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A general expression is derived for estimating the sensitivity of second-order bilinear calibration

models, particularly parallel factor analysis (PARAFAC) and bilinear least-squares (BLLS), whether

the second-order advantage is required or not. In the latter case, the sensitivity is correctly estimated

either if the advantage is achieved by processing the unknown sample together with the calibration

set (PARAFAC), or by post-calibration residual bilinearization (BLLS). The expression includes, as

special cases, the sensitivity expressions already discussed byMessick, Kalivas and Lang (MKL) and

by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a

given calibration situation, where all components are present in the calibration set of samples. The

latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of

interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In

intermediate situations, that is more than one calibrated analyte and presence of unexpected

components in the unknown sample, only the present approach is able to provide a satisfactory

sensitivity parameter, in close agreement with previously described Monte Carlo numerical

simulations. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Figures of merit such as the sensitivity are important in

developing, comparing and assessing the reliability of

analytical methodologies. Relevant references dealing with

figures of merit in first- and higher-order multivariate

calibration can be found in the specific literature [1–22].

The estimation of sensitivity and other figures of merit for

second-order multivariate calibration models has become an

active area of chemometric research. Within these models,

the so-called bilinear calibration models are of great interest,

because there are special relationships among the data that

lead to the second-order advantage [23]. The latter property

permits the determination of a calibrated component in the

presence of unexpected sample components, and is of
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paramount importance in the field of complex sample

analysis. Relevant second-order methodologies are based on:

(1) the use of latent variables, such as unfolded partial least-

squares (PLS) [24], where ‘unfolded’ refers to working with

previously vectorized data matrices [25], multi-way PLS

(nPLS) [26] and PLS combined with residual bilinearization

(RBL) [27,28], (2) alternating least-squares (ALS), such as

parallel factor analysis (PARAFAC) [29], self-weighted

alternating trilinear decomposition (SWATLD) [30], and

multivariate curve resolution (MCR-ALS) [31], (3) direct

least-squares, such as bilinear least-squares (BLLS) [32–34] in

its several variants and (4) eigenvector-eigenvalue tech-

niques, such as the generalized rank annihilation method

(GRAM) [35]. Among the above cited methods, those which

exploit the second-order advantage are PARAFAC,

SWATLD, GRAM, MCR-ALS and the combinations BLLS/

RBL and PLS/RBL. It is important to note that the RBL

procedure only works when data for the unexpected

components are bilinear, because a relevant step in the

former technique involves the modelling of their signals by

singular value decomposition [27]. On a different note, all of

the above mentioned methods are able to handle multiple

calibration samples, except GRAM, which works with a
Copyright # 2006 John Wiley & Sons, Ltd.
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single calibration sample (TLD is a generalization of GRAM

which can handle multiple samples [36,37]). In any case,

PARAFAC and BLLS seem to be the most statistically

efficient methodologies [38,39], and hence they are the main

focus of the present work.

Each of the above mentioned methodologies achieves the

second-order advantage by employing different strategies;

hence, it may seem natural to expect different precision

properties and sensitivities. There are basically two ways in

which the second-order advantage can be obtained, sche-

matically shown in Figure 1: either data for the unknown

sample determine (together with calibration data) the

regression coefficients leading to prediction (Figure 1(A)),

or calibration is first performed using only calibration data,

with the unknown sample aiding in the obtainment of

unknown sample-specific regression coefficients in a sub-

sequent step (Figure 1(B)). PARAFAC, SWATLD, GRAM

and MCR-ALS operate according to Figure 1(A), whereas

BLLS/RBL and PLS/RBL employ the scheme of Figure 1(B).

In any case, the underlying philosophy implies that the

unknown sample becomes part of the whole calibration

process, an entirely new concept in analytical chemistry.

The existing closed-form expressions for estimating the

sensitivity are based on Lorber’s concept of net analyte signal

[40], such as those developed by Messick, Kalivas and Lang

(MKL) [1] and by Ho, Christian and Davidson (HCD) [2].

They seem to fit well to most second-order methodologies,
Figure 1. Two basic modes of obtaining the second-order

advantage from higher-order data. A: Combining data from

calibration and unknown samples before computing the

regression coefficients. B: Calculating loadings from cali-

bration data only, and then estimating regression coefficients

after the unknown sample enters the scene. The information

entered at each stage is noted: Xcal represents the calibration

second-order signals,Xu the unknown sample signals and ycal
the analyte calibration concentrations.

Copyright # 2006 John Wiley & Sons, Ltd.
although some conflicting aspects remain unclear, especially

in what concerns the calibration of multiple analytes, and in

the presence of unexpected unknown sample components

[41]. A reliable estimate of sensitivity can be obtained by

numerical Monte Carlo simulations, as has been abundantly

described in the literature [10–12,14,17–19,41]. They are also

helpful in related calibration fields such as computing

leverages [42] and degrees of freedom when the model

results from an extensive selection process [43].

A closed-form expression is desirable for estimating

parameters such as the sensitivity, because, unlike Monte

Carlo simulations, it provides insight into the variables

affecting the parameter under investigation. In the present

report, a general sensitivity expression is developed and

shown to be applicable to cases not covered by either the

MKL or the HCD approach. The general scheme contains,

however, MKL and HCD values as special cases.
2. THEORY

2.1. Terminology
It is important to define, in light of the forthcoming

discussion, several sample component categories, with

particular focus on components generating a signal that

overlaps with the signal of the analyte of interest (or

‘property’ of interest), and can therefore be considered as

potential interferents.

A distinction can be first made between components

present in the calibration set of samples, and those which are

only present in the unknown sample. The former ones can be

called ‘expected’ components, because the analyst should

include in the calibration set all components expected to be

present in unknown samples, in order to have a sufficiently

representative calibration set. However, truly unknown

samplesmay contain additional components: these are called

‘unexpected’ ones. Note that the expected constituents can be

further divided into ‘calibrated’ and ‘uncalibrated’: cali-

brated refers to components for which calibration concen-

trations are available (including, as a specific case, the analyte

of interest), whereas uncalibrated refers to components for

which only a common subspace that contains them is

accessible. In inverse models, for example, not all calibration

concentrations are available.

Additional phenomena producing overlapping signals,

and also potentially interfering, are matrix effects, which

may also belong to the category of expected (and also

uncalibrated, if included into the signals produced by the

calibration set) or unexpected (if only present in the

unknown sample).

Notice that potential interferents will not always produce

an interference, in the sense of generating a systematic error

in the analyte determination [44]. Whether the interference

will be actual or will only remain as potential, depends on the

type of measured instrumental signals and on the employed

calibration methodology. For first-order instrumental data,

unexpected unknown sample components most likely

constitute an interference. This may not be true, however,

in the second-order domain involving the second-order

advantage.
J. Chemometrics 2005; 19: 583–592
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Table I. Classification of sample components, with indications as to their presence in different sample types

Type of sample

Expected components

Unexpected componentsCalibrated analyte of interest Other calibrated components Other uncalibrated components

Calibration Yes Yes Yes No
Validation Possibly Possibly Possibly No
Unknown Possibly Possibly Possibly Possibly
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The terminology describing the different type of samples

should also be mentioned. Samples can be divided in: (1)

calibration or training samples, (2) test or validation samples,

to guide choices during model construction or to monitor the

predictive ability when the model is used for prediction and

(3) unknown or prediction samples. For a test (validation)

sample, the concentration value is available, unlike for a

prediction sample (a ‘true unknown’).

Table I summarizes the nomenclature of the various sample

and constituent types, including comments regarding the

presence of the latter ones in each of the sample categories.

2.2. Net analyte signal
The philosophy behind the derivation of the closed-form

expression discussed in the present paper is related to the

concept of net analyte signal. This concept involves the

decomposition of the total spectrum of a given sample (x) in

two orthogonal parts: a part that can be uniquely assigned to

the analyte of interest (the net analyte signal, designated as x�),

and the remaining part that contains the contribution from

other components, which may be other expected or unex-

pected sample components (collectively included in xother):

x ¼ x� þ xother ¼ yn s�n þ xother (1)

where x�n and s�n are the net analyte signals corresponding to a

given sample and to a sample having the nth analyte at unit

concentration, respectively, and yn is the analyte concen-

tration.

In the case of Equation (1), vector-like net analyte signals

are implied, but the latter can also be matrix signals:

X�
n ¼ yn S�

n (2)

If a particular calibration model can be cast in either

of the forms illustrated by Equations (1) and (2), then

simple expressions for the sensitivity result, since the norm

of the net analyte signal at unit concentration equals the

sensitivity (Sn):

Sn ¼ s�n
�� �� or Sn ¼ S�

n

�� �� (3)

The above considerations will be followed with regard to

the BLLS model, with or without the second-order

advantage. Since Monte Carlo simulations have shown that

PARAFACdisplays a similar precision as compared to BLLS,

it is assumed that the developed expression will be suitable

for both of these models.

2.3. Bilinear data models
We first note that the terminology herein employed is

typically borrowed from analytical chemistry, but owing to
Copyright # 2006 John Wiley & Sons, Ltd.
their roots in linear algebra the concepts are of general

applicability.

Many types of second-order data matrices for a pure

component can be expressed, in the absence of noise, as an

outer product of two vectors, that is X¼ gbcT, where b and c

denote the (normalized) profiles in both data dimensions and

g is a scaling factor. These data have been termed bilinear,

because they are linear in one variable when the other one is

fixed and vice versa. Second-order bilinear calibration

methods are of considerable interest since many instruments

produce data that, ideally, follow the bilinear model. For a

multi-component sample, the total matrix signal can be

written as the sum of the various component contributions,

that is in the form X ¼
PN

n¼1 gnbnc
T
n . The constituent profiles

are usually collected into two matrices: B (size J�N ) and C

(sizeK�N ), which contain the profiles for theN components

present in the system (J and K are the number of channels in

both data dimensions):

B ¼ ½b1 b2j . . .j bN �j (4)

C ¼ ½c1 c2j . . .j cN �j (5)

For reasonswhichwill be clear below, thematricesB andC

will be divided into sub-matrices containing the expected

sample components that are present in the calibration set of

samples (called Bexp and Cexp, respectively), and sub-

matrices with the unexpected component profiles which

are only present in the unknowns (Bunx and Cunx).

Both PARAFAC and BLLS specifically require the data to

be bilinear, unlike PLS. However, if the second-order

advantage is to be achieved by either BLLS or PLS using

the RBL procedure, then the signal from the unexpected

sample components should also have a bilinear structure.

2.4. MKL and HCD sensitivities
Two alternative definitions of sensitivity for second-order

bilinear signals are available, both based on the concept of net

analyte signal. They use the component profiles in both

dimensions of the matrix data, as extracted by the different

chemometric algorithms. The MKL definition for the

sensitivity towards component n is:

Sn;MKL ¼ snf½ðBTBÞ � ðCTCÞ��1g�1=2
nn (6)

where ‘*’ indicates the element-wise Hadamard matrix

product, ‘nn’ implies the (n,n) element of a given matrix and

sn is the integrated total signal for component n at unit

concentration.

When there are no unexpected sample components, the

MKL sensitivity is exhibited by the PARAFAC method, and
J. Chemometrics 2005; 19: 583–592
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also by BLLS when using the so-called ‘least-squares

predictor’ [16,32,41].

By contrast, the HCD sensitivity is defined as:

Sn;HCD ¼ snf½ðBTBÞ�1�nn½ðCTCÞ�1�nng
�1=2 (7)

This sensitivity is lower than the MKL value, and has been

shown to be connected with BLLS using the so-called ‘naı̈ve

predictor’, which is statistically less efficient than the least-

squares predictor [16,32,41]. It is interesting to note that the

naı̈ve predictor stems from an unconstrained least-squares

solution during the BLLS calibration phase, whereas the

least-squares predictor arises from a specifically constrained

solution [16]. This distinction is remindful of psychometrics

works where ‘non-constrained’ and ‘constrained’ models are

fitted [45].

When exploiting the second-order advantage, processing

the data using both PARAFAC (see Reference [18] and [41])

and BLLS/RBL (see Reference [19]) leads to the HCD

sensitivity, at least when a single analyte is calibrated, and

the remaining components are unexpected constituents of

the unknown sample.

2.5. BLLS without second-order advantage
It is useful to consider second-order bilinear instrumental

signals for a three-component mixture, because in certain

situations these multi-component systems show peculiar

characteristics, which make them intractable by either the

MKL or HCD approaches [41]. When all three components in

an unknown sample are calibrated, the matrix signals are

modelled by BLLS as:

Xu ¼ y1S1 þ y2S2 þ y3S3 þ E (8)

where Xu is the data matrix for the unknown sample (size

J�K), Sn is the matrix signal for component n at unit

concentration (n¼ 1, 2, 3), yn is the concentration of

component n in the unknown sample and E is an error

term of suitable size. Details on the implementation of BLLS

can be found in the literature [32,33]. Notice that BLLS

requires that all expected components be calibrated, and

their sensitivities Sn be estimated from a set of calibration

standards as the product of the profiles bn and cn in both

dimensions and a scaling factor gn:

Sn ¼ gnbnc
T
n (9)

When no unexpected components occur in the unknown

sample, the matrices appearing in Equation (8) can all be

vectorized for prediction of the analyte concentration, and

the problem reduces to a classical least-squares (CLS) model

using vectorized matrices:

vecðXuÞ ¼ y1 vecðS1Þ þ y2 vecðS2Þ þ y3 vecðS3Þ þ vecðEÞ

(10)

where vec() indicates the column-wise vectorization

operator. Equation (10) corresponds to the so-called least-

squares predictor for estimating analyte concentrations in an

unknown sample [32].

Notice that Equation (10) gives the total signal for the

unknown sample, which can be easily decomposed into the

contribution from the analyte (the first term on the right-

hand side), and those from the remaining sample com-
Copyright # 2006 John Wiley & Sons, Ltd.
ponents. The signal from a specific analyte can be isolated

from Equation (10) by projection of both sides onto the space

orthogonal to the remaining components. For example, if the

analyte of interest is 1, then the vectorized signals vec(S2) and

vec(S3) can be used to construct an orthogonal projection

matrix P1 of size JK� JK:

P1 ¼ I� ½vecðS2Þ vecðS3Þj �½vecðS2Þ vecðS3Þj �þ (11)

where I is an appropriately dimensioned identity matrix and

‘þ’ indicates the pseudo-inverse. The latter operation will

succeed provided the vec(Sn) vectors are not dependent (or

nearly dependent), that is that the matrix [vec(S2) j vec(S3)] is

full column rank, which is a requirement for calibration with

BLLS.

The result of multiplying Equation (10) by P1 is as follows:

P1 vecðXuÞ ¼ y1P1 vecðS1Þ (12)

since this last operation removes from Equation (10) the

contribution of analytes 2 and 3. Hence, the vectorized net

analyte signal at unit concentration for analyte 1 is equal to

the JK� 1 vector s�n ¼P1 vec(S1), and the sensitivity can be

defined for this particular calibration scenario as:

S1 ¼ s�n
�� �� ¼ P1 vecðS1Þk k (13)

An analogous equation can be found for the remaining two

analytes. It may be noticed that the numerical value provided

by Equation (13) is coincident with the MKL sensitivity,

which has been developed as an extension of Lorber’s

method by working with vectorized matrices.

2.6. BLLS with second-order advantage
obtained using RBL
Two different situations can be envisaged here: (1) a single

analyte is calibrated and the remaining two components are

unexpected constituents of the unknown sample signals, and

(2) two analytes are calibrated, and the third component is a

single unexpected constituent appearing in the unknown

sample.

When a single analyte is calibrated, for example analyte 1,

and components 2 and 3 are also present in the unknown

sample, concentrations are estimated by first resorting to the

RBL procedure, previous to CLS analysis based on Equation

(10), in order to achieve the second-order advantage. In this

case, vectorization cannot be applied to Equation (8), because

the RBL procedure only works in matrix form. Hence, the

removal of the contribution of components 2 and 3 from

Equation (8) should be first done in matrix form, by applying

two different left- and right-orthogonal projections:

P2XuP3 ¼ y1P2S1P3 (14)

where:

P2 ¼ I� ½b2 b3j �½b2 b3j �þ (15)

P3 ¼ I� ½c2 c3j �½c2 c3j �þ (16)

where b2,3 and c2,3 are the corresponding profiles for

components 2 and 3 in both dimensions. The projection

matrices P2 and P3 are of size J� J and K�K, respectively.

Equation (14) means that the net analyte signal of component

1 at unit concentration is in this particular case given by the

J�K matrix S�
n ¼P2S1P3, and thus the sensitivity can be
J. Chemometrics 2005; 19: 583–592
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estimated in this case as follows:

S1 ¼ S�
n

�� �� ¼ P2S1P3k k (17)

This last equation is equivalent to the HCD sensitivity,

developed by extending Lorber’s concept to each of the

second-order dimensions separately.

A most interesting case appears in the event that both

analytes 1 and 2 are calibrated, but component 3 is the

unexpected one. Here, the sensitivity deviates from the

values given by either the MKL or the HCD approach. Since

the contribution of the unexpected component is modelled

by RBL in order to gain the second-order advantage, a

combination of the above operations is required to obtain the

net analyte signal and the sensitivity in this case. In order to

analyze the sensitivity towards analyte 1, component 3 is first

removed in matrix form, because it is the one affected by the

RBL process:

P4XuP5 ¼ y1P4S1P5 þ y2P4S2P5 (18)

where:

P4 ¼ I� b3 b
þ
3 (19)

P5 ¼ I� c3 c
þ
3 (20)

Once component 3 has been removed from the scene,

vectorization of Equation (18) is possible because analytes 1

and 2 are calibrated:

vecðP4XuP5Þ ¼ y1 vecðP4S1P5Þ þ y2 vecðP4S2P5Þ (21)

Now the removal of component 2 can be done by using the

orthogonal projection matrix P6:

P6 vecðP4XuP5Þ ¼ y1P6 vecðP4S1P5Þ (22)

where:

P6 ¼ I� ½vecðP4S2P5Þ�½vecðP4S2P5Þ�þ (23)

The above combination of orthogonal projections makes

the net analyte signal for analyte 1 at unit concentration equal

to the JK� 1 vector s�n ¼P6 vec(P4S1P5). Hence, the sensitivity

is given by:

S1 ¼ s�n
�� �� ¼ P6 vecðP4S1P5Þk k (24)

This last value is intermediate between those provided by

the MKL and HCD definitions, because the result has been

obtained by affecting the signal in part by the ‘separate

dimensions’ approach to net analyte signal, and in part by

the vectorized approach to net analyte signal.

2.7. The net analyte signal plot in different
calibration situations
Since three different sensitivities occur in a three-component

system such as the one discussed above, it follows that three

different net analyte signal plots are possible. It is useful to

consider the net analyte signal in matrix form, because this

gives insight into the spectral regions in the dimensions of

the original instrumental data. For this purpose, the

vectorized net analyte signals can be reshaped into J�K

matrices before plotting, except in the case of Equation (17),

where the net analyte signal is directly given in matrix form.

The corresponding three-dimensional surfaces and contour

plots for these three different calibration situations are
Copyright # 2006 John Wiley & Sons, Ltd.
shown in Figure 2 for a specific example to be discussed

below. Notice the distinct shapes of each of these signals.

The plots shown in Figure 2 have been calculated in the

framework of the BLLS method, which requires that all

expected components be calibrated. Methods such as

PARAFAC and PLS/RBL, on the other hand, permit the

occurrence of uncalibrated components in the calibration set

of samples. Although it is not clear how the above approach

can be applied to PARAFAC, the sensitivity results to be

discussed below suggest a very similar behaviour of these

two methodologies, pointing to similar net analyte signals. It

is also interesting that the calculation of the net analyte signal

has been recently discussed for the combination PLS/RBL

[28]. Although the derivation is different than the one

discussed above, and requires the estimation of calibration

latent variables instead of spectral profiles, the results are

almost identical to those shown in Figure 2.
3. RESULTS AND DISCUSSION

3.1. A general sensitivity expression
A general scheme which would cover all of the three above

discussed cases is required. Recall that for a larger number of

components, more calibration situations are possible, and

correspondingly more sensitivity definitions exist. The

general expression can be found by the following procedure.

First consider the unexpected components, which are found

by RBL, and define two projectionmatrices, orthogonal to the

space spanned by all unexpected components in each mode:

Pb;unx ¼ I� Bunx Bunx
þ (25)

Pc;unx ¼ I� Cunx Cunx
þ (26)

where Bunx and Cunx contain the profiles for the unexpected

components as columns. Notice that the matrices Bunx and

Cunx can be built with columns representing the true spectral

profiles for the unexpected components, or alternatively by

columns representing the space spanned by them, for

example, linear combinations obtained by singular value

decomposition, as in the case of the application of the RBL

procedure.

The orthogonal projection matrices shown in Equations

(25) and (26) are employed to remove the contribution of the

unexpected components from the matrix signal of the

unknown sample:

Xu ¼
XN
n¼1

ynSn (27)

leading to an expression where the contribution from

unexpected constituents has been removed:

Pb;unxXu Pc;unx ¼
XN
n¼1

Pb;unxSnPc;unx (28)

Once this is done, the contribution of expected com-

ponents other than the analyte of interest (No. 1 in this case)

can be removed by vectorization before orthogonal

projection:

Pv vecðPb;unx Xu Pc;unxÞ ¼ y1 Pv vecðPb;unxS1Pc;unxÞ (29)
J. Chemometrics 2005; 19: 583–592
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Figure 2. Three-dimensional surfaces (left) and contour plots (right) of the net analyte

signal for analyte 1 in system 2 (see Table I), as computed for the three different approaches

discussed in the present work (indicated in each plot). Those for the MKL and for the new

approach have been obtained after reshaping into a matrix the vectorized net analyte signal,

computed using Equations (13) and (24), respectively. For the HCD approach it is directly

given as a matrix, cf. Equation (17). In the case of the contour plot obtained for the HCD

approach, the values have been amplified by a factor of 10 to enhance details.

588 A. C. Olivieri and N. M. Faber
In this latter equation, the JK� JK projection matrix Pv is

given by:

Pv ¼ I�VVþ (30)

V ¼ ½vecðPb;unx S2 Pc;unxÞ . . .j jvecðPb;unx SN exp Pc;unxÞ� (31)

where Nexp is the number of expected components. Notice

that V does not contain the analyte of interest.

Vectorization leads to an MKL-type equation, which

involves the Hadamard product of factors of the type
Copyright # 2006 John Wiley & Sons, Ltd.
(ZTZ), where Z is a matrix of profiles. In the general

expression, these relevant factors will have the following

form:

ðZTZÞ ¼ ½ðZT
exp PT

z;unxÞðPz;unx ZexpÞ� ¼ ðZT
exp Pz;unx ZexpÞ (32)

since the orthogonal projection matrices are idempotent and

symmetric. In this latter equation,Zexp indicates thematrix of

profiles for the expected components only, affected by the

corresponding orthogonal projection Pz,unx in the dimension

indicated by the subscript ‘z’.
J. Chemometrics 2005; 19: 583–592
DOI: 10.1002/cem



Table II. Comparison of sensitivities calculated by Equation

(33) with MKL and HCD approaches, and Monte Carlo results

for ternary systemsa

Method

System

1 2 3

Analyte Analyte Analyte

1 2 1 2 1 2

Monte Carlo simulations
PARAFAC 0.04 0.12 0.27 0.20 0.03 0.12
BLLS/RBL 0.04 0.11 0.26 0.19 0.03 0.12
PLS/RBL 0.04 0.11 0.27 0.20 0.03 0.12
GRAM 0.03 0.08 0.06 0.04 0.01 0.03
Closed-form expressions
MKL 0.37 0.26 0.44 0.39 0.20 0.19
HCD 0.03 0.08 0.06 0.04 0.01 0.03
Equation (33) 0.04 0.12 0.27 0.19 0.03 0.12
Equation (35) 0.04 0.12 0.27 0.19 0.03 0.12

a The values reported in this Table have been taken from Reference
[41], except the Monte Carlo values for the PLS/RBL method and
those computed by Equation (35). They correspond to a situation
where two analytes are calibrated, and a single unexpected com-
ponent occurs in the unknown sample. Sensitivities are quoted for
each analyte, in three different systems where the spectral overlap-
ping is different (see Reference [41] for additional details).
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Therefore, a general expression for computing the

sensitivity in any calibration situation using second-order

bilinear signals can be obtained as:

Sn ¼ sn
�
Bexp

TPb;unx Bexp

h �
�
�
Cexp

TPc;unxCexp

�i�1
� ��1=2

nn

(33)

where Bexp and Cexp are the matrices containing the profiles

for all expected components in each dimension, and ‘nn’

implies selecting the (n,n) element corresponding to the nth

analyte of interest. Equation (33) should apply to PARAFAC

and BLLS (in the latter case with the least-squares predictor),

whether or not the second-order advantage is exploited, and

for any specific calibration scenario involving multi-com-

ponent samples. In the event the second-order advantage

does not apply, Pb,unx and Pc,unx are both identity matrices.

3.2. An equivalent sensitivity expression
for PLS/RBL
In Reference [28], the vector of regression coefficients bn

provided by the combined PLS/RBL model has been shown

to be given by the following expression:

bn ¼ ðPc;unx � Pb;unxÞþbn;cal (34)

where bn,cal is the corresponding vector of regression

coefficients which would be computed in the absence of

unexpected components, that is by applying the usual PLS

model using vectorized calibration data. The matrices Pb,unx

and Pc,unx, on the other hand, have the same meaning as

above. It follows from Equation (34) that the net analyte

signal for the full PLS/RBL model, which includes the

second-order advantage, can be estimated as:

s�n ¼ bn= k bn k2 (35)

leading to a sensitivity defined by Equation (3), that is

Sn ¼ bnk k�1. Notice that when unexpected components are

absent, bn¼bn,cal, making Equation (35) analogous to the

definition of net analyte signal in first-order multivariate

calibration models [46,47] However, Equations (34 and 35)

provide the correct picture by modifying the regression

coefficients due to the effect of the unexpected components

found by the RBL procedure.

It is important to note that Equation (35) could also be

applied to PARAFAC and BLLS/RBL, yielding values which

would be identical to those of Equation (33). In this case, the

regression coefficients bn,cal should be estimated by employ-

ing only calibration data. However, in the latter cases

Equation (33) is preferable, because it provides more insight

into the interplay of the relevant analyte profiles contained in

thematricesBexp andCexp, which are extracted by themodels

from the calibration data. Equation (35) is reserved for cases

such as PLS, where the calibration process renders latent

variables with no immediate physical meaning.

3.3. Comparison with Monte Carlo
simulations
In Reference [41], extensive Monte Carlo numerical simu-

lations have been carried out in order to estimate the

sensitivity for particular second-order calibration scenarios.

They were based on repeating the calibration/prediction
Copyright # 2006 John Wiley & Sons, Ltd.
process, introducing randomnoise in the signals correspond-

ing to the unknown sample. The propagation of this noise to

the estimation of regression coefficients and ultimately to the

predicted analyte concentration in the unknown sample has

been specifically investigated. Statistical analysis of the

distribution of predicted concentration values rendered an

estimation of the so-called variance inflation factor for a

particular component (VIFn) which quantifies the inflation of

the instrumental noise when transmitted to a specific

prediction:

varðynÞ ¼ VIFn varðXuÞ (36)

The sensitivity can be gathered from the variance inflation

factor by equating the latter one to the inverse squared

sensitivity, that is: [41]

Sn ¼ ðVIFnÞ�1=2 (37)

When no unexpected components occur, the second-order

advantage is not exploited, and Equation (33) gives values

consistent with theMKL approach, as already established for

PARAFAC and BLLS [17,33]. On the other extreme, when a

single calibrated analyte occurs, and the remaining com-

ponents act as unexpected constituents, Equation (33) gives a

sensitivity which is identical to that provided by the HCD

approach, as has already been shown for both PARAFAC

and BLLS/RBL exploiting the second-order advantage [18].

Intermediate situations, not covered by either the MKL or

HCD approaches, are also appropriately taken into account

by Equation (33). This is best illustrated in Table II, where

cases previously labeled as ‘anomalous’ are collected [41]. In

the simulations leading to the values quoted in Table II, three

components are present in the unknown sample, but only

two of them are calibrated. Analytes 1 and 2 are thus part of
J. Chemometrics 2005; 19: 583–592
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the calibration set of samples, and component 3 acts as an

unexpected constituent. Three different systemswith distinct

overlapping in the component profiles have been analyzed

[41]. In each case, the concentrations of both analytes were

predicted using PARAFAC, BLLS/RBL and GRAM, and

statistically analyzed with Monte Carlo noise addition

numerical simulations. The results, in terms of sensitivity

for each system and analyte, are given in Table II. For

comparison, the Monte Carlo sensitivity calculated for PLS/

RBL has also been included, and seen to be analogous to

those for PARAFAC and BLLS.

Table II shows the sensitivity values computed with the

MKL andHCDapproaches andwith Equation (33). As can be

seen, neither of the previous theoretical approaches are able

to explain the observed Monte Carlo sensitivity, as already

discussed. However, Equation (33) provides values which

are in close agreement to those obtained by Monte Carlo

simulation, and to those obtained by Equation (35) in the case

of the PLS/RBL model.

The progression of sensitivity values in a specific case, for

example, analyte 1 in system 2 (Table II), can be pictorially

appreciated through the plot of the net analyte signal for the

three sensitivity schemes, that is MKL, Equation (24) and

HCD. Figure 2 shows the corresponding three-dimensional

surfaces and contour plots for the net analyte signal in matrix

form, for the three different calibration situations which are

possible in this three-component system. It is apparent that

the sensitivity, given as the norm of the net analyte signal,

decreases from top to bottom in Figure 2, accompanying the

values quoted in Table II. Figures such as this one might also

be helpful in assessing spectral regions within the bi-

dimensional sensor plane where a given analyte is most

responsive. In any case, it is interesting to note that these

responsive spectral regions are not only analyte-specific, but

also calibration-specific, that is they depend on what

components are included in the calibration set of samples

and which ones act as unexpected ones.

3.4. Summary of expressions
Table III shows a summary of the known expressions for

computing the sensitivity in several chemometric method-

ologies applicable to second-order bilinear data, including

the corresponding literature references for both the method

and the sensitivity approach.
Table III. Second-order sensitiv

Method Referencea Second-order ad

Unfold PLS 24 No

nPLS 26 No

GRAM 35 Yes/No
PARAFAC 29 No
PARAFAC 29 Yes
BLLS/naı̈ve predictor 32,33 No
BLLS/LS predictor 32,33 No
BLLS/RBL 32,41 Yes
PLS/RBL 28 Yes

a Reference to method.
b Reference to sensitivity definition.
c Equal to Equation (33) when the analyte of interest is only present in th
d Equal to Equation (33) when no unexpected components occur.

Copyright # 2006 John Wiley & Sons, Ltd.
First notice that several sensitivities are given as the

inverse of the norm of the regression coefficients provided by

themodel. Although this is a general definition, applicable to

all models, it is intended to mean, in the context of Table III,

that no special relationship exists with the approach

discussed in this work, which involves spectral profiles

estimated by the model. The PLS models quoted in Table III,

on the other hand, have a latent variable structure, like

principal component regression (PCR), and more generally,

continuum regression [48] and cyclic subspace regression

[49] which both contain PLS and PCR as special cases.

However, when the spectral identity of the sample

components is known, then the unfolded PLS model shows

the MKL sensitivity, and the PLS/RBL model follows its

specific Equation (35), which gives values consistent with the

presently discussed Equation (33). Finally, nPLS appears to

be unrelated to the MKL approach, although its sensitivity is

known to be larger than the MKL one [14].

It follows that the MKL sensitivity is shown by most

methods when all sample components are present in the

calibration set of samples, that is they belong to the class of

expected components. It is in the presence of unexpected

components, which require the second-order advantage,

when differences appear among the various models.

Whereas GRAM always assumes the lowest possible

(HCD) sensitivity, methodologies, such as PARAFAC,

BLLS/RBL and PLS/RBL are able to gain a higher sensitivity.

This is an important outcome from the presently discussed

results. Another important conclusion is that the sensitivities

for PARAFAC and the pair BLLS-PLS/RBL appear to be

equal, even when they exploit the second-order advantage

using the seemingly different strategies outlined in Figures

1(A), (B), respectively.

Finally, note thatMCR-ALS has not been included in Table

III. Previous studies have employed an analogy with

univariate calibration for estimating figures of merit [20].

This ignores the effect of the unknown sample on the

regression parameters, and hence may be overoptimistic.

Preliminary results obtained by applying Monte Carlo

methods to MCR-ALS indicate similar precision properties

as compared with PARAFAC of BLLS when the second-

order advantage is not exploited, that is a sensitivity

compatible with the MKL approach. However, the results

when achieving the second-order advantage do not seem to
ity for different algorithms

vantage Sensitivity definition Referenceb

bnk k�1 16

bnk k�1 16

HCDc 6
MKLd 17

Equation (33) This work,18
HCDc 33
MKLd 33

Equation (33) This work,19

bnk k�1 28

e calibration set.
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have a definite relationship with the above approaches. This

would certainly require additional research.
4. CONCLUDING REMARKS

An important conclusion to be gathered from the present

study is that second-order methods, such as PARAFAC,

BLLS/RBL and PLS/RBL make a clear distinction between:

(1) the calibrated analyte of interest, (2) other components

present in the calibration set of samples and (3) unexpected

components, only present in unknown samples. In this way,

they exhibit a sensitivity parameter which is dependent on

the composition of the calibration set, and are able to achieve

the maximum possible sensitivity for each particular

calibration situation. In contrast, methods such as GRAM

only achieve extreme sensitivity values: a maximum value

when all components are present in the calibration set, and

the lowest possible value when unexpected sample com-

ponents occur.

Since the sensitivity is usually ascribed to the instrument

delivering the data, it may come as a surprise that the same

second-order data set, after being processed by different

chemometric methods, shows significantly distinct sensi-

tivities towards the target analyte. This result can be viewed

from Valcárcel’s perspective: [50] ‘The best selectivity (and

sensitivity) levels can be obtained by applying chemometrics

in the various physico-chemical methods for discrimination

of analytes’. In the second-order domain, it follows that each

chemometric methodology makes a specific contribution to

the sensitivity of the complete analytical protocol, calling for

a more integrated vision of data processing techniques and

instrumental data. Other interesting surprises may await

chemometricians in the higher-order multivariate world.
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