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SUMMARY

In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant
formulations is presented. It is carried out in the context of the finite element method for general advective–
diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact
of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been
proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain
on moving grids the nonlinear stability properties of its fixed-grid counterpart. However, only a few works
proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based
on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the � family of
time integration methods. In addition, an extension to the three-point backward difference formula is given.
With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed.
These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible
Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When dealing with partial differential equations that need to be solved on moving domains, like
problems in the fluid–structure interaction area [1–4], one of the most used technique is the so-
called ALE. The idea behind the ALE formulation is the introduction of a computational mesh,
which moves with a velocity independent of the speed of the material particles. The ALE method
was first proposed in the context of finite differences [5, 6], then it was extended to finite elements
[7–9] and to finite volumes [10].

When an ALE formulation is used, the governing equations must be written in a moving domain,
and additional terms related to the mesh velocity and position are introduced. The reformulated
equations must be integrated in time. The common way to proceed is to use a classical time advanc-
ing scheme like the � family [8, 11] or the backward differentiation formulas (BDFs) family. In this
context, the DGCL may arise, and it is directly related to the evolution of the mesh velocity and
the elements volume change. This law was introduced by Thomas and Lombard [12], and it is a
consistency criterion in which the numerical method must be able to reproduce exactly a constant
solution on a moving domain.

As noted by Étienne et al. [13], the effect of the DGCL on the stability of ALE schemes is still
unclear and somewhat contradictory. In the work by Guillard and Farhat [14], it has been observed
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2 M. A. STORTI, L. GARELLI AND R. R. PAZ

that the movement of the domain can degrade the accuracy and stability of the numerical scheme
with respect to their counterpart on fixed domains. In this direction, many researchers have been
working with the aim of linking the accuracy and the stability of numerical schemes on an ALE
framework with the discrete version of the geometric conservation law [13–16]. In the article by
Geuzaine et al. [17], it has been shown that satisfying the DGCL is neither a necessary nor a suf-
ficient condition for an ALE scheme to preserve on moving grids its time accuracy established
on fixed grids. In the work presented by Farhat et al. [18], it was proved that for nonlinear scalar
problems, the DGCL requirement is a necessary and a sufficient condition for an ALE time inte-
grator to preserve the nonlinear stability properties of its fixed-grid counterpart. Meanwhile, Boffi
and Gastaldi [15] and Formaggia and Nobile [16] have shown that it is neither a necessary nor a
sufficient condition for stability, except for the backward Euler scheme. Although the impact of the
DGCL on the stability and precision of the time integration methods is controversial, there is a gen-
eral consensus in the development of schemes that satisfy the DGCL, in particular for fluid–structure
interaction problems [19–21, 23].

A straightforward way to satisfy the DGCL is to use a time integration rule with degree of pre-
cision nd � s � 1, where nd is the spatial dimension and s is the order of the polynomial used to
represent the time evolution of the nodal displacement within each time step. For example, in 3D
problems with a linear in time reconstruction, a rule with degree of precision 2 should be used.
Alternatively, the methodology proposed by Farhat and Geuzaine [22] to obtain an ALE extension
for a given time integrator in fixed meshes could be used.

In this work, a new methodology, which is based on averaged ALE Jacobians is proposed to
obtain DGCL compliant FEM formulations. It is applied to the � family of time integration meth-
ods in general nonlinear advective–diffusive problems. In addition, an extension to the three-point
BDF is given.

In a previous work [22], averaged coefficients are obtained by starting with a general integration
scheme with a series of unknown parameters, which are then adjusted to preserve DGCL compli-
ance and the temporal accuracy of the fixed mesh counterpart. In contrast, in this work, the geometric
coefficients are obtained by averaging them over the time step so that precision is preserved and the
DGCL is satisfied in a natural way.

Finally, to validate the averaged Jacobians formulation (AJF), a set of numerical tests are
performed. This includes 2D/3D diffusion problems on moving meshes and 2D compressible
Navier–Stokes equations.

2. VARIATIONAL FORMULATION FOR ADVECTIVE–DIFFUSIVE SYSTEM FOR
MOVING MESHES USING ALE

Let us start with the derivation of the ALE formulation for a general advective–diffusive system
[7, 8, 20]. The governing equation to be expressed in an ALE framework is

@Uj

@t
C
�
Fcjk.U/�Fdjk.U,rU/

�
,k
D 0, in�t (1)

where 1 6 k 6 nd , nd is the number of spatial dimensions, 1 6 j 6 m, m is the dimension of the
state vector (e.g.,mD nd C 2 for compressible flow), t is time, . /,j denotes derivative with respect
to the j th spatial dimension, U 2 IRn is the state vector, and Fc,d

jk
2 IRn�nd are the convective

and diffusive fluxes, respectively. Appropriate Dirichlet and Neumann conditions are imposed at the
boundary.

As the problem is posed in a time-dependent domain�t , it can not be solved with standard fixed-
domain methods so that it is assumed that there is an inversible and continuously differentiable map
x D �.�, t / between the current domain �t and a reference domain �� , which can be for instance
the initial domain �� D�tD0, and � is the coordinate in the reference domain. The Jacobian of the
transformation is

J D

ˇ̌̌
ˇ@xj@�k

ˇ̌̌
ˇ , (2)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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AN FEM SATISFYING THE DGCL BASED ON AVERAGED JACOBIANS 3

and satisfies the following volume balance equation

@J

@t

ˇ̌̌
ˇ
�

D J
@��
k

@xk
, (3)

where

��k D
@xk

@t

ˇ̌̌
ˇ
�

, (4)

are the components of the mesh velocity.
The variational formulation of Equation (1) is obtained multiplying with a weighting function

w.x, t /D w.�.x, t // and integrating over the current domain �tZ
�t
w
@Uj

@t
d�t C

Z
�t

h
Fcjk �Fdjk

i
,k
w d�t D 0. (5)

The integrals are brought to the reference domain ��Z
��
w
@UPj

@t
J d�� C

Z
��

h
Fcjk �Fdjk

i
,k
wJ d�� D 0, (6)

and the temporal derivative term can be converted to the reference mesh by noting that the partial
derivative of Uj is in fact a partial derivative at x D constant and then can be converted to a partial
derivative at � D constant with the relation

@Uj

@t

ˇ̌̌
ˇx D @Uj

@t

ˇ̌̌
ˇ
�

� ��k
@Uj

@xk
. (7)

So, the temporal derivative term in Equation (6) can be transformed using Equation (3) as follows:

J
@Uj

@t

ˇ̌̌
ˇ
x

D J
@Uj

@t

ˇ̌̌
ˇ
�

� J��k
@Uj

@xk
,

D
@.JUj /

@t

ˇ̌̌
ˇ
�

� JUj
@��
k

@xk
� J��k

@Uj

@xk
,

D
@.JUj /

@t

ˇ̌
ˇ̌
�

� J
@.Uj /�

�
k

@xk
.

(8)

Replacing Equation (8) in Equation (6),
Z
��
w.�/

@

@t
.JUj /

ˇ̌
ˇ̌
�

d�� C
Z
��

�
Fcjk � ��kUj �Fdjk

�
,k
w.�/J d�� D 0. (9)

The temporal derivative can be commuted with the integral and the weighting function because
both do not depend on time so that

d

dt

�Z
��
w JUj d��

�
C

Z
��

�
Fcjk � ��kUj �Fdjk

�
,k
wJ d�� D 0, (10)

and the integrals can be brought back to the �t domain

d

dt

�Z
�t
wUj d�t

�
C

Z
�t

�
Fcjk � ��kUj �Fdjk

�
,k
w d�t D 0. (11)

The variational formulation can be obtained by integrating by parts so that

d

dt
.H.w,U//CF.w,U/D 0, (12)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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4 M. A. STORTI, L. GARELLI AND R. R. PAZ

where

H.w,U/D
Z
�t
wUj d�t ,

F.w,U/D A.w,U/CB.w,U/C S.w,U/,

A.w,U/D�
Z
�t

�
Fcjk � ��kUj �Fdjk

�
w,k d�t ,

B.w,U/D
Z
�t

�
Fcjk � ��kUj �Fdjk

�
nkw d� ,

(13)

� t is the boundary of�t , and nk is its unit normal vector pointing to the exterior of�. Also, a con-
sistent stabilization term S.w,U/ is included to avoid numerical problems for advection dominated
problems [24].

Finally, Equation (11) is discretized in time with the trapezoidal rule (application to the BDF will
be described later)

H.w,U nC1/�H.w,U n/D�
Z tnC1

tn
F.w,U t

0

/dt 0,

���t F.w,U nC� /.

(14)

with 06 � 6 1 and being U nC� defined as

U nC� D .1� �/UnC �U
nC1. (15)

During the time step, it is assumed that the nodal points move with constant velocity, that is,

��k .�/D
xk.�, tnC1/� xk.�, tn/

�t
,

xk.�, t /D xk.�, tn/C .t � tn/��k .�/,

9=
; , for tn 6 t 6 tnC1. (16)

2.1. Discrete geometric conservation law condition

A discrete formulation is said to satisfy the DGCL condition if it solves exactly a constant state
regime, that is, not depending on space or time for a general mesh movement x.�, t /. As was men-
tioned in Section 1, the effect of the DGCL in the precision and numerical stability of the scheme is
an open discussion, but in several works [14, 16], it is recommended to employ numerical schemes
that satisfy the DGCL. This may help in improving the precision and the stability.

By replacing Uj D constant and after some manipulations, it can be shown that the DGCL is
satisfied if

Z
�nC1

w d��
Z
�n
w d�D�t

Z
�nC�

��kw,k d�. (17)

A similar restriction holds for the boundary term. The stabilization term S.w,U/ normally sat-
isfies automatically the DGCL because it involves gradients of the state and then it is null for a
constant state.

Note that this previous equation holds if the right-hand side is evaluated as an integral instead of
being evaluated at tnC� , that is, the DGCL error comes from the approximation that was made in
Equation (14), that is, it is always true that

Z
�nC1

w d��
Z
�n
w d�D

Z tnC1

tn

²Z
�t
��kw,k d�

³
dt . (18)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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AN FEM SATISFYING THE DGCL BASED ON AVERAGED JACOBIANS 5

Consider the integrand in the right-hand side. Transforming to the reference domain�� , we obtain

Z tnC1

tn

²Z
�t
��k w,k d�

³
dt D

Z tnC1

tn

²Z
��
��k
@w

@�l

@�l

@xk
J d��

³
dt ,

D

Z
��
��k
@w

@�l

Z tnC1

tn

�
@�l

@xk
J

�t
dt d�� ,

D

Z
��
��kg

nC�
k

J nC� d�� .

D

Z
�nC�

��kg
nC�
k

d�,

(19)

where gk is an averaged interpolation function gradient

gnC�
k
D .J nC� /�1 NQ

nC1=2

lk

@w

@�l
,

NQ
nC1=2

lk
D

Z tnC1

tn
Qt
lk dt ,

Qt
lk D

�
J
@�l

@xk

�t
.

(20)

The proposed scheme is then to replace the A.w,U nC� / operator in Equation (14) by

AGCL.w,U nC� /D�
Z
�nC�

h
Fcjk � ��kUj �Fdjk

i ˇ̌̌
tnC�

gnC�
k

d�, (21)

A similar modification must be introduced in the boundary term B.w,U/; this will be explained
later in Section 2.3. It is easy to check that with this modification, the scheme is DGCL compliant
for all � .

2.2. Evaluation of the average interpolation function gradient

Because of Equation (16), each component xk is a linear function of time inside the time step, then
the spatial derivatives .@xk=@�l/ are also linear functions and the determinant J is a polynomial of
degree nd . Also, the components of the inverse transformation � ! x can be determined from the
inverse of the direct transformation x! � as

@�l

@xk
D

�
@x

@�

��1
lk

,

J
@�l

@xk
D .�1/kCl minor

�
@x

@�

�
kl

,

(22)

where minor .A/ij is the determinant of the submatrix of A when row i and column j have been
eliminated. Then, the minors are polynomials of order nd � 1 and so are the entries of J.@�l=@xk/
that are the integrands in Equation (20).

As a check, well-known results about the compliance of the DGCL with the trapezoidal rule will
be verified. The DGCL is satisfied if the integration rule used to approximate the time integral in
Equation (20) is exact, for instance, � D 1=2 satisfies the DGCL in 2D because the integrand is
linear and the trapezoidal rule reduces to the midpoint rule. In addition, DGCL is satisfied in 1D for
any 0 6 � 6 1 and for none in 3D. The point is that using � D 1=2 (Crank–Nicolson) is restrictive,
and there is no � that satisfies the DGCL in 3D so that the method proposed here uses a higher order
time integration for Equation (20) so that the DGCL is satisfied for an arbitrary � in any dimension.
The method can be extended easily to other temporal integration schemes (Section 2.4).

For instance, the Gauss integration method can be used. Normally the Jacobians and the deter-
minants are known at tn and tnC1 because they are needed for the computation of the temporal

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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6 M. A. STORTI, L. GARELLI AND R. R. PAZ

term (the right-hand side in Equation (14)), so perhaps it is better to use the Gauss–Lobatto version,
which includes the extremes of the interval. The Gauss–Lobatto method integrates exactly polyno-
mials of up to degree 2n�3, where n is the number of integration points so that it suffices to use the
extreme points for simplices in nd D 2 and to add a point at the center of the interval for nd D 3,
that is,

gnC�
k
D

8̂̂
<
ˆ̂:

�t

2J nC�

�
Qn
lk CQ

nC1
lk

� @w
@�l

, in 2D,

�t

6J nC�

h
Qn
lk C 4Q

nC1=2

lk
CQnC1

lk

i @w
@�l

, in 3D,
(23)

being Qt
lk

defined in Equation (20).

2.3. Boundary term

The boundary term in Equation (13) can be brought to the reference domain as follows:

B.w,U/D
Z
@�t

h
Fcjk � ��kUj �Fdjk

i
wnk d� ,

D

Z
@��

h
Fcjk � ��kUj �Fdjk

i
wnkJ� d�� ,

(24)

where J� is the Jacobian of the transformation between a surface element in � t and �� . The DGCL
is satisfied if the averaged normal vector is used, that is,

BGCL.w,U/D
Z
@�t

h
Fcjk � ��kUj �Fdjk

i
w Nnk d� ,

Nnk D
1

J ��
�k ,

�k D
1

�t

Z tnC1

tn
nkJ� dt .

(25)

Regarding the evaluation of the integral for computing �k , the considerations are very similar
to those given in Section 2.2. The components of nkJ� are also polynomials of degree nd � 1 in
time. For instance in 3D, if x1, x2, and x3 are the nodes at the vertices of a triangle element (ordered
counterclockwise when viewed from the exterior of the fluid) on the surface � t , then

nJ� D
.x2 � x1/� .x3 � x1/

2j�� j
, (26)

where x denotes the vector cross product and j�� j is the area of the triangle in the reference coor-
dinates. As the coordinates of the nodes are linear in time and j�� j is constant, the components of
nkJ� are quadratic polynomials.

Then, the considerations about the number of points for the Gauss–Lobatto integration are the
same as discussed before, that is, two integration points are enough to compute the integral in
Equation (25) and three are needed in 3D.

2.4. Application to the backward differentiation formula

The BDF is another popular method for the integration of the system of ordinary differential
equations [15, 16, 25]. By applying to Equation (12) gives

1

�t

�
3
ı
2H

nC1 � 2HnC1
ı
2H

n�1
	
D F.w,U nC1/. (27)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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AN FEM SATISFYING THE DGCL BASED ON AVERAGED JACOBIANS 7

To apply the AJF, the right-hand side of Equation (27) must be rewritten as an integral over time.
For this, note that for any differentiable function X.t/, we have

3=2X
nC1 � 2XnC1=2X

n�1 D3=2.X
nC1 �Xn/�1=2.X

n �Xn�1/,

D3=2

Z tnC1

tn

PXdt �1=2

Z tn

tn�1

PXdt .
(28)

If this relation is applied with the semidiscrete Equations (12) with X D H and PX D �F , then
the following relation is obtained

3=2H
nC1 � 2HnC1=2H

n�1 D�3=2

Z tnC1

tn
F.w,U t

0

/ dt 0C1=2

Z tn

tn�1
F.w,U t

0

/ dt 0. (29)

The BDF integration method is obtained if the right-hand side in Equation (29) is replaced by the
value of the integrand at tnC1. The proposed method to satisfy the DGCL is to assume that the state
in Equation (29) remains constant (U.t/ D U nC1) but the geometric quantities ��

k
and w,k do not;

therefore, these quantities must be averaged over time and some additional terms must be computed
so that

3=2H
nC1 � 2HnC1=2H

n�1 D��tF BDF.w,U nC1/, (30)

where

F BDF.w,U nC1/D ABDF.w,U nC1/CBBDF.w,U nC1/C S.w,U nC1/,

ABDF.w,U nC1/D�
Z
�nC1


�
Fcjk �Fdjk

�nC1
gnC1
k
�U nC1j rnC1

�
d�,

BBDF.w,U nC1/D
Z
@�t

h�
Fcjk �Fdjk

�
ˇnC1
k
�U nC1j snC1

i
w d� ,

(31)

and gk , r , ˇk , and s are time-averaged geometric quantities given by

gnC1
k
D

1

J nC1

�
3=2Q

nC1=2
lk

�1=2Q
n�1=2
lk

� @w
@�l

,

rnC1 D
1

J nC1

�
3=2Q

nC1=2
lk

�
�nC1=2
k

�1=2Q
n�1=2
lk

�
�n�1=2
k

� @w
@�l

,

ˇnC1
k
D

1

J nC1�

�
3=2�

nC1=2
k

�1=2�
n�1=2
k

�
,

snC1 D
1

J nC1�

�
3=2�

nC1=2
k

�
�nC1=2
k

�1=2�
n�1=2
k

�
�n�1=2
k

�
,

�
nC1=2
k

D
1

�t

Z tnC1

tn
nkJ� dt ,

(32)

and ��nC
1=2

k
is the (constant) velocity in the time step Œtn, tnC1	. Regarding the computation of the

averaged Jacobians QnC1=2
lk

and �nC1=2
k

, the rules are the same as before (Equations (20) and (25))
because their entries are polynomials of degree nd � 1 within the time interval.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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8 M. A. STORTI, L. GARELLI AND R. R. PAZ

3. NUMERICAL TESTS

In this section, a set of numerical tests are performed to validate the AJF proposed in Section 2.

3.1. Discrete geometric conservation law validation for 2D scalar diffusion problem with internal
node movement

For the sake of clarity, let us consider the scalar diffusion version of Equation (1).

@u

@t
�
�uD 0 for x 2�t, t 2 .0, T	

uD u0 for x 2�0, tD 0

uD uD for x 2 @�t, t 2 Œ0, T	

(33)

where 
 is the constant diffusivity and � is the Laplacian operator.
To carry out the DGCL compliance test, problem (33) is solved on a unit square domain with


D 0.01 so that

ut � 0.01�uD 0 for x 2�t, t 2 .0, T	,

u0 D 1 for x 2�0, tD 0,

uD 1 for x 2 � t, t 2 Œ0, T	,

(34)

being the mesh deformed according to the following rule

�1.� , t /D x D � C 0.125 sin.� t/ sin.2� �/.

�2.�, t /D y D �C 0.125 sin.� t/ sin.2� �/.
(35)

As was mentioned in Section 2.1, a discrete formulation is said to satisfy the DGCL condition if
it solves exactly a constant state regime, that is, not depending on space or time for a general mesh
movement x.�, t /.

Figure 1 shows the reference domain and the deformed mesh for t D 0.5 Œs	 where the maximumF1
deformation occurs.

The problem is solved using piecewise linear triangles for the spatial discretization, a piecewise
linear interpolation of the mesh movement, and for the time integration the backward Euler (BE,
� D 1), Crank–Nicolson (CN, � D 0.5), and Galerkin (GA, � D 2=3) schemes are considered
with �t D{0.15, 0.1, 0.05, 0.025}. Figure 2 reports the error jjuh � ujjL2.�t / for three periods ofF2
oscillation, using the time integration methods and time steps mentioned previously. The error must
be null to machine precision over time for a DGCL compliant scheme.

A numerical error is introduced when using the backward Euler or Garlerkin scheme because of a
lack in DGCL compliance for 2D problems. In Figure 3, the solution for times t D ¹0.1, 2.4, 5.4º Œs	F3

Figure 1. Reference and deformed mesh.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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Figure 2. jjuh � ujjL2.�t/ for Garlerkin (GA) and backward Euler (BE) schemes compared with
Crank–Nicolson (CN).
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Figure 3. Solution for the backward Euler (BE), Galerkin (GA), and Crank–Nicolson (CN) schemes.

is shown for the three different integration schemes. The error related to the constant solution is
located in the zones of the domain where the element deformation is higher, as in the center and the
corners.

Now, if the AJF is used, all these three time integration schemes are DGCL compliant, so the
error remains null to machine precision (Figure 4). F4

3.2. Discrete geometric conservation law validation for 2D scalar diffusion problem with a
periodic expansion and contraction of the domain

In this test case, problem (33) is solved in a unit square domain with 
D 0.1 so that

ut � 0.1�uD 0 for x 2�t, t 2 .0, T	,

u0 D 1 for x 2�0, tD 0,

uD 1 for x 2 @�t, t 2 Œ0, T	,

(36)

being the domain deformed according to the following rule

�.�, t /D .2� cos.20�t//�. (37)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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Figure 4. Errors using the averaged Jacobian formulation (AJF) and no averaged Jacobian formulation for
�t D 0.1 [s].

This deformation rule represents a periodic expansion and contraction of the domain as it is shown
in Figure 5 for t D ¹0, 0.03, 0.05º [s].F5

As in the previous case, a numerical error is introduced when using the backward Euler or
Garlerkin scheme because of a lack in DGCL compliance for 2D problems; but when the AJF is
used, all the time integration schemes are DGCL compliant.

In Figure 6, the error jjuh � ujjL2.�t / in the solution is reported for four periods of oscillation.F6

3.3. Discrete geometric conservation law validation for 3D scalar diffusion problem with a
periodic expansion and contraction of the domain

In this section, the AJF is validated for 3D problems. The initial test is the extension to 3D of prob-
lem (36) and the mesh moving rule (37). It is solved using piecewise linear tetrahedral for the spatial
discretization, a piecewise linear interpolation of the mesh movement, and for the time integration,
the backward Euler (� D 1), Crank–Nicolson (� D 0.5), and Garlerkin (� D 2=3) schemes.

Figure 7 shows the deformed domain for t D ¹0, 0.03, 0.05º [s], and Figure 8 reports the errorF7 F8
jjuh � ujjL2.�t / for four periods of oscillation. When the AJF is used, the error remains null to
machine precision because the scheme is DGCL compliant.

Figure 5. Deformed domain.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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Figure 6. jjuh � ujjL2.�t/ for backward Euler (BE), Galerkin (GA), and Crank–Nicolson (CN) schemes
for �t D 0.005 [s].

Figure 7. Deformed domain.

3.4. Discrete geometric conservation law validation for 3D scalar diffusion problem with internal
node movement

This test is the extension to 3D of problem (34) and the deformation rule (35). It is solved using
piecewise linear tetrahedral for the spatial discretization, a piecewise linear interpolation of the mesh
movement, and for the time integration, the backward Euler (� D 1), Crank–Nicolson (� D 0.5),
and Garlerkin (� D 2=3) schemes.

Figure 9 shows the deformed mesh for t D ¹0, 0.5, 1.5º [s], and Figure 10 reports the error F9 F10
jjuh � ujjL2.�t /.

A numerical error is introduced when using any of the �-family scheme in 3D problems because
of a lack in GCL compliance. In Figure 11, the solution for times t D ¹0.1, 2.4, 5.4º [s] is shown F11
for the backward Euler scheme. The error with respect to the constant solution are localized in the

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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Figure 8. Errors for averaged Jacobian formulation (AJF) and no averaged Jacobian formulation for
�t D 0.005 [s].

Figure 9. Deformed mesh.

zones of the domain where the element deformation is higher, as in the center. But when the AJF is
used, the error remains null to machine precision because the scheme is DGCL compliant.

3.5. Moving an internal cylinder

This example consists of an external cylinder of radiusR2, which contains an internal smaller cylin-
der of radius R1 and performs an harmonic motion of amplitude d0 with an angular frequency !,
that is, the instantaneous displacement of the center of the internal cylinder d is

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld
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Figure 10. jjuh � ujjL2.�t/ for backward Euler (BE), Galerkin (GA), and Crank–Nicolson (CN) schemes
for �t D 0.005 [s].
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Figure 11. Solution for the backward Euler scheme.

d.t/D d0 sin.!t/ (38)

In this example, an orthogonal mapping can be found between the reference domain where the two
cylinders are concentric and the general case where they are eccentric (cf. Appendix A). So, instead
of using a mesh movement strategy for distorting the mesh, the instantaneous mesh is obtained by
applying the said transformation to the position of the nodes of a mesh in the reference domain.

In this test, the parameters used were R2 D 2, R1 D 1, ! D 1.047, and d0 D 0.7 and the
maximum velocity of the inner cylinder is vmax D 0.733. The domain was discretized with 10
elements in the radial direction and 96 elements in the perimeter using linear triangular elements

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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14 M. A. STORTI, L. GARELLI AND R. R. PAZ

(Figure 12). The dimensionless equations of a viscous compressible flow were solved in the inte-F12
rior of the domain using the backward Euler time integration scheme, varying the Courant number
between 2 and 0.025. The fluid properties used in the simulation are, �ref D 1, pref D 1,  D 1.4,
and � D 0.001. At the boundary of the inner cylinder is imposed the velocities that result from the
imposed movement, and at the boundary of outer cylinder is imposed a no-slip condition.

To analyze the numerical error introduced because of a lack in DGGL compliance, the density on
a fixed spatial point with coordinates xD .1.8, 0.2/ was plotted in Figures 13–15 for four periods ofF13–F15
oscillation.

As the time step is reduced, the differences between the solutions obtained with the AJF and
without decreases, as was stated in the previous examples. In the results corresponding to Co=2, the

Figure 12. Initial mesh and maximum displacement mesh.

C
ol

or
O

nl
in

e,
B

&
W

in
Pr

in
t

Figure 13. Density using the averaged Jacobian formulation (AJF) and no averaged Jacobian formulation
for CoD 2.
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Figure 14. Density using the averaged Jacobian formulation (AJF) and no averaged Jacobian formulation
for CoD 1.
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Figure 15. Density using the averaged Jacobian formulation (AJF) and no averaged Jacobian formulation
for CoD 0.25.

difference between both solutions are significative, whereas in the results corresponding to Co=0.25
are negligible.

In Figure 16, the pressure distribution in the domain for different positions of the inner cylinder F16
is shown. The domain was discretized with 35 elements in the radial direction and 342 elements in
the perimeter using triangular elements. The pressure increase in the compressed region induces a
fluid motion towards the opposite side as shown by the velocity vectors of the figure.

4. CONCLUSIONS

The proposed methodology guarantees compliance with the DGCL criterion in the context of the
ALE solutions of general advective–diffusive systems using classical temporal integration schemes
and simplicial finite elements in 2D and 3D. Detailed expressions for the computation of the aver-
aged Jacobians and its application to the � family and the three-point BDF schemes were given.
Also, to validate the AJF, a set of typical numerical tests for linear scalar advective–diffusive and
Euler models were performed.

Unlike to previous work, this new methodology is not based on proposing a new temporal integra-
tion scheme and computing a set of unknown numerical coefficients to achieve compliancy with the
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(a) (b)

(c) (d)

Figure 16. Pressure at different positions of the inner cylinder. Q1
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16 M. A. STORTI, L. GARELLI AND R. R. PAZ

DGCL but rather by averaging some geometrical quantities. These averages are computed exactly
using the Gauss–Lobatto numerical quadrature. The averaging process of the Jacobian must be intro-
duced in the volume terms as well as in the boundary terms. The added cost is negligible and only
involves a few changes at the elemental routine level.

APPENDIX A. ORTHOGONAL MAPPING

The transformation between the current domain and the reference domain can be described as the
composition of two conformal mappings (´ ! w ! v) and a third orthogonal (but nonconfor-
mal) mapping (v ! u). Here u, v, w, and ´ are complex variables. The ´-plane (Figure A.1(a))
is the physical plane with the current position (eccentric) of the inner cylinder. The region in the
´-plane is

�´.t/D ¹´ 2C=j´j<R2 and j´� d.t/j>R1º (A.1)

(a) -plane (b) -plane
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The key transformation is the inversion

´D
1

wC dw
C ´0 (A.2)

which transforms the circular annulus

�w D ¹w 2C = Rw2 6 jwj6Rw1º (A.3)

in the w-plane onto�´. As it is an inversion transformation, it maps lines and circles onto lines and
circles. The real parameters of the transformation Rw1,Rw2, dw , ´0 are unknown, but they can be
easily found by adjusting the points A, B , C , and D so that the radiuses in the ´-plane are R1 and
R2, as required. The coordinates of these points in the w-plane are

wA DRw2,

wB D�Rw2,

wC DRw1,

wD D�Rw1.

(A.4)

and then, using transformation (A.2), their ´-coordinates are

´A D
1

dw CRw2
C ´0,

´B D
1

dw �Rw2
C ´0,

´C D
1

dw CRw1
C ´0,

´D D
1

dw �Rw1
C ´0.

(A.5)

Then, we arrive to the following equations

´A � ´B D 2R2,

´C � ´D D 2R1,

´c1 � ´c2 D
´C C ´D

2
�
´AC ´B

2
D d .

(A.6)

The last equation comes from the requirement that the center ´c1 of the internal cylinder must be
shifted a distance d from the center ´c2 of the external cylinder. Replacing with the expressions for
the ´-coordinates given in Equation (A.5), we arrive to the equations

1

dw CRw2
�

1

dw �Rw2
D 2R2,

1

dw CRw1
�

1

dw �Rw1
D 2R1,

1

dw CRw2
C

1

dw �Rw2
�

1

dw CRw1
�

1

dw �Rw1
D 2d .

(A.7)

which is a system of three nonlinear equations that can be solved for Rw1, Rw2, and dw in terms of
R1,R2, and d . The system can be solved with the Newton–Raphson method, for instance. Note that
the fourth parameter ´0 does not enter in the equations. Once these three parameters are found, ´0
can be easily found from the requirement that the external cylinder must be centered at Re ¹´º D 0,
that is,

´c2 D
´AC ´B

2
C ´0 D 0, (A.8)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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18 M. A. STORTI, L. GARELLI AND R. R. PAZ

from where

´0 D�
´AC ´B

2
. (A.9)

Once the ´ � w transformation is known, the other two are easily found. Note that, because of
the inversion, the internal radius in the �w domain is mapped onto the external radius in the �´
domain, and vice versa. Then, a second inversion is performed

w D
1

v
, (A.10)

and the resulting �v domain is a circular annulus

�v D
®
v 2C2 = Rv1 6 jvj6Rv2

¯¯
. (A.11)

with Rv1 D 1=Rw1 and Rv2 D 1=Rw2. Finally, the transformation u � v is orthogonal (but
nonconformal) that maps linearly the radius so as to map the �v domain onto the reference domain

�u D�´.d D 0/D
®
u 2C2 = R1 6 juj6R2

¯¯
. (A.12)

The transformation is better described in terms of polar coordinates v D jvjei�v , u D jujei�u as
follows

�v D �u,

jvj DRv1C
juj �R1

R2 �R1
.Rv2 �Rv1/.

(A.13)

Computationally, the process is as follows. At a certain time t , the nodes’ position must be deter-
mined; first, the parameters of the transformation are determined from Equation (A.6). Then, given
the coordinates of the node in the reference domain u, the successive transformations (A.13), (A.10),
and (A.2) are applied, and the coordinates of the node in the actual position of the mesh ´ are
obtained.

ACKNOWLEDGEMENTS

This work has received financial support from the Consejo Nacional de Investigaciones Científicas y Téc-
nicas (CONICET, Argentina, grant PIP 5271/05), the Universidad Nacional del Litoral (UNL, Argentina,
grant CAI+D 2009 65/334), and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT,
Argentina, grants PICT 01141/2007, PICT 2008-0270 ‘Jóvenes Investigadores’, PICT 1506/2006). Exten-
sive use of freely distributed software such as GNU/Linux OS, MPICH, PETSc, Metis, Octave, ParaView,
and many others is carried out in this work.

REFERENCES

1. Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stabilized space-time
fluid-structure interaction technique. International Journal for Numerical Methods in Fluids 2008; 57(7):601–609.

2. Lefrancois E, Dhatt G, Vandromme D. Fluid–structure interaction with application to rocket engines. International
Journal for Numerical Methods in Fluids 1999; 30:865–895.

3. Storti MA, Nigro N, Paz RR, Dalcín DL. Strong coupling strategy for fluid structure interaction problem in supersonic
regime via fixed point iteration. Journal of Sound and Vibration 2009; 30:859–877.

4. Garelli L, Paz RR, Storti MA. Fluid–structure interaction study of the start-up of a rocket engine nozzle. Computers
& Fluids 2010; 39(7):1208–1218.

5. Noh WF. A time-dependent, two space dimensional, coupled Eulerian–Lagrangian code. Methods in Computational
Physics 1964; 3:117–179.

6. Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian–Eulerian computing method for all flow speeds. Journal
of Computational Physics 1974; 14(3):227–253.

7. Donea J. Arbitrary Lagrangian-Eulerian finite elements method. In Computational Methods for Transient Analysis,
Belytschko T, Hughes TJR (eds): North-Holland, Amsterdam, 1983; 473–516.

8. Donea J, Huerta A. Finite Element Methods for Flow Problems. John Wiley and Sons, 2003Q3 .

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld

Luciano
Note
Donea, J. and Huerta, A., Finite Element Methods for Flow Problems, 2003, John Wiley & Sons, Chichester (UK).



UN
CO

RR
EC

TE
D 

PR
O

O
F

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

AN FEM SATISFYING THE DGCL BASED ON AVERAGED JACOBIANS 19

9. Hughes TJR, Liu WK, Zimmermann TK. Lagrangian–Eulerian finite elements formulations for incompressible
viscous flows. US-Japan Interdisciplinary Finite Element Analysis 1978.

10. Trepanier JY, Reggio M, Zhang H, Camarero R. A finite-volume method for the Euler equations on arbitrary
Lagrangian–Eulerian grids. Computers & fluids 1991; 20(4):399–40.

11. Zienkiewics O, Morgan K. Finite Element and Approximation. John Wiley & Sons, 1983.
12. Thomas PD, Lombard CK. Geometric conservation law and its applications to flow computations on moving grids.

AIAA 1979; 17:1030–1037.
13. Étienne S, Garon A, Pelletier D. Perspective on the geometric conservation law and finite element methods for ALE

simulations of incompressible flow. Journal of Computational Physics 2009; 228(7):2313–2333.
14. Guillard H, Farhat C. On the significance of the geometric conservation law for flow computations on moving meshes.

Computer Methods in Applied Mechanics and Engineering 2000; 190:1467–1482.
15. Boffi D, Gastaldi L. Stability and geometric conservation laws for ALE formulations. Computer Methods in Applied

Mechanics and Engineering 2004; 193:4717–4739.
16. Formaggia L, Nobile F. Stability analysis of second-order time accurate schemes for ALE–FEM. Computer Methods

in Applied Mechanics and Engineering 2004; 193(39–41):4097–4116.
17. Geuzaine P, Grandmont C, Farhat C. Design and analysis of ALE schemes with provable second-order time-accuracy

for inviscid and viscous flow simulations. Journal of Computational Physics 2003; 191(1):206–227.
18. Farhat C, Geuzaine P, Grandmont C. The discrete geometric conservation law and the nonlinear stability of ALE

schemes for the solution of flow problems on moving grids. Journal of Computational Physics 2001; 1974:669–694.
19. Ahn HT, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme

on general hybrid meshestitle. Journal of Computational Physics 2006; 219:671–693.
20. Lesoinne M, Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable

meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering
1996; 134:71–90.

21. Mavriplis DJ, Yang Z. Achieving higher-order time accuracy for dynamic unstructured mesh fluid flow simulations:
role of the GCL. 17th AIAA Computational Flow Dynamics Conference, 2005.

22. Farhat C, Geuzaine P. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems
on moving grids. Computer Methods in Applied Mechanics and Engineering 2004; 193:4073–4095.

23. Nobile F. Numerical approximation of fluid-structure interaction problems with application to haemodynamics. PhD
Thesis, École Polytechnique Fédérale de Lausanne, 2001.

24. Franca LP, Frey SL, Hughes TJR. Stabilized finite element methods: I. Application to the advective-diffusive.
Computer Methods in Applied Mechanics and Engineering 1992; 95:253–276.

25. Ascher U, M. Numerical Methods for Evolutionary Differential Equations. SIAM, 2008 Q4.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
DOI: 10.1002/fld

Luciano
Note
Ascher U, M. Numerical Methods for Evolutionary Differential Equations. Philadelphia: SIAM; 2008.



Author Query Form

Journal: International Journal for Numerical Methods in Fluids

Article: fld_2669

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating
your proofs with the necessary changes/additions.
� If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
� If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-

up symbols guidelines. If manually writing corrections on your proof and returning it by fax, do
not write too close to the edge of the paper. Please remember that illegible mark-ups may delay
publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide
additional clarification of answers to queries by entering your answers on the query sheet, in addition
to the text mark-up.

Query No. Query Remark

Q1 AUTHOR: Figure 16 contains very small texts which
are unreadable. Please resupply at 600/300 dpi. Check
required artwork specifications at http://www.
blackwellpublishing.com/authors/digill.asp

Q2 AUTHOR: Please provide a suitable legend for Figure A.1.

Q3 AUTHOR: Please provide publisher location for Reference
8.

Q4 AUTHOR: Please provide publisher location for Reference
25.

Luciano
Note
Figures are attached

Luciano
Note
See note at Q2

Luciano
Note
See note at Q3

Luciano
Note
See note at Q4



                                                                                                              
 

Page 1 of 3 

 

USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION 
Required Software 
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. 
Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html 
Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it 
does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar 
looks like this: 

 
If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a 
preference setting in order to edit. 
In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and 
change the setting “PDF/A mode:” to “Never”.  

 

Note Tool — For making notes at specific points in the text  
Marks a point on the paper where a note or question needs to be addressed. 

 

Replacement text tool — For deleting one word/section of text and replacing it  
Strikes red line through text and opens up a replacement text box.   

 

Cross out text tool — For deleting text when there is nothing to replace selection  
Strikes through text in a red line. 

 
 

How to use it: 
1. Right click into area of either inserted 

text or relevance to note 
2. Select Add Note and a yellow speech 

bubble symbol and text box will appear 
3. Type comment into the text box 
4. Click the X in the top right hand corner  

of the note box to close. 
 

How to use it: 
1. Select cursor from toolbar 
2. Highlight word or sentence 
3. Right click 
4. Select Replace Text (Comment) option 
5. Type replacement text in blue box 
6. Click outside of the blue box to close 

 

How to use it: 
1. Select cursor from toolbar 
2. Highlight word or sentence 
3. Right click 
4. Select Cross Out Text  

 

http://www.adobe.com/products/acrobat/readstep2.html�
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Approved tool — For approving a proof and that no corrections at all are required. 

 

 
Highlight tool — For highlighting selection that should be changed to bold or italic. 
Highlights text in yellow and opens up a text box. 

 

Attach File Tool — For inserting large amounts of text or replacement figures as a files.  
Inserts symbol and speech bubble where a file has been inserted. 
 

 
Pencil tool — For circling parts of figures or making freeform marks 
Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use 
the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.     

 

 
 
 
 
 
 
 
 
 

How to use it: 
1. Click on the Stamp Tool in the toolbar 
2. Select the Approved rubber stamp from 

the ‘standard business’ selection 
3. Click on the text where you want to rubber 

stamp to appear (usually first page) 
 

How to use it: 
1. Select Highlighter Tool from the 

commenting toolbar 
2. Highlight the desired text 
3. Add a note detailing the required change 
 

How to use it: 
1. Select Tools > Drawing Markups > Pencil Tool 
2. Draw with the cursor 
3. Multiple pieces of pencil annotation can be grouped together 
4. Once finished, move the cursor over the shape until an arrowhead appears 

and right click 
5. Select Open Pop-Up Note and type in a details of required change 
6. Click the X in the top right hand corner of the note box to close. 

How to use it: 
1. Click on paperclip icon in the commenting toolbar 
2. Click where you want to insert the attachment 
3. Select the saved file from your PC/network 
4. Select appearance of icon (paperclip, graph, attachment or 

tag) and close 
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Help 
For further information on how to annotate proofs click on the Help button to activate a list of instructions:  
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