved residues are buried in the protein core, consistent 

with a requirement for maintenance of a compact structure, whereas other are located either in a N-

terminal anionic patch or within the flat, conserved external surface of the -sheet, strongly 

supporting the hypothesis that these surfaces are critical for FXN function. The highly acidic N-

terminal domain, corresponding to the first -helix together with the first -strand, has been 

suggested to confer to FXN the capability to bind iron, and indeed independent NMR studies on 

human, yeast and bacterial frataxin homologues indicated iron addition effects at or near the 

negatively charged residues (aspartate and glutamate) clustered on this surface acidic ridge [27, 29-

32]. On the other hand, there is still uncertainty with respect to the iron-stoichiometry and affinities 

as well as type of coordination: different constructs of human FXN were reported to bind different 

Fe2+/Fe3+ equivalents per monomer, with largely discrepant dissociation constants [13, 16, 33], and 

it has been recently proposed that this protein is not able to bind ferric iron [34], making even more 

controversial its involvement in iron metabolism and homeostasis. Moreover, how the capability of 
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human FXN to bind iron is related to its potential role in the FeS clusters assembly process is not 

completely clarified and unequivocally defined. 

Based on these premises, in this work we combined different spectroscopic analyses to 

further characterize the iron-binding properties of human FXN, both as isolated and at the FeS 

clusters assembly machinery. Moreover, we extended our study to four variants found in FRDA 

heterozygous patients carrying clinically relevant missense mutations in highly conserved FXN 

residues.  

 

2. Materials and methods 

All chemicals were of the highest purity commercially available. 

2.1. Heterologous expression and purification of human FXN, ISCU and NSF1/ISD11 

proteins. A plasmid containing human wild type mature FXN, i.e. pET-9b/FXN(90-210), was 

previously obtained in our laboratory as described in [35]. FXN mutants were obtained through site-

directed mutagenesis with the QuickChange® II Site-Directed Mutagenesis Kit (from Agilent 

Technologies), using as template the pET-9b/FXN(90-210) plasmid and the couples of primers 

listed in table 1 (Supplementary material). The sequence of each mutant FXN gene was confirmed 

by DNA sequencing (at GATC Biotech, Germany). Human ISCU2 cDNA cloned into a 

pENTR223.1 vector was purchased from MyBioSource, Inc. (San Diego, CA, USA) and used as 

template to amplify the sequence corresponding to the mature ISCU2 variant, i.e. without 

mitochondrial targeting sequence, by using the couple of primers FwISCU (5’-

gaattcttatcaacaagaaggttgttgat-3’) and RevISCU (5’-aagctttcatttcttctctgxctctcc-3’). The fragment of 

interest was then directionally sub-cloned into a pETDuet-1 expression vector in frame with a 

sequence coding for a 6his-tag at the 5’ terminus. The identity of the insert was confirmed by DNA 

sequencing (at GATC Biotech, Germany). The sequence coding for the mature ISCU2 protein was 

also sub-cloned in frame with the 6his-tag sequence at the 3’ terminus into a pET-22b(+) expression 

vector, also carrying the TEV protease cleavage site sequence to remove the 6his-tag from the C-

terminus of the purified protein, as described in more detail in Supplementary material. Sequences 

coding for mature mouse NFS1 and ISD11 proteins were cloned into the two multi-cloning sites 

(NFS1 MCS1, in frame with a N-terminus 6his-tag, and ISD11 in MCS2) of a pETDuet-1 vector. E. 

coli BL21 (DE3) cells were transformed with the plasmids of interest, positive clones selected by 

antibiotic resistance, and recombinant proteins expressed and purified as described in more detail in 

Supplementary material: briefly, ISCU2-6his by combining affinity Ni-NTA and size exclusion 

chromatographies, wild type and mutant FXN proteins by combining anion exchange and size 
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exclusion chromatographies, and the NFS1/ISD11 complex by a single step of Ni-NTA affinity 

chromatography, exploiting the NFS1 N-terminus 6his-tag. 

2.2. Cysteine desulfurase activity measurements. The enzymatic catalysis of cysteine to alanine 

by NFS1/ISD11 (SD) complex was measured by the production of sulfide, using slight 

modifications of the assay described by Leimkühler and co-workers [36]. Briefly, sulfide 

quantification was performed by a colorimetric reaction in which the latter is used to generate 

methylene blue. For the assay, a total volume of 0.4 mL was employed, containing 1 μM 

NFS1/ISD11, 3 μM FXN and 3 μM ISCU. The samples were also supplemented with 10 μM PLP, 2 

mM DTT and 10 µM Fe2+ at final concentrations. Argon-purged 50 mM Tris-HCl, 200 mM NaCl, 

pH 8.0 was used as the reaction buffer. To initiate the reaction, 1 mM cysteine was added and the 

sample was incubated at room temperature. As sulfide production is linear during the first 40 

minutes (data not shown), 30 minutes were employed to generate sufficient product for the 

detection. The assays were stopped by the addition of 50 μL of 20 mM N,N-dimethyl p-

phenylenediamine in 7.2 M HCl and 50 μL of 30 mM FeCl3 in 1.2 M HCl. After letting the reaction 

proceed for 20 minutes, the samples were centrifuged for 5 minutes at 12000 x g. Then, the 

absorbance at 670 nm was measured. The same assay was performed for each frataxin variant, in 

the same concentration as the wild type. In this case, the desulfurase activity was normalized to the 

activity of the wild type protein. 

2.3. Circular Dichroism (CD). CD measurements were performed with a Jasco J-810 

spectropolarimeter. Far-UV CD spectra were collected using cells of 0.1 cm path-length. Data were 

acquired at a scan speed of 20 nm/min and at least three scans were averaged. Proteins were used at 

a concentration of 0.2 mg/mL, in a 2.5 mM Tris-HCl pH 7.0, 5 mM KCl buffer. Experiments were 

performed at 25 °C using a thermostated Jasco PTC-423 peltier cell holder connected to a Jasco 

PTC-423S peltier controller. The secondary structure content of all analyzed proteins was 

calculated using the CD spectrum deconvolution software CDNN (a software that calculates the 

secondary structure by comparison with a CD database of known protein structures) [37], and then 

compared with the one present in literature to confirm their correct folding state.   

2.4. UV-Vis absorption and fluorescence spectroscopy UV-Vis absorption were performed using 

a Cary 100 UV-Vis Spectrometer from Varian. Fluorescence spectra were detected with a 

FluoroMax-P Fluorimeter from Horiba Scientific, using 280 nm excitation wavelength which 

allows to excite tryptophan residues. Quartz cells of 1 cm path-length were used. Proteins were used 

at a concentration of 0.05 mg/mL (10 M), in a 100 mM HEPES pH 7.5, 50 mM KCl buffer. 

Experiments were performed at 25 °C using a thermostated cell. Fe3+ equivalents were added step 
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by step starting from a concentrated stock solution of FeCl3 in diluted HCl (pH ~ 2) by addition of 

few microliters each time, under constant stirring. Correction of the fluorescence spectra for the 

filter effect and for dilution resulted to be negligible. 

2.5. Electron Paramagnetic Resonance (EPR) spectroscopy. EPR spectra were recorded on an 

ELEXSYS E580 spectrometer equipped with a rectangular cavity, ER4102ST, both from Bruker, 

Germany, and fitted with a cryostat (ESR900) and a variable-temperature controller (ITC503S), 

both from Oxford Instruments, UK. The experiments were performed using the following 

parameters: microwave frequency 9.38 GHz, microwave power 6.4 mW (attenuation 15 dB), sweep 

width 170 mT, center field 150 mT, conversion time 82 ms, time constant 41 ms, modulation 

amplitude 0.95 mT, 1024 points, 50 averages, temperature 10 K. Samples were prepared incubating 

the proteins and 2 L of Fe3+ in a FXN:Fe3+ 1:4 molar ratio and a final protein concentration 50 

M, in a 25 mM HEPES pH 7.0, 5 mM KCl buffer, sample volume 100 L. Fe3+ was added from a 

concentrated solution stock solution of FeCl3 in diluted HCl (pH ~ 2), [Fe3+] = 10 mM. Samples 

were frozen in dry ice in quartz tubes (i.d. 3 mm, o.d. 4 mm). Quantitative measurements were 

performed for all samples using identical instrumental conditions, volume and position of the 

sample tube. The spectra were corrected by subtracting the baseline obtained from the spectrum of a 

solution of 200 M Fe3+ in buffer. 

2.6. Nuclear Magnetic Resonance (NMR) spectroscopy. Wild type and mutant FXN 15N-labeled 

and 15N/13C-double labeled proteins were isolated from E. coli cultures expressing the protein of 

interest, grown in M9 minimal media supplemented with 15N NH4Cl/13C D-Glucose, in the same 

conditions described above. When Fe2+ was used, all samples were prepared with N2 purged buffer 

(25 mM Tris-HCl pH 7.0, 50 mM KCl, and 1 mM DTT) under an anaerobic glove box (MBRAUN 

MB-200B) saturated with N2. 15N labeled wild type and mutant FXN proteins had a final 

concentration of 45 μM; unlabeled ISCU, when present, was at 80 μM, taking into account that in 

all ISCU sample preparations a complex SEC profile was observed, indicative of the co-existence 

of monomeric and dimeric proteins, or of species with different degree of folding. Fe2+ stock 

solution was freshly prepared before each experiment, dissolving (NH4)2Fe(SO4)2·6H2O in the 

buffer described above, into the anaerobic glove box. Fe3+ solution was prepared dissolving FeCl3 

in the same buffer. Both iron stock solutions had a concentration of 14 mM. Samples “FXN wild 

type/mutant + Fe” (1:4 FXN:Fe ratio) and “FXN wild type/mutant + Fe + ISCU” (1:4:2 

FXN:Fe:ISCU ratio) were prepared starting from a common stock of FXN wild type/mutant + Fe, 

and then diluted to the right final concentration either with buffer alone or with buffer + ISCU, in 

order to obtain the same FXN/Fe ratio in all experiments. 10% D2O was added to all samples, 
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which were then transferred in anaerobic conditions in Shigemi NMR tubes, without the insert, and 

sealed with appropriate rubber septa that secured air-tightness throughout the duration of the 

experiments. Before and after NMR experiments, pH of all samples was strictly controlled, and, in 

particular after addition of Fe3+, it was necessary to adjust it with 1M NaOH. All NMR experiments 

were acquired at 298K on a Bruker DMX 600 MHz spectrometer with room temperature probes. 

SOFAST HMQC (band-Selective Optimized Flip-Angle Short-Transient Heteronuclear Multiple 

Quantum Coherence) [38] was used to monitor the effect of iron and ISCU on 15N labeled FXN 

wild type/mutants. Resonance assignment for the amides groups of FXN was achieved by 

comparison with data available for human FXN in the BMRB database (http://www.bmrb.wisc.edu; 

accession code: 4342) and confirmed by HNCA, HN(CO)CA, HNCO, HN(CA)CO, HNCACB and 

HN(CO)CACB 3D heteronuclear experiments, using a sample of 1 mM doubly-labeled protein in 

the same buffer described above. Spectra were analyzed with NMRFAM-Sparky 1.4 [39] and 

CARA [40]. Normalized chemical shifts were calculated using the following the equation:  

Δδ = ((δHN) 2 + (δN / 5) 2) 0.5 

Residues that underwent significant chemical shift perturbations were mapped on the human FXN 

crystal structure (PDBID: 1EKG) using the program PyMOL [41]. 

3. Results and discussion 

Despite the wide consensus that frataxins are iron-binding proteins involved in the 

mitochondrial FeS clusters assembly process, there is not a general agreement on iron 

stoichiometries and dissociation rates, nor on the specific role of frataxin either in the FeS clusters 

biogenesis or in iron homeostasis. This issue is even more complex for human FXN, for which 

different recombinant constructs have been shown to bind 6 to 7 iron ions per monomer, 

irrespective of whether they were Fe2+ or Fe3+ [16, 33, 42], with largely incongruous dissociation 

constants. It is worth noting that in many respects frataxins are quite atypical iron-binding proteins, 

since they are thought to achieve iron coordination solely through aspartate and glutamate residues 

exposed on the protein surface instead of cysteines as most of the other iron-binding proteins. An 

additional unusual property, which may contribute to the experimental discrepancies, is related to 

the apparent lack of selectivity of frataxin, which is able to coordinate most divalent cations using 

the same surface acidic residues used for iron [43], so that different experimental conditions could 

in principle affect both stoichiometries and measured dissociation constants. Moreover, although 

eukaryotic FXN81-210 is widely accepted as the mitochondrial mature form and several experimental 

data refer to this protein, pivotal structural studies have been performed with a shorter construct (i.e. 

FXN90-210), which comprises only the C-terminal evolutionary conserved domain and lacks the extra 
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stretch of residues besides the mitochondrial import sequence at the N-terminus, that is likely 

unfolded [16, 27, 29, 44]. In the first part of this work, we readdressed the iron-binding properties 

of a recombinant human FXN90-210 protein by means of a multidisciplinary approach in which 

different spectroscopic analyses have been combined to obtain new independent structural data on 

the controversial role of iron in frataxin function(s). Moreover, to gain new clues on potential 

structure-function relationships, we extended our studies to a panel of selected FXN clinical 

variants carrying a point mutation either in the iron-binding region itself (i.e. D122Y) or in the 

conserved external surface likely involved in the interaction with the FeS clusters assembly 

machinery (i.e. G130V, N146K and W155R). In the second part of the work, we focused on the iron 

effect in relation to the structural and functional interactions of these FXN constructs with the FeS 

clusters assembly machinery, in order to obtain additional molecular details on the involvement of 

FXN in this biosynthetic pathway. 

3.1. Testing iron-binding to human FXN and to selected clinical variants found in FRDA 

patients 

3.1.1. Heterologous expression and purification of different variants of human FXN90-210. We 

overexpressed in E. coli and purified by combining an anionic exchange and a size exclusion 

chromatography, as described in detail in the section Materials and methods, both the wild type 

FXN90-210 protein (supplementary figure S1) and the four clinical variants (not shown), obtained by 

inserting the selected point mutation into the wild type FXN90-210 coding sequence by site-specific 

mutagenesis. All FXN90-210 variants were expressed at the same extent as the wild type protein and 

were almost completely found in the soluble fraction after cell lysis, except for G130V mutant, 

which showed a higher tendency towards aggregation (supplementary figure S2), as previously 

reported by Correia and coworkers [9]. This could be explained by the position of residue G130, 

which is in the tight turn formed by G128, S129 and G130 itself, between strands 1 and 2; thus, 

its mutation into a valine may disturb the turn conformation, resulting in a severe local strain. 

3.1.2. UV-Visible and fluorescence spectroscopy. The oxidation of Fe2+ in the presence of FXN was 

estimated by following the absorbance change at a wavelength of about 296 nm, which is diagnostic 

of formation of oxo/hydroxo Fe3+ species [45], after adding Fe2+ to the protein in aerobic buffer, 

without stirring. The oxidation rate, in these conditions, depends on the Fe2+/protein ratio. While at 

low iron concentration the oxidation rate is lower than that of the auto-oxidation in buffer, at higher 

equivalents the oxidation occurs at rates faster. In fact, after adding 3 equivalents, corresponding to 

30 µM of Fe(II), the oxidation rate is already much faster compared to auto-oxidation of Fe2+ in 

buffer at the same iron concentration (figure 1). Moreover, there is a fast (within the 10-20 seconds) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

10 
 

initial oxidation phase clearly observable by adding 3 or more iron equivalents, followed by a 

slower oxidation process. The fast oxidation is saturating already at about 3-4 Fe2+ equivalents, 

showing the same optical density change by addition of 10 equivalents. The second phase is 

dependent on the Fe2+ concentration as expected for an enzymatic reaction following the Michaelis-

Menten relationship. Clearly, as the titration progresses, iron-binding sites with different reaction 

properties are filled. A similar behavior was reported before for CyaY from E. coli [45] and was 

ascribed to the presence of different iron-binding sites. 

An indirect evidence for the iron-FXN complex formation was then provided by fluorescence 

quenching of the tryptophan residues emission, induced by Fe3+ addition to a protein solution. The 

effect on the fluorescence may mainly be ascribed to the energy transfer of the excitation that 

occurs between tryptophan residues and the oxo-complexes formed by Fe3+ ions with the protein 

upon binding, as suggested before for ferritin fluorescence quenching observed when Fe3+ was 

loaded [46]. Human FXN contains three tryptophan residues, and it is worth noting that one of them 

is missing in one of the four variants analyzed in this work (i.e. the W155R FXN). It can be seen 

that the fluorescence quenching due to the increasing amount of ferric ions is similar among the 

samples (wild type and mutants), with a more pronounced deviation for the D122Y mutant, which 

shows a reduced quenching (about -20%) (figure 2). The quenching of fluorescence produced by 

Fe2+ was almost absent (data not shown). In the case of  Fe2+ the quenching, strongly reduced 

compared to that induced by Fe3+ addition, is expected to be due only to a paramagnetic effect 

rather than to energy transfer as for Fe3+. However, since strictly anaerobic conditions were not 

guaranteed, it is possible that the observed quenching derives from the trace amounts of Fe3+ 

produced by oxidation due to the residual oxygen. Our experimental data on Fe2+ are in 

disagreement with those reported by Yoon and co-workers, who observed a large fluorescence 

quenching following Fe2+ addition, similar to that observed with Fe3+ [13]. 

The iron-binding to FXN was further addressed, for the first time, by EPR spectroscopy of wild 

type and mutant frataxins, as described in the following. 

3.1.3. EPR spectroscopy. EPR measurements were performed at 10 K to get a direct evidence, 

instead of an indirect effect as probed by fluorescence spectroscopy, of the iron-binding to FXN, 

since EPR is able to detect bound Fe3+ ions and gives information on the coordination to the protein 

residues. A protein sample in the absence of iron does not show an EPR signal, and the signal of 

Fe3+ in HEPES buffer solution at pH 7.0 is negligible in the low-field g = 4.3 region and absent at 

higher field values (data not shown). This was expected, since i) HEPES does not coordinate iron 

and ii) under these experimental conditions, in terms of pH and concentration, iron precipitates as 
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hydroxide. On the other hand, when Fe3+ was added to FXN, a signal centered at g = 4.3, ascribed 

to a high-spin mononuclear Fe3+ species in an environment of low symmetry, has been observed for 

all the samples, compatible with an aspartate/glutamate coordination [47], with no further signals 

present in other spectral regions. In figure 3, the EPR signals detected after addition of 4 equivalents 

of Fe3+ to 50 M protein solutions are shown. The spectra have been normalized to unit intensity to 

compare their shape: no significant differences among the samples have been detected when 

comparing wild type and mutant frataxins. The intensity of the signal of D122Y variant was 

reduced with respect to that of the wild type, in agreement with the fluorescence experiments 

reported above. Instead, the other variants showed only slightly different signal intensities. 

The EPR experiments unequivocally show that i) FXN is able to bind Fe3+ ions and ii) the 

mutations in the FXN clinical variants examined in our study do not impair the protein ability to 

bind iron ions. The D122Y mutant seems to be affected in this respect, but the capability of binding 

iron is not fully compromised. Due to the broadness of the spectral shape, it was not possible to 

characterize the different iron-binding sites suggested by the absorption spectra. 

We next investigated the iron-binding properties of wild type and mutant frataxins by NMR, either 

as isolated and in the presence of ISCU, the key scaffold protein of the FeS clusters assembly 

machinery.  

3.1.4. 2D NMR analysis. Both the NMR spectral assignment and the structure of human FXN90-210 

have been previously achieved by Musco and coworkers [27, 44], and the Fe2+-binding sites were 

mapped onto the protein by chemical shift perturbation analysis [29]. We first confirmed these data 

by titrating with Fe2+ a 15N-labeled FXN90-210 protein and using SOFAST-HMQC NMR spectra to 

monitor perturbations, as described in detail in Material and methods, and we performed the same 

analyses with Fe3+. Supplementary figure S3 shows the NMR spectrum of FXN  with the peak 

assignments, whereas supplementary figure S4 reports the superimposition of the spectra in the 

absence and in the presence of Fe2+ (panel A) or Fe3+ (panel B). In these experiments we used a 

protein:iron ratio of 1:4 and at the relatively low FXN concentration used in our experiments we did 

not observe any evident precipitation upon addition of Fe3+. Figure 4, panels A and B, shows the 

normalized chemical shift changes, calculated as described in Materials and methods. Upon the 

addition of Fe2+ in anaerobic conditions (panel A), as previously shown [29], or of Fe3+ (panel B), 

positions and/or intensities of several peaks in NMR spectra of FXN  resulted to be perturbed. As 

expected, the perturbed peaks mostly correspond to residues belonging to the N-terminal 1/1 

acidic iron-binding region of FXN. Titration of FXN with Fe3+ showed effects qualitatively similar 
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to those caused by Fe2+, indicating that the protein binds iron ions by using essentially the same 

area, as previously reported for the frataxin bacterial homologue CyaY [29]. Interestingly, Fe2+ 

generally induces larger perturbations (larger shifts or higher intensity decrease of the peaks), 

except for residues 119 and 120, that appear more shifted upon addition of Fe3+ (figure 4, panels A 

and B). This is in agreement with the EPR data reported above, showing that Fe3+ is able to bind to 

FXN, and further suggests a slightly different binding mode for iron in the two oxidation states. 

 We next analyzed, in the same experimental conditions, the 2D NMR spectra of the four 

clinical FXN variants described above, either in the absence or in the presence of Fe2+. The same 

experiment using Fe3+ was not performed because of the very similar effects observed on wild type 

FXN upon addition of iron in the two different oxidation states. In the absence of iron, the spectra 

of all mutants showed a good signal dispersion, compatible with folded species (supplementary 

figure S5). This was already reported for D122Y, G130V and W155R [9] but not for N146K, whose 

1H-15N correlation spectrum is shown here for the first time. All the spectra of the mutants were 

partially superimposable to that of the wild type protein and, accordingly, it was possible to assign 

most of the resonances and to identify the regions most perturbed by the mutations (supplementary 

figure S6). When compared to the wild type protein, the NMR spectra of the four clinical FXN  

variants reflected local rearrangements, mostly surrounding the mutation. In all cases some peaks of 

residues adjacent to the mutation could not be assigned because of very large shifts when compared 

to the wild type protein. For mutant D122Y, the substitution induced strong perturbations in several 

residues facing it. Perturbed regions include residues of the terminal part of 1 and the beginning of 

1 together with the loop connecting them, the loop between 1 and 2 and the beginning of 2. 

The most significant perturbations were observed for the G130V and W155R variants, in a 

relatively wide region extending from the mutation that includes not only residues from the whole 

-sheet but also from the N-terminal part of 1, as shown in supplementary figure S6. These results 

are compatible with the W155R crystal structure, in which a significant side-chain reorganization 

surrounding the mutation is evident when compared to the native FXN [48]. Instead, mutation 

N146K perturbed only few adjacent residues, mostly belonging to 3 (where mutation is located) 

and 4 strands (supplementary figure S6). This is in agreement with the crystal structure of the 

variant N146K (construct FXN90-210), that shows backbone and side chain conformations similar to 

those of native FXN [9]. Additionally, we analyzed the temperature-induced unfolding profiles of 

all FXN variants (as assessed by using Sypro-orange dye that binds to the unfolded state) and found 

Tm values compatible with stable tertiary structure and resistance to the temperature unfolding, i.e. 

50.30.3, 57.10.3, 54.80.1, 69.40.1, 64.90.2 C for G130V, D122Y, W155R, N146K and wild 

type FXN, respectively (figure 5). Interestingly, mutation N146K may be stabilizing. On the other 
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hand, since a difference in Tm does not necessarily imply a difference in free energy more 

experiments will be carried out in order to confirm these data. 

 We then explored by the same NMR analysis the N-terminal acidic region of these four 

clinical variants after addition of Fe2+ at a 1:4 protein:iron ratio. Notably, in these conditions, for the 

W155R mutant we did not observe any significant protein precipitation as was previously reported 

[9], most likely due to the lower protein concentrations used in our experiments. The results are 

shown in figure 4, panel C, which reports the normalized chemical shift and intensity changes 

(NMR spectra are in supplementary figure S7). When compared to the wild type protein, FXN  

variants showed similar behaviors in the presence of four equivalents of Fe2+. The iron-binding 

region of mutants N146K and W155R resulted to be almost identical to that of the wild type 

protein, suggesting that these two mutations do not significantly impact on the iron-binding 

capability of FXN. Instead, the effect of Fe2+ on the NMR spectrum of mutant G130V involves a 

larger number of peaks which become very broad or shift, with additional perturbed residues 

surrounding the 1/1 acidic region. This increased perturbation in the NMR spectrum of G130V 

FXN variant upon addition of Fe2+ could reflect the lower conformational stability previously 

observed by Correia and coworkers [9], as discussed above, and it is in agreement with a decrease 

in Tm value compared to the wild type FXN (Tm= 14.6 C). Surprisingly, with four Fe2+ 

equivalents, mutant D122Y does not show striking differences in the iron-binding region, where the 

mutation is located, when compared to the wild type protein. On the other hand, it must be 

underlined that residues 120 and 121 (and 122 itself) were not assigned in this mutant because of 

their large resonance shift; thus, possible differences in this region potentially affecting the 

capability of D122Y FXN variant to bind iron could not be tracked. As the EPR and fluorescence 

experiments reported above suggest, at least for Fe3+ binding, D122Y FXN shows a reduced 

capability to bind iron with respect to all the mutants addressed in this work. This is in agreement 

with the previous observation that iron-binding is only partially impaired in this mutant, which 

maintains the ability to bind four irons per protein. 

An additional key open issue is the way by which FXN is involved in the FeS clusters 

assembly process; several functions have been hypothesized for FXN in this pathway, ranging from 

iron delivery [16, 49, 50] to allosteric activation of the assembly machinery [51-53]. However, a 

converging consensus on its specific role is still missing. We thus further investigated this issue, 

focusing on the structural and functional interactions of FXN with ISCU, the scaffold protein upon 

which the FeS clusters are assembled prior to the transfer to the target apoproteins, as reported in 
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the next paragraph. Although we used the mitochondrial isoform ISCU2, this protein will be simply 

referred as ISCU in the following. 

3.2. Exploring human iron-bound FXN at the FeS cluster assembly machinery. According to 

an involvement in the FeS clusters biogenesis, human FXN was shown to interact with multiple 

core components of the assembly machinery. In eukaryotes, FeS proteins are distributed in almost 

every cellular compartment, especially in mitochondria, cytosol and nucleus [54]; the assembly of 

the FeS clusters is mainly performed by the mitochondrial ISC multiprotein machinery, which is 

composed of the cysteine desulfurase NFS1, the accessory proteins ISD11 and ACP (Acyl Carrier 

Protein), and the ISCU scaffold [55-60]. It is worth noting that although eukaryotes possess an 

additional cytosolic assembly system (i.e. CIA, Cytosolic Iron-sulfur cluster Assembly) [54], the 

ISC complex is also essential to all extra-mitochondrial FeS proteins [54, 55], putting this 

machinery more in general at the core of the metabolic pathways involving FeS proteins, both in 

healthy cells and in human diseases caused by FeS clusters deficiencies, including Friedreich ataxia. 

Although evidence of an interaction between FXN and the NFS1-ISD11-ACP-ISCU complex has 

received many independent confirmations [34, 49, 53, 61-64], several questions are unanswered, 

particularly as far as concerns its direct partner, which remains controversial as different one-to-one 

interactions with each component were reported [16, 49, 61, 63, 64]. It is worth noting that many 

residues of the FXN whole -sheet external surface are highly conserved and have been claimed to 

be critical for its specific interactions with other FeS cluster assembly proteins [28, 62]. Several 

known missense point mutations associated with compound heterozygous FRDA patients map 

indeed to these residues, including the four selected for our study, that belong either to the N-

terminal anionic patch or to the flat, conserved external surface of the -sheet, which is likely 

fundamental for the docking of protein partner(s) on FXN. 

Whatever is the specific role of FXN, the general consensus is that it is iron-dependent [16, 

34, 49], and that it relies on transient interactions with the biosynthetic core complex. Thus, by 

means of the same NMR analysis described above, we addressed the iron-binding to FXN in the 

presence of the scaffold ISCU, using either the wild type protein or the four selected pathological 

mutants. To this end, we heterologously expressed and purified a recombinant human mature (i.e. 

without the N-terminal mitochondrial targeting sequence) N-6his-tagged ISCU protein, as described 

in detail in Materials and methods. The purified protein showed a secondary structure content 

compatible with a properly folded /  species, as assessed by far-UV circular dichroism 

(supplementary figure S8 and table 2 in Supplementary material). Addition of unlabeled ISCU to 

the 15N-labeled FXN protein was then performed in the presence of Fe2+, in anaerobic conditions, as 
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described in detail in Material and methods, with a 1:4:2 FXN:Fe2+:ISCU ratio. In order to facilitate 

the interaction with FXN, ISCU was added in excess taking into account that this protein is present 

in solution in monomeric and dimeric states, as pointed out above. The SOFAST HMQC NMR 

spectrum was finally acquired to map the residues potentially affected by the presence of ISCU. We 

found that addition of ISCU did not cause evident chemical shift perturbation on the NMR spectrum 

of the iron-bound frataxin (figure 6), which would have indicated the formation of a binary complex 

interaction of this protein with ISCU, at least in the absence of the other ISC complex functional 

partners. Interestingly, some cross-peaks corresponding to residues located in the 1/1 acidic 

region already perturbed by iron-binding became significantly broader upon addition of N-6his-

tagged. Furthermore, a close look to the NMR spectrum of the Fe2+-bound FXN protein indicates 

that few residuespresent a small but significant shift in the proton dimension upon addition of 

ISCU (figure 6). In particular, the significant increase of line broadening for residues in the 1/1 

acidic region already perturbed by iron-binding could be due to an enhancement of paramagnetic 

relaxation caused by existence of transient, low population of the complex between the two 

proteins. Moreover, we  added the N-6his tagged ISCU to 15N-labeled frataxin in absence of iron 

and, as expected, in this case we did not observe any effect (supplementary figure S9), confirming 

that the further broadening is due to enhanced paramagnetic relaxation, which is very sensitive to 

protein-protein interaction. Although a strong interaction between the two proteins can be excluded, 

our data suggest that, even in the absence of the cysteine desulfurase complex, ISCU could interact 

directly with the 1/1 acidic region or that a transient interaction of ISCU with the 3-5 sheet of 

FXN, previously proposed for the interaction between the two proteins, could affect the structure 

and/or dynamics of the iron-binding region. Moreover, differently from what observed before by 

Cai and coworkers [34], the finding that upon addition of ISCU the spectrum of FXN remained very 

similar to that of the iron-bound protein indicates that, at least in our conditions, the transfer of iron 

from FXN to ISCU does not take place. Qualitatively similar results were obtained when N-6his-

tagged ISCU was added to the FXN mutants studied in this work in the presence of 4 equivalents of 

Fe2+, in anaerobic conditions. As in the case of the wild type FXN, the addition of N-6his-tagged 

ISCU causes changes in the NMR spectra for peaks corresponding to residues in the 1/1 acidic 

region, mostly in term of a further line broadening (figure 7). This was not evident in the case of 

G130V, where the signals that experienced the larger effect in presence of ISCU for the wild type 

FXN or for the mutants were already extremely broad upon iron addition. Although there are some 

small differences, in all cases the addition of ISCU appeared to strengthen the effects observed upon 

addition of iron. In particular, there are 8 peaks, corresponding to E108, E111, D112, L113, D115, 

V125 and S126, that disappear or become very weak upon addition of Fe2+ and ISCU. Interestingly, 
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they are located in the C-terminal part of 1 and in the resides of 1 facing it, while the binding 

sites at the N-terminus of 1 and in the loop are much less influenced. 

In order to exclude that the effect of ISCU on FXN described above may be due to an 

interaction of the N-terminal 6his-tag, possibly mediated by iron, we produced a novel construct 

allowing the expression of a C-6his-ISCU protein, with a TEV-cleavage site to remove the tag after 

purification, as described in Materials and methods and in the supplementary materials. The C-6his-

ISCU and untagged ISCU proteins were then used to explore potential effects on the NMR 

spectrum of the iron-bound 15N-labeled frataxin, exactly as described above. We found that both 

proteins did not cause neither evident chemical shift perturbation nor additional broadening of 

NMR signals, including those corresponding to the residues of the 1/1 acidic already perturbed 

by iron-binding, unlike what we observed with the N-6his-tagged ISCU protein (supplementary 

figure S10). On the other hand, the lack of effects observed with untagged or C-6his-tagged ISCU 

proteins suggested that the his-tag at the N-terminus should influence the structural properties of 

ISCU. In view of the capability of ISCU to explore different conformational states, as previously 

reported by different groups [65, 66], it is likely that the flexible N-terminus when his-tagged 

promotes a shift of the equilibrium among conformations. Thus, a transient interaction between 

FXN and ISCU could be enhanced, allowing the changes measured in the NMR spectra. In 

particular, the significant increase of line broadening for residues in the 1/1 acidic region already 

perturbed by iron-binding could be due to an enhancement of paramagnetic Curie relaxation caused 

by existence of transient, low population of the complex between the two proteins. 

Taken together, these results confirm that a binary complex interaction between FXN and 

ISCU, at least in the absence of the other ISC complex functional partners, is not formed, as it was 

pointed out by Cai and co-workers with the FXN80-210 protein [34]. On the other hand, they suggest 

that the presence of a 6his-tag at the N-terminus of ISCU may promote a transient interaction with 

FXN, which is not mediated by a potential iron-binding to the 6his-tag. 

 The capability of iron-bound FXN to functionally interact with the NFS1-ISD11-ACP-ISCU 

complex is pivotal to drive the biogenesis of the FeS clusters at the assembly machinery. The 

mutations of the highly conserved residues associated with the four clinical variants analyzed in this 

work are all expected to have a functional impact on the FeS clusters synthesis. Since our EPR and 

NMR data did not point out significant differences between the wild type and the mutant proteins in 

terms of iron-binding and ISCU interaction, to further investigate the structure-function 

relationships in these variants we next evaluated their activity at the whole FeS cluster biogenesis 

complex. Mammalian FXN was proposed to stimulate the rate of FeS clusters assembly by 
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enhancing the sulfide production at the NFS1-ISD11-ISCU machinery [53, 67, 68]. The cysteine 

desulfurase NFS1, which forms a functional complex with ISD11 (an essential mitochondrial 

matrix protein that is required for the stability and function of NFS1), catalyzes the breakdown of 

cysteine to alanine and produces a transient persulfide species that can be detected in vitro by the 

enzymatic assay described in detail in Materials and methods. By taking advantage of this approach, 

we monitored the amount of sulfide produced by NFS1/ISD11 conversion of cysteine to alanine in 

the presence of ISCU, with or without wild type or mutant frataxin proteins. In these experiments, 

sulfide production has been monitored in the presence of 1 equivalent of the NFS1/ISD11 complex, 

purified as described in Materials and methods, 3 equivalents of ISCU and 10 equivalents of Fe2+, 

either in the absence or in the presence of wild type FXN and of each of the four FXN variant. The 

results of these analysis are reported in figure 8 and table 3 in Supplementary material. The 

mutations N146K and W155R had been previously shown to affect the capability of FXN to 

stimulate the NFS1/ISD11 desulfurase activity in vitro [48, 69], whereas these data were lacking for 

both D122Y and G130V variants. Our results confirmed that i) wild type FXN increases the 

cysteine desulfurase activity of NFS1/ISD11 complex and ii) N146K and W155R variants are 

almost unable to further activate NFS1. We next analyzed the effects of G130V and D122Y point 

mutations. We found that, when compared to the wild type FXN, both variants retain a partial 

capability to enhance the desulfurase activity in vitro. Since it has been previously proposed the 

FXN stimulatory effect on the desulfurase activity relies on the presence of the ISCU scaffold [68], 

these functional data would be in accordance with the structural NMR analysis reported above. On 

the other hand, even though N146K may be more stable than the wild type protein, it exhibited a 

significant decrease of desulfurase activation. Based on the analysis of the experimental model of 

NFS1/ISD11-ACP/ISCU/FXN complex determined by Cai and coworkers [34], residue Asn146 of 

FXN interacts with residues Pro108 and Val109 of ISCU (supplementary figure S11). Thus, the 

mutation N146K may distort the interaction surface of ISCU-FXN subcomplex. In fact, when the 

residue is mutated to Lys, the N atom of the Lys146 side-chain is located near Cys44 of ISCU (i.e. 

5.0-6.0 Å), one of the conserved Cys residues where the cluster is assembled. Therefore, the 

electrostatics of the active site of ISCU (residues Cys44, Cys70, His112 and Cys113) may be highly 

altered by the presence of a positive charge. 

Taken together, these data thus indicate that iron-binding, at least to the specific FXN 

clinical variants selected in this work, is not univocally related to their capability to enhance sulfide 

production via binding the NFS1-ISD11-ISCU complex, one the proposed molecular functions of 

frataxin. The complex relationships between stability and function of FXN at the whole FeS cluster 

assembly machinery are currently under further investigation in our laboratory.  
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4. Conclusions 

 One of the end results of FXN decrease in cells of FRDA patients is a severe iron overload 

in their mitochondria, especially in nerve and cardiac tissues, associated to cellular iron 

dysregulation, impairment of FeS clusters assembly and increased sensitivity to oxidative stress, 

likely due to the mitochondrial redox-active environment. This has been suggested to play a key 

role in the pathogenesis of the disease and indeed pharmacological strategies based on free-radical 

scavengers, such as idebenone or CoQ10, as well on iron chelators, such as deferiprone, showed 

some cardiac and neurological improvements in FRDA mouse models and in-patient clinical trials 

[11, 70-72]. On the other hand, to date the primary cause of the disease is still difficult to identify, 

and the precise physiological role of FXN remains unclear, both in iron metabolism and in the FeS 

clusters biogenesis. Although iron-binding to FXN has been proposed to be essential for its 

function(s), this important issue is still controversial in many respects, and has been readdressed in 

the present work in which we combined different advanced spectroscopic analyses to investigate the 

iron-binding properties of a recombinant human FXN. Moreover, in order to disclose potential 

structure-function relationships, we applied the same multidisciplinary approach to a panel of FXN 

variants found in FRDA heterozygous patients, with point mutations in highly conserved residues 

mapping either in the iron-binding acidic ridge or in the surface involved in the iron-dependent 

interaction of FXN with the FeS clusters assembly machinery. EPR is an advanced spectroscopic 

technique of choice to investigate metalloproteins, and in this work it has been exploited for the first 

time to provide direct experimental evidence in vitro that FXN binds Fe3+. This was then further 

supported by 2D NMR experiments, which also confirmed that FXN is able to bind iron ions in 

both oxidation states, although with slightly different binding modes. An intriguing result was 

obtained by the same NMR analysis when iron-bound FXN was incubated with ISCU, the scaffold 

protein of the mitochondrial FeS clusters assembly machinery, providing a novel molecular insight 

on this complex biosynthetic pathway: indeed, our data may suggest that structural changes of the 

N-terminal portion of ISCU could be instrumental for the transitions between different 

conformational states, which have been previously claimed to be relevant, as scaffold protein, for 

the interactions with the functional partners of the FeS cluster assembly machinery [65, 66].  

Although the pathophysiological consequences of the point mutations of the selected 

variants are relevant, no significant differences were detected when compared to the wild type FXN, 

in terms of both iron-binding properties and interaction with the ISCU scaffold protein, suggesting 

that these are not key factors for the disease onset, at least in heterozygous patients. On the other 

hand, we confirmed that two out the four FXN mutants (i.e. N146K and W155R) have an impaired 

capability to enhance the desulfurase activity in vitro, one of the functional roles that have been 
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hypothesized for this protein. This indicates that FXN missense point mutations could have multiple 

biochemical effects, and further supports the multifunctional nature of the protein. Examining FXN 

mutations in the context of protein structure/function relationships is expected to increase our 

knowledge of FXN biology and FRDA pathology, and additional clinical mutants are thus currently 

under investigation in our laboratory. 

Understanding the intricate pathophysiology of FXN defects is pivotal to characterize the 

FRDA disease molecular mechanisms and to better define the clinical outcome of both homozygous 

and compound heterozygous patients, which is in turn crucial to develop novel, more specific 

therapeutic strategies.  
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Figure legends 

Figure 1. Kinetics of Fe2+ oxidation. The oxidation of Fe2+ to Fe3+ was detected by absorbance 

change at 296 nm, at different FXN: Fe2+ molar ratios: squares, 1:0.5; circles, 1:3; up triangles, 1:4; 

down triangles, 1:10. In empty diamonds, the oxidation in buffer alone of Fe2+ 30 M. Protein 

concentration: 10 M. T=298 K. 

Figure 2. Quenching of tryptophan fluorescence intensity in wild type and mutant FXN 

proteins after addition of increasing Fe3+ equivalents. The quenching was followed on the 

maximum of fluorescence emission at different FXN:Fe3+ molar ratios. Black squares, wild type 

FXN; red diamonds, D122Y mutant; purple circles, G130V mutant; azure down triangles, N146K 

mutant; green up triangles W155R mutant. F = fluorescence intensity at the actual concentration of 

Fe3+, F0 = fluorescence intensity in the absence of Fe3+. Protein concentration: 10 M. T=298 K. 

Figure 3. EPR spectra of Fe3+ bound to wild type and mutant FXN proteins. The spectra show 

the g=4.3 spectral region. Top to bottom: black, wild type FXN; red, D122Y mutant; purple, 
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G130V mutant; azure, N146K mutant; green, W155R mutant. The samples have a 4:1 Fe3+:FXN 

ratio. Protein concentration: 50 M. T=10 K. 

Figure 4. Mapping the iron-binding sites of FXN by NMR chemical shift perturbation.  

Normalized chemical shift changes for wild type FXN with and without 4 equivalents of Fe2+ (A) or 

Fe3+ (B) and for the four FXN mutants with and without 4 equivalents of Fe2+ (C). The dotted line 

represents the threshold calculated as one standard deviation of the shifts. The asterisks indicate 

residues whose peaks disappeared or presented significantly reduced intensity in presence of iron. 

Prolines or residues corresponding to severe overlapped or unassigned peaks in wild type FXN are 

indicated with black triangles while residues which cannot be traced in the mutants are shown with 

empty triangles. A schematic representation of FXN secondary structure is inserted in frame with 

residues sequence number to facilitate the interpretation of the figure. On the right column, protein 

regions perturbed upon iron addition are mapped with colours on the apo-FXN structure (PDBID: 

1EKG). The residues presenting, upon addition of iron, normalized chemical shift changes larger 

than a one standard deviation of all the shifts are coloured in red. Residues whose signal disappear 

upon addition of iron are coloured in magenta. The mutated residues are represented in spheres. In 

black are coloured prolines, residues corresponding to severe overlapped or unassigned peaks in 

wild type FXN and residues whose assignment could not be traced in the mutants. 

 

 

Figure 5. Temperature-induced unfolding of FXN mutants. Unfolding of FXN mutants was 

followed by the change in sypro-orange dye fluorescence. (A) Unfolding profiles. (B) Melting 

temperatures. Data represent the mean of four replicates ± S.D. for each variant. 

Figure 6. Effect of N-6his-tagged ISCU on the NMR spectra of FXN in presence of four 

equivalents of Fe2+. The superposition of the 1H,15N-SOFAST-HMQC spectra of FXN in absence 

(blue) and in presence (red) of ISCU are shown in panel A. The rations of the peak intensities in the 

spectra without (I0) and with (I) ISCU are represented as a function of the residue number in panel 

B. Residues corresponding to signals which disappeared in presence of ISCU and iron are indicated 

with asterisks. Prolines or residues corresponding to severe overlapped or unassigned peaks in wild 

type FXN are marked with black triangles. A schematic representation of FXN secondary structure 

is inserted in frame with residues sequence number to facilitate the interpretation of the figure. The 

black arrows indicate peaks that, besides being broadened, are also slightly shifted upon addition of 

ISCU. 
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Figure 7. Ratios of the peak intensities in the spectra without (I0) and with (I) ISCU 

represented as a function of the residue number for FXN mutants. Residues corresponding to 

signals which disappeared in presence of ISCU and iron are indicated with asterisks. Prolines or 

residues corresponding to severe overlapped or unassigned peaks in wild type FXN are marked with 

black triangles while residues which cannot be traced in the mutants are shown with empty 

triangles. A schematic representation of FXN secondary structure is inserted in frame with residues 

sequence number to facilitate the interpretation of the figure. 

 

Figure 8. Modulation of the NFS1 cysteine desulfurase activity at the FeS clusters assembly 

complex. Sulfide production was assessed in the presence of 1 equivalent of the NFS1/ISD11 

complex, 3 equivalents of ISCU and 10 Fe
2+ 

equivalents, either in the absence or in the presence of 

3 equivalents of wild type FXN and each FXN mutant, as described in detail in Materials and 

methods. The enzymatic activity is normalized to the desulfurase activity in the presence of wild 

type FXN. Data represent the mean of three replicates ± S.D. 
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Highlights  

Human frataxin binds iron in both oxidation states 

Small conformational changes of the ISCU flexible N terminus may help its interaction with 

frataxin  

Frataxin mutants with unaffected iron-binding are defective in FeS cluster assembly  
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