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Abstract: The overall effectiveness factor for slab geome-
try applicable to uniform washcoats on a monolith sur-
face for three-phase reaction systems was studied in the
present work. Analytical solutions for zero-order reac-
tions and Langmuir–Hinshelwood and power law
kinetics were reported. The analysis of the theoretical
results showed that not considering the geometry of the
monolithic system in a proper way lead to 14% errors in
reactions parameters when operating under mixed con-
trol (kinetic-internal diffusion) and negligible external
mass-transfer resistances.
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1 Introduction

Monolithic catalysts have received much interest recently
due to their performance in multi-phase catalytic appli-
cations [1–3]. Hydrogenation reactions have received spe-
cial attention given that monoliths have excellent
characteristics associated with mass transport, and
many of those reactions are hindered by this phenom-
enon. For many hydrogenation reactions, currently used
conventional reactors are based on slurry systems oper-
ated in batch or semi-batch mode. Even though this
technology has been used for decades by the industry,
it has several disadvantages [3], the most important of
which is the difficulty to separate the suspended powder
catalyst from the reactant mixture after the reaction. In

the particular case of the hydrogenation of vegetable oils,
the contribution of the filtering and purification stages to
the overall costs of the process is usually significant,
representing about 20% of the total operating costs, and
as much as 50% if the consumption of hydrogen and
catalyst are excluded [4].

Various alternative designs based on monolithic
systems have been proposed as potential solutions to
simplify the process [5–9]. Monolithic catalysts have
been used in aqueous-phase hydrogenation reactions,
such as 2-ethyl-hexanol [10], α-methylstyrene and
benzaldehyde [7, 11], butene-1,4-diol [12], and vegetable
oils [4, 13–16], among others. In all these works, the
operating advantages were pointed out, such as the
easy separation of the catalyst and purification of
the products, mixing requirements, and better
selectivities resulting from a better mass-transfer
performance [17].

A monolithic catalyst consists of a structure
made of a ceramic or metallic substrate, and it has
the shape of a block with multiple channels. Generally
these channels are parallel and have a honeycomb
configuration [1].

The presence of external and internal diffusional
limitations has been described in many practical situa-
tions, catalytic hydrogenation in particular, and many
three-phase catalytic reactions in general, where high
reaction rates and temperatures prevail [18–21]. A three-
phase reaction system implies a variety of stages, such as
gas–liquid mass transfer, liquid–solid mass transfer,
intraparticle diffusion, and chemical reaction. A concept
that was developed some time ago, mostly for catalysts
having spherical geometries, is the overall effectiveness
factor, which considers the effects of all the transport
resistances, either internal or external [22, 23]. For hon-
eycomb catalysts, a uniformly distributed active coating
in the internal walls of the monolith channel can be
assumed. In this case, a simple slab geometry of the
catalyst could be considered.

The aim of the present work was to develop analyti-
cally the overall effectiveness factor for slab geometry
applicable to uniform washcoats on monolithic surfaces
for three-phase reaction systems, valid for linear and
nonlinear kinetics.
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2 Theoretical background: overall
effectiveness factor

In many cases, the concentration of the liquid reactant is
greatly in excess of that of the dissolved gas. The analysis
in this work refers to the situation where the gas species
(G) is the limiting reactant.

The concept of overall effectiveness factor was first
introduced to simplify the calculation of the reaction rate
in three-phase systems [24], and then it was extended to
nonlinear systems [23, 25]. This concept has the advan-
tage that all the relevant parameters can be organized
into conveniently defined dimensional groups. In this
way, the results could be represented graphically. These
plots remove the need for trial-and-error calculations for
the reaction rate.

The overall effectiveness factor, for a three-phase
reactor, is defined as the ratio of the observed reaction
rate (RG) to the reaction rate without transport resistances
(ΩG) according to the following equation:

¼ RG

w � ΩGðG�Þ ð1Þ

where

RG ¼ MG � G� � GSð Þ ð2Þ

1
MG

¼ 1
kGL � aL þ

1
kLS � aS ð3Þ

It is worth noting that ΩG will be expressed according to
the type of kinetics adopted. When the reactor operates at
maximum efficiency, η tends to unity and it decreases in
the presence of transport resistances.

In order to obtain an analytical solution for η in
terms of known parameters, the concentration of G on
the surface (GS) is redefined. This is done by defining this
concentration as a function of the overall effectiveness
factor. From eq. (2) and the definition of η given by
eq. (1), we obtain

GS ¼ G� � 1� η
σG

� �
ð4Þ

where

σG ¼ MG � G�

w � ΩG G�ð Þ ð5Þ

As it can be observed, σG is a dimensionless parameter
that characterizes the external mass transfer (gas–liquid
and liquid–solid) representing the ratio of the maximum
possible mass-transfer rate to the maximum chemical
reaction rate.

In order to quantify the intra-porous diffusional
effects, the catalytic effectiveness factor (ηC) is used. It
compares the observed reaction rate (in the presence of
diffusional limitations) with the reaction rate calculated if
the surface reactant concentration persisted throughout
the interior of the catalyst particle. It can be expressed as:

ηC

¼ actualover all reaction rate
reaction rate without diffusional resistance; evaluated at the surface

ð6Þ
When the reaction kinetics is nonlinear, as is usually the
case for many of the catalytic reactions at industrial level,
it is not possible to obtain an analytic solution for ηC.
Froment and Bischoff [26] proposed an approximate ana-
lytical solution for nonlinear kinetics using the classic
definition of ηC for a first-order reaction modifying the
definition of the Thiele modulus (ϕ), which is determined
by the following expression in the case of slab geometry:

; ¼ L � ρC � ΩG GSð Þ � 2 �
ðGS

0

De � ΩG Gð ÞdG
2
4

3
5
�1=2

ð7Þ

3 Theoretical derivation of the
overall effectiveness factor for
slab geometry

3.1 Langmuir–Hinshelwood kinetics

The kinetics can be expressed by a Langmuir–
Hinshelwood (L–H) model. If the gas (usually hydrogen)
is adsorbed associatively, the fraction of sites occupied
by the gas will be defined by the following equation:

θAG ¼ KG � Gs

1þ KG � Gs
ð8Þ

The reaction rate for this compound will be given by:

ΩG ¼ k0 � KG � G
1þ KG � G ð9Þ

RG ¼ ηc � w � k0 � θAG ð10Þ
Using the edible oil hydrogenation as an example of a
typical three-phase reaction, k0 has the following expres-
sion [19]:

k0 ¼ kMS � CM þ 2 � kDM � CDi

2 � CDi þ CM þ KS
KM

� CS
ð11Þ
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and ηc is the catalytic effectiveness factor considering a
slab geometry given by:

ηc ¼
tanh ;ð Þ

; ð12Þ

The Thiele modulus can be determined using the approx-
imation proposed by Froment and Bischoff [26] (eq. 7),
valid for reaction rates of general format. Performing the
integration, we obtain

; ¼ L � ρc � kp1
De

� �1=2

� KG � Gs

1þ KG � Gsð Þ � 2 � KG � Gs � ln 1þ KG � Gsð Þ½ �f g1=2
ð13Þ

where

kp1 ¼ k0 � KG ð14Þ
By substituting the expression of Gs obtained in eq. (4)
into eq. (13), the Thiele modulus can be formulated as a
function of the effectiveness factor:

where ;0 and σG can be expressed as:

;0 ¼ L � kp1 � ρc
De

� �1=2
ð16Þ

σG ¼ MG � 1þ KG � G�ð Þ
w � kp1 ð17Þ

σG represents the ratio of the maximum mass-transfer rate
to the maximum chemical reaction rate. ;0 denotes the
ratio of the chemical reaction rate on the surface to the
diffusion rate.

The overall effectiveness factor is obtained by sub-
stituting the expressions of rate RG (eq. 10), ΩG (eq. 9),
and GS (eq. 4) in eq. (1):

η ¼ ηc � 1þ KG � G�ð Þ � 1� η=σGð Þ
1þ KG � G� � 1� η=σGð Þ ð18Þ

As indicated in their corresponding definitions, η and ;0
only depend on temperature through the variation of
KG � G�, De; kp1, and MG. They also depend on ρc once
the catalyst is selected.

Thus the value of η is calculated by the trial-and-
error method, after the parameters mentioned before are
set. In the case of discontinuous stirred-tank reactors, the
calculation of η must be performed at each moment of
progress of the reaction, for changes in the composition
of the reactant mixture, changes in temperature or both
simultaneously. For continuous stirred-tank reactors, η
has a unique value if the operation is carried out in the
steady state.

In the case of plug-flow reactors operating under
steady-state conditions, η must be calculated for each
axial section due to the change in the composition of
reactants and products, the temperature at that particular
section or both effects combined.

A plot of η vs ;0 for different values of σG (0.6 and 10)
and KG � G� (0.1, 1, and 10) is presented in Figure 1, where
it can be observed how the effectiveness factor increases

with increasing KG � G�. At the same time, the graph
shows that for small values of ;0, the effectiveness factor
tends to an asymptotic value. This observation corre-
sponds to the region where the intraparticle diffusion
resistance is negligible.

Following a similar approach to that developed
above, but considering a dissociative gas adsorption on
the catalytic surface, the fraction of occupied sites will be
determined by:

θDG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � Gs

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � Gs

p ð19Þ

The Thiele modulus can be obtained similar to the pre-
vious case:

; ¼ ;0 � KG � G� � 1� η=σGð Þffiffiffi
2

p � 1þ KG � G� � 1� η=σGð Þ½ � � KG � G� � 1� η=σGð Þ � ln 1þ KG � G� � 1� η=σGð Þ½ �f g1=2 ð15Þ

; ¼ ;0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � G� � 1� η=σGð Þp

ffiffiffi
2

p � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � G� � 1� η=σGð Þp� � � KG � G� � 1� η=σGð Þ � 2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KG � G� � 1� η=σGð Þp þ 2 � ln 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � G� � 1� η=σGð Þp� �� �1=2

ð20Þ
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By substituting the GS (eq. 4) expression, we obtain

where ;0 is given by eq. (6), and σG can be expressed as:

σG ¼ MG � ffiffiffiffiffiffi
G�p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � G�p� �

w � k0 �
ffiffiffiffiffiffi
KG

p ð22Þ

The overall effectiveness factor is obtained by substituting
the expressions of RG, ΩG, and GS (eq. 4) in eq. (1):

η ¼ ηc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ KG � G�p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η=σG
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG � G�p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η=σG
p ð23Þ

Similar to the case of associative gas adsorption, Figure 2
presents a plot of η vs ;0 for different values of σG (0.6
and 10) and KG � G� (0.1, 1, and 10) for the dissociative
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Figure 2 Overall effectiveness factor for L–H kinetics with a dissociative gas adsorption mechanism in slab geometry. KG � G� ¼ 0.1, 1, and 10
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Figure 1 Overall effectiveness factor for L–H kinetics with an associative gas adsorption mechanism in slab geometry. KG � G� = 0.1, 1,
and 10

; ¼ ;0 � KG � G� � 1� η=σGð Þffiffiffi
2

p � 1þ KG � G� � 1� η=σGð Þ½ � � KG � G� � 1� η=σGð Þ � ln 1þ KG � G� � 1� η=σGð Þ½ �f g1=2 ð21Þ
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case. It can again be observed the typical behavior of the
system under study.

3.2 Power law kinetics

When a reaction can be represented by power law
kinetics, we have

ΩG ¼ km � Gm ð24Þ
RG ¼ ηc � w � km � Gm

S ð25Þ
By rearranging eqs (4) and (25) and using the definition of
the overall effectiveness factor, we obtain

η ¼ ηc � 1� η
σG

� �m

ð26Þ

where ηc is the catalytic effectiveness factor for slab
geometry defined by eq. (12), and σG is defined by eq. (5).

As expected, for the particular case where resistance
to intraparticle diffusion is negligible, ηc will be equal to
the unit, therefore eq. (26) will be notably simplified.

The generalized effectiveness factor can be obtained
using the Bischoff approximation, considering the type of
kinetics according to the following expression:

; ¼ L � mþ 1
2

� �
� ρc � km � Gm�1

S

De

	 
1=2
ð27Þ

This factor can be expressed in relation to the overall
effectiveness factor using eqs (4) and (27):

; ¼ ;0 � 1� η
σG

� � m�1ð Þ=2
ð28Þ

where

;0 ¼ L � mþ 1
2

� �
� ρc � km � G�ð Þm�1

De

" #1=2
ð29Þ

In order to apply the mathematical procedure, the power
law kinetics for a three-phase reaction (half-order reac-
tion) proposed by Hashimoto et al. [27] was used. As it
was shown in preceding paragraphs, the graphical
representation of the overall effectiveness factor vs ;0
can be used to calculate the reaction rate without having
to turn into more complex calculations. Figure 3 repre-
sents the overall effectiveness factor in a plot of η vs ;0
with σG as parameter, with values equal to 1, 5, 10, 50,
and 100.

3.3 Zero-order reactions

In three-phase reaction systems, the observed reaction
rate can also be independent of the gas-phase concentra-
tion, and thus the reaction kinetics follows an apparent
zero-order [20]. A procedure to calculate the effectiveness
factor in reactions of this type for catalysts with spherical
geometry was proposed [23, 28, 29]. By applying this
method to monolithic systems, the overall effectiveness
factor for slab geometry can be developed analogously.

According to this approach, there are two possibili-
ties as shown in Figure 4: (A) the concentration of the gas
inside the pores of the catalyst is never zero, in this case
the reaction rates are not affected by the concentration
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Figure 3 Overall effectiveness factor for a half-order reaction applied to slab geometry. σG ¼ 1, 5, 10, 50, and 100
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profile, and the effectiveness factor is always 1; (B) the
gas concentration becomes zero before reaching the end
of the pore, and the effectiveness factor is always lower
than 1.

The approaches to analyze the diffusion and reaction
inside the pores of a spherical catalyst have been widely
studied [30, 31]. Following an analogous analysis, the
mass balance for a generic species G inside the pores of
a catalytic slab for a zero-order reaction is given by:

De � ddx �
dG
dx

¼ k0 � ρc ð30Þ

where the boundary conditions are

x ¼ L;G ¼ GSf g x ¼ λ;
dG
dx

¼ 0
� �

ð31Þ

The fact that the concentration of G must be zero in
longitude λ is an additional restraint.

x ¼ λ;G ¼ 0f g ð32Þ
The solution to eq. (30) that satisfies the boundary con-
ditions is

G ¼ GS þ k0 � ρc
De

� x2

2
� λ � x � L2

2
þ λ � L

	 

ð33Þ

The value of GS at which the concentration falls to zero in
the inner border of the catalyst layer is obtained by
determining λ ¼ 0and x ¼ 0 in eq. (33). This value is
called GS;crit (stands for critical), and it is given by:

GS;crit ¼ k0 � ρc � L2
2 � De

ð34Þ

If under the operating conditions the value of GS is larger
than GS;crit, then the concentration inside the catalyst will

be finite at all points, whereas if GS <GS;crit, the concen-
tration will be zero at some point called λ.

The global mass-transfer rate from the gas to the
external surface of the solid is given by eq. (2). The rate
of the chemical reaction when GS is greater than or equal
to GS;crit is

RG ¼ w � k0 ð35Þ
where k0 is defined by eq. (11) [19]. By eliminating RG in
eqs (2) and (35), we obtain

GS ¼ G� � w � k0 �M�1
G ð36Þ

Substituting this value of GS in eq. (34), we obtain the
critical value of the concentration of G in the liquid
phase (G�

crit) above which the concentration of G is
different from zero inside the catalyst under the
studied operating conditions. This behavior can be
expressed as:

G�
crit ¼

k0 � ρc � L2
2 � De

þ w � k0 �M�1
G ð37Þ

If the concentration of G in the liquid phase is greater
than this critical value, there exist no mass-transfer lim-
itations and the rate will be given by eq. (35). If G� <G�

crit,
then the concentration would be zero at x ¼ λ inside the
catalyst. The reaction only occurs in the region between λ
and L. Thus the rate is given by:

RG ¼ w � k0 � 1� λ
L

	 

ð38Þ

Using the boundary condition (32), the value of GS can be
expressed as:

GS ¼ k0 � ρc � L2
2 � De

� λ
L

� �2

þ 1� 2 � λ
L

" #
ð39Þ

Substituting this value in eq. (2), we obtain

RG ¼ MG � G� � k0 � ρc
2 � De

� λ2 þ L2 � 2 � L � λ� �	 

ð40Þ

In this case, the overall effectiveness factor is determined
by the following equation:

η ¼ RG

w � k0 ð41Þ

From eqs (38) and (41), we obtain

η ¼ 1� λ
L

ð42Þ

If the process is entirely controlled by the gas–liquid and
liquid–solid mass transfer, the reaction rate is

(1) (2)

0 0L x Lλ x

(B)(A)

Gs

(1) (2)

Gs

Figure 4 Concentration profiles for a zero-order reaction, where the
diffusional effects are: (A) negligible and (B) important. References:
(1) monolith substrate and (2) porous support
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RG ¼ G� �MG ð43Þ
The corresponding value for the effectiveness factor can
be defined as a dimensionless parameter of external mass
transfer:

σG ¼ G� �MG

w � k0 ð44Þ

Dividing eq. (40) by w � k0 and rearranging it, we obtain

η ¼ σG � 1� k0 � L2 � ρc
2 � De � G� �

λ
L

� �2

þ 1� 2 � λ
L

 !" #
ð45Þ

Defining:

;2 ¼ k0 � L2 � ρc
De � G� ð46Þ

λ
L
¼ 1� η ð47Þ

The final expression for the effectiveness factor is
obtained by the following equation:

η ¼ σG � 1� ;2
2
� 1� 2 � 1� ηð Þ þ 1� ηð Þ2
n o	 


ð48Þ

Eq. (49) is an implicit analytic equation where the effec-
tiveness factor η is expressed as a function dependent on
σG and ;2, which are defined by eqs (44) and (46).
Eq. (48) can be represented graphically as a plot of η vs
; with σG as parameter. In this case, the values proposed

for σG were 0.01, 0.05, 0.1, 0.5, 1, 5, and 10 [28]. The value
of η can then be observed directly in Figure 5 without any
other mathematical calculations. It is worth noting that
parameters σG and ; are fixed for a given process. Once
η is known, the reaction rate can be calculated using
eq. (41).

4 Discussion

In order to analyze the theoretical results obtained for
slab and spherical geometries, a direct comparison was
made with the data reported by Ramachandran and
Chaudhari [23], shown in Figures 6–10.

The results obtained for associative L–H kinetics,
considering values of KG � G� ¼ 0.1, 1, and 10 with
σG ¼ 10, are presented in Figure 6. The same analysis
was performed for σG ¼ 0.6 and 5 (figures not shown). At
higher values of σG, the external mass-transfer resis-
tances are smaller. It can be observed that when the
value of KG � G� increases, the overall effectiveness factor
also increases. When analyzing constant ;0, it is
observed that by favoring the kinetics (with higher values
of KG � G�) the internal transport also increased, and thus
the effectiveness of the reactor (higher values of η). On
the other hand, if σG is constant and KG � G� increases, the
external mass-transfer resistances decrease (according to
the definition of σG) and η increases.

Figure 5 Effect of the parameter σG visualized in a plot of η vs ;0 for a zero-order reaction in slab geometry
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Being KG the adsorption constant of the gas in the
active site, and G� the equilibrium concentration of the
gaseous reactant in the liquid, the value of the parameter
KG � G� is inherent to the system and it can be modified by
changing the catalyst or the reaction system (gaseous
reactant and/or liquid where it dissolves), and pressure
and temperature, certainly.

Figure 7 shows the percent relative error for the over-
all effectiveness factor between spherical and slab geo-
metries. The values of KG � G� mentioned above and σG ¼
0.6, 5, and 10 were considered. The combination of both
parameters originated the nine curves presented in
the figure. Maximum errors are observed at ;0 ~ 2 for
KG � G� ¼ 0.1 and 1 and at ;0 ~ 6 for KG � G� ¼ 10.

In the conventional plots of ηC vs ;0, it is observed
that ;0 ! 0, ηC ! 0 for all the geometries, given that

the kinetic effects are dominant in that zone. In the
diffusion controlled area, ;0 ! 1, ηC ! 0. In the mixed
control area where the kinetic and diffusion effects
compete (1=3< ;0 < 5), the geometry has a greater effect
on ηC [26].

For ;0,2, the smaller errors (~8%) were for the lower
value of σG (constant KG � G�). In this case, the external
mass-transfer resistances are important. The overall effec-
tiveness factor involves the sum of the diffusional effects,
both internal and external, and as the external effects are
comparatively larger, the intraparticle transport loses
importance, and consequently also the geometry. On
the other hand, at higher values of σG (5 and 10, with
constant KG � G�), the curves were closer and maximum
errors were about 14% (;0,6). When the external mass-
transfer resistance was negligible (high values of σG), the

Figure 7 Percent relative error for the overall effectiveness factor between spherical and slab geometries, corresponding to L–H type
kinetics. Reference: KG � G� ¼ 0.1 (—), 1 (- - -), and 10 (-.-). σG ¼ 0.6 (blue), 5 (red), and 10 (green)

Figure 6 Plot of η vs ;0 for L–H type kinetics. Reference: Spherical geometry (solid line) and slab geometry (dotted line). For σG ¼ 10,
Reference: KG � G� ¼ 0.1 (blue), 1 (red), and 10 (green)
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maximum error found between the geometries tended
toward the value of the catalytic effectiveness factor.
The maximum difference between the catalytic effective-
ness factors of the spherical and slab geometry was about
16%, and it occurred at ;0 ¼ 1.6 [32].

When σG remains constant, by increasing the value of
KG � G�, the external mass transport increases at the same
time, as mentioned above, and this improvement in mass
transport hides the geometric effects. For this reason, the
maximum errors (greater differences between spherical
and slab geometries) were observed at higher ;0 values,
where the internal diffusion control begins to have more
influence.

The percent relative error for the overall effectiveness
factor between spherical and slab geometries with zero-
order kinetics is presented in Figure 8. The values of σG ¼
0.1, 0.5, and 1 were considered. Maximum errors were
found at ;0,0:9 (9%) for σG ¼ 1 and 10 and at ;0,2
(4%) for σG ¼ 0.5. The differences between geometries
decreased when the external mass-transfer resistances
increased. On the other hand, the maximum errors of the
overall effectiveness factor corresponded to the differences
between the catalytic effectiveness factors.

The percent relative error for the overall effectiveness
factor between spherical and slab geometries with half-
order kinetics is presented in Figure 9. Values of σG ¼ 1,

Figure 8 Percent relative error for the overall effectiveness factor between spherical and slab geometries for zero-order kinetics. Reference:
σG ¼ 0.1 (blue), 0.5 (red), 1 (green)

Figure 9 Percent relative error for the overall effectiveness factor between spherical and slab geometries with half-order kinetics.
Reference: σG ¼ 1 (blue), 10 (red), and 100 (green)
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10, and 100 were considered. The maximum errors were
found at ;0 ¼ 1.7 and were of ~10% for σG ¼ 1 and ~14%
for σG ¼ 10 and 100. This plot exhibits the same trend
presented in Figures 8 and 9.

5 Conclusions

Analytical solutions for the overall effectiveness factor for
slab geometry applicable to uniform washcoats on a
monolithic surface for three-phase reaction systems
were obtained for zero-order reactions and L–H and
power law kinetics. Implicit expressions for the overall
effectiveness factor in terms of the Thiele modulus and
external mass-transfer parameters were found.

The theoretical results were analyzed for a set of
representative parameters, and it was observed that the
errors resulting from not considering the geometry ade-
quately reached values of up to 14% in procedures under
mixed control (kinetic-internal diffusion) and negligible
mass-transfer resistances.

In-depth knowledge of the behavior of a three-phase
monolithic reactor operating under the studied working
conditions would enable to make a detailed model of the
system and optimize the process.
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Nomenclature

aL ¼ Gas – liquid interfacial area per unit volume of
liquid m2

GL=m
3
L

h i
aS ¼ Liquid – solid interfacial area m2

cat=m
3
cat

h i
Cj ¼ Concentration of j component, j ¼ Di, M, S mol=m3�½
De ¼ Effective diffusivity m2=s½ �
G ¼ Concentration of G in the gas mol=m3�½
G� ¼ Concentration of G in the liquid in equilibrium with

the gas mol=m3�½
GS ¼ Concentration of G at the catalyst surface mol=m3�½
k0 ¼ Rate constant mol=kg s½ �
kDM ¼ Rate constant for the kinetic example in eq. (11)

mol=kg s½ �

KG ¼ Adsorption equilibrium constant for G m3=mol½ �
kGL ¼ Gas – liquid mass transfer coefficient m3

L=m
2
GL s

h i
km ¼ Rate constant for mth order reaction mol=kg s½ �
kMS ¼ Rate constant for the kinetic examplein eq. (11)

mol=kg s½ �
kLS ¼ liquid – solid mass transfer coefficient m=s½ �
kP1 ¼ Pseudo first order reaction rate order m3=kg s½ �
KS=KM ¼ Constant adsorption ratio [dimensionless]
m ¼ Order of reaction with respect to species G

[dimensionless]
MG ¼ Total mass transfer resistances s�1½ �
RG ¼ Rate of reaction of Gperunit volume of reactor

mol=s m3½ �
w ¼ Mass of catalyst per unit volume of reactor kg=m3½ �
L ¼ Thickness of the catalytic slab m½ �
x ¼ Distance in the catalyst measured from the base of

the pore m½ �

Greek letters

η ¼ Overall effectiveness factor [dimensionless]
ηc ¼ Catalytic effectiveness factor [dimensionless]
θG ¼ Fraction of surface sites occupied bygas

[dimensionless]
λ ¼ Distance from the center of the catalyst at which G

concentration becomes zero [m]
ρc ¼ Density of the catalyst [kg/m3]
σG ¼ Parameter defined by eq. (5) [dimensionless]
f ¼ Generalized Thiele modulus [dimensionless]
f0 ¼ Thiele modulus [dimensionless]
ΩG ¼ Local rate of chemical reaction perunit weight of

catalyst [mol/kg s]

Sub- and superscripts

A ¼ Associative gas adsorption mechanisms
crit ¼ stands for critical
D ¼ Dissociative gas adsorption mechanisms
Di ¼ Diene
M ¼ Monoene.
S ¼ Saturated
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