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Abstract

We study pairs (U,L0), where U is a unitary operator in H and L0 ⊂ H is a closed
subspace, such that

PL0
U |L0

: L0 → L0

has a singular value decomposition. Abstract characterizations of this condition are given,
as well as relations to the geometry of projections and pairs of projections. Several concrete
examples are examined.
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1 Introduction

In this paper we consider pairings (U,L0) of a unitary operator U in a Hilbert space H and a
closed subspace L0 ⊂ H such that

PL0
U |L0

: L0 → L0

admits a singular value decomposition (or shortly, is S-decomposable, meaning Schmidt de-
composable). Here PL0

denotes the orthogonal projection onto L0. Note that this condition is
equivalent to say that PL0

UPL0
is S-decomposable. A typical case of this situation occurs when

L0 is an invariant subspace for U : in this case PL0
U |L0

= U |L0
is an isometry.

There is a spatial characterization of this condition (see Corollary 2.2 below): PL0
U |L0

is
S-decomposable if and only if there exist bi-orthonormal bases of L0 and UL0, i.e., bases {fn :
n ≥ 1} of L0 and {gn : n ≥ 1} of UL0 such that 〈fn, gm〉 = 0 if n 6= m.

The problem is related to the characterization of pairs of projections P,Q such that PQ is
S-decomposable, or equivalently, PQP is diagonalizable. Indeed, PL0

UPL0
is S-decomposable if

and only if PL0
(UPL0

U∗) is S-decomposable.
We shall establish characterizations and abstract results concerning these pairings (U,L0):

• Relations with the geometry of the Grassmann manifold of H: when does the exponential
map of the manifold eiZL0 at a base point L0 give rise to a S-decomposable operator
PL0

eiZ |L0
(Section 5).

• Symmetries U (i.e. U∗ = U−1 = U) which have this property with respect to L0. In
particular, symmetries which arise from non-orthogonal projections (Section 6).
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• The relationship with diagonalizable dilations (Section 7).

But also our interest will be in several concrete examples:

• Multiplication by continuous unimodular functions in H = L2(T) and L0 = H2(T).

• H = L2(R), U the Fourier-Plancherel transform and L0 = L2(I), where I is an interval or
the half line.

• H = ℓ2(Z) and U = S the bilateral shift, L0 ⊂ ℓ2(Z) a closed subspace.

The contents of the paper are the th following:
In Section 2 we recall preliminaries and establish basic properties. We denote the fact that

PL0
U |L0

is S-decomposable by writing, equivalently,

U ∈ SdL0
or L0 ∈ SdU ,

depending on the standpoint. We also introduce the main examples.
In Section 3 we fix the unitary operator and consider properties of the subspaces L ∈ SdU .

For instance, we show that SdU is closed for the operation of taking orthogonal supplements,
but the orthogonal sum of two subspaces in SdU may fail to remain in SdU .

In Section 4 we give another equivalent condition for PL0
U |L0

to be S-decomposable in terms
of commutators.

In Section 5 we study the relation of this condition with the geometry of the Grassmann
manifold of H; specifically, with the geodesics and exponential map of this manifold.

A non orthogonal projection Q, via the polar decomposition

2Q− 1 = ρQ|2Q− 1|

gives rise to a symmetry ρQ (see [9]). We characterize when PR(Q)ρQ|R(Q) is S-decomposable.
This is done in Section 6.

In Section 7 we characterize contractions which are S-decomposable, in terms of diagonal-
ization properties of their unitary dilations.

In Section 8 we return to the example U = Mϕ for ϕ a continuous unimodular function in
T, H = L2(T and L0 = H2(T). This is an S-decomposable pairing: here PL0

U |L0
is the Toeplitz

operator Tϕ, which has a singular value decomposition: it gives rise to a sequence (of singular
values) which converges to 1. We think that this is an interesting fact that needs to be studied.
We merely scratch the surface here, examining the case when ϕ is a quotient of finite Blaschke
products.

Let us finish this introduction by recalling the Halmos decomposition of H relative to a pair
of projections / subspaces. Given projections P and Q, put

H11 = R(P ) ∩R(Q), H00 = N(P ) ∩N(Q), H10 = R(P ) ∩N(Q), H01 = N(P ) ∩R(Q),

and
H′ = {H11 ⊕H00 ⊕H10 ⊕H01}⊥.

The last subspace is usually called the generic part of P and Q. Clearly these five subspaces
reduce simultaneously P and Q. For the generic part, in [14] Halmos proved that there exists a
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unitary isomorphism H′ ≃ L × L such that in this product space, the reductions P ′ and Q′ of
P and Q to L × L are of the form

P ′ =

(

1 0
0 0

)

and Q′ =

(

C2 CS
CS S2

)

,

where C = cos(X) ≥ 0 and S = sin(X) ≥ 0 for π/2 ≥ X ≥ 0; the three operators have trivial
nullspaces, and clearly commute.

2 Preliminaries

Let H be a Hilbert space, and L0 ⊂ H a closed subspace. Denote by P0 = PL0
the orthogonal

projection onto L0. Let U(H) be the unitary group of H. An operator T acting in a Hilbert
space H is said to be Schmidt decomposable in H, if it has a singular value decomposition: there
exist orthonormal system {fn : n ≥ 1} and {gn : n ≥ 1}, and positive numbers sn = sn(T ) such
that

T =
∑

n≥1

snfn ⊗ gn,

where, as is usual notation, f ⊗ g is the rank one operator f ⊗ g(h) = 〈h, g〉f . In this note we
study the set

SdL0
:= {U ∈ U(H) : P0U |L0

is Schmidt decomposable in L0}.

Note that U ∈ SdL0
if and only if P0UP0 is Schmidt decomposable.

Let us recall the following facts on Schmidt decomposable products of projections, taken
from [5].

Proposition 2.1. ([5]) Let P,Q be orthogonal projections.

1. PQ is Schmidt decomposable if and only if there exist orthonormal bases {ψn : n ≥ 1}
of R(P ) and {ξn : n ≥ 1} of R(Q) such that 〈ξn, ψk〉 = 0 if n 6= k. In that case, PQ =
∑

n≥1

snψn⊗ξn where sn = 〈ξn, ψn〉 are the singular values of PQ. Moreover, sn ≤ 1 and for

all n such that sn = 1 the associated vectors ξn and ψn verify that ξn = ψn and generate
R(P ) ∩R(Q).

2. PQ is Schmidt decomposable if and only if P −Q is diagonalizable. In that case, if sn are
the singular values of PQ, then the eigenvalues of P − Q are ±(1 − s2n)

1/2, n ≥ 1, and
eventually, 0,−1 and 1.

3. PQ is Schmidt decomposable if and only if QP , or P⊥Q, or PQ⊥ or P⊥Q⊥ are Schmidt
decomposable. Moreover, the singular values sn of PQ and tn of PQ⊥, such that sn, tn < 1,
are related by

tn =
√

1− s2n,

with the same multiplicity. In particular, PQ and P⊥Q⊥ have the same singular values
(which are strictly less than one), with the same multiplicity.

These facts have the following immediate consequences:
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Corollary 2.2. Let U ∈ U(H). The following are equivalent:

1. U ∈ SdL0
.

2. WP0UP0V
∗ is Schmidt decomposable, for all V,W ∈ U(H).

In particular, U ∈ SdL0
if and only if P0UP0U

∗ is Schmidt decomposable, and this latter
operator is a product of projections.

3. The commutator [P0, U ] = P0U − UP0 is Schmidt decomposable.

4. U ∈ SdL⊥
0

.

5. There exist orthonormal basis {fn} and {f ′n} of L0 such that

〈fn, Uf ′m〉 = 0 if n 6= m.

In this case, the singular values of P0U |L0
are sn = |〈fn, Uf ′n〉|, and the singular values of [P0, U ]

are the absolute values of the eigenvalues of P0 − UP0U
∗.

Remark 2.3. Note that U ∈ SdL0
implies that also U∗ ∈ SdL0

: if P0UP0 =
∑

n≥1 snξn ⊗ ηn,
then P0U

∗P0 = (P0UP0)
∗ =

∑

n≥1 snηn ⊗ ξn. Also it is apparent that I ∈ SdL0
. But SdL0

is
not a group, as the following example shows. Let P,Q be projections in a Hilbert space L such
that PQ is not Schmidt decomposable, (see below for an for explicit example). Let H = L × L
and L0 = L × {0}. Consider in H the unitary operators

UP =

(

P 1− P
1− P P

)

and UQ =

(

Q 1−Q
1−Q Q

)

.

Clearly P0UPP0 =

(

P 0
0 0

)

is Schmidt decomposable, and the same for UQ. But

P0UPUQP0 =

(

PQ+ (1− P )(1 −Q) 0
0 0

)

,

which we claim is non decomposable. Indeed, if T = PQ+ (1 − P )(1 −Q) were decomposable,
TT ∗ = PQP + (1−P )(1−Q)(1−P ) would be diagonalizable, which would imply in particular
that PQP is diagonalizable, and thus PQ would be decomposable.

Examples 2.4.

1. Let H = L2(T) and L0 = H2(T) the Hardy space. Let ϕ : T → T be continuous. Then the
multiplication (unitary) operator Mϕ ∈ SdL0

. Indeed, PL0
MϕPL⊥

0

is a Hankel operator

with continuous symbol, thus by Hartman’s theorem [15] it is compact, and thus Schmidt
decomposable. Then PL0

MϕPL⊥
0

Mϕ̄ and also

PL0
(1−MϕPL⊥

0

Mϕ̄) = PL0
MϕPL0

Mϕ̄

are Schmidt decomposable, as well as PL0
MϕPL0

. Note that the same argument holds for
ϕ a unimodular function in C(T) +H∞(T).

4



2. The previous example can be generalized to an abstract setting. Let L0 ⊂ H of infinite
dimension and co-dimension. The restricted unitary group (relative to the decomposition
H = L0 ⊕ L0) is defined as

Ures(L0) = {U ∈ U(H) : [U,P0] is compact}.

Note that it is the unitary group of the C∗-algebra AL0
= {A ∈ B(H) : [A,P0] is compact}.

Also, if the matrix of U in terms of this decomposition is U =

(

U11 U12

U21 U22

)

, then [U,P0]

compact means that U12 and U21 are compact. Then (using that U is unitary), U11U
∗
11 +

U12U
∗
12 = 1, i.e. U11U

∗
11 = 1 + K with K compact. This implies that U11 is Schmidt

decomposable, that is
Ures(L0) ⊂ SdL0

.

Also it is clear that U11 (as well as U22) is a Fredholm operator. The connected components
of Ures(L0) are parametrized by the Fredholm index of the 1, 1 entry.

Clearly, Mϕ of example 1 belongs to Ures(H
2(T)). The index (of the 1, 1 entry coincides

with minus the winding number of ϕ). See for instance [20]. The connected component
of the identity contains the often called Fredholm unitary group U∞(H) = {U ∈ U(H) :
U − 1 is compact}.

3. Let H = L2(Rn), Ω ⊂ R
n be a measurable set with |Ω| < ∞, and put L0 = L2(Ω)

(considered as a closed subspace of H). Let U be the Fourier-Plancherel transform. Then
U ∈ SdL0

. Indeed, PL0
U∗PL0

U is the composition of the projections onto (respectively) the
Lebesgue space L2(Ω) and the Wiener spaceW (Ω) of Ω (i.e., W (Ω) = {f ∈ L2(R) : f̂ |Ωc =
0 a.e.}). It is known (see for instance [16], or the survey article [11]) that this composition
is of trace class, thus decomposable. Moreover, if θ, ω are measurable unimodular functions
in R

n, then MθUMω ∈ SdL0
: Mθ,Mω commute with PL0

, and thus

PL0
MθUMωPL0

=MθPL0
UPL0

Mω

is decomposable. Also note that U ∈ SdW (Ω):

PW (Ω)UPW (Ω) = U−1PL2(Ω)UUU
−1PL2(Ω)U = U−1PL2(Ω)UPL2(Ω)U

which is Schmidt decomposable.

4. One can characterize the symmetries (i.e., selfadjoint unitaries) which belong to SdL0
.

Let ǫS be the symmetry which is equal to 1 in S and −1 in S⊥, i.e., ǫS = 2PS − 1.
Then ǫS ∈ SdL0

if and only if 2P0PSP0 − P0 is decomposable, and since it is selfadjoint,
diagonalizable. This is clearly equivalent to P0PSP0 being diagonalizable, or P0PS being
Schmidt decomposable.

Consider, for instance H = L2(−1, 1). Let U be the symmetry Uf(t) = f(−t), and A
the selfadjoint (non diagonalizable) contraction Af(t) = tf(t). Note that UAU = −A.
Chandler Davis [10] gives in this case formulas for pairs of projections PU , QU satisfying
UPUU = QU and PU −QU = A. Namely

PU =
1

2
{1 +A+ U(1−A2)1/2} and QU =

1

2
{1−A+ U(1−A2)1/2}.
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Then, by Proposition 2.1, since A = PU −QU is not diagonalizable, PUQU = PUUPUU is
not Schmidt decomposable, i.e. U /∈ SdR(PU ). Note that

R(PU ) = {f ∈ L2(−1, 1) : f(−t) = f(t)((1 − t2)1/2 − t) a.e.}.

3 Fixing the unitary operator

We fix a unitary operator U in H, and consider the set of closed subspaces L ⊂ H such that
U ∈ SdL:

SdU := {L ⊂ H : L is closed and U ∈ SdL}. (1)

Let us state the following elementary properties of SdU .

Proposition 3.1. Let U be a unitary operator in H.

1. If L ∈ SdU , then L⊥ ∈ SdU .

2. If L is an invariant subspace for U , then L ∈ SdU .

3. As a consequence of 1) and 2), if L is invariant for U∗, then L ∈ SdU .

Proof. If L ∈ SdU , then PLUPLU∗ is decomposable. Then

P⊥
L (UPLU

∗)⊥ = PL⊥UPL⊥U∗

is decomposable, i.e. L⊥ ∈ SdU .
If L is an invariant subspace for U , then U |L : L → L is an isometry, and thus has a singular

value decomposition.
Finally, if L is invariant for U∗, then L⊥ is invariant for U . Thus, L⊥ ∈ SdU , and therefore

L ∈ SdU .

Thus, SdU contains the lattice of invariant subspaces of U . It is not, however, itself a lattice,
as the following remark shows.

Remark 3.2. If L1,L2 ∈ SdU , and L1 ⊥ L2, then L1 ⊕ L2 ∈ SdU may not lie in SdU . Indeed,
let P1, P2 be the orthogonal projections onto L1 and L2. Denote by Q1 = UP1U

∗, We want to
study if (P1 + P2)U(P1 + P2), or equivalently if (P1 + P2)(Q1 + Q2), is decomposable. As we
shall see below, we only need to examine the generic part of the pair P1 +P2, Q1 +Q2. Thus we
can suppose H = L × L, and

P1 + P2 =

(

1 0
0 0

)

, Q1 +Q2 =

(

C2 CS
CS S2

)

=

(

C −S
S C

)(

1 0
0 0

)(

C S
−S C

)

,

where

(

C −S
S C

)

is a unitary operator. Then

P1 =

(

E 0
0 0

)

, P2 =

(

1− E 0
0 0

)

, Q1 =

(

CEC CES
SEC SES

)

, Q2 =

(

CEC CES
SEC SES

)

.

The assumption that L1,L2 ∈ SdU means that P1Q1P1 and P2Q2P2 are diagonalizable in
L × L, i.e. (ECE)2 and ((1 − E)C(1 − E))2 are diagonalizable in L, and since C ≥ 0, ECE
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and (1−E)C(1−E) are diagonalizable. On the other hand, we have to examine weather these
assumptions imply that (P1 +P2)(Q1+Q2)(P1 +P2) is diagonalizable in L×L, which is clearly
equivalent to C2, or C, being diagonalizable. Therefore it suffices to exhibit an example of a
positive injective contraction C and a projection E, such that ECE and (1 − E)C(1 − E) are
diagonalizable, but C is not.

Consider for instance C = 1
2

(

1 A
A 1

)

acting in L2(0, 1) × L2(0, 1), and A = Mt (multi-

plication by the variable t) in L2(0, 1). Then it is easy to see that C is a positive contraction

with trivial nullspace. Also, if E =

(

1 0
0 0

)

, it is clear that ECE = (1 − E)C(1 − E) = 1 in

L2(0, 1). But C is not diagonalizable. If it were, C − 1
21 =

(

0 A
A 0

)

would be diagonalizable,

and thus
(

0 A
A 0

)2

=

(

A2 0
0 A2

)

and therefore A2, and A would be diagonalizable.

Let us exhibit an example of a closed subspace which does not belong to SdS , where S is
the bilateral shift operator acting in ℓ2(Z).

Example 3.3. Let S be the bilateral shift operator in ℓ2(Z). Consider the closed subspace

L0 = {(ak) ∈ ℓ2(Z) : ak = a−k for all k ∈ Z}.

Denote by Π ∈ B(ℓ2(Z)) the symmetry Π(ak)m = a−m. Then it is elementary that PL0
=

1
2(1 + Π). Thus PL0

SPL0
= 1

4(1 + Π)S(1 + Π). Denote by en ∈ ℓ2(Z) the elements of the
canonical basis of ℓ2(Z). Note that

PL0
SPL0

e0 =
1

2
(e1 + e−1) , PL0

SPL0
e±1 =

1

4
(e2 + e−2 + 2e0)

and

PL0
SPL0

en =
1

4
(en+1 + en−1 + e−n−1 + e−n+1)

for n 6= 0,±1. Then, after another elementary computation,

〈PL0
SPL0

en, em〉 = 〈en, PL0
SPL0

em〉,

for all n.m ∈ Z. It follows that PL0
SPL0

, regarded as an operator in ℓ2(Z), is selfadjoint. Thus,
if it where decomposable, it would be diagonalizable. Let us show that it has no eigenvectors.
We identify ℓ2(Z) with L2(T, dz2π ) with the usual isomorphism, which carries en to zn (n ∈ Z).
Then the subspace L0 is given by

L0 = {f ∈ L2(T) : f(z) = f(z̄) a.e.},

the symmetry Π is Πf(z) = f(z̄), and PL0
SPL0

f(z) = 1
4 (z + z̄)(f(z) + f(z̄)). Then

PL0
S|L0

f(z) =
1

2
(z + z̄)f(z) , for all f ∈ L0.

If g ∈ L0 were an eigenvector for this operator, then λg(z) = 1
2(z + z̄)g(z) a.e., and thus g = 0.
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On the other hand, model spaces do belong to SdS :

Example 3.4. Let θ be an inner function in T. Consider the model space L0 = Kθ = H2(T)⊖
θH2(T), here regarded as a subspace of H = L2(T), and let S ∈ B(L2(T)) be again the bilateral
shift operator, Sf(z) = zf(z). Let us show that

Kθ ∈ SdS.

We shall work with K⊥
θ = H2(T)

⊥ ⊕ θH2(T). Let us denote H− = H2(T)
⊥ and Hθ = θH2(T).

Note that Pθ := PHθ
= MθP+Mθ̄, where P+ = PH2(T) (accordingly P− = 1 − P+). Then

K⊥
θ ∈ SdS if and only if the operator

(P− + Pθ)S(P− + Pθ) = P−SP− + PθSPθ + P−SPθ + PθSP−

is Schmidt decomposable. First note that P−SPθ = 0: S(R(Pθ)) = S(θH+) ⊂ H+. The other
off-diagonal operator, PθSP− has rank one. Indeed, if f =

∑

n∈Z z
n ∈ L2(T), let f− = P−f .

Then

PθSP−f = Pθzf−(z) = Pθ(a−11) = a−1Pθ(1) = a−1MθP+θ̄ = a−1θ̄(0)θ = θ(0)〈f, z−1〉θ,

i.e. PθSP− = θ(0)θ ⊗ z−1. The other (diagonal) entries are

P−SP−,

which is a co-isometry in H−, whose adjoint P−S∗P− is an isometry with range S∗(H−) =
z−1H−; and

PθSPθ,

which is an isometry in Hθ with range zHθ. We can write almost explicitly a Schmidt decom-
position for (P− + Pθ)S(P− + Pθ):

P−SP− =
∑

m<0

zm ⊗ zm−1.

If we consider the Lebesgue measure normalized in T, then θ is a unit vector in Hθ. Let {fn}n≥1

be an orthonormal basis for Hθ with f1 = θ. Then PθSPθ =
∑

n≥1 zfn ⊗ fn. Then

(P− + Pθ)S(P− + Pθ) =
∑

m<0

zm ⊗ zm−1 +
∑

n≥1

zfn ⊗ fn + θ(0) θ ⊗ z−1. (2)

Note that in this expression, z−1 is orthogonal to zm−1 (m < 0) and to fn (∈ Hθ). Also, θ is
orthogonal to zm (m < 0) and to zfn. Indeed, θ ⊥ zθH+: if h ∈ H+

〈zθh, θ〉 = 1

2π

∫

T

z|θ(z)|2h(z) dz =
1

2π

∫

T

zh(z) dz = 0,

by Cauchy’s Theorem. Thus, the above expression (2) is essentially a singular value decom-
position for (P− + Pθ)S(P− + Pθ). It only remains to normalize the term θ(0) θ ⊗ z−1: let
θ(0) = |θ(0)|eiα. Then θ(0) θ ⊗ z−1 = |θ(0)|θ0 ⊗ z−1, where θ0 = e−iαθ.

Note that the singular values of (P− + Pθ)S(P− + Pθ) are an infinite list of 1’s, and the
number |θ(0)|. Thus, using Remark 2.1, the singular values of

PKθ
SPKθ

= (P− + Pθ)
⊥S(P− + Pθ)

⊥

are also a list of (infinite) 1’s , and |θ(0)|.
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Example 3.5. In the setting of example 2.4.3 (H = L2(R), U the Fourier-Plancherel transform),
put L0 = L2(0,+∞) ⊂ H. In this case, is P0UP0 Schmidt-decomposable?

Denote by ψn(x) = 21/4√
n
e−πx2

Hn(x) the eigenfunctions of U (where Hn is nth Hermite

polynomial): Uψn = (−i)nψn. Since for n = 2k even, ψn is an even function, it follows that

(P0UP0 + P0U
∗P0)ψ2k = (−1)kP0ψ2k.

Indeed, if x ≥ 0,

(−1)kψ2k(x) =
1√
2π

∫ ∞

−∞
ψ2k(t)e

−ixtdt =
1√
2π

{
∫ 0

−∞
ψ2k(t)e

−ixtdt+

∫ ∞

0
ψ2k(t)e

−ixtdt}

Changing s = −t, the left hand integral becomes
∫∞
0 ψ2k(s)e

ixsdt. Note that

1√
2π

∫ ∞

0
ψ2k(t)e

−ixtdt =
1√
2π

∫ ∞

−∞
χ(0,+∞)(t)ψ2k(t)e

−ixtdt =
1√
2π

∫ ∞

−∞
P0(ψ2k)(t)e

−ixtdt

= UP0ψ2k(x),

and similarly
1√
2π

∫ ∞

0
ψ2k(s)e

ixsdt = U∗P0ψ2k(x).

Clearly {P0ψ2k : k ∈ N} is an orthonormal basis for L2(0,+∞): if k 6= k′,

〈P0ψ2k, P0ψ2k′〉 =
∫ ∞

0
ψ2k(t)ψ2k′(t)dt =

1

2

∫ ∞

−∞
ψ2k(t)ψ2k′(t)dt = 0.

A similar argument shows that they span a dense subspace of L2(0,∞). Therefore Re P0UP0 is
diagonalizable. More specifically Re P0UP0 = 1

2P0(U + U∗)P0 is a 1
2 -times a symmetry, which

is the 1
2 identity on the subspace spanned by {ψ4k : k ≥ 1} and −1

2 the identity in the subspace
spanned by {ψ4k+2 : k ≥ 1}.

Similarly, P0UP0 − P0U
∗P0 is diagonalized, by means of the eigenfunctions P0ψ2k+1 (with

eigenvalues i(−1)k), which also form an orthonormal basis of L2(0,∞), and thus Im P0UP0 is
diagonalizable, and i

2 times a symmetry, with a similar description as the real part.
Then P0UP0 has real and imaginary parts which are diagonalizable. Note that P0UP0 is

not normal, in which case it would be diagonalizable. If it were normal, then Re P0UP0 and
Im P0UP0 would commute, and then

σ(P0UP0) ⊂ σ(Re P0UP0) + σ(i Im P0UP0) = {±1

2
± i

2
},

and thus ‖P0UP‖ =
√
2
2 . On the other hand, let χ = χ(0,1) be the characteristic function on the

unit interval (0, 1). Then ‖χ‖2 = 1 and

P0UP0χ(x) =
1√
2π

∫ 1

0
e−itxdt =

1√
2π

1− e−ix

i x
.

Thus,

‖P0UP0χ‖22 =
1

2π

∫ ∞

0
2
(1− cos(x))

x2
dx = 1,

i.e., since P0UP0 is clearly a contraction, ‖P0UP0‖ = 1.
The question remains, which we consider interesting in its own right, of weather P0UP0, the

compression of the Fourier transform to the positive half-line, has a singular value decomposition.

9



Recall Example 2.4.2, were we saw that Ures(L0) ⊂ SdL0
. Fix L0 and P0 = PL0

. Next we give
a sufficient condition for a closed subspace L ⊂ H, in order that L ∈ SdU , for all U ∈ Ures(L0).

Recall [7] that a pair of orthogonal projections (P,Q) has finite index if the operator

QP |R(P ) : R(P ) → R(Q)

has finite Fredholm index. The index of this operator is called the index ind(P,Q) of the pair
(P,Q). Note that

ind(P,Q) = dim(R(P ) ∩N(Q))− dim(N(P ) ∩R(Q)).

Proposition 3.6. If ind(PL, P0) <∞, then L ∈ SdU , for all U ∈ Ures(L0).

Proof. If ind(PL, P0) < ∞, then there exists V ∈ Ures(L0) such that PL = V P0V
∗ (see for

instance [20]). Then, if U ∈ Ures(L0),

PLUPL = V P0V
∗UV P0V

∗.

Note that V ∗UV ∈ Ures(L0) (which is a group), and thus (see Example 2.4.2) P0V
∗UV P0 is

Schmidt decomposable.

4 Commutators

Recall from the introduction the Halmos decomposition of H relative to a pair of projections P
and Q:

H11 = R(P ) ∩R(Q), H00 = N(P ) ∩N(Q), H10 = R(P ) ∩N(Q), H01 = N(P ) ∩R(Q),

and the generic part H′ ≃ L× L

H′ = {H11 ⊕H00 ⊕H10 ⊕H01}⊥.

It is easy to see that the nullspace of [P,Q] is

N([P,Q]) = H11 ⊕H11 ⊕H10 ⊕H01. (3)

Our main result in this section states that PQ is Schmidt decomposable if only if the
commutator[P,Q] is diagonalizable.

Theorem 4.1. Let P,Q be orthogonal projections, then the following are equivalent:

1. PQ is Schmidt decomposable,

2. A = [P,Q] = PQ−QP is diagonalizable,

3. X is diagonalizable.

Moreover if PQ has singular values sn then [P,Q] has eigenvalues ±isn
√

1− s2n, n ≥ 1, and,
eventually, 0.

10



Proof. If we put T = PQ =
∑

n≥1

snψn ⊗ ξn, where sn = 〈ξn, ψn〉 are the singular values of PQ

and follow the ideas from [5, Theorem 2.2], we get that for all k such that sk < 1,

Aξk = skψk − s2kξk and Aψk = s2kψk − skξk.

Then
A2ξk = (s4k − s2k)ξk and A2ψk = (s4k − s2k)ψk.

So

vk =

(

s2k − isk

√

1− s2k

)

ξk − skψk and wk =

(

s2k + isk

√

1− s2k

)

ξk − skψk

are orthogonal eigenvectors for A, with eigenvalues isk

√

1− s2k and −isk
√

1− s2k, respectively.

Note that on the extension of the system ξk, R(P ) ⊖ R(T ), and on the extension of the
system ψk, R(Q)⊖N(T )⊥, A equals 0. On R(P )+R(Q), A is diagonalizable. On the orthogonal
complement of this subspace, namely N(P )⊥ ∩N(Q)⊥, A is trivial.

To prove the converse, we use Halmos decomposition. After elementary computations, one
sees that on H′ = L × L, [P,Q] is given by

[P ′, Q′] =

(

0 CS
−CS 0

)

.

If [P,Q] is diagonalizable, then so are [P ′, Q′] and [P ′, Q′]2 =

(

−C2S2 0
0 −C2S2

)

. Clearly

this implies that C2S2 and its square root CS are diagonalizable. We claim that X is diago-
nalizable. Indeed, note that CS = 1

2 sin(2X). The spectrum of 2X is contained in [0, π]. Let
E = χ[0,π/2](2X), be the spectral projection of 2X corresponding to the interval [0, π/2]. Then

the selfadjoint operator 2XE, acting in R(E) has spectrum contained in [0, π/2], and 2XE⊥

acting in R(E)⊥ has spectrum contained in [π/2, π]. Since E and sin(2X) commute, and both
selfadjoint operators are diagonalizable, they can be simultaneously diagonalized: there exist
orthonormal vectors ϕn such that

CS =
1

2
sin(2X) =

1

2

∑

n≥1

snϕn ⊗ ϕn,

with 0 < sn < 1, and either ϕn ∈ R(E) or ϕn ∈ R(E)⊥. Then

CSE =
1

2

∑

ϕj∈R(E)

sjϕj ⊗ ϕj and CSE⊥ =
1

2

∑

ϕk∈R(E)⊥

skϕk ⊗ ϕk.

The function arcsin(t) is continuous in σ(CSE) ⊂ [0, 1], and one has

2XE = arcsin(2CSE) =
∑

ϕj∈R(E)

arcsin(sj)ϕj ⊗ ϕj .

11



Then, since cos(2XE⊥ − π
2E

⊥) = sin(2XE⊥) and the spectrum of 2XE⊥ −π/2E⊥ is contained
in [0, π/2] (where cos has continuous inverse) one has

2XE⊥ − π/2E⊥ = arccos(sin(2XE⊥)) =
∑

ϕk∈R(E)⊥

arccos(sk)ϕk ⊗ ϕk.

Therefore X = XE +XE⊥ is diagonalizable.

Thus we may complete Corollary 2.2 with the following equivalent conditions:

Corollary 4.2. With the current notations, the following are equivalent:

1. U ∈ SdL0
.

2. [P0, UP0U
∗] is diagonalizable.

3. X is diagonalizable.

We point out that in figuring out if U ∈ SdL0
, only the generic part between L0 and UL0 is

relevant.

5 Geodesics of the Grassmann manifold

Example 2.4.3 is related to the following. Consider the differential geometry of the Grassmann
manifold P(H) of H (see [18], [9], or the survey article [3]). It is known that two projec-
tions/closed subspaces in generic position can be joined by a unique minimal geodesic. In other
words, for arbitrary PL0

, PL, the reductions of these projections to their common generic part
can be joined by a unique projections. On the non generic summands of H, the obstruction for
the existence of a geodesic joining two subspaces L0 and L is the eventual difference between
the dimensions of

L0 ∩ L⊥ and L⊥
0 ∩ L.

There exists a geodesic joining L0 and L if and only if these dimensions coincide (it is unique
among minimal geodesics if and only if these dimensions are zero). Therefore, (if we consider L0

fixed) a closed subspace subspace L such that dimL0 ∩ L⊥ = dimL⊥
0 ∩ L, can be joined to L0

by a geodesic δ: δ(0) = L0 and δ(1) = L, which is given by the action on L0 of a one parameter
unitary group: δ is of the form

δ(t) = eitZL0.

The exponent Z∗ = Z, which is co-diagonal with respect to the decomposition L0 ⊕ L⊥
0 , and

has norm ‖Z‖ ≤ π/2, is factored by means of the Halmos’ decomposition. It is trivial in (L0 ∩
L)⊕ (L⊥

0 ∩ L⊥). It is given by

Z ′ =

(

0 iX
−iX 0

)

in the generic part H′ = L0 × L0. In the remaining part L0 ∩ L⊥ ⊕ L⊥
o ∩ L it is not uniquely

determined. In the proof of Theorem 5.3 below we recall how these multiple geodesics are
obtained.
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Remark 5.1. Consider the generic part H′ of the fixed subspace L0 and a given subspace L.
There are two distinguished unitaries carrying L′

0 to L′ (the parts of L0 and L inH′, respectively),
namely the unitary eiZ

′
given by the unique geodesic and the symmetry V given by Davis in [10].

This symmetry is obtained as the unitary part in the polar decomposition of PL′
0
+ PL′ − IH′ ,

PL′
0
+ PL′ − I = V |PL′

0
+ P ′

L − I| = |PL′
0
+ PL′ − I|V.

V is a symmetry because PL′
0
+PL′ − I is a selfadjoint operator with trivial nullspace. In terms

of the operator X given above, it is straightforward to verify that

eiZ
′
=

(

C −S
S C

)

and V =

(

C S
S −C

)

.

They are related by
V = eiZ

′
(2PL′

0
− I) = (2PL′

0
− I)e−iZ′

.

This was proved in [2], and though it is a trivial verification, it is important in establishing the
uniqueness of geodesics in the generic part. The following is also an easy verification.

Proposition 5.2. The unitary eiZ
′
commutes with the commutator [PL′

0
, PL′ ]. The symmetry

V anti-commutes with [PL′
0
, PL′ ].

The next result characterizes when the one-parameter unitary group eitZ remains inside
SdL0

.

Theorem 5.3. Let δ(t) = eitZL0 be a geodesic starting at δ(0) = L0. Then the following are
equivalent:

1. eit0Z ∈ SdL0
for some t0 6= 0.

2. eitZ ∈ SdL0
for all t ∈ R.

3. Z ′, the generic part of Z, is diagonalizable.

In this case etZ and the commutators [P0, Pδ(t)] are simultaneously diagonalizable, for t ∈ R.

Proof. Fix t ∈ R, t 6= 0. In the generic part, Z ′ is diagonalizable, and thus eitZ is diagonalizable.
Since eitZ commutes with [P0, Pδ(t)] (which acts non trivially only in the generic part), and
both are diagonalizable, they can be simultaneously diagonalized. It remains to examine what
happens in the non generic parts. Denote L = δ(t). The fact that L and L0 are joined by a
geodesic means that dimL0 ∩ L⊥ = dimL⊥

0 ∩ L. It was proved in [3] that in the subspace

L0 ∩ L ⊕ L⊥
0 ∩ L⊥,

Z is trivial and thus eitZ is the identity. In

H′′ = L0 ∩ L⊥ ⊕ L⊥
0 ∩ L

the (multiple) geodesics are constructed as follows [3]. Put

Z ′′ : H′′ = L0 ∩ L⊥ ⊕ L⊥
0 ∩ L → H′′, Z ′′(ξ ⊕ η) = −iπ

2
(W ∗η ⊕−Wξ),
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where W : L0 ∩ L⊥ → L⊥
0 ∩ L is an arbitrary unitary isomorphism. Clearly Z ′′ is selfadjoint.

Let {µn} and {νn} be orthonormal bases of L0 ∩ L⊥ and L⊥
0 ∩ L, respectively, and Wµn = νn.

Then Z ′′µn = iπ2 νn and Z ′′νn = −iπ2µn. Then, for any fixed n, the subspace Sn generated by
(the orthonormal) pair µn, νn is stable under Z ′′. Clearly Z ′′|Sn is selfadjoint, and therefore
diagonalizable. Then Z ′′ = ⊕n≥1Z

′′|Sn is diagonalizable in H′′.

Remark 5.4. Let us further digress upon Example 3.3. It is easy to see that

L0 = {(ak) ∈ ℓ2(Z) : ak = a−k for all k ∈ Z}

and SL0 (S = the bilateral shift) are in generic position. Therefore, there exists a unique
geodesic joining L0 ans SL0. It is determined by the operator X. From Halmos’ model for a pair
of projections in generic position [14], one has that

(

cos2(X) 0
0 0

)

= PL0
PSL0

PL0
=

1

8
(1 + Π)S(1 + Π)S∗(1 + Π).

Pick f in L0 (i.e. f(z̄) = f(z) a.e.). Then

PL0
PSL0

PL0
f(z) =

1

8
(z2 + z̄2 + 2)(f(z) + f(z̄)) =

1

2
(Re(z2) + 1)f(z).

Then cos(X) = M 1√
2

√
Re(z2)+1

(multiplication operator) and X = M
arccos

(

1√
2

√
Re(z2)+1

). Then,

‖X‖ equals arccos of the minimum of the function 1√
2

√

Re(z2) + 1, i.e. ‖X‖ = π/2. It follows

that the geodesic (or Finsler) distance between L0 and SL0 equals

d(L0, SL0) = π/2.

On the other hand, let Y ∗ = Y be a logarithm for the bilateral shift S : eiY = S. For instance,
put Y =Marg(z), where arg : T → [−π, π) is usual argument. Then

γ(t) = eitY PL0
e−itY

is a smooth curve of projections joining γ(0) = PL0
and γ(1) = PSL0

. Therefore its length is
greater or equal than π/2. Note that

γ̇(t) = eitY iY PL0
e−itY − eitY PL0

e−itY iY = ieitY [Y, PL0
]e−itY .

Thus ‖γ̇(t)‖ = ‖[Y, PL0
]‖. Therefore

‖[Y, PL0
]‖ =

∫ 1

0
‖γ̇(t)‖dt = length(γ) ≥ π/2.

6 Non orthogonal projections

Let S,T ⊂ H be closed subspaces such that S+̇T = H, where +̇ means direct (non necessarily
orthogonal) sum. Let us relate the product of projections PSPT PS with the non orthogonal
projection Q = PS‖T with range S and nullspace T .
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One has the known formulas (see [1])

PS = Q(Q+Q∗ − I)−1 and PT = (I −Q)(I −Q−Q∗)−1.

Note that the selfadjoint invertible operator A = Q+Q∗−I satisfies AQ = Q∗A and AQ∗ = QA.
Then

PSPT = −Q(I −Q∗)A−2.

On the other hand, writing operators as matrices in terms of the decomposition H = S ⊕ S⊥,

PS =

(

1 0
0 0

)

, and Q =

(

1 B
0 0

)

,

where B = PSQ|S⊥ : S⊥ → S. Note that

A2 =

(

1 +BB∗ 0
0 1 +B∗B

)

,

and thus

PSPT =

(

BB∗(1 +BB∗)−1 −B(1 +B∗B)−1

0 0

)

and PSPT PS =

(

BB∗(1 +BB∗)−1 0
0 0

)

.

In particular, we obtain the following result

Proposition 6.1. PSPT is Schmidt decomposable if and only if PS‖T |S⊥ = B : S⊥ → S is
Schmidt decomposable. In this case, the singular values sn of PSPT and the singular values βn
of B are related by

sn =
βn

√

β2n + 1
.

The decreasing order is preserved because the map f(t) = t√
t2+1

is strictly increasing.

In [9], Corach, Porta and Recht studied the geometry of the fibration from the space the
oblique (non orthogonal) projections onto the space of orthogonal projections, in the setting
of arbitrary C∗-algebras. There are several ways to assign an orthogonal projection to a non
orthogonal one: the projection onto the range, the projection onto the nullspace, etc. But it is
this fibration of Corach, Porta and Recht, based on the polar decomposition, that has remarkable
metric properties. Let us describe this map.

Given Q ∈ B(H) with Q2 = Q, consider the reflection 2Q− 1, which satisfies (2Q− I)2 = I,
is equal to the identity in R(Q) and minus the identity in N(Q) . Let

2Q− I = ρQ|2Q− I|

be the polar decomposition. In [9] it was proved that

1. ρQ is a symmetry: ρ2Q = I, ρ∗Q = ρQ.

2. ρQ|2Q− I| = |2Q− I|−1ρQ.
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Let Q be a non orthogonal projection onto L0. We shall consider the question of when
ρQ ∈ SdL0

. Recall from example 2.4.3, that a symmetry ρQ ∈ SdL0
if and only if there exist

bi-orthogonal bases of L0 and the subspace N(ρQ − I). Note that

N(ρQ − I) = {ξ ∈ H : ρQξ = ξ} = {ξ ∈ H : (2Q− I)ξ = |2Q− I|ξ},

where the last assertion follows from the algebraic properties of 2Q− I and ρQ
In matrix form, in terms of the decomposition H = L0 ⊕ L⊥

0 ,

Q =

(

1 A
0 0

)

, 2Q− I =

(

1 2A
0 −1

)

and |2Q− I|2 =
(

1 2A
2A∗ 4A∗A+ 1

)

.

Note that we are interested in the 1, 1 entry of the square root of the last (positive) matrix.
Indeed,

Lemma 6.2. ρQ ∈ SdL0
if and only if the 1, 1 entry of |2Q − I| in the matrix in terms of the

decomposition L0 ⊕ L⊥
0 = H is Schmidt decomposable.

Proof. ρQ ∈ SdL0
if and only if P0ρQP0 is Schmidt decomposable.

P0ρQP0 = P0|2Q− I|(2Q− I)P0 = P0|2Q− I|P0,

because R(Q) = L0, and thus (2Q− I)P0 = P0.

Remark 6.3. One can write Q in terms of the Halmos decomposition induced by the subspaces
L0 = R(Q) and N(Q). Clearly L0 ∩N(Q) = {0} and L⊥

0 ∩N(Q)⊥ = (L0 +N(Q))⊥ = {0}. On
L0 ∩N(Q)⊥, Q is the identity, and on L⊥

0 ∩N(Q), Q is trivial. In [8], D. Buckholtz proved that
two closed subspaces S, T satisfy that S+̇T = H if and only if PS − PT is invertible. In our
case, this implies that P0 − PN(Q) is invertible. Also in [8], the formula

Q = P0

(

P0 − PN(Q)

)−1

was established. In the generic subspace (between L0 and N(Q)), we have therefore (denoting
by Q′ the restriction of Q to this part)

Q′ =

(

1 0
0 0

)(

1− C2 −CS
−CS −S2

)−1

.

The operator (P0 − PN(Q))
2 =

(

S2 0
0 S2

)

is invertible. Then S is invertible, and therefore

(P0 − PN(Q))
−1 = (P0 − PN(Q))(P0 − PN(Q))

−2 =

(

1 −CS−1

−CS−1 −1

)

,

and

Q′ =

(

1 −CS−1

0 0

)

.

In particular, one obtains that
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Corollary 6.4. Let Q be a projection. Then Q is unitarily equivalent to a projection Q+ with
matrix (in terms of the decomposition H = R(Q+)⊕N(Q+)

⊥)

Q+ =

(

1 B
0 0

)

,

with B ≥ 0.

Proof. Q′ is unitarily equivalent to its Halmos model, which has a negative 1, 2 entry. It suffices

to conjugate this model with the symmetry

(

1 0
0 −1

)

. On the other (non generic parts), Q is

either trivial or the identity.

Also, writing Q in the Halmos decomposition induced by R(Q) = L0 and N(Q) allows us to
obtain a formula for |2Q− I|. Note that in the generic part H′, one has

|2Q− 1|2 =
(

1 −2CS−1

−2CS−1 4C2S−2 + 1

)

= S−2

(

S2 −2CS
−2CS 3C2 + 1

)

.

Lemma 6.5. With the current notations
(

S2 −2CS
−2CS 3C2 + 1

)

= U

(

(1 + C)2 0
0 (1− C)2

)

U∗, (4)

where

U =
1√
2

(

−S(1 + C)−1/2 S(1− C)−1/2

(1 + C)1/2 (1− C)1/2

)

is a unitary operator in H0.

Proof. Note that (1−C)(1+C) = S2 is invertible, thus 1+C and 1−C are positive and invertible,
and the matrices above make sense. The proof that U is unitary and that the factorization holds
are straightforward verifications. This factorization is obtained by formally diagonalizing the
matrix of |2Q− 1|2 ((1 ± C)2 are its formal eigenvalues).

Putting these formulas together,

Corollary 6.6. Let Q be a (possibly oblique) projection with R(Q) = L0. In the Halmos decom-
position given by L0 = R(Q) and N(Q), the modulus |2Q− I| of 2Q− I is given by the identity
IL0∩N(Q)⊥⊕L0∩N(Q) in the non trivial non generic part L0 ∩N(Q)⊥ ⊕L0 ∩N(Q). In the generic

part H0 it is given by |2Q0 − I| =
(

S −C
−C (1 + C2)S−1

)

.

Proof. The assertion on the non generic part is clear. In H0

|2Q0 − I| =
(

S−2U

(

(1 + C)2 0
0 (1− C)2

)

U∗
)1/2

= S−1U

(

1 + C 0
0 1− C

)

U∗

=

(

S −C
−C (1 + C2)S−1

)

.
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Returning to our original question, the answer is now straightforward:

Theorem 6.7. Let Q =

(

1 A
0 0

)

be a projection with R(Q) = L0. Then the following are

equivalent:

1. ρQ ∈ SdL0
.

2. The operator X of the Halmos model induced by R(Q) and N(Q) is diagonalizable.

3. QQ∗ is diagonalizable (or equivalently, Q∗Q is diagonalizable).

4. A is Schmidt decomposable.

Proof. By Lemma 6.2, ρQ ∈ SdL0
if and only if the 1, 1 entry of |2Q−I| is diagonalizable, which

is equivalent to S = sin(X) being diagonalizable. This happens if and only if X is diagonaliz-

able. Note that QQ∗ =

(

1 +AA∗ 0
0 0

)

. Using Halmos model, one gets that QQ∗ is unitarily

equivalent to

I ⊕ I ⊕
(

S−2 0
0 0

)

in the orthogonal decomposition L0∩N(Q)⊥⊕L⊥
0 ∩N(Q)⊕H0. It follows that S is diagonalizable

if and only if QQ∗ is diagonalizable, which happens if and only if AA∗ is diagonalizable.

Remark 6.8. One can compute the form of ρQ in the Halmos decomposition (induced by
R(Q) = L0 and N(Q). In the non generic part L0∩N(Q)⊥⊕L⊥

0 ∩N(Q), ρQ is given by I⊕−I.
In the generic part H0 it is given by

ρQ|H0
= |2Q0 − I|(2Q0 − I) =

(

S −C
−C (1 + C2)S−1

)(

1 −2CS−1

0 −1

)

=

(

S −C
−C −S

)

.

7 Corners and dilations of contractions

An arbitrary contraction A : L0 → L0 can be obtained as the 1, 1 entry of a unitary operator in
a bigger Hilbert space. We start by considering the following elementary construction in L0×L0,
which is well known, and was described, for instance, in [13],

VA =

(

A (1−AA∗)1/2

(1−A∗A)1/2 −A∗

)

.

First note that if A = A∗, then VA is selfadjoint, i.e. a symmetry, and thus diagonalizable. This
means that the condition VA diagonalizable does not imply any decomposition property for A.
We have the following:

Proposition 7.1. A is Schmidt-decomposable if and only

(

0 1
1 0

)

VA is diagonalizable.
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Proof. Denote J =

(

0 1
1 0

)

and suppose that JVA is diagonalizable. Note that

JVA =

(

(1−A∗A)1/2 0

0 (1−AA∗)1/2

)

+

(

0 −A∗

A 0

)

, (5)

where the left hand matrix is selfadjoint and the right hand matrix is anti-selfadjoint. They
are the real and imaginary parts of JVA, which is a unitary operator, and therefore normal.
Therefore these two terms above commute. Since JVA is diagonalizable, its real and imaginary
parts are simultaneously diagonalizable. Thus, in particular, (1 − A∗A)1/2 is diagonalizable in
L0. Then A

∗A is diagonalizable, and A has a singular value decomposition.
Conversely, let A =

∑

n≥1 snηn ⊗ ξn be a singular value decomposition for A, with {ηn} and

{ξn} orthonormal systems, which span N(A)⊥ and R(A) = N(A∗)⊥, respectively. On

N(A)× {0} ⊕ {0} ×N(A∗),

the operator JVA is the identity. So it suffices to consider JVA on the orthogonal complement
of this subspace (in L0 × L0), which is clearly an invariant subspace for JVA. The complement
of this subspace is N(A)⊥ × N(A∗)⊥. For each n ≥ 1, denote by Sn the 2-dimensional space

generated by the (orthonormal) pair vn =

(

ηn
0

)

, wn =

(

0
ξn

)

. Note that

JVAvn = (1− s2n)
1/2vn + snwn and JVAwn = −snvn + (1− s2n)

1/2wn.

That is, Sn is invariant for JVA. Thus JVA is diagonalizable in each block Sn, and therefore also
on ⊕n≥1Sn = N(A)⊥ ×N(A∗)⊥.

Remark 7.2. In the above situation (A decomposable with singular values sn), the eigenvalues
of of JVA in N(A)⊥ ×N(A∗)⊥ are (1− s2n)

1/2 + i sn and (1 − s2n)
1/2 − i sn, each one with the

same multiplicity as sn.

Let us consider now the unitary dilation constructed by B. Sz-Nagy and C. Foias [17]. We
recall this construction. As above, let A be a contraction in L0. Consider the Hilbert space

H :=
⊕

n∈Z
Ln,

where Ln is a copy of L0, and the subspace L0 ⊂ H stands as the center summand (n = 0).
Then every operator T in H can be regarded as a matrix (Ti,j), i, j ∈ Z. The dilation by Nagy
and Foias is the unitary operator UA = (Ui,j), whose matrix entries are given by

U0,0 = A, U0,1 = DA∗ , U−1,0 = DA, U−1,1 = −A∗,

Ui,i+1 = IL0
for i 6= 0, 1, and Ui,j = 0 for all other i, j ∈ Z, where DT denotes the defect operator

(1− T ∗T )1/2.
Denote by S the bilateral shift (with multiplicity dimL0) of H:

S
∑

j∈Z
ξj =

∑

j∈Z
ξj+1.
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Theorem 7.3. Let A be a contraction in L0, and UA the Nagy-Foias dilation of A. Then A is
Schmidt decomposable if and only if SUA is diagonalizable.

Proof. An elementary matrix computation, shows that SUA, in the decomposition

H =
⊕

j<0

Lj ⊕ (L0 ⊕ L1)⊕
⊕

j>1

Lj

has the block-diagonal form
SUA = I ⊕NA ⊕ I,

where NA =

(

DA −A∗

A DA∗

)

. Note that NA coincides with JVA in (5). Thus the proof follows

applying Proposition 7.1.

8 Multiplication by continuous unimodular functions

Recall Example 2.4.1: H = L2(T), L0 = H2(T) and U = Mϕ for ϕ : T → T continuous. As
seen Mϕ ∈ SdH2(T). In particular, to ϕ corresponds a sequence {sn(ϕ) = sn} of real numbers
0 < sn ≤ 1, namely, the singular values of the Toeplitz operator with symbol ϕ.

If ϕ is analytic in D, then it must be a finite Blaschke product. In particular P0U |L0
=

Mϕ|H2(T) is an isometry in H2(T). Then its singular values are the sequence sn = 1.
The first non trivial case would be to consider a rational continuous unimodular function,

i.e. ϕ = Ba/Bb, where a = {a1, . . . , an} and b = {b1, . . . , bm} are finite sequences of zeros, and
Ba , Bb are the corresponding Blaschke products,

Ba(z) =

n
∏

j=i

z − aj
1− ājz

, Bb =

m
∏

k=i

z − bk
1− b̄kz

.

Assume that n = m, aj 6= ak if j 6= k, and the same for b (w.l.o.g. aj 6= bk). Denote ab =
{a1, . . . , an, b1, . . . , bn}. We want to characterize the singular values of Tϕ, or equivalently, of
PL0

MϕPL0
Mϕ−1 . Note that

PL0
MϕPL0

Mϕ−1 =MB−1

b

{MBb
PL0

MB−1

b

MBa
PL0

MB−1
a
}MBb

,

and thus one can compute the singular values of

MBb
PL0

MB−1

b

MBa
PL0

MB−1
a

= PBbL0
PBaL0

.

Clearly, we need to compute the generic part of the subspaces BaL0 and BbL0. Clearly H11 =
BabL0, and

H00 = BaL⊥
0 ∩BbL⊥

0 = {BaL0 ∨BbL0}⊥ = (H2(T))⊥ = L⊥
0 ,

because Ba and Bb are co-prime inner functions (see [12]). Then

H01 = H10 = {0}.

Indeed, if f ∈ Ba ∩B⊥
b
, f = gBa =

∑n
j=1 βjcbj , where βj ∈ C and cb denotes the Szego kernel

cb(z) =
1

1− b̄z
.
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Thus f can be written as a rational function f(z) = p(z)
∏n

j=1
(1−b̄jz)

, with p of degree n− 1. On the

other hand, f has n different zeros, and thus f = 0.

H′ = H2(T)⊖BabH
2(T),

the model space, usually denoted KBab
. The space KBab

is generated by the (non orthogonal)
functions Szego kernels caj , cbk , j, k = 1, . . . , n.

The reduction H′
a of BaL0 to the generic part H′ = Kab consists of the functions with vanish

at a1, . . . , an. Therefore they are orthogonal to ca1(z), . . . , can(z). Thus

(H′
a)

⊥ = 〈caj : j = 1, . . . , n〉 = Ka and (H′
b
)⊥ = 〈cbk : k = 1, . . . , n〉 = Kb.

Note that the singular values of PH′
a
PH′

b
are strictly less than one . Indeed, in the generic

part, since the intersection of the subspaces is trivial, the singular values are strictly less than 1
(see Remark 2.1.1). Therefore we can consider instead the singular values of P⊥

H′
a

P⊥
H′

b

.

For instance

Example 8.1. If n = 2 (and dimKab = 4), H⊥
a = 〈ca1 , ca2〉, H⊥

b
= 〈cb1 , cb2〉, the squares of

these singular values are the eigenvalues of the (symmetric) matrix









|〈u1, v1〉|2
‖u1‖2‖v1‖2

+
|〈u1, v2〉|2
‖u1‖2‖v2‖2

〈u1, v1〉〈v1, u2〉
‖v1‖2‖u1‖‖u2‖

+
〈u1, v2〉〈v2, u2〉
‖v2‖2‖u1‖‖u2‖

〈v1, u1〉〈u2, v1〉
‖v1‖2‖u1‖‖u2‖

+
〈v2, u1〉〈u2, v2〉
‖v2‖2‖u1‖‖u2‖

|〈u2, v1〉|2
‖u2‖2‖v1‖2

+
|〈u2, v2〉|2
‖u2‖2‖v2‖2









where u1(z) = ca1(z) and u2(z) = ca2(z)− 1−|a1|2
1−ā1a2

ca1(z) is the Gram-Schmidt orthonormalization

of ca1 , ca2 , and similarly v1(z) = cb1(z), and v2(z) = cb2(z) −
1−|b1|2
1−b̄1b2

cb1(z) is the orthonormal-

ization of cb1 , cb2 . Note that the inner products (and norms) involving the Szego kernels can be
explicitly computed.

In general, one can say the following:

Proposition 8.2. Let a and b as above, and Q = P(H′
a)

⊥‖(H′
b
)⊥ , which is the (non orthogonal)

projection

Kab = 〈ca1 , . . . , can〉 ⊕ 〈cb1 , . . . , cbn〉 → 〈ca1 , . . . , can〉 ⊂ Kab , f ⊕ g 7→ f.

Then the singular values sn of P0MBa/Bb
|L0

which are strictly less than one are finite, and are

sn =
βn

√

β2n + 1
, n = 1, . . . , n

where βn are the singular values of Q.

Proof. Use Lemma 6.1
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