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ABSTRACT. We prove new bounds on the dimensions of distance sets and pinned
distance sets of planar sets. Among other results, we show that if A ⊂ R2 is a Borel
set of Hausdorff dimension s > 1, then its distance set has Hausdorff dimension at
least 37/54 ≈ 0.685. Moreover, if s ∈ (1, 3/2], then outside of a set of exceptional
y of Hausdorff dimension at most 1, the pinned distance set {|x − y| : x ∈ A} has
Hausdorff dimension ≥ 2

3s and packing dimension at least 1
4 (1 + s+

√
3s(2− s)) ≥

0.933. These estimates improve upon the existing ones by Bourgain, Wolff, Peres-
Schlag and Iosevich-Liu for sets of Hausdorff dimension > 1. Our proof uses a multi-
scale decomposition of measures in which, unlike previous works, we are able to
choose the scales subject to certain constrains. This leads to a combinatorial problem,
which is a key new ingredient of our approach, and which we solve completely by
optimizing certain variation of Lipschitz functions.
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Introduction. Given A ⊂ Rd, its distance set is ∆(A) = {|x − y| : x, y ∈ A}. K.
Falconer [7] pioneered the study of the relationship between the Hausdorff dimen-
sions of A and ∆(A). He proved that if d ≥ 2 and A ⊂ Rd is a Borel (or even analytic)
set then dimH(∆(A)) ≥ min(dimH(A)− 1

2
(d− 1), 1), where dimH stands for Hausdorff

dimension. Falconer also constructed compact sets A ⊂ Rd (based on lattices) of
any Hausdorff dimension such that dimH(∆(A)) ≤ min(2 dimH(A)/d, 1). Although
it is not explicitly stated in [7], the conjecture that these lattice constructions are ex-
tremal, in the sense that one should have dimH(∆(A)) = 1 if dimH(A) ≥ d/2, has
become known as the Falconer distance set problem.

Falconer’s problem is a continuous version of the celebrated P. Erdős distinct dis-
tances problem [5], asserting (in the plane) that if |A| = N , A ⊂ R2, then |∆(A)| ≥
cN/
√

logN . L. Guth and N. Katz [8] (building up on work of Gy. Elekes and M.
Sharir [4]) famously solved this problem, up to logarithmic factors, by showing that
|∆(A)| ≥ cN/ logN . However, the approach of Guth and Katz and, indeed, all pre-
vious methods developed to tackle Erdős’ problem, do not appear to be able to yield
progress on Falconer’s problem.

From now on, we focus on the case d = 2, which is the first non-trivial case, the
best understood, and the focus of this article. T. Wolff [27], based on a method of P.
Mattila [15] and extending ideas of J. Bourgain [1], proved that if A ⊂ R2 is a Borel
set with dimH(A) ≥ 4/3, then dimH(∆(A)) = 1. In fact, he proved that dimH(A) > 4/3
ensures that ∆(A) has positive length, and established the more general dimension
formula

(1.1) dimH(∆(A)) ≥ min

(
3

2
dimH(A)− 1, 1

)
,
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whenever dimH(A) > 1. The method developed by Mattila and Wolff is strongly
Fourier-analytic, depending on difficult estimates for the decay of circular averages
of the Fourier transform of measures.

Later Bourgain [2], crucially relying on earlier work of N. Katz and T. Tao [13],
proved that if A ⊂ R2 satisfies dimH(A) ≥ 1, then

(1.2) dimH(∆(A)) >
1

2
+ δ,

where δ > 0 is a universal constant. Although non-explicit, it is clear from the proof
that the value of δ one would get is extremely small. The method of Katz-Tao and
Bourgain is based on additive combinatorics, and it seems difficult for this type of
arguments to yield reasonable values of δ.

A related problem concerns the dimensions of pinned distance sets

∆y(A) = {|x− y| : x ∈ A}.

Y. Peres and W. Schlag [24, Theorem 8.3] proved that if A ⊂ R2 is a Borel set with
dimH(A) = s, then for all 0 < t ≤ min(s, 1),

(1.3) dimH{y ∈ R2 : dimH(∆y(A)) < t} ≤ 2 + t−max(s, 1).

Recently, A. Iosevich and B. Liu [12] proved that (1.3) remains true with 3+3t−3s in
the right-hand side. This is an improvement in some parts of the parameter region.
Both results imply that if dimH(A) > 3/2, then there is y ∈ A such that dimH(∆yA) =
1, and it is unknown whether 3/2 can be replaced by a smaller number. We remark
that the results of both [24] and [12] extend to higher dimensions.

These were the best known results towards Falconer’s problem in the plane for
general sets prior to this article. For some special classes of sets, better results are
known. In particular, the second author proved in [26] that if A ⊂ R2 is a Borel set of
equal Hausdorff and packing dimension, and this value is > 1, then dimH(∆y(A)) =
1 for all y outside of a set of exceptions of Hausdorff dimension at most 1, and in
particular for many y ∈ A. This verifies Falconer’s conjecture for this type of sets,
outside of the endpoint. We remark that T. Orponen [22] and the second author [25]
had previously proved weaker results of the same kind. See also [15, 11] for other
results on the distance sets of special classes of sets.

1.2. Main results. In this article we prove new lower bounds on the dimensions
of (pinned) distance sets, which in particular greatly improve the best previously
known estimates when dimH(A) = 1 + δ, δ > 0 small.

Theorem 1.1. If A is a Borel subset of R2 with dimHA = s, then

(1.4) dimH

{
y ∈ R2 : dimH(∆y(A)) < min

(
2

3
s, 1

)}
≤ max(1, 2− s).
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In particular, if s > 1, then one can find many y ∈ A such that

dimH(∆y(A)) ≥ min

(
2

3
s, 1

)
.

We remark that we get better bounds for the dimension of the full distance set, see
Theorem 1.4 below.

The last claim in Theorem 1.1 improves the previously known bounds for the di-
mensions of pinned distance sets ∆y(A) with y ∈ A for all s ∈ (1, 3/2]. The bound
(1.4) also improves upon (1.3) (and the variant of Iosevich and Liu) in large regions
of parameter space, and in particular for t = min(2

3
s, 1) and all s ∈ (3/5, 5/3).

Theorem 1.1 is a special case of a more general result that takes into account the
Hausdorff and also the packing dimension of A. We refer to [6, §3.5] for the defi-
nition and main properties of packing dimension dimP, and simply note that it sat-
isfies dimH(A) ≤ dimP(A) ≤ dimB(A), where dimB denotes the upper box-counting
(or Minkowski) dimension. For our method, the worst case is that in which A has
maximal packing dimension 2, and we get better bounds for the distance set under
the assumption that the packing dimension is smaller:

Theorem 1.2. Let

χ(s, u) =


s(2 + u− 2s)

2 + 2u− 3s
if u > 2s− 1

1 if u ≤ 2s− 1
.

Given 0 < s ≤ u ≤ 2, the following holds: if A is a Borel subset of R2 with dimHA ≥ s
and dimPA ≤ u, then

dimH

{
y ∈ R2 : dimH(∆y(A)) < χ(s, u)

}
≤ max(1, 2− s).

In particular, if s > 1 then there are many y ∈ A such that

dimH(∆y(A)) ≥ χ(s, u),

and hence if dimH(A) > 1 and dimPA ≤ 2 dimHA − 1, then dimH(∆y(A)) = 1 for many
y ∈ A.

Note that Theorem 1.1 follows immediately by taking u = 2. A simple calculation
shows that if 0 ≤ s ≤ u ≤ 2 and s < 2, then

χ(s, u) = min

(
s(2 + u− 2s)

2 + 2u− 3s
, 1

)
.

We remark that, taking u = s, this theorem recovers the main result of [26] mentioned
above, namely that if dimH(A) = dimP(A) > 1, then dimH(∆yA) = 1 for many y ∈ A.
On the other hand, it was known from (1.3) that if dimH(A) > 3/2 then there is y ∈ A
such that dimH(∆yA) = 1. The last claim in Theorem 1.2 can be seen as interpolating
between these two situations, and hence provides a new, more general, geometric
condition under which Falconer’s conjecture is known to hold.
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When dimH(A) > 1, we are able to get much better lower bounds for the packing
dimension of the pinned distance sets:

Theorem 1.3. Let A be a Borel subset of R2 with s = dimH(A) ∈ (1, 3/2). Then

dimH

{
y ∈ R2 : dimP(∆y(A)) <

1 + s+
√

3s(2− s)
4

}
≤ 1.

In particular, there is y ∈ A such that

dimP(∆y(A)) ≥
1 + s+

√
3s(2− s)

4
>

2 +
√

3

4
= 0.933013 . . . .

We recall that since upper box-counting dimension is at least as large as packing
dimension, the above theorem also holds for upper box-counting dimension. Even
though Falconer’s conjecture is about the Hausdorff dimension of the distance set,
this result presents further evidence towards its validity.

Finally, as anticipated above, we get a better bound for the dimension of the full
distance set when dimH(A) is slightly larger than 1:

Theorem 1.4. If A ⊂ R2 is a Borel set with dimH(A) = s ∈ (1, 4/3), then

dimH(∆(A)) ≥ s(147− 170s+ 60s2)

18(12− 14s+ 5s2)
≥ 37

54
= 0.6851851 . . . .

A calculation shows that this indeed improves upon Wolff’s bound (1.1) for the di-
mension of the full distance set for s ∈ (1, 1.21931 . . .) (and upon Bourgain’s bound
(1.2) for all s > 1). We remark that this theorem is obtained by combining the idea
of the proof of Theorem 1.2 with a known effective variant of Wolff’s bound (1.1).
Although achieving this combination takes quite a bit of work, Theorem 1.2 should
perhaps be considered the most basic result, since its proof is shorter and already
contains most of the main ideas, and the improvement given by Theorem 1.4 is rel-
atively modest. Note also that already applying Theorem 1.1 for the full distance
set improves upon (1.1) for s ∈ (1, 6/5). See Figure 1 for a comparison of the lower
bounds from Theorems 1.1, 1.3 and 1.4 and Wolff’s lower bound.

After this paper was made public, B. Liu [14] posted a preprint extending Wolff’s
result to pinned distance sets. In particular, he shows that if A ⊂ R2 is a Borel set
with dimH(A) > 4/3, then ∆x(A) has positive Lebesgue measure for some x ∈ A
(with bounds on the dimension of the exceptional set). This is stronger than our
Theorem 1.1 for s > 4/3 (other than the exceptional set being larger).

1.3. Strategy of proof. Our approach is completely different to those of Wolff, Bour-
gain, Peres and Schlag and Iosevich and Liu. Rather, it can be seen as a continuation
of the ideas successively developed in [22, 25, 26] to attack the distance set prob-
lems for sets with certain regularity. Thus, one of the main points of this paper is
extending the strategy of these papers so that it can be applied to general sets.
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FIGURE 1. The three solid graphs show, from top to bottom: (1) the
lower bound given by Theorem 1.3 for dimP(∆y(A)) for y outside
of a one dimensional set of y, (2) the lower bound for dimH(∆(A))
given by Theorem 1.4, (3) the lower bound given by Theorem 1.1 for
dimH(∆y(A)) outside of a one dimensional set of y. The dashed line is
Wolff’s lower bound for dimH(∆(A)) (which was the previously known
best bound, outside of a tiny interval to the right of 1). In all cases the
variable is dimH(A).

At the core of our method is a lower box-counting estimate for pinned distance sets
∆yA in terms of a multi-scale decomposition of A or, rather, a Frostman measure µ
supported on A. See Section 4 for precise statements. A key aspect of these estimates
is that they recover a global lower box-counting estimate for ∆yA from bounds on
local, discretized and linearized estimates for the pinned distance measures ∆yµ.

The general philosophy of obtaining lower bounds for the dimension of projected
sets and measures, in terms of multi-scale averages of local projections is behind a
large number of results in fractal geometry in the last few years, see e.g. [10, 9] and
references there. The insight that this approach can be used also to study distance
sets is due to Orponen [20, 22].

Up until the paper [26], the scales in the multi-scale decomposition behind all the
variants of the method described above were of the form 2−Nj for some fixed N .
One of the innovations of [26] was to modify the method so that it could handle also
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scales of the form 2−(1+ε)
j (the point being that (1+ε)j is exponential in j, rather than

linear). Although this was flexible enough to handle sets of equal Hausdorff and
packing dimension (as opposed to Ahlfors-regular sets as in [22, 25]), it was still too
restrictive for dealing with general sets.

One of the main innovations of this paper is that we are able to work with scales
2−Mj where theMj only need to satisfy τMj ≤Mj+1−Mj ≤Mj+T (where τ > 0, T ∈
N are fixed parameters). This provides a major degree of flexibility. In particular, a
crucial point is that we are able to pick the sequence (Mj) depending on the set A
(or the Frostman measure µ), while in all previous works the scales in the multi-
scale decomposition were basically fixed. See Proposition 4.4. This leads us to the
combinatorial problem of optimizing the choice of (Mj) for each measure µ. We solve
this problem completely, up to negligible error terms, in Section 5.

In fact, we deduce the combinatorial statements we need from several statements
about the variation of Lipschitz functions, which might be of independent interest.
More precisely, given a 1-Lipschitz function f : [0, a] → R satisfying certain addi-
tional assumptions, we seek to minimize

∞∑
n=1

f(an)− min
[an,an−1]

f,

where (an)∞n=0 is a strictly decreasing sequence tending to 0 with a = a0 and an ≤
2an+1. Conversely, we also study the structure of functions f for which these sums
are (for some sequence (ai)) close to the minimum possible value. We underline that
this part of the method is completely new as the combinatorial problem does not
arise for fixed multi-scale decompositions.

Another obstacle to dealing with arbitrary sets and measures is that energies of
measures (which play a key role throughout) do not have a nice multi-scale decom-
position in general. We deal with this by decomposing a general measure supported
on [0, 1)2 as a superposition of measures with a regular Cantor structure, plus a small
error term: see Corollary 3.5. This step is an adaptation of some ideas of Bourgain
we learned from [3]. After some technical difficulties, this reduces our study to those
regular measures for which a suitable multi-scale expression of the energy does exist,
see Lemma 3.3.

The strategy just discussed is behind the proofs of Theorems 1.2, 1.3 and 1.4. How-
ever (as briefly indicated above), the proof of Theorem 1.4 is based on merging these
ideas with a more quantitative version of Wolff’s result that if dimH(A) ≥ 4/3 then
dimH(∆(A)) = 1, see Theorem 6.4 below. The fact that one can improve upon The-
orem 1.1 (for the full distance set) is based on the observation that for some sets
A ⊂ R2 of Hausdorff dimension s > 1 for which the method of the proof of Theorem
1.1 cannot give anything better than dimH(∆(A)) ≥ 2s/3, the quantitative version
of Wolff’s Theorem can give a much better bound. The fact that these two methods
are based on totally different techniques and also have different “enemies” that one
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must overcome, suggests that neither of them (or even in combination as we do here)
provides a definitive line of attack on Falconer’s problem.

1.4. Sets of directions, and the case of dimension 1. Although Theorem 1.1 does
provide new information on the pinned distance sets ∆yA when dimHA = 1, it
gives no information whatsoever on dimH(∆(A)) in this case. There are some well-
known “enemies” that one must handle in order to improve upon the easy bound
dimH(∆(A)) ≥ 1/2 when dimHA = 1. One is that the corresponding fact is false over
the complex numbers: R2 is a subset of C2 of half the dimension of the ambient space
for which the (squared) distance set

∆2(R2) = {(x1 − y1)2 + (x2 − y2)2 : (x1, x2), (y1, y2) ∈ R2}

also has half the dimension of the ambient space. Hence any improvements over 1/2
in the real case must take into account the order structure of R. The other obstacle
is a well-known counterexample to a naive discretization of the problem: see [13,
Eq. (2) and Figure 1]. These enemies do not arise when dimH(A) > 1. Despite these
conceptual differences, we underline that, with the exception of the work of Katz and
Tao [13] underpinning Bourgain’s bound (1.2), none of the other methods developed
so far make any distinction between the cases dimH(A) = 1 and dimH(A) = 1 + δ.

From the point of view of our strategy, the key significance of the assumption
dimH(A) > 1 is that in this case the sets of directions determined by points in A
has positive Lebesgue measure. In fact, we need a far more quantitative “pinned”
version of this fact, which is due to Orponen [21], improving upon a related result by
Mattila and Orponen [19] (see Proposition 3.11 below). However, even the fact that
the direction set has positive measure clearly fails if dimHA = 1 when A is contained
in a line. Since dimH(∆yA) = dimH(A) trivially when A is contained in a line, this
does not rule out an extension of our approach to the case dimH(A) = 1. However,
this would require some variant of Proposition 3.11 when both s, u are slightly less
than 1, under a suitable hypothesis of non-concentration on lines, and this appears
to be very hard. In [21, Corollary 1.8], Orponen also proved that the direction set of
a planar set of Hausdorff dimension 1 which is not contained in a line has Hausdorff
dimension ≥ 1/2, but this is very far from positive measure, let alone from anything
resembling Proposition 3.11.

To understand why directions arise naturally, we recall that our whole approach is
based on bounding the size of pinned distance sets in terms of a multi-scale average
of local linearized pinned distance measures. The derivative of the distance function
x 7→ |x − y| is precisely the direction spanned by x and y. Thus we are led to study
orthogonal projections of certain measures localized around x, where the angle is
given by the direction determined by x and y. The fact that these directions are
“well distributed” in a suitable sense can then be used in conjunction with a finitary
version of Marstrand’s projection theorem (see Lemma 3.6) and several applications
of Fubini to conclude that one can choose y such that for “many” x the direction
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determined by x and y is good in the sense that the L2 norm of the projection is
controlled by the 1-energy of the measure being projected.

1.5. Structure of the paper. In Section 2 we introduce notation to be used in the
rest of the paper. Section 3 contains some preliminary definitions and results that
will be repeatedly used in the later proofs. In Section 4 we establish a lower bound
for the box-counting numbers of pinned distance sets that will be at the heart of
the proofs of all main theorems. Section 5 contains a number of optimization results
about Lipschitz functions on the line, as well as corollaries of these results for discrete
[−1, 1]-sequences; these corollaries play a key role in the proofs of the main theorems.
Theorems 1.2, 1.3 and 1.4 are proved in Section 6. We conclude with some remarks
on the sharpness of our results in Section 7.

We remark that §5.2 and §5.3 are not needed for the proof of Theorem 1.2 (the
results from §5.2 are required only in the proof of Theorem 1.3, and §5.3 is needed
only for the proof of Theorem 1.4).

1.6. Acknowledgments. This project was started while the authors were staying at
Institut Mittag-Leffler as part of the program Fractal Geometry and Dynamics. We are
grateful to the organizers for the opportunity to take part, and to the organizers,
staff, and fellow participants for the pleasant stay.

We also wish to thank for T. Orponen for many useful discussions at the early stage
of this project, and an anonymous referee for several suggestions that improved the
paper, and in particular for suggesting a simplification of the statement and proof of
Proposition 3.12.

2. NOTATION

We use Landau’s O(·) notation: given X > 0, O(X) denotes a positive quantity
bounded above by CX for some constant C > 0. If C is allowed to depend on some
other parameters, these are denoted by subscripts. We sometimes write X . Y in
place of X = O(Y ) and likewise with subscripts. We write X & Y , X ≈ Y to denote
Y . X , X . Y . X respectively.

Throughout the rest of the paper, we work with three parameters that we assume
fixed: a large integer T and small positive numbers ε, τ . We briefly indicate their
meaning:

(1) We will decompose sets and measures in the base 2T . In particular, we will
work with sets and measures that have a regular tree (or Cantor) structure
when represented in this base: see Definition 3.2.

(2) The parameter τ will be used to define sets of bad projections: see Defini-
tion 3.8. The fact that τ > 0 is required to ensure that these sets have small
measure. It also keeps some error terms negligible, see Proposition 4.4.

(3) Finally, ε will denote a generic small parameter; it can play different roles at
different places.
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We will use the notation oT,ε,τ (1) = oT→∞,ε→0+,τ→0+(1) to denote any function
f(T, ε, τ) such that

f(T, ε, τ) ≥ 0 and lim
T→∞,ε→0+,τ→0+

f(T, ε, τ) = 0.

If a particular instance of o(1) is independent of some of the variables, we drop these
variables from the notation. Different instances of the o(1) notation may refer to
different functions of T, ε, τ , and they may depend on each other, so long as they can
always be made arbitrarily small.

Note that e.g. Oε(1) denotes any (finite) function of ε, while oε(1) denotes a func-
tion of ε that tends to 0 as ε→ 0+.

We will often work at a scale 2−T`; it is useful to think that ` → ∞ while T, ε, τ
remain fixed.

The family of Borel probability measures on a metric space X is denoted by P(X).
If µ(A) > 0, then µA denotes the normalized restriction µ(A)−1µ|A. If f : X → Y is a
Borel map, then by fµ we denote the push-forward measure, i.e. fµ(A) = µ(f−1A).

We let Dj be the half-open 2−jT -dyadic cubes in Rd (where d is understood from
context), and let Dj(x) be the only cube in Dj containing x ∈ Rd. Given a measure
µ ∈ P(Rd), we also let Dj(µ) be the cubes in Dj with positive µ-measure. Note that
these families depend on T . Given A ⊂ Rd, we also denote by N (A, j) the number
of cubes in Dj that intersect A.

A 2−m-measure is a measure in P([0, 1)d) such that the restriction to any 2−m-
dyadic cube Q is a multiple of Lebesgue measure on Q, i.e. a measure defined down
to resolution 2−m. Likewise, a 2−m-set is a union of 2−m dyadic cubes. If µ ∈ P(Rd)
is an arbitrary measure, then we denote

R`(µ) =
∑
Q∈D`

µ(Q)LebQ,

that is R`(µ) is the 2−T`-measure that agrees with µ on all dyadic cubes of side length
2−T`. We also define the corresponding analog for sets: given A ⊂ Rd, R`(A) denotes
the union of all cubes in D` that intersect A.

Due to our use of dyadic cubes, it will often be convenient to deal with supports
in the dyadic metric, i.e. given µ ∈ P([0, 1)d) we let

suppd(µ) = {x : µ(Dj(x)) > 0 for all j ∈ N}.

Note that µ(suppd(µ)) = 1 and that suppd(µ) ⊂ supp(µ).
If a measure µ ∈ P(Rd) has a density in Lp, then its density is sometimes also

denoted by µ, and in particular ‖µ‖p stands for the Lp norm of its density.
We make some further definitions. Let µ ∈ P([0, 1)d). If Q is a dyadic cube and

µ(Q) > 0, then we denote µQ = HomQµQ, where HomQ is the homothety renormal-
izing Q to [0, 1)d. If M < N be integers, then for x ∈ suppd(µ), we define

µ(x;M N) = RN−Mµ
DM (x).
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In other words, µ(x;M N) is the conditional measure on DM(x), rescaled back to
the unit cube, and then stopped at resolution 2−(N−M)T . Likewise, for Q ∈ DM with
µ(Q) > 0 we define

µ(Q;N) = RN−Mµ
Q.

Note that µ(x;M N) and µ(Q;N) are 2−(N−M)T -measures.
Logarithms are always to base 2.

3. PRELIMINARY RESULTS

3.1. Regular measures and energy. In this section we define some important no-
tions and prove some preliminary results.

Recall that the s-energy of µ ∈ P(Rd) is

Es(µ) =

∫∫
dµ(x)dµ(y)

|x− y|s
.

Lemma 3.1. For any Borel probability measure µ on [0, 1]d, if s > 0 then

Es(µ) ≈s,d,T
∞∑
j=1

2sT j
∑
Q∈Dj

µ(Q)2.

If µ is a 2−T`-measure and 0 < s < d, then the sum runs up to ` (in particular, the s-energy
is finite).

Proof. First of all, by [23, Theorem 3.1], we can replace Es(µ) by the s-energy on the
2T -ary tree, i.e. by ∫∫

2sT |x∧y| dµ(x)dµ(y),

where |x ∧ y| = max{j : y ∈ Dj(x)} (both energies are comparable up to a OT,d(1)
factor). The formula for Es(µ) now follows from a standard calculation, see e.g. [26,
Lemma 3.1] for the case T = 1 (the proof of the general case is identical).

Finally, the case in which µ is a 2−T`-measure follows again from another simple
calculation, see e.g. [26, Lemma 3.2] for the case T = 1. �

One of the key steps in the proof of the main theorems is to decompose an arbitrary
2−T`-measure in terms of measures which have a uniform tree structure when repre-
sented in base 2T . This notion (which is inspired by some constructions of Bourgain
[3]) is made precise in the next definition.

Definition 3.2. Given a sequence σ = (σ1, . . . , σ`) ∈ [−1, d − 1]`, we say that µ ∈
P([0, 1)d) is σ-regular if it is a 2−T`-measure, and for any Q ∈ Dj(µ), 1 ≤ j ≤ `, we
have

µ(Q) ≤ 2−T (σj+1)µ(Q̂) ≤ 2µ(Q),

where Q̂ is the only cube in Dj−1 containing Q.
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The expression 2−T (σj+1) in the definition may appear strange, but it turns out to
be a convenient normalization. The key point in this definition is that a measure is
σ-regular if all cubes of positive mass have roughly the same mass, and the sequence
(σj) helps quantify this common mass.

Lemma 3.3. If ν ∈ P([0, 1)d) is σ-regular for some σ ∈ R` and s ∈ (0, d), then∣∣∣∣∣log Es(ν)−

(
T

`
max
j=0

j∑
i=1

(s− 1)− σi

)∣∣∣∣∣ ≤ O(`) +Od,s,T (1).

Proof. We use crude bounds which are enough for our purposes. From the definition
it is clear that if Q ∈ Dj(ν) then

2−`2−T (σ1+1) · · · 2−T (σj+1) ≤ 2−j2−T (σ1+1) · · · 2−T (σj+1) ≤ ν(Q) ≤ 2−T (σ1+1) · · · 2−T (σj+1).

This implies, in particular, that

(3.1) 2T (σ1+1) · · · 2T (σj+1) ≤ |Dj(ν)| ≤ 2`2T (σ1+1) · · · 2T (σj+1).

From the two displayed equations and Lemma 3.1 it follows that

2−2`
∑̀
j=1

2−T (σ1+...+σj+j) · 2sT j .d,s,T Es(ν) .d,s,T 2`
∑̀
j=1

2−T (σ1+...+σj+j) · 2sT j.

WriteMs(σ) := T max`j=1

∑j
i=1(s − 1) − σj . Bounding

∑`
j=1 by ` times the maximal

term in the right-hand side, we deduce that

Ms(σ)− 2`−Od,s,T (1) ≤ log Es(ν) ≤Ms(σ) + `+ log `+Od,s,T (1).

This yields the claim. �

Heuristically, the previous lemma says that for log Es(ν) to be small, it must hold
that

j∑
i=1

σi ≥ (s− 1)j, j = 0, . . . , `.

Recalling the connection of σi to branching numbers, this means that the average
branching number over any initial set of scales has to be sufficiently large, in a man-
ner depending on s.

The following is a variant of Bourgain’s regularization argument (see e.g. [3, Sec-
tion 2] for a clean example). Recall that suppd(µ) denotes the dyadic support of µ.

Lemma 3.4. Let µ be a 2−T`-measure on [0, 1)d for some ` ≥ 1. There exists a 2−T`-set X ,
contained in suppd(µ) and satisfying µ(X) ≥ (2Td + 2)−`, such that µX is σ-regular for
some sequence σ ∈ [−1, d− 1]`.

Proof. Recall that Q̂ is the only cube inDj−1 containing Q ∈ Dj . For each k ∈ [0, Td]∩
Z, let

X
(k)
` =

⋃
{Q ∈ D` : µ(Q) ≤ 2−kµ(Q̂) < 2µ(Q)},
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and set
X

(>Td)
` =

⋃
{Q ∈ D` : µ(Q) ≤ 2−(Td+1)µ(Q̂)}.

Note that
µ
(
X

(>Td)
`

)
≤ 2−(Td+1)2Td =

1

2
,

and that suppd(µ) is the union of the X(k)
` together with X

(>Td)
` . Pick the smallest

k = k(`) ∈ [0, Td] which maximizes µ(X
(k)
` ) and set σ` = k/T − 1 ∈ [−1, d− 1]. Then

µ
(
X

(k)
`

)
≥ 1

2(Td+ 1)
.

Set X` := X
(k)
` and µ` = µX` .

Now continue inductively, replacing ` by `−1 and µ by µ`, until we eventually get
a set X1 and a sequence (σ1, . . . , σ`) ∈ [−1, d− 1]`. Note that for Q ∈ Dj(µi) the value
of µi(Q)/µi(Q̂) remains constant for i ≤ j and, in particular, for i = 1. Hence X = X1

has the desired properties. �

The set X given by the lemma will have far too little measure for our purposes:
later we will need µX(A) to be large (in particular nonzero) for certain sets A of
mass roughly `−2. By iterating the construction, we are able to get a moderately long
sequence of sets Xi such that µ(Rd \ ∪iXi) � `−2; by pigeonholing we will then be
able to select some Xi with µXi(A) suitably large.

Corollary 3.5. Fix ` ≥ 1, write m = T`, and let µ be a 2−m-measure on [0, 1)d. There exists
a family of pairwise disjoint 2−m-sets X1, . . . , XN with Xi ⊂ suppd(µ), and such that:

(i) µ
(⋃N

i=1Xi

)
≥ 1 − 2−εm. In particular, if µ(A) > 2−εm, then there exists i such that

µXi(A) ≥ µ(A)− 2−εm.
(ii) µ(Xi) ≥ 2−(ε+(1/T ) log(2dT+2))m ≥ 2−oT,ε(1)m,

(iii) Each µXi is σ(i)-regular for some σ(i) ∈ [−1, d− 1]`.
Moreover, the family (Xi)

N
i=1 may be constructed so that it is determined by d, T, ε, ` and µ

(even though there may be other families satisfying the above properties).

Proof. Let X1 be the set given by Lemma 3.4, and put B1 = [0, 1]d \ X1. Continue
inductively: once Xj, Bj are defined, let Xj+1 be the set given by Lemma 3.4 applied
to µBj , and set Bj+1 = Bj \Xj+1. Then (setting B0 = [0, 1)d)

(3.2) µ(Bj) ≥ 2−εm =⇒ µ(Xj+1) ≥ 2−εm(2dT + 2)−`.

Let N be the smallest integer such that µ(BN) ≤ 2−εm; such N exists thanks to (3.2).
It is clear that in this construction the familyX1, . . . , XN is determined by d, T, ε, `, µ

since the set X constructed in the proof of Lemma 3.4 is determined by d, T, `, µ.
The first part of claim (i) is immediate. Then note that

µ(A)− 2−εm ≤
N∑
i=1

µ(Xi ∩ A) =
N∑
i=1

µ(Xi)µXi(A),



14 TAMÁS KELETI AND PABLO SHMERKIN

so there must be i such that µXi(A) ≥ µ(A)− 2−εm, as claimed.
Finally, (ii) is immediate from (3.2) and the definition of N , and (iii) is clear since

the sets Xi were provided by Lemma 3.4. �

3.2. Sets of bad projections. In this subsection, we introduce sets of “bad” multi-
scale projections for a measure µ around a point x. The simple fact that these sets
can be taken to have small measure (independently of µ and x) will play a crucial
role later. Although a similar notion was introduced in [26], the sets of bad projec-
tions we use here are far more flexible and also more involved, depending on the
decomposition into regular measures provided by Corollary 3.5.

Given θ ∈ S1, we denote the orthogonal projection x 7→ x · θ by Πθ. Normalized
Lebesgue measure on S1 will be denoted by | · |. We recall the following consequence
of the energy version of Marstrand’s projection theorem.

Lemma 3.6. Let µ ∈ P([0, 1)2) have finite 1-energy. Then, for any R > 0,

|{θ ∈ S1 : ‖Πθµ‖22 ≥ RE1(µ)}| . R−1.

Proof. This is just a consequence of Markov’s inequality and the identity∫
S1

‖Πθµ‖22 dθ . E1(µ).

see e.g. [16, Equation 1.7]. �

We restate [26, Lemma 3.7] using our notation, for later reference.

Lemma 3.7. For any ν ∈ P(R2), k ∈ N and θ ∈ S1,

‖RkΠθν‖22 ≈ ‖ΠθRkν‖22.

Next, we define the various sets of “bad projections”.

Definition 3.8. Given µ ∈ P([0, 1)2), x ∈ suppd(µ) and non-negative integers j, k, j0, `,
we let

Bad(µ, x, j, k) =
{
θ ∈ S1 : ‖Πθµ(x; j j + k)‖22 ≥ 2εTkE1(µ(x; j j + k))

}
,

Badj0 `(µ, x) =
⋃{

Bad(µ, x, j, k) : k ≥ τj, j0 ≤ j ≤ j + k ≤ `
}
.

We underline that the definition of Badj0 `(µ, x) depends on the parameters T, ε
and τ . Note that, since µ(x; j j+ k) has a bounded density by definition, both quan-
tities in the definition of Bad(µ, x, j, k) are finite.

Our next goal is to combine Lemma 3.6 with the decomposition given by Corollary
3.5. Starting with a 2−T`-measure µ ∈ P([0, 1)2) and x ∈ suppd(µ), we define

(3.3) Bad′j0 `(µ, x) =

{
Badj0 `(µXj , x) if x ∈ Xj

∅ if x ∈ suppd(µ) \
⋃
iXi

,

where (Xi)
N
i=1 are the sets given by Corollary 3.5. Note that suppd(µXj) = Xj .
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Lemma 3.9. There exists a further constant ε′ = ε′(T, ε, τ) > 0 such that, for any 2−T`-
measure µ ∈ P([0, 1)2),

|Bad′ε` `(µ, x)| .T,ε,τ 2−ε
′` for all x ∈ suppd(µ).

Proof. According to the definitions and Lemma 3.6, for any ν ∈ P([0, 1)2) and x ∈
suppd(ν),

|Badj0 `(ν, x)| .
∞∑
j=j0

∞∑
k=bτjc

2−εTk .T,ε,τ 2−εTτj0 .

The point here is that the bound does not depend on ν or x. Hence the claim follows
with ε′ = ε2Tτ . �

Finally, if µ ∈ P([0, 1)2) and x ∈ suppd(µ), we let

(3.4) Bad′′`0(µ, x) =
∞⋃
`=`0

Bad′ε` `(R`µ, x).

We record the following immediate consequence of Lemma 3.9 for later use.

Lemma 3.10.
|Bad′′`0(µ, x)| .T,ε,τ 2−ε

′`0 ,

for all x ∈ suppd(µ), where ε′ = ε′(T, ε, τ) > 0 is the constant from Lemma 3.9.

3.3. Radial projections. The following result was recently established by T. Orpo-
nen [21]. We state it only in the plane. We denote the radial projection with center y
by Py, i.e. Py(x) = (y − x)/|y − x| ∈ S1 is the (oriented) direction determined by x
and y.

Proposition 3.11. Let µ, ν ∈ P([0, 1)2) be measures with disjoint supports, such that
Es(µ) <∞, Eu(ν) <∞ for some u > 1, 2− u < s < 1. Then there is p = p(s, u) > 1 such
that Pxν is absolutely continuous with a density in Lp(S1) for µ almost all x. Moreover,∫

‖Pxν‖pp dµ(x) <∞.

Proof. This is stated in [21, Equation (3.5)], except that Orponen deals with weighted
measures µy = |x−y|−1dµ instead of µ (note that the roles of µ and ν are interchanged
in [21]). Since the weight |x−y|−1 is bounded away from 0 and∞ by the assumption
that the supports of µ and ν are bounded and disjoint, the claim also holds for µ. �

We point out that Proposition 3.11 uses the Fourier transform, and is the only
point in the proofs of Theorems 1.2 and 1.3 that does (on the other hand, the proof
of Theorem 1.4 relies heavily on the strongly Fourier-analytic approach of Mattila-
Wolff).

Proposition 3.11 has the following key consequence. A similar statement was ob-
tained in [26] using a slightly more involved argument. We recall that | · | stands for
normalized Lebesgue measure on the circle.
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Proposition 3.12. Let µ, ν ∈ P([0, 1)2) have disjoint supports and satisfy Es(µ), Eu(ν) <
∞ for some s ∈ (0, 2), u > max(1, 2 − s). Then there exists κ = κ(µ, ν) > 0 such that the
following holds:

Suppose that Θ ⊂ [0, 1)2 × S1 is a Borel set such that

(µ×H1)(Θ) ≤ κ.

Then

(µ× ν){(x, y) : Py(x) 6∈ Θx} >
2

3
.

Proof. Since Es(µ) < ∞ implies that Es′(µ) < ∞ for all s′ < s, we may assume that
s < 1. By Proposition 3.11, there is p > 1 such that∫

‖Pxν‖pp dµ(x) =: C <∞.

Denote Θx = {θ ∈ S1 : (x, θ) ∈ Θ} and −Θx = {−θ : θ ∈ Θx}. Using Fubini and
Hölder, each twice, we estimate

(µ× ν){(x, y) : Py(x) ∈ Θx} =

∫
Pxν(−Θx) dµ(x)

≤
∫
H1(Θx)

1/p′‖Pxν‖p dµ(x)

≤
(∫
H1(Θx)dµ(x)

)1/p′ (∫
‖Pxν‖ppdµ(x)

)1/p

≤ κ1/p
′
C1/p.

The claim follows by choosing κ so that κ1/p′C1/p ≤ 1/3. �

4. BOX-COUNTING ESTIMATES FOR PINNED DISTANCE SETS

In this section we derive a lower bound on box-counting numbers of pinned dis-
tance sets that will be crucial in the proofs of Theorems 1.2 ,1.3 and 1.4. Our estimate
will be in terms of a multiscale decomposition where, unlike previous works in the
literature, we are allowed to choose the sequence of scales (depending on the set
or measure for which we are seeking estimates). This additional flexibility will ul-
timately allow us to improve upon the easy bounds on the dimensions of distance
sets.

To begin, we recall some basic facts about entropy. If ν ∈ P(Rd) and A is a finite
partition of Rd (or of a set of full ν-measure), then the entropy of ν with respect to A
is given by

H(ν,A) = −
∑
A∈A

ν(A) log(ν(A)),
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with the usual convention 0 · log 0 = 0. It follows from the concavity of the logarithm
that one always has

H(ν,A) ≤ log |A|.
Hence, a lower bound for H(ν,Dj) provides a lower bound for N (A, j) if A is a
Borel set of full measure (recall that N (A, j) denotes the number of elements in Dj
that intersect A). We will apply this when ν is supported on a pinned distance set.
Although box-counting numbers in principle give bounds only for box dimension,
together with standard mass pigeonholing arguments we will be able to get bounds
also for Hausdorff and packing dimension.

The following proposition is the key device that will allow us to bound from below
the entropy of pinned distance measures (and hence also the box-counting numbers
of pinned distance sets). Roughly speaking, we bound the entropy of the projection
of a measure µ under the pinned distance map by an average over both scales and
space (the latter, weighted by µ) of a quantity involving the L2 norms of projected
local pinned distance measures. We emphasize that this method to bound the di-
mension of (linear or nonlinear) projections from below goes back in various forms
to [10, 9, 22], although the use of projected L2 norms (rather than projected entropies)
was first used in [26].

Before stating the proposition we introduce some definitions. Given L ∈ N, a
good partition of (0, L] is an integer sequence 0 = N0 < . . . < Nq = L such that
Nj+1 − Nj ≤ Nj + 1. We write ∆y(x) = |x − y| for the pinned distance map, and
θ(x, y) = Py(x) = (x− y)/|x− y|.

Proposition 4.1. Let µ ∈ P([0, 1)d), let y ∈ Rd be at distance ≥ ε from supp(µ), and fix a
good partition (Ni)

q
i=0 of (0, `]. Then

(4.1) T`−H(∆yµ,D`) ≤ OT,ε(q) +

q−1∑
i=0

∑
Q∈DNi

µ(Q) log ‖Πθ(xQ,y)µ(Q;Ni+1)‖22,

where xQ is an arbitrary point in Q.

Proof. WriteDi = Ni+1−Ni. Note that ourDi correspond toDT i and our TNi tomi in
[26]. Recall also that µQ denotes the magnification of µQ to the unit cube. It is shown
in [26, Proposition 3.8 and Remark 3.10] that

(4.2) H(∆yµ,D`) ≥ −OT,ε(q) +

q−1∑
i=0

∑
Q∈DNi

µ(Q)H
(
Πθ(y,xQ)µ

Q,DDi
)
.

Applying Lemma 3.7 to ν = µQ for some Q ∈ DNi and k = Di, we get that

(4.3) ‖RDiΠθ(y,xQ)µ
Q‖22 ≈ ‖Πθ(y,xQ)µ(Q;Ni+1)‖22.

On the other hand, a simple convexity argument (see [26, Lemma 3.6]) yields that,
for any ν ∈ P(R) and k ∈ N,

H(ν,Dk) ≥ Tk − log ‖Rkν‖22.
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Applying this with k = Di and ν = Πθ(y,xQ)µ
Q, and recalling (4.3), we deduce that

H
(
Πθ(y,xQ)µ

Q,DDi
)
≥ TDi − log ‖Πθ(y,xQ)µ(Q;Ni+1)‖22 −O(1).

Using this bound in each term in the right-hand side of (4.2), and absorbing the sum
of the q O(1) terms into OT,ε(q), we get the claim. �

We remark that the assumption that Nj+1 −Nj ≤ Nj + 1 in the definition of good
partition (which will play a crucial role later) arises from the linearization of the dis-
tance function, and cannot be substantially weakened. The key advantage of having
L2 norms instead of entropies in this proposition is that the estimate one gets is ro-
bust under passing to subsets of moderately large measure:

Proposition 4.2. With the assumptions and notation from Proposition 4.1, let us write
F(µ) for the right-hand side of (4.1) (we assume y and the partition (Ni) are fixed). If
µ ∈ P([0, 1)2), ν = µA where A is Borel and µ(A) > 0, then

F(ν) ≤ OT,ε(q) + 2q log
(

T`
µ(A)

)
+

q−1∑
i=0

∑
Q∈DNi

ν(Q) log ‖Πθ(y,xQ)µ(Q;Ni+1)‖22.

Proof. We start with the trivial observation that if ρ, ρ′ ∈ P(Rd) have an L2 density
and ρ′(S) ≤ Kρ(S) for all Borel sets S, then the same bound transfers over to the
densities for a.e. point, and so ‖ρ′‖22 ≤ K2‖ρ‖22.

Let ζ = 1/(T`) ∈ (0, 1). Fix i ∈ {0, . . . , q − 1}, and note that

(4.4)
∑
{ν(Q) : Q ∈ DNi , ν(Q) < ζµ(Q)} < ζ.

Suppose ν(Q) = µ(A ∩Q)/µ(A) ≥ ζµ(Q) > 0 for a given Q ∈ DNi . Then

νQ(S) =
µ(A ∩Q ∩ S)

µ(A ∩Q)
≤ µ(Q ∩ S)

ζµ(A)µ(Q)
=

1

ζµ(A)
µQ(S)

for any Borel set S ⊂ [0, 1)2. This domination is preserved under push-forwards
and the action of RDi (where as before Di = Ni+1 − Ni), so in light of our initial
observation we get

‖Πθ(y,xQ)ν(Q;Ni+1)‖22 ≤
1

(ζµ(A))2
‖Πθ(y,xQ)µ(Q;Ni+1)‖22,

always assuming that ν(Q) ≥ ζµ(Q) > 0 and Q ∈ DNi . Also, since the measure
Πθ(y,xQ)µ(Q;Ni+1) is supported on an interval of length

√
2, it follows from Cauchy-

Schwarz that

(4.5) ‖Πθ(y,xQ)µ(Q;Ni+1)‖22 ≥ 2−1/2.

On the other hand, for any 2−TD-measure ρ on R one has ‖ρ‖22 ≤ 2TD. In light of
Lemma 3.7, this implies that

(4.6) ‖Πθ(y,xQ)ν(Q;Ni+1)‖22 . 2TDi .
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Splitting (for each i) the sum
∑

Q∈DNi
in Proposition 4.1 into the cubes with ν(Q) ≥

ζµ(Q) and ν(Q) < ζµ(Q), and recalling (4.4), we arrive at the estimate

F(ν) ≤ OT,ε(q) + ζT`− 2q log(ζµ(A)) +

q−1∑
i=0

∑
Q∈DNi

ν(Q)≥ζµ(Q)

ν(Q) log ‖Πθ(y,xQ)µ(Q;Ni+1)‖22,

where we merged the sum of the (log of the) implicit constants in (4.6) into OT,ε(q).
Recalling that ζ = 1/(T`) and using (4.5) we get the desired result. �

Our next goal is to get a simpler lower bound in the context of Proposition 4.2
when µ is σ-regular (recall Definition 3.2), and ν is the restriction of µ to the set of
points which are not bad in the sense of §3.2. Combining the results of §3.2 and §3.3,
we will later be able to deal with general measures via a reduction to this special
case.

We require some additional definitions:

Definition 4.3. We say that 0 = N0 < N1 < . . . < Nq = L is a τ -good partition of (0, L]
if

(4.7) τNj ≤ Nj+1 −Nj ≤ Nj + 1

for every 0 ≤ j < q. In other words (Nj) is a good partition and additionally Nj+1 ≥
(1 + τ)Nj .

Given a finite sequence (σ1, . . . , σL) ∈ RL, let

S(σ) = −
L

min
j=0

σ1 + · · ·+ σj ≥ 0.

For any good partition P = (Nj)
q
j=0 of (0, L] and any σ ∈ RL, we denote

M(σ,P) =

q−1∑
j=0

S(σ|(Nj, Nj+1]),

where σ|I denotes the restriction of the sequence σ to the interval I .
Finally, given σ ∈ RL and τ ∈ (0, 1), we let

Mτ (σ) = min{M(σ,P) : P is a τ -good partition of (0, L]}.

Recall that oT,ε(1) denotes a function of T and εwhich tends to 0 as T →∞, ε→ 0+.

Proposition 4.4. Suppose that ρ ∈ P([0, 1)2) is a (σ1, . . . , σ`)-regular measure. Assume
that there are a Borel set A ⊂ [0, 1)2, a point y ∈ R2 and a number β ∈ (0, 1) satisfying that
ρ(A) > 0, dist(y, supp(ρ)) ≥ ε, and for all x ∈ A ∩ suppd(ρ) there is x̃ ∈ D`(x) such that

θ(x̃, y) /∈ Badβ` `(ρ, x̃).

Then
logN (∆yA, `)

T`
≥ 1− Mτ (σ)

`
− Error .
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where

Error = 2β + oT,ε(1) +OT,ε,τ

(
log2 `

`

)
+
Oτ (log `) log(1/ρ(A))

`
.

Proof. Let P = (Ni)
q
i=0 be a τ -good partition of (0, `]. We have to show that

logN (∆yA, `)

T`
≥ 1− M(σ,P)

`
− Error .

Fix i0 as the smallest value of i such that Ni ≥ β`, and note that Ni0 < 2β`+ 1.
Let us rewrite the inequality from Proposition 4.2 applied to ρ and ρA in the form

F(ρA) ≤ E + ΣI + ΣII,

where

E = OT,ε(q) + 2q log
(

T`
ρ(A)

)
,

ΣI =

i0−1∑
i=0

∑
Q∈DNi :ρ(A∩Q)>0

ρA(Q) log ‖Πθ(y,xQ)ρ(Q;Ni+1)‖22,

ΣII =

q−1∑
i=i0

∑
Q∈DNi :ρ(A∩Q)>0

ρA(Q) log ‖Πθ(y,xQ)ρ(Q;Ni+1)‖22,

where xQ are arbitrary points in Q. By assumption, we may choose these points so
that

(4.8) θ(xQ, y) /∈ Badβ` `(ρ, xQ).

Using that (1 + τ)q ≤ `, we bound

(4.9) E ≤ OT,ε,τ (log2 `) +Oτ (log `) log(1/ρ(A)).

Write Di = Ni+1 − Ni. To estimate ΣI, we use the trivial bound ‖RDi(·)‖22 ≤ 2DiT

together with Lemma 3.7 and the bounds Ni0 < 2β`+ 1, (1 + τ)q ≤ `, so that

ΣI ≤
i0−1∑
i=0

∑
Q∈DNi

ρA(Q)(DiT +O(1))

≤ Ni0T +O(i0)

≤ 2βT`+OT,τ (log `).

(4.10)

Now, to estimate the main term ΣII, we need to go back to Definition 3.8. By (4.8),
and using that P is a τ -good partition of (0, `], we have θ(xQ, y) /∈ Bad(ρ, xQ, Ni, Di)
for i0 ≤ i < q. We deduce that

log ‖Πθ(xQ,y)ρ(Q;Ni+1)‖22 ≤ εTDi + log E1(ρ(Q;Ni+1)),
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for i0 ≤ i < q. On the other hand, by the assumption that ρ is (σ1, . . . , σ`)-regular,
and since P is a good partition of (0, `], the measure ρ(Q;Ni+1) is (σNi+1, . . . , σNi+1

)-
regular. Hence, using Lemma 3.3, we obtain

log E1(ρ(Q;Ni+1)) ≤ O(Di) +OT (1) + TS(σ|(Ni, Ni+1]).

Combining the last two displayed formulas, we deduce that

log ‖Πθ(xQ,y)ρ(Q;Ni+1)‖22 ≤ oT,ε(1)TDi +OT (1) + TS(σ|(Ni, Ni+1]).

Adding up from i = i0 to q − 1 and again using q = Oτ (log `), we get

(4.11) ΣII ≤ oT,ε(1)T`+OT,τ (log `) + TM(σ,P).

Combining (4.9), (4.10) and (4.11), we conclude that
1

T`
F(ρA) ≤ 1

`
M(σ,P) + Error,

where Error is as in the statement. Recall that F(µ) denotes the right-hand side of
(4.1) in Proposition 4.1. Now Proposition 4.1 guarantees that

1

T`
H(∆yρA,D`) ≥ 1− 1

`
M(σ,P)− Error .

Since H(µ,A) ≤ log |A| for any finite Borel partitionA of a set of full µ-measure, this
finishes the proof. �

Note that in this proposition, the sequence σ depends on the measure ρ and the
bound is in terms of Mτ (σ) (we will be able to make the error term arbitrarily small).
Thus we are led to the combinatorial problem of minimizing M(σ, (Ni)) over all τ -
good partitions for a given σ ∈ [−1, 1]`. This problem will be tackled in the next
section: see Proposition 5.23, and also Proposition 5.24 for the case in which we are
allowed to restrict σ to (0, L] for some large L.

5. FINDING GOOD SCALE DECOMPOSITIONS: COMBINATORIAL ESTIMATES

5.1. An optimization problem for Lipschitz functions. We begin by defining suit-
able analogs of the concepts from Definition 4.3 for Lipschitz functions, instead of
[−1, 1]-sequences.

Definition 5.1. A sequence (an)∞n=0 is a partition of the interval [0, a] if a = a0 > a1 >
. . . > 0 and an → 0; it is a good partition if we also have ak−1/ak ≤ 2 for every k ≥ 1.

A sequence (an)∞n=0 is a τ -good partition for a given 0 < τ < 1 if it is a good partition
and we also have ak−1/ak ≥ 1 + τ for every k ≥ 1.

Let f : [0, a]→ R be continuous and (an) be a partition of [0, a]. By the total drop of
f according to (an) we mean

T(f, (an)) =
∞∑
n=1

f(an)− min
[an,an−1]

f,
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and we also introduce the notation

T(f) = inf{ T(f, (an)) : (an) is a good partition of [0, a] },
Tτ (f) = inf{ T(f, (an)) : (an) is a τ -good partition of [0, a] }.

We call the interval [an, an−1] increasing if min[an,an−1] f = f(an) and decreasing
if min[an,an−1] f = f(an−1). (Note that f needs not be increasing or decreasing on
[an, an−1].)

In this section we investigate the following question: given a 1-Lipschitz function
f : [0, a]→ R satisfying certain bounds, how large can T(f) and Tτ (f) be?

First we study T(f). Later we show (see Corollary 5.20) that for small τ the quan-
tities T(f) and Tτ (f) are close. Finally, from the bounds on Tτ (f) we deduce corre-
sponding bounds on Mτ (σ): see for example Proposition 5.23. Hence this problem
is closely related to that of minimizing the dimension loss when estimating the di-
mension of the pinned distance set via Proposition 4.4. Dealing first with Lipschitz
functions rather than [−1, 1]-sequences allows us to avoid certain technicalities and
make the arguments more transparent.

The basic result is the following.

Proposition 5.2. Let a > 0, −1 ≤ D < C ≤ 1 be given parameters such that C ≥ 2D. Let
f : [0, a] → R be a 1-Lipschitz function such that Dx ≤ f(x) ≤ Cx for every x ∈ [0, a].
Then

(5.1) T(f) ≤ (a− f(a))(C − 2D)

1 + 2C − 3D
≤ a · (1−D)(C − 2D)

1 + 2C − 3D
.

Proof. Since f(a) ≥ Da and a > 0, the second inequality of (5.1) is clear, so it enough
to prove the first inequality.

Let
h =

C − 2D

1 + C −D
and ρ =

C − 2D

1 + 2C − 3D
.

Note that

(5.2) h =
ρ

1− ρ
and ρ =

h

h+ 1

and h, ρ ≥ 0 since we assumed C ≥ 2D and C ≥ D, so 2C ≥ 3D.
We will construct a good partition (an) with the following two extra properties:
(*) every interval [an, an−1] (n = 1, 2, . . .) is either increasing or decreasing (recall

Definition 5.1), and
(**) if [ak, ak−1], . . . , [al+1, al] (k ≥ l + 1 ≥ 1) is a maximal block of consecutive

decreasing intervals, then

f(ak)− f(al)

al − ak
≤ h =

C − 2D

1 + C −D
.

First we show that this is enough to prove our claim. Let a = a′0 > a′1 > . . . be the
endpoints of the union of each maximal block of consecutive intervals of the same
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type (increasing or decreasing). It easily follows from the definitions and telescoping
that T(f, (an)) = T(f, (a′k)). Hence to obtain (5.1) it is enough to prove

(5.3) T(f, (a′k)) ≤ ρ · (a− f(a)).

We claim that

(5.4) f(a′k)− min
[a′k,a

′
k−1]

f ≤ ρ((a′k−1 − f(a′k−1))− (a′k − f(a′k))) (k = 1, 2, . . .).

Indeed, by construction, the interval [a′k, a
′
k−1] is either increasing or decreasing. If

it is increasing then

f(a′k)− min
[a′k,a

′
k−1]

f = 0 ≤ ρ((a′k−1 − f(a′k−1))− (a′k − f(a′k)))

since f is 1-Lipschitz and a′k < a′k−1.
If [a′k+1, a

′
k] is decreasing then, using first (**) and the fact that ρ < 1, and then (5.2),

we get

f(a′k)− min
[a′k,a

′
k−1]

f = f(a′k)− f(a′k−1)

≤ ρ(f(a′k)− f(a′k−1)) + (1− ρ)h(a′k−1 − a′k)
= ρ(f(a′k)− f(a′k−1)) + ρ(a′k−1 − a′k),

which completes the proof of (5.4).
By adding up (5.4) for k = 1, 2, . . . and using that a′0 = a, a′k → 0 and f(a′k)→ 0 we

get (5.3), which implies (5.1).
Therefore it is enough to construct a good partition (an) with properties (*) and

(**). Let a0 = a and suppose that a0 > . . . > an > 0 are already constructed with
properties (*) and (**) (up to n).

We distinguish three cases.
Case 1. min[an/2,an] f < f(an).

In this case let an+1 ∈ [an/2, an] be the smallest number such that f(an+1) =
min[an/2,an] f . Then [an+1, an] is an increasing interval and so (*) and (**) still hold
and we can continue the procedure.
Case 2. min[an/2,an] f = f(an) and f(an/2)− f(an) ≤ h · (an − an/2).

In this case let an+1 = an/2, and again (*), (**) hold for the extended sequence and
we can continue the procedure.
Case 3. min[an/2,an] f = f(an) and f(an/2)− f(an) > h · (an − an/2).

First we claim that h ≥ −D. Indeed, since −1 ≤ D ≤ C we have

0 ≤ (C −D)(D + 1) = −D + CD −D2 + C,

which implies that
−D(1 + C −D) ≤ C − 2D,

and this implies h ≥ −D.
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Since h ≥ −D and f(x) ≥ Dx we have f(an) ≥ Dan ≥ −han and so

f(0)− f(an) = −f(an) ≤ han = h(an − 0).

This and the assumption f(an/2)− f(an) > h · (an− an/2) implies that there exists
a largest b ∈ [0, an/2) be such that

(5.5) f(b)− f(an) = h(an − b).
Now our goal is to find a sequence b = b0 < b1 < . . . < bM = an with M ≥ 2 such

that

(5.6) min
[bi−1,bi]

f = f(bi), bi/bi−1 ≤ 2 (i = 1, . . . ,M), bi/bi−2 ≥ 2 (i = 2, . . . ,M).

The sequence (bi) is constructed by induction. Let b0 = b. Suppose that m ≥ 0,
b = b0 < . . . < bm < an are already constructed and (5.6) holds for M = m. If
bm ≥ an/2 then we can take bm+1 = an and M = m + 1. Then the construction is
completed and (5.6) holds.

Now consider the case bm < an/2. Let bm+1 ∈ [bm, 2bm] be maximal such that
f(bm+1) = min[bm,2bm] f . Our goal is to show that bm+1 > bm. For this it is enough to
show that f(2bm) ≤ f(bm).

Using that b is the largest number in [0, an/2] for which (5.5) holds, bm ≥ b and
f(an/2)− f(an) > h · (an − an/2), we get

(5.7) f(bm)− f(an) ≥ h(an − bm).

Hence to get f(2bm) ≤ f(bm) it is enough to show that

(5.8) f(2bm)− f(an) ≤ h(an − bm).

Using (5.7) and Dx ≤ f(x) ≤ Cx we get

h(an − bm) ≤ f(bm)− f(an) ≤ Cbm −Dan,
which implies that

(D + h)an ≤ (C + h)bm.

Direct calculation shows that D + h = (C −D)(1 − h) and C + h = (C −D)(2 − h).
Thus the last inequality and D < C imply that

(1− h)an ≤ (2− h)bm.

Hence, using also that f is 1-Lipschitz and bm < an/2, we obtain

h(an − bm) ≥ an − 2bm ≥ f(2bm)− f(an).

This completes the proof of (5.8) and so also the proof of bm+1 > bm. It is easy to see
that (5.6) holds for M = m + 1. Note also that the property bi/bi−2 ≥ 2 implies that
the construction of the sequence (bi) is completed after finitely many steps.

Now, to finish Case 3 we take an+j = bM−j for j = 1, . . . ,M . Then (*) and (**) hold
(up to n+m) and so the procedure can be continued.

This way we obtain a sequence a = a0 > a1 > . . . > 0 that forms a good partition
with (*) and (**), provided an → 0. Therefore it remains to prove that an → 0.
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Since an+1 = an/2 when Case 2 is applied and an+M = b0 = b ≤ an/2 in Case 3,
we are done if Case 2 or Case 3 is applied infinitely many times. It is easy to see that
if both an+1 and an+2 were obtained from Case 1, then we have an/an+2 ≥ 2. Thus
an → 0, which completes the proof. �

5.2. Small drop on initial segments. The results in this subsection are required in
the proof of Theorem 1.3. We aim to minimize T(f |[0, u])/u, where u > 0 is a new
parameter that we are allowed to choose, subject to not being too small. The analysis
will be strongly based on the study of hard points which we now define:

Definition 5.3. If f : [0, a]→ R is a function, we say that p ∈ [0, a] is a hard point of f
if min[p/2,p] f = f(p).

We will say that a function f defined on an interval I is piecewise linear if I can be
decomposed into finitely many intervals such that f is linear on each of them.

Lemma 5.4. Let f : [0, a]→ R be a 1-Lipschitz function, which is piecewise linear on every
closed subinterval of (0, a]. Then:

(i) The set of hard points of f can be written as a (possibly empty) finite or infinite union
of closed (possibly degenerate) intervals H = ∪j[uj, vj] such that v1 ≥ u1 > v2 ≥ u2 > . . .
and every closed subinterval of (0, a] intersects only finitely many [uj, vj].

(ii) We have

(5.9) T(f) =
∑
j

f(uj)− f(vj),

where the empty sum is meant to be zero.

Proof. The first statement is easy, using that f is piecewise linear.
First we prove ≥ in (5.9). Let (an) be a good partition of [0, a] and let a = a′0 >

a′1 > . . . be an ordered enumeration of the set {an} ∪ {uj} ∪ {vj}. It is easy to check
that (a′n) is also a good partition of [0, a], and that by inserting a hard point of f
into a good partition (an), the value of T(f, (an)) is not changed. Thus T(f, (a′n)) =
T(f, (an)). Now every [uj, vj] is of the form [uj, vj] = ∪mjn=nj [a′n, a′n−1]. Since f must be
nonincreasing on any interval [uj, vj] we obtain

f(uj)− f(vj) =

mj∑
n=nj

f(a′n)− min
[a′n,a

′
n−1]

f

for every j. Adding up, and using that f(a′n) − min[a′n,a
′
n−1]

f ≥ 0 and T(f, (a′n)) =

T(f, (an)) we get the claim.
To prove the other inequality we construct by induction a good partition of [0, a]

such that T(f, (an)) ≤
∑

j f(uj) − f(vj). Let a0 = a. Suppose that a0, . . . , an are
already defined.

Case 1. If an ∈ (uj, vj] for some j then choose k ≥ 1 and an > an+1 > . . . > an+k = uj
so that an+i/an+i−1 ≤ 2 for i = 1, . . . , k.
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Case 2. Otherwise let an+1 ∈ [an/2, an] be the smallest number for which f(an+1) =
min[an/2,an] f . We claim that an+1 < an. If an 6∈ H then this is clear from the definition.
Since the only points of H that are not handled in the previous case are the left
endpoints of the intervals [uj, vj] we can suppose that an = uj for some j. By the
piecewise linearity of f , there exists w ∈ (uj/2, uj) such that f is linear on [w, uj] and
w > vj+1. Since uj is a hard point, f cannot be increasing on [w, uj]. If f is constant
on [w, uj] then an+1 ≤ w < uj = an, so we are done. So we can suppose that f is
decreasing on [w, uj]. Since w > vj+1, every x ∈ [w, uj) is not hard, so there exists an
x′ ∈ [x/2, x) such that f(x′) < f(x). Since f is decreasing on [w, uj], x′ < w. By the
continuity of f , this implies that there exists x0 ∈ [uj/2, w] such that f(x0) ≤ f(uj).
Thus indeed an+1 < uj = an.

Note that if Case 2 was applied to obtain both an+1 and an+2 then an/an+2 ≥ 2.
This implies that an → 0, so (an) is a good partition of [0, a]. It remains to show that
T(f, (an)) ≤

∑
j f(uj)− f(vj).

If an was obtained in Case 1 then [an, an−1] is a subinterval of some [uj, vj] and
f(an) − min[an,an−1] f = f(an) − f(an−1). If an was obtained in Case 2 then f(an) −
min[an,an−1] f = 0. Note also that f is nonincreasing on each [uj, vj] since all points of
[uj, vj] are hard points of f . These show that indeed T(f, (an)) ≤

∑
j f(uj) − f(vj),

which completes the proof. �

The next proposition (or rather, the discrete corollary given in Proposition 5.24 be-
low) will be crucial to get estimates on the packing dimension of the pinned distance
sets.

Proposition 5.5. Let a > 0 and 0 ≤ D < 1/2 be given parameters. Let f : [0, a] → R
be a 1-Lipschitz function, which is piecewise linear on every closed subinterval of (0, a], and
suppose that f(0) = 0 and Dx ≤ f(x) for every x ∈ [0, a]. Let

Φ(D) =
2−D −

√
3− 3D2

4
.

Then for every δ ∈ (0, 1/2) there exists u ∈ [3aΦ(D)2−1/δ, a] such that

(5.10) T(f |[0, u]) < u · (Φ(D) + δ(2− 4 log δ)).

Proof. Let H ⊂ [0, a] be the set of hard points of f . If H = ∅ then by Lemma 5.4,
T(f) = 0, so u = a is clearly a good choice in this case. So suppose that H is
nonempty.

First we briefly explain the idea of the proof in this nontrivial case. For simplicity,
suppose that a = 1 and D = 0, which is the most interesting case anyway. Assume
that the maximum of f(x)/x on H ∩ (0, 1] exists and is attained at u, and let B be this
maximum. Since u is a hard point, f(x) ≥ f(u) = Bu on [u/2, u], and a calculation
using that f is 1-Lipschitz shows that that

(5.11) f(x) > Bx if u′ < x < u, where u′ =
1/2−B
1−B

u.
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Let F (x) = min(f(x), 2Bx). Then it is not hard to show (see below for details) that
every p ∈ H ∩ [0, u] is also a hard point of F and that F = f on H ∩ [0, u]. By
Lemma 5.4 this implies that T(f |[0, u]) = T(F |[0, u]), so we can study F |[0, u] instead
of f |[0, u]. Let v be the largest number in [0, u) such that F (v) = Bv. It follows from
(5.11) that also F (x) > Bx if u′ < x < u, so we must have v ≤ u′, and hence

v − F (v) = v(1−B) ≤ u(1/2−B)

and F (x) > Bx on (v, u). Since F (x) ≤ 2Bx, for any hard point y of F we must have
F (y) ≤ By, and this implies that F has no hard point in (v, u). By Lemma 5.4 this
implies that T(F |[0, u]) = T(F |[0, v]). Again using that F (x) ≤ 2Bx, we can apply
Proposition 5.2 on [0, v] to obtain

T(f |[0, u]) = T(F |[0, u]) = T(F |[0, v]) ≤ (v − F (v))(2B − 0)

1 + 2 · 2B − 3 · 0
≤ u(1/2−B)2B

1 + 4B
.

Calculus shows that (1/2−B)2B
1+4B

≤ 2−
√
3

4
= Φ(0) forB ∈ [0, 1], so we obtain T(f |[0, u]) ≤

uΦ(0).
Unfortunately, f(x)/x may not have a maximum on H ∩ (0, 1] and, even if it does,

we might get an u which is too small. To avoid these problems we replace f(x)/x by
f(x)/x+ δ log x. Then we can show that u exists, is not too small, and it still satisfies
the claim of the proposition.

We now continue with the actual proof. Note that H is a closed set, and let h =
maxH . By Lemma 5.4, T(f) = T(f |[0, h]).

If h < 3aΦ(D) then, applying Proposition 5.2 on [0, h] with C = 1, we get

T(f) = T(f |[0, h]) ≤ (h− f(h))(1− 2D)

3− 3D
≤ h

3
< aΦ(D),

so u = a is a good choice in this case.
Therefore in the rest of the proof we can suppose that h ≥ 3aΦ(D). Let

φ(x) =
f(x)

x
+ δ log x.

(Recall that in this paper log denotes log2.) Since f is nonnegative and 1-Lipschitz,
0 ≤ f(x)/x ≤ 1 on (0, a], so for any x ∈ (0, 2−1/δh) we have

(5.12) φ(x) =
f(x)

x
+ δ log x < 1 + δ log(2−1/δh) ≤ δ log h ≤ f(h)

h
+ δ log h = φ(h).

Now we claim that

(5.13)
(
∃u ∈ H ∩ [2−1/δh, h]

)
(∀x ∈ H ∩ [δu, u]) φ(x) ≤ φ(u).

To prove this we define a sequence u0 > u1 > . . . ∈ H inductively. Let u0 = h.
Suppose that un ∈ H is already defined. Let v ∈ H ∩ [δun, un] be the largest number
such that φ(v) = maxH∩[δun,un] φ. If v = un then let N = n and the procedure is
terminated.
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Otherwise letting un+1 = v we have un+1 < un, so the procedure can be continued.
Note that it follows from the construction that φ(h) = φ(u0) ≤ . . . ≤ φ(un) and
un+2 < δun (n = 0, 1, . . .). Thus (5.12) implies that the procedure must be terminated
in finitely many steps and (5.13) holds for u = uN .

Let u be chosen according to (5.13). Then, using that h ≥ 3aΦ(D), we have u ≥
2−1/δh ≥ 2−1/δ · 3aΦ(D), so the requirement u ∈ [3aΦ(D)2−1/δ, a] is satisfied. Thus it
remains to prove (5.10).

Let

B =
f(u)

u
− δ log δ.

Since u is chosen according to (5.13), we have

(5.14) (∀x ∈ H ∩ [δu, u]) f(x) ≤ x

(
f(u)

u
+ δ log

u

x

)
≤ x

(
f(u)

u
− δ log δ

)
= Bx.

Let F (x) = min(f(x), 2Bx) (x ∈ [0, u]).
Now we claim that every p ∈ H ∩ [δu, u] is also a hard point of F . Suppose,

on the contrary, that p ∈ H ∩ [δu, u] is not a hard point of F . Then there exists a
q ∈ [p/2, p] such that F (q) < F (p). By (5.14) we have f(p) ≤ Bp ≤ 2Bp, so by
definition F (p) = f(p), and consequently we have

F (q) < F (p) = f(p) ≤ Bp ≤ 2Bq,

which implies that f(q) = F (q). Thus f(q) < f(p), so p cannot be a hard point of f ,
which is a contradiction.

Note that, by Lemma 5.4 and since F (p) = f(p) for any hard point of F , the above
claim and the trivial estimate T(f |[0, δu]) ≤ δu imply

(5.15) T(f |[0, v]) ≤ T(F |[0, v]) + δu for any v ∈ [0, u].

First we consider the case when f(u)/u < −δ log δ.
Then B < −2δ log δ, and so

0 ≤ F (x) ≤ 2Bx < (−4δ log δ)x on [0, u].

If −4δ log δ > 1 then, since Φ(D) ≥ 0 for D ≤ 1/2, the righthand-side of (5.10) is
larger than u. Since clearly T(g) ≤ u for any 1-Lipschitz function g : [0, u] → R we
are done if −4δ log δ > 1. So we may suppose that −4δ log δ ≤ 1. By Proposition 5.2
applied to F , with a = u,C = −4δ log δ and D = 0, we obtain

T(F ) ≤ u · −4δ log δ

1− 8δ log δ
< −4uδ log δ.

By (5.15) (applied to v = u) this implies that

(5.16) T(f |[0, u]) ≤ −4uδ log δ + δu.

Since D ≤ 1/2, we have Φ(D) ≥ 0, so (5.16) implies (5.10), which completes the
proof in the case when f(u)/u < −δ log δ.
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So in the rest of the proof we may assume that

(5.17) f(u)/u ≥ −δ log δ.

Since δ < 1/2 this also implies that f(u)/u > δ. Putting this together with the fact
that u was chosen according to (5.13), and with the inequality log y ≤ y − 1, we get
that if x ∈ H ∩ [δu, u), then

(5.18) f(x) ≤ x
f(u)

u
+ xδ log

u

x
< x

f(u)

u
+ x

f(u)

u

(u
x
− 1
)

= f(u).

Since u is a hard point, f(x) ≥ f(u) on [u/2, u], and so (5.18) implies thatH∩[u/2, u) =
∅.

Again because u is a hard point, f(u/2) ≥ f(u). Using this, δ < 1/2 and the fact
that f is 1-Lipschitz, we get

B =
f(u)

u
− δ log δ <

f(u/2)

u
+

1

2
≤ 1.

Using again that f is 1-Lipschitz and f(u/2) ≥ f(u), we get

f(x) ≥ f
(u

2

)
−
(u

2
− x
)
≥ f(u)−

(u
2
− x
)

(x ∈ [0, u/2]).

Thus

(5.19) f(x) ≥ f(u)−
(u

2
− x
)
> Bx if

u
2
− f(u)

1−B
< x ≤ u

2
.

Let v0 = u/2−f(u)
1−B . Note that f(x) > Bx also holds on the closed interval [v0, u/2]

unless f(v0) = Bv0. The definition B = f(u)
u
− δ log δ and the assumption (5.17) imply

that B ≤ 2f(u)/u, hence v0 ≤ u/2. Let v = max{x ∈ [0, u/2] : f(x) = Bx} (the
maximum over a nonempty compact set). By (5.19) we have v ≤ v0 and f(x) > Bx
on (v, u/2]. By (5.14), this implies that H ∩ [δu, u] ∩ (v, u/2) = ∅. Since above we
obtained H ∩ [u/2, u) = ∅ we get H ∩ (v, u) ⊂ [0, δu]. Hence, using Lemma 5.4 and
the trivial estimate T (f |[0, δu)) ≤ δu, we get

(5.20) T(f |[0, u]) ≤ T(f |[0, v]) + δu.

Since v ≤ v0 = u/2−f(u)
1−B and f(v) = Bv,

2(v − f(v)) = 2(1−B)v ≤ u− 2f(u) = u

(
1− 2

f(u)

u

)
= u(1− 2B − 2δ log δ).

Let C = min(2B, 1). We have just seen that

2(v − f(v)) ≤ u(1− C − 2δ log δ).

Note also that D ≤ f(u)/u = B+ δ log δ < B, and so D ≤ C/2 since we assumed that
D ≤ 1/2. Then Dx ≤ F (x) ≤ Cx on [0, v] ⊂ [0, u], so we can apply Proposition 5.2 to
get

T(F |[0, v]) ≤ (v − f(v))(C − 2D)

1 + 2C − 3D
≤ u(1− C − 2δ log δ)(C/2−D)

1 + 2C − 3D
.
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Note that C/2−D
1+2C−3D < 1. Using calculus, we get that (1−C)(C/2−D)

1+2C−3D ≤ Φ(D) for C ∈
[2D, 1]. Therefore

T(F |[0, v]) < u(Φ(D)− 2δ log δ).

Combining the above inequality with (5.15) and (5.20), we get (5.10). �

5.3. Stability results. The results of this subsection are only needed for the proof of
Theorem 1.4. Moreover, to get the bound dimH(∆(A)) ≥ 37/54 whenever dimH(A) >
1, one only needs to consider the case D = 0 below. While there is no conceptual
difference between the cases D = 0 and D > 0, the calculations are easier in the
former case, so the reader may want to assume that D = 0 in a first reading.

In the C = 1 special case of Proposition 5.2, we get that if D ∈ [−1, 1/2] and
f : [0, 1] → R is a 1-Lipschitz function such that f(0) = 0 and f(x) ≥ Dx on [0, 1],
then T(f) ≤ (1 − 2D)/3. As we will see in Section 7, and is not hard to check, this
estimate is sharp: if

f(x) =

{
x if x ∈ [0, (D + 1)/2]

1 +D − x if x ∈ [(D + 1)/2, 1]
,

then T(f) = (1 − 2D)/3. In this section we prove a quantitative stability result
(Proposition 5.15) for D ∈ [0, 1/3], stating that if T(f) is close to (1− 2D)/3 then f(x)
must be close to the above function when x is not too far from 0 or from 1.

The general plan to get this result is the following. Let b = min[1/2,1] f and choose
a ∈ [1/2, 1] such that f(a) = b. It is easy to see that T(f) = T(f |[0, a]), so it is enough
to study f |[0, a] instead of f . We need to get an upper estimate on T (f) when f
is not close enough to the function defined in the previous paragraph. This upper
estimate will be obtained by finding a point p ∈ [0, a] such that in the good partition
in the definition of T (f), the points an in [p, a] can be chosen such that min[an,an−1] f =
f(an−1), and so for these indices the sum of the terms f(an) −min[an,an−1] f is f(p) −
f(a) or, in other words, the smallest possible. Combining this with a near optimal
good partition for f |[0, p] guaranteed by Proposition 5.2, we get a near optimal lower
bound for T (f) for all f with such a special point p and value f(p). These points p
will be called simple points, and after proving the above described near optimal
upper estimate, most of the proof will be about hunting a simple point such that the
estimate we obtain for T(f) is the upper estimate we claim.

First we collect some assumptions and define precisely the above mentioned no-
tion of simple points.

Definition 5.6. Suppose that

(5.21)
a ∈ (0, 1], b ∈ R, D ∈ [0, 1/2), f : [0, a]→ R is 1-Lipschitz,

f(0) = 0, f(x) ≥ Dx (x ∈ [0, a]) and min
[a/2,a]

f = f(a) = b.
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A point p ∈ [0, a] is called simple if there exists a finite sequence p = p0 < p1 < . . . <
pk = a such that

(5.22)
pi
pi−1

≤ 2 and f(pi) = min
[pi−1,pi]

f (i = 1, . . . , k).

Lemma 5.7. If (5.21) holds and p ∈ [0, a] is a simple point then

T(f) ≤ αp+ (1− α)f(p)− b, where α =
1− 2D

3(1−D)
.

Proof. Applying Proposition 5.2 to f |[0, p] with C = 1 we get T(f |[0, p]) ≤ α(p−f(p)).
Hence for any δ > 0 there exists a good partition (an) of [0, p] such that

T(f |[0, p], (an)) ≤ α(p− f(p)) + δ.

Since p is simple there exists a finite sequence p = p0 < p1 < . . . < pk = a such that
(5.22) holds.

For n ≤ k let a′n = pk−n and for n > k let a′n = an−k. Then (a′n) is a good partition
of [0, a] and

T(f, (a′n)) = T(f |[0, p], (an)) +
k∑
i=1

f(pi−1)− f(pi)

≤ α(p− f(p)) + δ + f(p)− f(a) = αp+ (1− α)f(p)− b+ δ,

which completes the proof. �

Lemma 5.8. Suppose that (5.21) holds and let p ∈ [0, a]. If

(5.23) for every z ∈ [p, a/2) there exists y ∈ (z, 2z] such that f(y) ≤ f(z)

then p is simple.

Proof. Let p0 = p. Suppose that n ≥ 0 and p0 < . . . < pn are defined such that (5.22)
holds for k = n. If pn ≥ a/2 then let pn+1 = a and we are done. Otherwise, let
pn+1 ∈ [pn, 2pn] be the largest number such that f(pn+1) = min[pn,pn+1] f . By (5.23)
we also have pn+1 > pn. It remains to check that the procedure terminates, which
follows from the simple observation that pn+2 ≥ min(2pn, a) by definition. �

Lemma 5.9. Suppose that (5.21) holds. If p ∈ [a/2, a], or if p ∈ [0, a/2] and f(p) ≥
−2p+ a+ b, then p is a simple point.

Proof. The case p ∈ [a/2, a] is clear, so suppose that p ∈ [0, a/2] and f(p) ≥ −2p+a+b.
Then the 1-Lipschitz property of f implies that for any x ∈ [p, a] we also have f(x) ≥
−2x + a + b. Since f is 1-Lipschitz and f(a) = b we have f(y) ≤ −y + a + b for
any y ∈ [0, a]. Thus f(x) ≥ −2x + a + b ≥ f(2x) for any x ∈ [p, a/2], so Lemma 5.8
completes the proof. �

Lemma 5.10. Condition (5.21) implies that 1− a+ 2b− 2D ≥ 0.
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Proof. Note that b = f(a) ≥ Da, so

1− a+ 2b− 2D ≥ 1− a+ 2aD − 2D = (1− a)(1− 2D) ≥ 0.

�

Lemma 5.11. If (5.21) holds and T(f) > 1−2D
3
− δ for some δ ∈ (0, a/3) then

f(x) > x− 3δ(1−D) on [0, t0], where t0 =
a+ b

3
+ δ(1−D).

Proof. First note that δ < a/3 implies that t0 < a. Since f(0) < −2 · 0 + a + b and
f(a) ≥ −2 · a + a + b there exists a t ∈ (0, a] such that f(t) = −2t + a + b. By
Lemma 5.9, t is a simple point, so writing α = 1−2D

3(1−D)
and using Lemma 5.7, we get

T(f) ≤ αt+ (1− α)f(t)− b
= αt+ (1− α)(−2t+ a+ b)− b

=
−t

1−D
+

2−D
3(1−D)

(a+ b)− b.

Combining this with the assumption T(f) > 1−2D
3
− δ and multiplying through by

3(1−D), we get

3t < (2−D)(a+ b)− 3(1−D)b− (1− 2D)(1−D) + 3δ(1−D),

which can be rewritten as

3t < a+ b+ (1−D)(3δ − (1− a+ 2b− 2D)).

By Lemma 5.10, this implies t < a+b
3

+ δ(1 −D) = t0. Using this and the 1-Lipschitz
property of f , we obtain

f(t0) ≥ f(t)− (t0 − t) > f(t)− 2(t0 − t) = a+ b− 2t0 = t0 − 3δ(1−D).

Using again that f is 1-Lipschitz, this gives the claim. �

Lemma 5.12. Suppose that (5.21) holds, 0 ≤ p ≤ a+b−v
2

< u ≤ a, f(u) = v and f(x) ≥ v

on [p, a+b−v
2

]. If v ≥ u/2 or f(p) = −2p+ u+ v, then p is simple.

Proof. It is useful to note that by the 1-Lipschitz property of f , the assumptions u ≤ a,
f(u) = v and f(a) = b imply that u+ v ≤ a+ b, and so u

2
≤ a+b−v

2
.

By Lemma 5.8 it is enough to check (5.23). So let z ∈ [p, a/2). We distinguish three
cases.

First suppose that z ≥ a+b−v
2

. Then, using that f(a+b−v
2

) ≥ v, f is 1-Lipschitz, 2z < a
and f(a) = b, we get

f(z) ≥ v −
(
z − a+ b− v

2

)
≥ v − 2

(
z − a+ b− v

2

)
= −2z + a+ b ≥ f(2z).

Therefore (5.23) holds in this case.
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Now suppose that z ∈ [u
2
, a+b−v

2
]. Since we consider only z ∈ [p, a/2) we also have

z ∈ [p, a+b−v
2

]. Then f(z) ≥ v, u ∈ (z, 2z] and f(u) = v ≤ f(z), so (5.23) holds in this
case as well.

Finally, suppose that z ∈ [p, u
2
). Then v ≤ f(z) ≤ z < u/2, hence we cannot have

v ≥ u/2, so we must have f(p) = −2p + u + v. Using that f is 1-Lipschitz and
z ≥ p, this implies f(z) ≥ −2z + u + v. Since f is 1-Lipschitz and f(u) = v we have
f(x) ≤ u + v − x on [0, u]. Thus f(2z) ≤ u + v − 2z ≤ f(z), which completes the
proof. �

Lemma 5.13. If (5.21) holds and T(f) > 1−2D
3
− δ for some δ ∈ (0, a/3) then

f(x) >
a+ b

3
− 2δ(1−D) on [t0, 2t0 − 6δ(1−D)], where t0 =

a+ b

3
+ δ(1−D).

Proof. Let v = a+b
3
− 2δ(1 − D). If v < 0 then the claim is clear, so we can suppose

that v ≥ 0. By Lemma 5.11, f(t0) > v. Thus if the claim is false then there exists a
u ∈ (t0, 2t0 − 6δ(1−D)] such that f(u) = v.

By (5.21), we have b ≤ a
2
, which implies

2t0 − 6δ(1−D) =
2(a+ b)

3
− 4δ(1−D) < a.

Since f(0) ≤ v < f(t0) we also have a largest p ∈ [0, t0) such that f(p) = v. Then
f(x) ≥ v on [p, t0]. Since a+b−v

2
= t0 and u/2 ≤ t0− 3δ(1−D) = v, all the assumptions

of Lemma 5.12 hold, so we get that p is simple.
Then by Lemma 5.7 we have T(f) ≤ αp + (1 − α)v − b, where α = 1−2D

3(1−D)
. Since

p < t0 = v + 3δ(1 −D), this implies that T(f) ≤ v + (1 − 2D)δ − b. Combining this
with the assumption T(f) > 1−2D

3
− δ we get

v > b+
1− 2D

3
− 2δ(1−D).

Note that Lemma 5.10 implies that b+ 1−2D
3
≥ a+b

3
, so we obtain v > a+b

3
− 2δ(1−D),

which is a contradiction. �

From the last lemma and the Lipschitz property of f one can easily derive a good
lower estimate also on [2t0 − 6δ(1−D), a]. However, the next lemma will lead to an
even better (and, as we will see later, sharp) estimate on the right part of [0, a].

Lemma 5.14. Suppose that (5.21) holds,

T(f) >
1− 2D

3
− δ, δ ∈ (0, a/3), u ∈ (a/2, a], u ≥ 2v + 6δ(1−D), and f(u) = v.

Then

u+ v > 1 +D − 3δ
1 +D

1− 2D
.
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Proof. Since f(0) < −2 · 0 + u + v and f(a) ≥ −2 · a + u + v there exists a p ∈ (0, a]
such that f(p) = −2p + u + v. First we prove that p is a simple point. To get this, by
Lemma 5.12, it is enough to check that p ≤ a+b−v

2
< u and f(x) ≥ v on [p, a+b−v

2
].

Since u ∈ (a/2, a], v = f(u) and b = min[a/2,a] f , we have b ≤ v, so a+b−v
2
≤ a/2 < u.

Note (as in Lemma 5.12) that u + v ≤ a + b. By Lemma 5.11, we have f(t0) >
t0 − 3δ(1−D), where t0 = a+b

3
+ δ(1−D). Then

(5.24) 2t0 + f(t0) > 3t0 − 3δ(1−D) = a+ b ≥ u+ v = 2p+ f(p).

Since f is 1-Lipschitz this implies that p < t0. Using this, u+ v ≤ a+ b and finally the
assumption u ≥ 2v + 6δ(1−D), we get

p < t0 =
a+ b

3
+ δ(1−D)

=
a+ b

2
− a+ b

6
+ δ(1−D)

≤ a+ b

2
− u+ v

6
+ δ(1−D) ≤ a+ b− v

2
.

On [0, t0] we have f(x) − x > −3δ(1 − D) by Lemma 5.11, on [p, a] we have
2x + f(x) ≥ 2p + f(p) = u + v by the 1-Lipschitz property of f . Taking the linear
combination of these inequalities with weights 2/3 and 1/3, we get

f(x) >
u+ v

3
− 2δ(1−D) on [p, t0].

By the assumption u ≥ 2v + 6δ(1−D), this gives f(x) ≥ v on [p, t0].
Using that f is 1-Lipschitz and then (5.24), we get that on [t0, a] we have 2x+f(x) ≥

2t0 + f(t0) > a+ b, which implies that f(x) ≥ v also on [t0,
a+b−v

2
].

Therefore, by Lemma 5.12, p is indeed a simple point. Now Lemma 5.7 gives

T(f) ≤ αp+ (1− α)f(p)− b
= αp+ (1− α)(−2p+ u+ v)− b
= (3α− 2)p+ (1− α)(u+ v)− b.

Recalling that α = 1−2D
3(1−D)

, it is easy to check that D < 1 implies that 3α − 2 < 0. The
1-Lipschitz property of f and f(0) = 0 imply that 0 ≤ p − f(p) = 3p − (u + v), so
p ≥ u+v

3
. Using these facts, the last displayed equation yields

T(f) ≤
(

3α− 2

3
+ 1− α

)
(u+ v)− b =

u+ v

3
− b.

Combining this with the assumption T(f) > 1−2D
3
−δ we get u+v > 1−2D−3δ+3b.

Note that u + v ≤ a + b and b = f(a) ≥ Da imply that b ≥ D
D+1

(u + v). Combining
these facts, we conclude that

u+ v > 1− 2D − 3δ + 3b ≥ 1− 2D − 3δ +
3D

D + 1
(u+ v),
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which implies (using also that D < 1/2) the claim. �

The following proposition provides a global quantitative estimate for functions
f : [0, 1]→ R for which T(f) is close to the maximum possible value.

Proposition 5.15. Fix D ∈ [0, 1/3], δ ∈ (0, 1/21] and let f : [0, 1] → R be a 1-Lipschitz
function such that f(0) = 0, f(x) ≥ Dx on [0, 1] and T(f) > 1−2D

3
− δ. Let

(5.25) t1 =
1 +D

3
− δ

(
1 +D

1− 2D
− (1−D)

)
.

Then

x− 3δ(1−D) < f(x) ≤ x on [0, t1](5.26)
t1 − 3δ(1−D) < f(x) on [t1, 2t1 − 6δ(1−D)] and(5.27)

3t1 − x− 3δ(1−D) < f(x) < 1 +D − x+ 3δ
1−D
1− 2D

on [2t1, 1].(5.28)

Proof. Let b = min[1/2,1] f and choose a ∈ [1/2, 1] such that f(a) = b. Then it is easy
to see that T(f) = T(f |[0, a]). So combining the assumption T(f) > 1−2D

3
− δ and

Proposition 5.2 for f |[0, a] and C = 1, and then using b = f(a) ≥ Da, we get

(5.29)
1− 2D

3
− δ < T(f) = T(f |[0, a]) ≤ (a− b)(1− 2D)

3(1−D)
≤ a

1− 2D

3
.

This implies

(5.30) a > 1− 3δ

1− 2D

and so

(5.31) a+ b ≥ a+Da > 1 +D − 3δ
1 +D

1− 2D
.

By (5.29),

a− b > 1−D − 3δ
1−D
1− 2D

.

Since f is 1-Lipschitz this implies that

f(1) ≤ b+ 1− a < D + 3δ
1−D
1− 2D

,

which (using again that f is 1-Lipschitz) yields the upper estimate of (5.28) on [0, 1].
By definition we have min[1/2,a] f = f(a) = b, but in order to apply our lemmas

to f |[0, a] we have to show min[a/2,a] f = f(a). Suppose then that min[a/2,a] f < f(a).
Then there exists an a′ ∈ [a/2, 1/2) such that min[a/2,a] f = f(a′). Using Proposi-
tion 5.2 applied to f |[0, a′] and C = 1 we get

1− 2D

3
− δ < T(f) = T(f |[0, a]) = T(f |[0, a′]) ≤ a′

1− 2D

3
≤ 1

2
· 1− 2D

3
,
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which is impossible, since we assumed D ≤ 1/3 and δ ≤ 1/21.
Therefore (5.21) holds for f |[0, a]. Note that (5.31) implies that t0 > t1, where

t0 = a+b
3

+ δ(1−D) (as in Lemma 5.13).
By (5.30), D ≤ 1/3 and δ ≤ 1/21, we get a > 4/7, so δ < a/3 holds. Then applying

Lemmas 5.11 and 5.13 to f |[0, a] and using that f is 1-Lipschitz we get the lower
estimate of (5.26) and (5.27). The upper estimate of (5.26) is clear.

It remains to prove the lower estimate of (5.28). Lemma 5.14 (for f |[0, a]) gives that
every point of the graph of f |(a/2, a] must be above either the y = 1+D−x−3δ 1+D

1−2D
line, or the y = x

2
− 3δ(1 −D) line. These two lines intersect at (2t1, t1 − 3δ(1 −D)).

On the other hand, a calculation using δ ≤ 1/21, D ≤ 1/3, a ≤ 1 and (5.30) shows
that a/2 ≤ 1/2 < 2t1 ≤ 1− 3δ

1−2D < a. We deduce that f(2t1) > t1 − 3δ(1−D). Using
the 1-Lipschitz property of f , this gives the lower estimate of (5.28). �

Remark 5.16. LetD ∈ [0, 1/3], and let f : [0, 1]→ R be a 1-Lipschitz function such that
f(0) = 0, f(x) ≥ Dx on [0, 1] and T(f) ≥ 1−2D

3
. Letting δ → 0+ in Proposition 5.15,

we get that f(x) = x on [0, 1+D
3

], f(x) ≥ 1+D
3

on [1+D
3
, 2(1+D)

3
], and f(x) = 1 +D−x on

[2(1+D)
3

, 1]. It is easy to see that, conversely, T(f) = 1−2D
3

for any such f . Recall that
by theC = 1 special case of Proposition 5.2, we have T(f) ≤ 1−2D

3
for any 1-Lipschitz

function f : [0, 1] → R such that f(0) = 0, f(x) ≥ Dx on [0, 1]. Therefore the above
observation gives a characterization of those functions for which we have equality
in Proposition 5.2 when C = 1.

The following corollary can be seen as a version of Proposition 5.15 that is closer
to the kind of estimates we will need in the proof of Theorem 1.4.

Corollary 5.17. Let D ∈ [0, 1/3) and

Λ(D) =
(1 +D)(37− 50D + 60D2)

18(3− 4D + 5D2)
≥ Λ(0) =

37

54
= 0.6851851 . . . .

Then there exist η > 0 and ξ ∈ (2/3, 1] (depending continuously on D) such that Λ(D) =
ξ(1− 2η) and the following holds.

If f : [0, 1] → R is a 1-Lipschitz function such that f(0) = 0 and f(x) ≥ Dx on [0, 1]
then

T(f) > 1− Λ(D) =⇒ f(x) ≥ x

3
− ηξ on [0, ξ].

Proof. Let

δ =
(1 +D)(1− 2D)

18(3− 4D + 5D2)
∈
(

0,
1

36

)
.

Then 1 − Λ(D) = 1−2D
3
− δ. Let t1 be the number given by Proposition 5.15. By the

hypothesis T(f) > 1 − Λ(D), Proposition 5.15 implies that (5.26), (5.27) and (5.28)
hold.
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Let

ξ =
3

4

(
δ(1− 3D) + 1 +D − 3δ

1 +D

1− 2D

)
=

(1 +D)(13− 20D + 24D2)

6(3− 4D + 5D2)
∈ (2/3, 1),

η =
δ(1− 3D)

ξ
=

(1− 2D)(1− 3D)

3(13− 20D + 24D2)
> 0.

Then the three lines y = x − 3δ(1 −D), y = x/3 − ηξ and y = Dx meet at (3δ, 3Dδ).
Thus, since D < 1/3, on [0, 3δ] we have f(x) ≥ Dx ≥ x/3 − ηξ and, using (5.26), on
[3δ, t1] we have f(x) ≥ x− 3δ(1−D) ≥ x/3− ηξ.

One can also check that the lines y = x/3− ηξ and y = 3t1−x− 3δ(1−D) intersect
at x = ξ. Thus, by (5.28), on [2t1, ξ] we also have f(x) > 3t1−x−3δ(1−D) ≥ x/3−ηξ.

It remains to check f(x) ≥ x/3 − ηξ on [t1, 2t1]. By (5.28), f(2t1) > t1 − 3δ(1 −D).
Hence (5.27) and the 1-Lipschitz property of f imply that on [t1, 2t1] we have f(x) >
g(x)− 3δ(1−D), where

g(x) =


t1 on [t1, 2t1 − 6δ(1−D)]

3t1 − 6δ(1−D)− x on [2t1 − 6δ(1−D), 2t1 − 3δ(1−D)]

x− t1 on [2t1 − 3δ(1−D), 2t1]

.

Now we claim that

(5.32) g(x0)− 3δ(1−D) ≥ x0/3− ηξ, where x0 = 2t1 − 3δ(1−D).

Indeed, using the definition of g and x0 and the equation ηξ = (1− 3D)δ, we obtain
that the left-hand side of (5.32) is t1−6δ(1−D), the right-hand side is 2t1/3−δ(2−4D),
so it is enough to prove that t1/3 ≥ δ(4− 2D). It is straightforward to check that this
last inequality follows from the definition (5.25) of t1, D ∈ [0, 1/3) and δ ∈ (0, 1/36).

Note that the function g(x)−3δ(1−D) has slope 0 or−1 on [t1, x0] and it has slope
1 on [x0, 2t1], while x/3−ηξ has slope 1/3. Thus (5.32) implies that g(x)−3δ(1−D) ≥
x/3− ηξ on [t1, 2t1], which completes the proof. �

5.4. Total drop for τ -good partitions. In this subsection we show that for small τ ,
allowing only τ -good partitions (recall Definition 5.1) does not change too much
the smallest possible total drop, see Corollary 5.20 below. We begin with a lemma
that will allow us to obtain τ -good partitions from partitions that satisfy a weaker
property, with a controlled change in the total drop.

Lemma 5.18. Let f : [0, a] → R be a 1-Lipschitz function and (an) be a good partition of
[0, a]. Suppose that τ > 0, K > 1 is an integer, (1 + τ)K < 2 and an−K/an ≥ 2 for every
n ≥ K. Then

Tτ (f) < T(f, (an)) + 6K(K − 1)τa.

Proof. Fix i ∈ N0 and consider the numbers βj = aiK+j−1/aiK+j (j = 1, . . . , K). Then
β1 · · · βK = aiK/aiK+K ≥ 2 and for every j we have 1 < βj ≤ 2. The goal is to make
every βj at least 1 + τ so that each of them remains at most 2, the product β1 · · · βK
stays fixed, and the numbers aiK+j are changed by only a small amount.
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So let β′j = 1 + τ if βj ≤ 1 + τ , and to get the remaining β′j’s decrease some of
the corresponding βj’s (and choose β′j = βj for the rest), so that still β′j ≥ 1 + τ

and β′1 · · · β′K = β1 · · · βK ; this is possible since (1 + τ)K < 2. Then let a′iK = aiK
and for each j = 1, . . . , K let a′iK+j = aiK/(β

′
1 · · · β′j). Note that a′iK+K = aiK+K ,

1 + τ ≤ a′iK+j−1/a
′
iK+j ≤ 2 for every j = 1, . . . , K and each aiK+j was multiplied

by a factor between (1 + τ)−K and (1 + τ)K to get a′iK+j . This implies that for every
j = 1, . . . , K − 1,

(5.33) |a′iK+j − aiK+j| ≤ aiK((1 + τ)K − 1) ≤ 2(aiK − a(i+1)K)((1 + τ)K − 1).

Note that (a′n)∞n=0 obtained by applying this procedure for every i ∈ N0 is a τ -good
partition of [0, a].

Let τ0 = 21/K − 1. Since (1+x)K−1
x

is increasing on (0,∞) (being a polynomial with
positive coefficients) and (1 + τ)K < 2, we have

(1 + τ)K − 1

τ
<

(1 + τ0)
K − 1

τ0
=

1

21/K − 1
≤ K

ln 2
<

3K

2
,

where we used the inequality et − 1 ≥ t. Thus

(1 + τ)K − 1 <
3Kτ

2
.

Combining this with (5.33) and a′iK = aiK , then adding up, we get
∞∑
n=0

|a′n − an| <

(
∞∑
i=0

(K − 1) · 2(aiK − a(i+1)K)
3Kτ

2

)
= (K − 1)(a0 − lim

n→∞
an) · 3Kτ = 3K(K − 1)τa.

Since f is 1-Lipschitz, changing one an by η can change T(f, (an)) by at most 2η, so
the above inequality implies

T(f, (a′n)) < T(f, (an)) + 6K(K − 1)τa,

which completes the proof of the lemma. �

The next lemma shows that we can replace an arbitrary good partition by one
satisfying the assumptions of Lemma 5.18, without increasing the total drop.

Lemma 5.19. For any δ > 0 and 1-Lipschitz function f : [0, a] → R there exists a good
partition (a′n) such that a′n−3/a′n > 2 for every n ≥ 3 and T(f, (a′n)) ≤ T(f) + δ.

Proof. It is enough to show that for any good partition (an) there exists a good parti-
tion (a′n) such that a′n−3/a′n > 2 for every n ≥ 3 and T(f, (a′n)) ≤ T(f, (an)).

First we claim that we can suppose that every interval [an, an−1] is increasing or
decreasing (recall Definition 5.1). Indeed, for each n ≥ 1 if on the interval [an, an−1]
the minimum of f is taken at p ∈ (an, an−1) then inserting p to the partition (in be-
tween an−1 and an) we get a new good partition such that [an, p] is decreasing and
[p, an−1] is increasing and it is easy to see that T(f, (an)) is not changed.
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Suppose that an−2/an < 2 (n ≥ 2). If [an, an−1] and [an−1, an−2] are both increasing
or both decreasing, then by merging these intervals we get an interval of the same
type, and T(f, (an)) remains unchanged. If [an, an−1] is increasing and [an−1, an−2] is
decreasing then after merging the two intervals the minimum of f on [an, an−2] is still
achieved at one of the endpoints of the interval, and T(f, (an)) does not increase.

Applying the above merging procedure inductively (starting with n = 2) when-
ever possible, we get a good partition (a′n) such that whenever a′n−2/a′n < 2 (n ≥ 2)
then [a′n, a

′
n−1] is decreasing and [a′n−1, a

′
n−2] is increasing. Since this cannot happen

for both n and n − 1 we get that a′n−2/a′n ≥ 2 or a′n−3/a′n−1 ≥ 2 for any n ≥ 3, which
clearly implies that a′n−3/a′n > 2. �

Corollary 5.20. For any 1-Lipschitz function f : [0, a]→ R and any 0 < τ < 1,

Tτ (f) ≤ T(f) + 36τa.

Proof. Note that for any 1-Lipschitz function f : [0, a] → R and any partition (an)
of [0, a], by definition, we have 0 ≤ T(f, (an)) ≤ a. Thus the claim holds trivially
if τ ≥ 3

√
2 − 1. Otherwise we can apply Lemma 5.19, and then Lemma 5.18 (for

K = 3). �

5.5. Discretizing the estimates. Recall from Definition 4.3 the notion of τ -good par-
tition of an integer interval (0, `], and the notation M(σ, (Ni)). Sometimes we refer
to these as integer partitions for emphasis. Note that the requirement (4.7) for a τ -
good integer partition slightly differs from the requirement 1 + τ ≤ ak−1/ak ≤ 2 for
a τ -good partition (see Definition 5.1), which is equivalent to τak ≤ ak−1 − ak ≤ ak.
These two notions are connected by the following lemma.

Lemma 5.21. Assume that L ≤ ` are positive integers. Let f : [0, L/`]→ R be a 1-Lipschitz
function and let (an) be a (2τ)-good partition of [0, L/`]. Then there exists a τ -good integer
partition 0 = N0 < . . . < Nq = L of (0, L] such that

q−1∑
j=0

f(Nj/`)− min
[Nj/`,Nj+1/`]

f ≤ T(f, (an)) +Oτ (log `/`).

Proof. Let N0 < . . . < Nq be the values taken by the sequence b`anc. Since an → 0 we
get N0 = 0. Thus 0 = N0 < . . . < Nq = L is an integer partition of (0, L].

Using that (an) is a good partition we get

b`anc ≤ `an ≤ 2`an+1 < 2b`an+1c+ 2,

hence b`anc − b`an+1c ≤ b`an+1c + 1. Thus to prove that (Nj) is a τ -good integer
partition of (0, L] it is enough to show that b`anc − b`an+1c ≥ τb`an+1c if b`anc >
b`an+1c. This is clear if τb`an+1c ≤ 1. Otherwise, using also that (an) is a (2τ)-good
partition, we get

b`anc − b`an+1c > `an − `an+1 − 1 ≥ 2τ`an+1 − 1 ≥ 2τb`an+1c − 1 > τb`an+1c.
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Let K = max{n : `an ≥ 1}. Since (an) is (2τ)-good and `a0 = L, (1 + 2τ)K ≤ L ≤ `,
and so K ≤ log `/ log(1 + 2τ). Let a′n = b`anc/`. Since f is 1-Lipschitz and |a′n− an| <
1/`, we deduce that
K+1∑
n=1

f(a′n)− min
[a′n,a

′
n−1]

f ≤
K+1∑
n=1

(
f(an)− min

[an,an−1]
f + 2/`

)
≤ T(f, (an)) + 2(K + 1)/`.

By definition `aK+1 < 1, hence a′K+1 = 0. Thus
q−1∑
j=0

f(Nj/`)− min
[Nj/`,Nj+1/`]

f =
K+1∑
n=1

f(a′n)− min
[a′n,a

′
n−1]

f ≤ T(f, (an)) +Oτ (log `/`),

which completes the proof. �

The following lemma will help us translate the results for Lipschitz functions to
results for [−1, 1]-sequences.

Lemma 5.22. Let γ,Γ ∈ [−1, 1], τ ∈ (0, 1/2), ζ ∈ (0, 1) and let σ ∈ [−1, 1]` satisfy

γj − ζ` ≤ σ1 + . . .+ σj ≤ Γj + ζ` (1 ≤ j ≤ `).

Then there exists a piecewise linear 1-Lipschitz function f : [0, 1]→ R such that
(i) f(j/`) = 1

`
(σ1 + . . .+ σj) if

√
ζ` ≤ j ≤ `,

(ii) (γ −
√
ζ)x ≤ f(x) ≤ (Γ +

√
ζ)x on [0, 1] and

(iii) for any integer 0 < L ≤ `,
1

`
Mτ (σ|(0, L]) ≤ T(f |[0, L/`]) + 2

√
ζ + 144τ +Oτ (log `/`).

Proof. Let f1 : [0, 1] → R be the piecewise linear function which is linear on each
interval [j/`, (j + 1)/`], and at the points j/` takes the values

f1(j/`) =
1

`
(σ1 + . . .+ σj) (j = 0, 1, . . . , `).

Since σi ∈ [−1, 1], this is a 1-Lipschitz function. Moreover, it follows from the as-
sumption on σ that

γx− ζ ≤ f1(x) ≤ Γx+ ζ (x ∈ [0, 1]),

and so
(γ −

√
ζ)x ≤ f1(x) ≤ (Γ +

√
ζ)x for x ∈ [

√
ζ, 1].

Let f agree with f1 on [
√
ζ, 1], f(0) = 0 and let f be linear on [0,

√
ζ]. Then f : [0, 1]→

R is also a piecewise linear 1-Lipschitz function and (i) and (ii) hold.
Therefore it remains to prove (iii). Let 0 < L ≤ ` be an integer. By Corollary 5.20

we have T2τ (f) ≤ T(f) + 72τ . Thus it is enough to show that for any δ > 0 and
(2τ)-good partition (an) of [0, L/`] there exists a τ -good integer partition P of σ|(0, L]
such that

(5.34)
1

`
M(σ|(0, L],P) ≤ T(f |[0, L/`], (an)) + 2

√
ζ + 72τ +Oτ (log `/`) + δ.
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Let N be the largest index such that aN ≥
√
ζ . Then aN ≤ 2aN+1 < 2

√
ζ . By

applying Corollary 5.20 and Proposition 5.2 to f1|[0, aN ] with D = −1 and C = 1, we
get

T2τ (f1|[0, aN ]) ≤ T(f1|[0, aN ]) + 72τ ≤ (aN − f(aN)) · 3
6

+ 72τ ≤ 2
√
ζ + 72τ.

Hence for any δ > 0 there exists a a (2τ)-good partition (bn) of [0, aN ] such that
T(f1|[0, aN ], (bn)) ≤ 2

√
ζ + 72τ + δ.

Let a′n = an if n ≤ N and a′n = bn−N otherwise. Then (a′n) is a (2τ)-good partition
of [0, L/`] such that

(5.35) T(f1|[0, L/`], (a′n)) ≤ T(f |[0, L/`], (an)) + 2
√
ζ + 72τ + δ.

Applying Lemma 5.21 for f1|[0, L/`] and the (2τ)-good partition (a′n) of [0, L/`], we
get a τ -good integer partition 0 = N0 < . . . < Nq = L of (0, L] such that

q−1∑
j=0

f1(Nj/`)− min
[Nj/`,Nj+1/`]

f1 ≤ T(f1|[0, L/`], (a′n)) +Oτ (log `/`).

Noting that the left-hand side of the above expression is exactly 1
`
M(σ, (Nj)), and

the right-hand side is at most the right-hand side of (5.34) by (5.35), the proof is
complete. �

The next proposition is a version of Proposition 5.2 for sequences, and will play a
central role in the proof of Theorem 1.2.

Proposition 5.23. For any γ,Γ ∈ [−1, 1], τ ∈ (0, 1/2), ζ ∈ (0, 1) such that γ ≤ Γ and
2γ ≤ Γ, the following holds.

Let σ ∈ [−1, 1]` satisfy

γj − ζ` ≤ σ1 + . . .+ σj ≤ Γj + ζ` (1 ≤ j ≤ `).

Then
1

`
Mτ (σ) ≤ (1− γ)(Γ− 2γ)

1 + 2Γ− 3γ
+ 14

√
ζ + 144τ +Oτ (log `/`).

Proof. Let f be the function provided by Lemma 5.22. Applying Proposition 5.2 to f
with D = max(−1, γ −

√
ζ), C = min(1,Γ +

√
ζ), and using that D ∈ [γ −

√
ζ, γ] and

C ∈ [Γ,Γ +
√
ζ], then using that 1 + 2Γ − 3γ ≥ 1, γ,Γ ∈ [−1, 1] and ζ ∈ (0, 1), we

obtain

T(f) ≤ (1− γ +
√
ζ)(Γ− 2γ + 3

√
ζ)

1 + 2Γ− 3γ

≤ (1− γ)(Γ− 2γ)

1 + 2Γ− 3γ
+ 12

√
ζ.

By applying (iii) of Lemma 5.22 for L = ` we get the desired inequality. �
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The following proposition will be used (only) in the proof of Theorem 1.3; it is
essentially a consequence of Proposition 5.5,

Proposition 5.24. For any γ, τ ∈ (0, 1/2), ζ ∈ (0, γ2], δ > 0 there is η = η(δ, γ) > 0 such
that the following holds for any positive integer `.

Let σ ∈ [−1, 1]` satisfy

γj − ζ` ≤ σ1 + . . .+ σj (1 ≤ j ≤ `).

Then there exists an integer L ∈ [η`, `] such that

1

L
Mτ (σ|(0, L]) ≤ Φ(γ) +

1

η

(
O(
√
ζ) +O(τ) +Oτ (log `/`)

)
+ δ.

where

Φ(x) =
2− x−

√
3− 3x2

4
.

Proof. Let f be the function provided by Lemma 5.22 for Γ = 1. Choose δ̃ ∈ (0, 1/2)

such that δ̃(2− 4 log δ̃) < δ and let η = 3Φ(γ)2−1/δ̃ > 0.
Let D = γ −

√
ζ ≥ 0. Note that Φ is decreasing on [0, 1/2], so 3Φ(D)2−1/δ̃ ≥

3Φ(γ)2−1/δ̃ = η. Using this and applying Proposition 5.5, we obtain a u ∈ [η, 1] such
that

1

u
T(f |[0, u]) < Φ(D) + δ =

2−D −
√

3− 3D2

4
+ δ

≤ 2− (γ −
√
ζ)−

√
3− 3γ2

4
+ δ = Φ(γ) +

√
ζ/4 + δ.

Let L be the smallest integer such that u ≤ L/`. Then clearly L ∈ [η`, `].
It is easy to see that for any 1-Lipschitz function g : [0, a] → R and any 0 < u1 <

u2 ≤ a we have T(g|[0, u2]) ≤ T(g|[0, u1]) + (u2 − u1). Thus

1

u
T(f |[0, L/`]) ≤ 1

u
(T(f |[0, u]) + 1/`) ≤ Φ(γ) +

√
ζ/4 + δ +

1

`u
.

Combining this with (iii) of Lemma 5.22, we conclude

1

L
Mτ (σ|(0, L]) ≤ 1

u
· 1

`
Mτ (σ|(0, L])

≤ 1

u

(
T(f |[0, L/`]) + 2

√
ζ + 144τ +Oτ (log `/`)

)
≤ Φ(γ) +

√
ζ/4 + δ +

1

`η
+

1

η

(
2
√
ζ + 144τ +Oτ (log `/`)

)
≤ Φ(γ) +

1

η

(
O(
√
ζ) +O(τ) +Oτ (log `/`)

)
+ δ.

�
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Finally, we get a version for sequences and integer partitions of Corollary 5.17,
which will be applied to prove Theorem 1.4.

Proposition 5.25. Let τ ∈ (0, 1/2), γ ∈ (0, 1/3), ζ ∈ (0, γ2) and

Λ(x) =
(1 + x)(37− 50x+ 60x2)

18(3− 4x+ 5x2)
(x ∈ [0, 1/3]).

Then there exist η > 0, ξ ∈ (2/3, 1] (depending on γ −
√
ζ) such that

ξ(1− 2η) = Λ(γ −
√
ζ) ≥ Λ(γ)−

√
ζ

and the following holds:
For any sequence (σ1, . . . , σ`) ∈ [−1, 1]` such that

σ1 + . . .+ σj ≥ γj − ζ` (j = 1, . . . , `),

one of the following alternatives is satisfied:
(i)

1

ξ`

ξ`
max
j=1

j∑
i=1

(1/3− σi) ≤ η + 2
√
ζ.

(ii)
1

`
Mτ (σ) ≤ 1− Λ(γ) + 3

√
ζ + 144τ +Oτ (log `/`).

Proof. We begin by noting that Λ(γ −
√
ζ) ≥ Λ(γ)−

√
ζ since Λ′(x) ≤ 1 on [0, 1/3].

Let η > 0, ξ ∈ (2/3, 1] be the numbers given in Corollary 5.17 for D = γ −
√
ζ ∈

(0, 1/3). Suppose that (i) is false, so there is a j ≤ ξ` such that

1

ξ`

j∑
i=1

(1/3− σi) > η + 2
√
ζ,

and therefore
1

`
(σ1 + . . .+ σj) <

j

3`
− ηξ − 2ξ

√
ζ.

Note that the left-hand side is at least −j/` and that, since η > 0 and ξ ≥ 2/3, we
have 3

4
(η + 2

√
ζ)ξ >

√
ζ . This implies that j/` >

√
ζ .

Let f be the function provided by Lemma 5.22 for Γ = 1, and let x0 = j/`. Then
x0 ∈ [

√
ζ, ξ] and f : [0, 1] → R is a 1-Lipschitz function such that f(0) = 0, f(x) ≥

(γ −
√
ζ)x on [0, 1], f(x0) < x0/3− ηξ − 2ξ

√
ζ ≤ x0/3− ηξ, and

(5.36)
1

`
Mτ (σ) ≤ T(f) + 2

√
ζ + 144τ +Oτ (log `/`).

Applying Corollary 5.17 to f , we get

T(f) ≤ 1− Λ(γ −
√
ζ) ≤ 1− Λ(γ) +

√
ζ.

Combining this with (5.36) we obtain (ii), which completes the proof. �
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6. PROOFS OF MAIN THEOREMS

6.1. Proof of Theorem 1.2. In this section we prove Theorem 1.2. Write

ψ(s, u) =
s(2 + u− 2s)

2 + 2u− 3s
,

and recall that χ(s, u) = min(ψ(s, u), 1) for 0 ≤ s ≤ u ≤ 2 and s < 2, and moreover
χ(s, u) = 1 if and only if u ≤ 2s− 1 (which forces s ≥ 1).

The next proposition encapsulates some preliminary reductions towards the proof
of Theorem 1.2. We first explain how to deduce the theorem from the proposition;
the rest of the section is then devoted to the proof of the proposition.

Proposition 6.1. For every 0 < s ≤ u ≤ 2 with u > 2s− 1, the following holds.
Let µ ∈ P([0, 1)2) satisfy Es(µ) <∞ and dimB(supp(µ)) ≤ u. IfB ⊂ [0, 1)2 is a compact

set disjoint from supp(µ) with dimH(B) > min(1, 2− s), then

sup
y∈B

dimH(∆y(suppµ)) ≥ ψ(s, u).

Proof of Theorem 1.2 (assuming Proposition 6.1). We proceed by contradiction. Assume,
then, that there exists a Borel set A ⊂ R2 such that 0 < s ≤ dimH(A) ≤ dimP(A) ≤
u ≤ 2 and

dimH{y ∈ R2 : dimH(∆yA) < χ(s, u)} > max(1, 2− s).
By countable stability of Hausdorff dimension, there are η > 0 and a set B ⊂ R2 with
dimH(B) > max(1, 2− s) such that

(6.1) dimH(∆yA) < χ(s, u)− η for all y ∈ B.

Since dimH(∆yA) does not increase if we replace A by any subset, every Borel set
of dimension s > 0 contains compact subsets of positive s′-dimensional Hausdorff
measure for all 0 < s′ < s, and χ(s, u) is continuous, at the price of replacing η by
η/2 we may assume that in (6.1) the set A is compact and of positive s-dimensional
Hausdorff measure. In turn, a routine verification shows that if A is compact, then
the set

{y : dimH(∆yA) < χ(s, u)− η/2}
is Borel. Hence in (6.1) we may also assume that B is Borel.

Recall that χ(s, u) = 1 if and only if u ≤ 2s − 1 (and s ≥ 1 in this case). Hence,
if u ≤ 2s − 1, then we can pick 0 < s′ ≤ u′ ≤ 2 such that u′ ≥ u, 1 ≤ s′ ≤ s,
u′ > 2s′ − 1, and ψ(s′, u′) > 1− η/2. This shows that in (6.1), we may further assume
that u > 2s− 1 and replace χ(s, u) by ψ(s, u) (with η/2 in place of η).

Let µ ∈ P(R2) be an s-Frostman measure on A, i.e. µ is a Radon measure sup-
ported on A and µ(B(x, r)) ≤ Crs for all x ∈ R2, r > 0, where C is independent
of x (recall that we assumed that A has positive s-dimensional Hausdorff measure).
By assumption, dimP(supp(µ)) ≤ u. Using that packing dimension is equal to the
modified upper box counting dimension (see e.g. [6, Proposition 3.8]), and that
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dimB(A0) = dimB(A0), we see that for every δ > 0 there is a compact set A0 ⊂ A

of positive µ-measure such that dimB(A0) ≤ min(u+ δ, 2).
We can then find disjoint compact subsetsB′ ⊂ B,A′ ⊂ A0 such that still µ(A′) > 0,

dimH(B′) > max(1, 2 − s). Then (provided δ was taken small enough in terms of
s, u, η)

dimH(∆yA
′) < ψ(s− δ,min(u+ δ, 2))− η/2 for all y ∈ B′.

This inequality is preserved under (joint) scaling and translation of µ,A′, B′, so it
holds in particular for some compact A′, B′ ⊂ [0, 1)2. Since µA′(B(x, r)) ≤ C ′rs for
some constant C ′ > 0, we can check that Es−δ(µA′) < ∞. Since supp(µA′) ⊂ A′, this
contradicts Proposition 6.1 applied to µA′ and B′, with s− δ, min(u+ δ, 2) in place of
s, u (provided δ was taken small enough in terms of s, u, dimH(B′)). �

In order to bound the Hausdorff dimension of ∆yA from below, we will use the
following standard criterion; although it is well known, we include the short proof
for completeness.

Lemma 6.2. Let F ⊂ Rd be a Borel set and let ρ ∈ P(Rd) give full mass to F . Suppose that
there are M0 ∈ N≥2 and s > 0 such that for any M ≥ M0 and any Borel subset F ′ ⊂ F
with ρ(F ′) > M−2, the number N (F ′,M) of cubes in DM hitting F ′ is at least 2sTM . Then
Hs(F ) &T,d 1 and in particular dimH(F ) ≥ s.

Proof. Let {B(xi, ri)} be a cover of F where ri ≤ 2−TM0 for all i. Our goal is to estimate∑
i r
s
i from below.

Write FM for the union of all the B(xi, ri) for which 2−T (M+1) ≤ ri ≤ 2−TM . Pigeon-
holing, there is M ≥ M0 such that ρ(FM) > M−2. By assumption, one needs at least
2sTM cubes in DM to cover FM . It follows that the number of balls making up FM is
&d,T 2sTM , so that

∑
i r
s
i &d,T 2sTM2−sTM = 1. This gives the claim. �

We now begin the proof of Proposition 6.1. Since µ, s, u are fixed, any (possibly
implicit) constants appearing in the proof may depend on them. Let ν be a measure
supported on B with finite u′-energy where u′ > max(1, 2 − s). Let κ = κ(µ, ν) > 0
be the number given by Proposition 3.12. We will show that (under the assumptions
of the proposition) there exists y ∈ B (possibly depending on T, ε, τ ) such that

(6.2) dimH(∆y(supp(µ))) > ψ(s, u)− oT,ε,τ (1).

Recall that oT,ε,τ (1) stands for a function of T, ε, τ which tends to 0 as T → ∞ and
ε, τ → 0+. We will henceforth assume that T, ε, τ are given, and that the integer `0 is
chosen large enough in terms of T, ε, τ so that all the claimed inequalities hold. As a
first instance of this, apply Lemma 3.10 to get that

|Bad′′`0(µ, x)| ≤ κ for all x ∈ suppd(µ)

provided `0 was taken large enough (in terms of T, ε, τ ).



46 TAMÁS KELETI AND PABLO SHMERKIN

One can easily check that, given ν ∈ P([0, 1)2) and j, k ∈ N, the set {(x, θ) : θ ∈
Bad(ν, x, j, k)} is Borel (recall Definition 3.8). It follows that the set

(6.3) Θ = {(x, θ) : x ∈ suppd(µ), θ ∈ Bad′′`0(µ, x)}

is Borel. Hence, applying Proposition 3.12, and using Fubini and the fact that µ is a
Radon measure, we obtain a compact set A1 ⊂ suppd(µ) ⊂ supp(µ) with µ(A1) > 2/3
and a point y ∈ supp(ν) ⊂ B such that

(6.4) Py(x) /∈ Bad′′`0(µ, x) for all x ∈ A1.

Making ε smaller (in terms of dist(B, supp(µ)) only) and `0 larger, we may assume
that

(6.5) dist(B,A1) ≥ ε+
√

2 · 2−`0 .

We will show that, in fact, dimH(∆y(A1)) ≥ ψ(s, u) − oT,ε,τ (1), which clearly implies
(6.2). To do this, our aim is to apply Lemma 6.2 with F = ∆y(A1), ρ = ∆y(µA1). Note
that if ρ(F ′) ≥ `−2, then A2 = ∆−1y (F ′) satisfies that µA1(A2) = ρ(F ′) ≥ `−2. Hence, in
order to complete the proof of Proposition 6.1, it is enough to establish the following.

Claim. If the Borel set A2 ⊂ [0, 1)2 satisfies µA1(A2) ≥ `−2 with ` ≥ `0, where `0 is
taken sufficiently large in terms of T, ε, τ , then

(6.6) logN (∆yA2, `) ≥ (ψ(s, u)− oT,ε,τ (1))T`.

Fix, then, A2 as above. Since the set ∆y(R`A2) is contained in the (
√

2 · 2−T`)-
neighborhood of ∆yA2, the numbers logN (∆yA2, `) and logN (∆yR`A2, `) differ by
at most a constant. Hence we can, and do, assume that A2 = R`A2 from now
on. Moreover, we may assume that A2 ⊂ R`(A1), since whenever A2 = R`A2 and
µA1(A2) ≥ `−2, the same holds for A2 ∩R`(A1).

Consider the sets given by Corollary 3.5 applied to R`µ. Applying the corollary
with A = A2, and using that

2−εT` � 2
3
`−2 ≤ µ(A1)µA1(A2) ≤ µ(A2) = R`µ(A2)

for large enough `, we can find a further 2−T`-set X such that, setting ρ = (R`µ)X ,
(i) ρ(A2) ≥ `−2/2.

(ii) R`µ(X) ≥ 2−oT,ε(1)T` and therefore, using that Es(R`µ) .T Es(µ) by Lemma 3.1,

Es(ρ) ≤ (R`µ(X))−2Es(R`µ) .T 2oT,ε(1)T`Es(µ) . 2oT,ε(1)T`.

(iii) ρ is σ-regular for some sequence σ = (σ1, . . . , σ`), σj ∈ [−1, 1].
(iv) X is contained in R` suppd(µ).

By Lemma 3.3 and (ii), (iii) above, and assuming that `0 was taken large enough in
terms of T , we have

(6.7)
j∑
i=1

σi ≥ (s− 1)j − `oT,ε(1) (j = 1, . . . , `).
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On the other hand, we have assumed that dimB(supp(µ)) ≤ u, so thatN (supp(µ), j) ≤
Oε(1)2(u+ε)Tj for all j ∈ N. By (iv) above, this also holds for X in place supp(µ) if
j ≤ `. On the other hand, using that ρ is σ-regular as in (3.1), we get

N (X, j) = |Dj(ρ)| ≥ 2T (σ1+1) · · · 2T (σj+1) (1 ≤ j ≤ `).

Combining these estimates, we deduce that 2T (σ1+...+σj+j) ≤ Oε(1)2(u+ε)Tj , and hence

(6.8)
j∑
i=1

σi ≤
Oε(1)

T
+ (u− 1 + ε)j ≤ (u− 1)j + `oT,ε(1) (j = 1, . . . , `),

provided `0 was taken large enough in terms of ε.
Combining (6.7) and (6.8), we see that the assumptions of Proposition 5.23 are

satisfied with γ = s − 1, Γ = u − 1, and ζ = oT,ε(1). After another short calculation,
and starting with `0 large enough in terms of τ , we deduce that

(6.9)
1

`
Mτ (σ) ≤ 1− ψ(s, u) + oT,ε,τ (1).

Recall from (6.4) that if x ∈ A1, then θ(x, y) /∈ Bad′′`0(µ, x). Hence, according to the
definition of the sets Bad′`0 `(R`µ, x) and Bad′′`0(µ, x) in (3.3) and (3.4) respectively,
we have θ(x, y) /∈ Bad′ε` `(R`µ, x) = Badε` `(ρ, x) for all x ∈ A1 ∩X . Since we have
assumed that A2 ⊂ R`(A1), the hypotheses of Proposition 4.4 are met by ρ and A2,
with β = ε (the separation assumption follows from (6.5)). Recalling (i), we see that if
`0 was taken even larger in terms of T, ε, τ we can make the error term in Proposition
4.4 equal to oT,ε,τ (1). In light of (6.9), Proposition 4.4 gives exactly (6.6).

This completes the proof of the claim and, with it, of Proposition 6.1 and Theorem
1.2.

6.2. Proof of Theorem 1.3. In this section we prove Theorem 1.3. The proof goes
along the same lines as the proof of Theorem 1.2, except that we rely on Proposition
5.24 instead of Proposition 5.23 to choose the scales in the multi-scale decomposition.
The need to deal with two different scales 2−TL and 2−T` also creates some additional
challenges. Write

ψ(s) =
1 + s+

√
3s(2− s)

4
.

(This should not be confused with the function ψ(s, u) from §6.1.) The next proposi-
tion contains the core of Theorem 1.3.

Proposition 6.3. For every 1 < s < 3/2, the following holds.
Let µ ∈ P([0, 1)2) satisfy Es(µ) < ∞. If B ⊂ [0, 1)2 is a compact set disjoint from

supp(µ) with dimH(B) > 1, then

sup
y∈B

dimB(∆y(suppµ)) ≥ ψ(s).
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Proof of Theorem 1.3 (assuming Proposition 6.3). Reasoning as in the deduction of The-
orem 1.2 from Proposition 6.1, we get that if U is a Borel subset of R2 with dimH(U) ≥
t ∈ (1, 3/2), then

(6.10) dimH{y ∈ R2 : dimB(∆y(U)) < ψ(t)} ≤ 1.

The reason we need to go via box dimension is that the map y 7→ dimB ∆y(U) is Borel
if U is compact, while it is unclear whether the map y 7→ dimP ∆y(U) is Borel, since
it was proved in [18] that packing dimension is not a Borel function of the set if one
considers the Hausdorff metric on the compact subsets of R.

Now suppose the claim of Theorem 1.3 does not hold. Then we can find a Borel
set A ⊂ R2 with dimH(A) = s ∈ (1, 3/2) and η > 0 such that

dimH{y ∈ R2 : dimP(∆y(A)) < ψ(s)− η} > 1.

Let ν a Frostman measure on A of exponent t ∈ (1, s), sufficiently close to s that
ψ(t) ≥ ψ(s)− η, and note that

(6.11) dimH{y ∈ R2 : dimP(∆y(supp(ν))) < ψ(t)} > 1.

Fix a countable basis (Ui) of open sets of supp(ν) (in the relative topology). Note that
dimH(Ui) ≥ t for all i since ν is a Frostman measure. Hence, from (6.10) we get that
dimH(E) ≤ 1, where

E = {y ∈ R2 : dimB(∆y(Ui)) < ψ(t) for some i}.
Fix y ∈ R2 \ E. Let (Fj) be a countable cover of ∆y(supp(ν)). By Baire’s Theorem,
some ∆−1y (F j) has nonempty interior in supp(ν), and hence contains some Ui. By the
definition of E,

dimB(Fj) = dimB(F j) ≥ dimB(∆y(Ui)) ≥ ψ(t).

By the characterization of packing dimension as modified upper box counting di-
mension ([6, Proposition 3.8]), we conclude that dimP(∆y(supp(ν)) ≥ ψ(t) whenever
y ∈ R2 \ E. Since dimH(E) ≤ 1, this contradicts (6.11), finishing the proof. �

We now start the proof of Proposition 6.3. Let ν be a measure supported on B
with finite u-energy for some u > 1, and let κ = κ(µ, ν) > 0 be the number given by
Proposition 3.12. Apply Lemma 3.10 to obtain the bound

|Bad′′`0(µ, x)| ≤ κ for all x ∈ suppd(µ)

provided `0 was taken large enough in terms of T, ε, τ . Recall that the set Θ in Equa-
tion (6.3) is Borel. Applying Proposition 3.12 to Θ and Fubini, we obtain a compact
set A ⊂ suppd(µ) with µ(A) > 2/3 and a point y ∈ B such that

(6.12) Py(x) /∈ Bad′′`0(µ, x) for all x ∈ A.
Fix a number δ > 0. We will show that

dimB(∆yA) ≥ ψ(s)− ErrorT,ε,τ (δ),
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where ErrorT,ε,τ (δ) can be made arbitrarily small by first taking δ small enough, and
then taking T large enough and ε, τ small enough, all in terms of δ. This error term
may also depend on s.

Fix a large integer ` � `0. We claim that it is enough to find a scale L ∈ [`0, `],
tending to infinity with `, such that

(6.13)
logN (∆y(RLA), L)

TL
≥ ψ(s)− ErrorT,ε,τ (δ),

where the error term has property detailed above. Indeed, since ∆y(RLA) is con-
tained in the O(2−TL)-neighborhood of ∆y(A), this implies the corresponding lower
bound for dimB(∆y(A)).

Apply Corollary 3.5 to R`µ. Taking ` large enough that 2−εT` � 2/3 < µ(A) ≤
µ(R`A), there is a 2−T`-set X such that, setting ρ = (R`µ)X ,

(i) ρ(R`A) ≥ 1/2.
(ii) R`µ(X) ≥ 2−oT,ε(1)T` whence, as we saw in the proof of Proposition 6.1,

Es(ρ) .T 2oT,ε(1)T`.

(iii) ρ is σ-regular for some sequence σ = (σ1, . . . , σ`), σj ∈ [−1, 1].
Note that, provided `0 was taken large enough, (6.7) still holds, since it only depends
on (ii) and (iii). We are then in the setting of Proposition 5.24 with γ = s − 1, ζ =
oT,ε(1). Let η = η(δ, s− 1) > 0 be the number given by the proposition; we underline
that, since δ is chosen before T, ε, τ , the number η is also independent of T, ε, τ (it
is useful to keep in mind that η does depend on δ). A short calculation shows that
1 − ψ(s) = Φ(s − 1). From now we assume that ` is taken large enough (in terms of
δ and s) that η` ≥ `0. Then, applying Proposition 5.24 and making ` even larger, we
get an integer L ∈ [η`, `] ⊂ [`0, `] such that

(6.14)
1

L
Mτ (σ|(0, L]) ≤ 1− ψ(s) + η−1oT,ε,τ (1) + δ.

Note that RLρ is (σ1, . . . , σL)-regular. Also, if x ∈ A ∩X , then

θ(x, y) /∈ Bad′ε` `(R`µ, x) (by (6.12) and (3.4))
= Badε` `(ρ, x) (by (3.3), since X came from Cor. 3.5)
⊃ Bad(ε/η)L L(ρ, x) (by Def. 3.8, ε` ≤ (ε/η)L and L ≤ `)
= Bad(ε/η)L L(RLρ, x) (by Def. 3.8).

Note that x 7→ Bad(ε/η)L L(RLρ, x) is constant on each square of DL(RLρ). Hence,
for each x ∈ RL(A ∩ X) there is x̃ ∈ A ∩ X ⊂ RL(A ∩ X) such that θ(x̃, y) /∈
Bad(ε/η)L L(RLρ, x̃). Assume ε < η. If ε was taken small enough and ` large enough
that dist(B, supp(µ)) ≥ ε +

√
2 · 2−`0 , then all the hypotheses of Proposition 4.4 are

satisfied for RLρ, RL(A ∩ X) and L in place of ρ,A and `, with β = ε/η. Using (i)
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above (which implies RLρ(RLA) ≥ 1/2) and the bound L ≥ η`, the error term in
Proposition 4.4 can be bounded by

2ε

η
+ oT,ε(1) +OT,ε,τ

(
log2(η`)

η`

)
.

Making ` large enough in terms of T, ε, τ, δ and s, this error term can be made oT,ε(1)+
2εη−1. Hence Proposition 4.4 together with (6.14) ensure that (6.13) holds, with the
error behaving as claimed.

Since L ≥ η` and ` is arbitrarily large, L is also arbitrarily large. Hence we have
shown that (6.13) holds for arbitrarily largeL and, as explained above, this completes
the proof of Proposition 6.3 and, with it, of Theorem 1.3.

6.3. Proof of Theorem 1.4. In this section we prove Theorem 1.4. Throughout this
section, we let ∆ : R4 → R, (x, y) 7→ |x− y|. We start by recalling a more quantitative
version of the Mattila-Wolff bound (1.1).

Theorem 6.4. Suppose µ1, µ2 ∈ P([0, 1)2) have ε-separated supports. If E4/3(µ1) < +∞,
E4/3+ε(µ2) <∞, then ∆(µ1 × µ2) has an L2 density, and

‖∆(µ1 × µ2)‖22 .ε E4/3(µ1)E4/3+ε(µ2).

Proof. Given µ ∈ P([0, 1)2), let

σ(µ, r) =

∫
S1

|µ̂(θr)|2 dθ,

σα(µ) = sup{rασ(µ, r) : r > 0}.

Mattila [15, Corollary 4.9] proved that

‖∆(µ1 × µ2)‖22 .ε Eα(µ1)σ2−α(µ2).

We remark that in [15] this is proved for a weighted version of the distance measure
(see [15, Eq. (4.1)]), but the weight u−1/2 lies in the interval [(

√
2)−1/2, ε−1/2] by our

assumption that the supports of µ1, µ2 are ε-separated and contained in [0, 1)2. Later
Wolff [27, Theorem 1] proved that for any µ ∈ P([0, 1)2),

σβ/2(µ) .β,ε Eβ+ε(µ),

and this is sharp up to the ε when β ∈ (1, 2). See also [17, Chapters 15 and 16] for an
exposition of these arguments. Combining these estimates with α = β = 4/3 yields
the claim. �

In the proof we will also require the following well-known lemma, whose proof
we include for completeness.

Lemma 6.5. Let f ∈ L2(R) satisfy
∫
fdx = 1. Then N (supp(f), L) ≥ 2TL/‖f‖22 for all

L ∈ N.
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Proof. Using Cauchy-Schwarz and Jensen’s inequality, we estimate

1 =

(∑
I∈DL

∫
I

f

)2

≤ N (supp(f), L)
∑
I∈DL

(∫
I

f

)2

≤ N (supp(f), L)
∑
I∈DL

2−TL
∫
I

f 2

= 2−TLN (supp(f), L)‖f‖22.
�

Proof of Theorem 1.4. As usual fix T � 1, ε, τ � 1. Let Λ(x) be the function defined in
Proposition 5.25. A calculation shows that

Λ(s− 1) =
s(147− 170s+ 60s2)

18(12− 14s+ 5s2)
.

As Λ is continuous, it is enough to show that if A ⊂ R2 is a Borel set with dimH(A) >
s, then dimH(∆(A × A)) ≥ Λ(s − 1). It is enough to consider the case in which A is
bounded. After translating and rescaling A, we may further assume that A ⊂ [0, 1)2.

Let µ1, µ2 ∈ P([0, 1)2) be measures supported on A such that Es(µ1), Es(µ2) < ∞,
and their supports are (2ε)-separated (making ε smaller if needed). Any implicit
constants arising in the proof may depend on µ1, µ2 and s.

Let κ1, κ2 > 0 be the numbers given by Proposition 3.12 applied to µ1, µ2 and µ2, µ1

in place of µ, ν respectively, and set κ = min(κ1, κ2).
Pick `0 large enough in terms of T, ε, τ that, invoking Lemma 3.10,

Bad′′`0(µi, x) ≤ κ for all x ∈ suppd(µi), i = 1, 2.

Let
Θi = {(x, θ) : x ∈ suppd(µi), θ ∈ Bad′′`0(µi, x)}, i = 1, 2.

Applying Proposition 3.12 first with µ1, µ2 and Θ1 in place of µ, ν,Θ and then with
µ2, µ1 and Θ2 in place of µ, ν,Θ, we get that there exists a compact setG ⊂ suppd(µ1)×
suppd(µ2) such that (µ1 × µ2)(G) > 1/3 and

(6.15) θ(x, y) 6∈ Bad′′`0(µ1, x) and θ(y, x) 6∈ Bad′′`0(µ2, y) for all (x, y) ∈ G.
We write µ = µ1 × µ2 from now on. Denote s0 = Λ(s− 1). Our goal is to show that

dimH(∆(G)) ≥ s0.

Since ∆(G) ⊂ ∆(A × A), this will establish the theorem. In turn, since a Borel set
F ′ ⊂ R satisfies (∆µG)(F ′) > `−2 if and only if B = ∆−1(F ′) satisfies µG(B) > `−2,
according to Lemma 6.2, in order to complete the proof it is enough to prove the
following claim.
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Claim. The following holds if ` is large enough in terms of µ, T, ε, τ : if B is a Borel
subset of [0, 1)2 × [0, 1)2 such that µG(B) > `−2, then

(6.16) logN (∆(B), `) ≥ T`(s0 − oT,ε,τ (1)).

We start the proof of the claim. Firstly, replacing B by a compact subset of almost
the same measure we may assume that B is compact. We may assume also that
B ⊂ G. Note that µ(B) = µG(B)µ(G) ≥ `−2/3.

Let (X
(i)
k )Nik=1 be the 2−T`-sets given by Corollary 3.5 applied to R`(µi). Note that

we have a disjoint union

(6.17) suppd(R`µi) =

(
Ni⋃
k=1

X
(i)
k

)
∪ X̃(i), where µi(X̃(i)) = R`µi(X̃

(i)) ≤ 2−εT`.

Write ρ(i)k = (R`µi)X(i)
k

. Note that ρ(i)k is σ(i)
k -regular for some σ

(i)
k ∈ [−1, 1]`; in

particular, it is a 2−T`-measure. Also, by Lemma 3.1 and Corollary 3.5(ii), and using
our assumption that Es(µi) <∞,

Es(ρ(i)k ) ≤
(
R`µi(X

(i)
k )
)−2
Es(R`µi) .T 2oT,ε(1)T`.

Hence, using Lemma 3.3 and increasing the value of `0 again, any σ = σ
(i)
k satisfies

(6.18) σ1 + . . .+ σj ≥ (s− 1)j − ζ` (j = 1, . . . , `),

where ζ = oT,ε(1). By starting with appropriate T, ε, we may assume that ζ < (s−1)2.
If ρ is σ-regular, we write

D(ρ) = 1− 1

`
Mτ (σ).

Let Fi ⊂ suppd(R`µi) be union of the sets X(i)
k over all k such that D(ρ

(i)
k ) ≥ s0 − δ,

where

(6.19) δ = 3
√
ζ + 145τ.

Note that, since the X(i)
k are 2−T`-sets, then so if Fi.

Consider two (non mutually exclusive) cases:
(a) Either µB(F1 × R2) ≥ 1/3 or µB(R2 × F2) ≥ 1/3 (or both).
(b) µB((R2 \ F1)× (R2 \ F2)) ≥ 1/3.
Roughly speaking, in the first case we will argue as in the proof of Theorem 1.2,
while in case (b) we will appeal to Proposition 5.25.

Assume then that (a) holds. Without loss of generality, suppose µB(F1×R2) ≥ 1/3.
Instead of showing that (6.16) holds directly for B, we will show that it holds for the
set

B′ =
⋃

y∈[0,1)

(R`By × {y})



NEW BOUNDS ON THE DIMENSIONS OF PLANAR DISTANCE SETS 53

where, for the rest of this section, given A ⊂ R2 × R2 we denote its “horizontal”
sections by Ay = {x : (x, y) ∈ A} (for y ∈ R2). In other words, to form B′ we make
each horizontal fiber ofB into a union of squares inD`. One can check thatB′ is Borel
(in fact, σ-compact). Since B ⊂ B′ ⊂ R`B, the numbers N (∆(B′), `) and N (∆(B), `)
differ by at most a multiplicative constant so that proving (6.16) for B′ implies it also
for B. Since we are assuming that B ⊂ G, we have that B′ ⊂ G′, where G′ is defined
analogously to B′.

Using Fubini, that F1 = R`F1, our definition of B′, the assumption µB(F1 × R2) ≥
1/3, and the fact that µ(B) ≥ `−2/3, we get

(R`µ1 × µ2)((F1 × R2) ∩B′) =

∫
R`µ1(F1 ∩B′y) dµ2(y)

=

∫
µ1(F1 ∩R`By) dµ2(y)

= µ((F1 × R2) ∩B′)
≥ µB(F1 × R2)µ(B) ≥ `−2/9.

Applying (6.17) with i = 1, we can decompose

R`µ1 = (R`µ1)|X̃(1) +

N1∑
k=1

µ1(X
(1)
k )ρ

(1)
k .

Hence, using that R`µ1(X̃
(1)) ≤ 2−εT` and taking ` large enough, there exists k such

that
(ρ

(1)
k × µ2)((F1 × R2) ∩B′) ≥ `−2/9− 2−εT` ≥ `−2/10.

By the definition of F1, we must have D(ρ
(1)
k ) ≥ s0 − δ, and suppd(ρ

(1)
k ) ⊂ F1. By

Fubini, we can find y ∈ suppd(µ2) such that

(6.20) ρ
(1)
k (B′y) ≥ `−2/10.

Since B′ ⊂ G′ ⊂ R`G, we know that if x ∈ B′y then there exists x̃ ∈ D`(x) such that
(x̃, y) ∈ G. By (6.15), this implies that θ(x̃, y) /∈ Bad′′`0(µ1, x̃). Recalling the definitions
(3.3), (3.4), we have shown that the hypotheses of Proposition 4.4 hold for ρ(1)k and
B′y, with β = ε (the separation between y and supp(ρ

(1)
k ) follows from the fact that

the supports of µ1 and µ2 are (2ε)-separated, making ` larger again). Recalling (6.20),
we see that the error term in Proposition 4.4 can be made ≤ oT,ε,τ (1) by making `

even larger. Applying the proposition, and recalling that D(ρ
(1)
k ) ≥ s0 − δ, where

δ = oT,ε,τ (1) was defined in (6.19), we conclude that (for this fixed value of y)

logN (∆y(B
′
y), `) ≥ T`(s0 − oT,ε,τ (1)),

and hence the same lower bound holds for logN (∆(B′), `). This concludes the proof
of the claim in case (a).
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We now consider case (b). Since N (∆(B), `) and N (∆(R`B), `) differ by at most a
multiplicative constant, it is enough to prove (6.16) for R`B in place of B. It follows
from the assumption of case (b), the decomposition (6.17) for both µ1, µ2, and the
definitions of the sets Fi that

1

3
µ(B) ≤ µ

((
(R2 \ F1)× (R2 \ F2)

)
∩B

)
≤ 2 · 2−εT` +

∑
(k1,k2):D(ρ

(i)
ki

)<s0−δ

R`µ1(X
(1)
k1

)R`µ2(X
(2)
k2

)
(
ρ
(1)
k1
× ρ(2)k2

)
(R`B).

Hence, using that µ(B) ≥ `−2/3, we can find k1, k2 such that D(ρ
(i)
ki

) < s0 − δ for
i = 1, 2, and

(6.21)
(
ρ
(1)
k1
× ρ(2)k2

)
(R`B) ≥ 1

3
µ(B)− 2 · 2−εT` ≥ 1

10
`−2,

if ` is large enough in terms of ε.
Write ρ(i)ki = ρ′i for simplicity. In light of (6.18) and our earlier assumption ζ <

(s − 1)2, the hypothesis of Proposition 5.25 holds for the sequences σ arising from
both ρ′1 and ρ′2, with γ = s − 1. Let η > 0, ξ ∈ (2/3, 1] be the numbers given in the
proposition (they depend on s − 1 −

√
ζ) . Since D(ρ′i) < Λ(s − 1) − δ, where δ was

defined in (6.19), if we take ` sufficiently large, then the alternative (i) in Proposition
5.25 must hold.

Let ρ′′i = Rbξ`c(ρ
′
i). Note that if ρ′i is (σ1, . . . , σ`)-regular, then ρ′′i is (σ1, . . . , σbξ`c)-

regular. Using Lemma 3.3 (with bξ`c in place of `), recalling that ζ = oT,ε,τ (1) and
that the alternative (i) in Proposition 5.25 holds, and making ` larger if needed, we
get

log E4/3(ρ′′i ) ≤ ξT`(η + oT,ε,τ (1)) (i = 1, 2).

On the other hand, we see from Lemma 3.1 that

E4/3+ε(ρ′′i ) .T,ε 2εξT `E4/3(ρ′′i ).
We apply Theorem 6.4 (together with the last two displayed equations) to get

‖∆(ρ′′1 × ρ′′2)‖22 .T,ε 2εξT `E4/3(ρ′′1)E4/3(ρ′′2)

≤ 2oT,ε,τ (1)ξT `22ηξT`.

It follows from (6.21) that (ρ′′1 × ρ′′2)(Rbξ`cB) ≥ `−2/10. We deduce that, for ` large
enough,

log
∥∥∥∆
(

(ρ′′1 × ρ′′2)Rbξ`cB
)∥∥∥2

2
≤ ξT`(2η + oT,ε,τ (1)).

Applying Lemma 6.5 to f = ∆
(

(ρ′′1 × ρ′′2)Rbξ`cB
)

and L = bξ`c, we conclude that

logN (∆(B), `) ≥ logN (∆(B), bξ`c)
& logN (∆(Rbξ`cB), bξ`c) ≥ ξT`(1− 2η − oT,ε,τ (1))



NEW BOUNDS ON THE DIMENSIONS OF PLANAR DISTANCE SETS 55

for ` sufficiently large. Since ξ(1−2η) ≥ s0−
√
ζ by Proposition 5.25 and ζ = oT,ε,τ (1),

this concludes the proof of case (b) of the claim, which completes the proof of Theo-
rem 1.4. �

7. SHARPNESS OF THE RESULTS

It is natural to ask what parts of our approach are sharp and which are not. In this
section we show that the results of Section 5 are sharp, up to error terms. Hence, if
the main results are not sharp (which seems likely), this is not due to the estimates
for Mτ (σ), but rather to the fact that Proposition 4.4 (which connects the value of
Mτ (σ) to the size of distance sets) is itself not sharp.

We begin by showing that Proposition 5.2 is sharp for all parameter values (and
even the value of f(a) can be chosen as an arbitrary b ∈ [Da,Ca]). This is illustrated
by the following functions.

First consider the case when C = 1. Let x0 = y0 = 0, x1 = y1 = y2 = (1+D)(a−b)
3(1−D)

,
x2 = 2x1, x3 = a−b

1−D , y3 = Dx3, x4 = a and y4 = b, let f(xi) = yi (i = 0, . . . , 4) and
let f be linear on every interval [xi−1, xi]. (See Figure 2 for D = 0, a = 1 and b = 0
and note that in the most important b = Da case x3 = x4, so the graph consists of
only three linear segments.) It is clear that f(a) = b and Dx ≤ f(x) ≤ Cx on [0, a]. It
is easy to check that f is 1-Lipschitz. The fact that the first inequality of (5.1) holds
with equality (and for b = aD also the second one) follows from the observation
that the set of hard points of f is [x2, x3] (recall Definition 5.3), Lemma 5.4, and a
straightforward calculation.

Now we consider the case when C < 1. Let q = (1+D)(1−C)
(1−D)(2+C)

. For k = 0, 1, . . . let

x3k =
a− b
1− C

qk, x3k+1 =
a− b
1−D

qk, x3k+2 = 2x3k+3,

y3k = Cx3k, y3k+1 = Dx3k+1 and y3k+2 = y3k+3. Let f(0) = 0, f(a) = b, f(xj) = yj
(j = 1, 2, . . .) and let f be linear on [x1, a] and on each [xj+1, xj]. (See Figure 2 for
a = 1, b = D = 0, C = (

√
3 − 1)/2, and for a = 1, b = D = 1/7, C = 4/7, and note

again that because of b = Da, the segment [x1, a] is degenerated in both cases.) Again,
it is clear that f(a) = b andCx ≤ f(x) ≤ Dx on [0, a], and it is easy to check that f is 1-
Lipschitz. Now, observing that the set of hard points is ∪∞k=1[x3k+2, x3k+1], Lemma 5.4
and another straightforward calculation show that indeed T(f) = (a−f(a))(C−2D)

1+2C−3D .
Proposition 5.5 is also sharp up to the error term: for any given D ∈ [0, 1/2), we

construct an f that satisfies the conditions and for which for any u ∈ (0, a] we have
T(f |[0, u]) ≥ uΦ(D).

Recall that at the end of the proof of Proposition 5.5 we claimed that (1−C)(C/2−D)
1+2C−3D ≤

Φ(D) on [2D, 1]. The function Φ(D) was of course chosen so that this is sharp, in fact
for C = 3D−1+

√
3−3D2

2
∈ (2D, 1) we have equality. Let C be chosen this way, and
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FIGURE 2. These are graphs of functions that witness the sharpness of
Propositions 5.2 and 5.5 for a = 1, f(a) = D and various parameters
C and D. In the top graph, the larger function is for Proposition 5.2
with D = 0, C = 1, and the smaller function is for Proposition 5.2 with
D = 0, C = (

√
3 − 1)/2 and also for Proposition 5.5 with D = 0. The

graph on the bottom shows the function that witnesses the sharpness
of Proposition 5.2 with D = 1/7 and C = 4/7 and of Proposition 5.2
with D = 1/7, together with the dashed lines y = x/7 and y = 4x/7.
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let f be the function we obtained above when we showed the sharpness of Propo-
sition 5.2 for these values of C and D. (See Figure 2 for a = 1, b = D = 0, and for
a = 1, b = D = 1/7.) As it was already mentioned above, the set of hard points
of f is ∪∞k=1[x3k+2, x3k+1]. By Lemma 5.4, this implies that if we want to minimize
T(f |[0, u])/u, then u must be of the form u = x3k+2. Lemma 5.4 and a simple calcula-
tion shows that for every k we get

T(f |[0, x3k+2])

x3k+2

=
(1− C)(C/2−D)

1 + 2C − 3D
= Φ(D),

which establishes the claimed sharpness.
Now we show that the lower estimates in (5.26) and (5.28) are sharp in Proposi-

tion 5.15: for any D ∈ [0, 1/3] and δ ∈ [0, 1/12] we construct 1-Lipschitz functions f1
and f2 on [0, 1] such that fi(x) ≥ Dx on [0, 1], fi(0) = 0, T(fi) = 1−2D

3
− δ (i = 1, 2),

f1(x) = x − 3δ(1 − D) on [3δ, t1] and f2(x) = 3t1 − x − 3δ(1 − D) on [2t1, 1 − 3δ
1−2D ],

where t1 is given by (5.25).
Let

f1(x) =

{
min(x, 3δ(1 +D)− x) on [0, 3δ]

min(x− 3δ(1−D), 1 +D − x) on [3δ, 1]
.

Then f1(x) ≥ Dx on [0, 1], and f1(x) = x− 3δ(1−D) on [3δ, 1+D
2

+ 3δ(1−D)
2

] ⊃ [3δ, t1].
One can check that set of hard points of f1 is [2δ(1 + D), 3δ] ∪ [2

3
(1 + D + 3δ(1 −

D)), 1], where δ ∈ [0, 1/12] ensures that both intervals have nonnegative length, and
so Lemma 5.4 gives that T(f1) = 1−2D

3
− δ.

Now, let

f2(x) =

{
min(x, 3t1 − x− 3δ(1−D)) on [0, 1− 3δ

1−2D ]

Dx on [1− 3δ
1−2D , 1]

.

Then f2(x) ≥ Dx on [0, 1], and

f2(x) = 3t1 − x− 3δ(1−D) on
[

3

2
(t1 − δ(1−D)), 1− 3δ

1− 2D

]
⊃
[
2t1, 1−

3δ

1− 2D

]
.

After checking that the set of hard points of f2 is [2t1−2δ(1−D), 1− 3δ
1−2D ], Lemma 5.4

yields T(f2) = 1−2D
3
− δ.

We claim that Corollary 5.17 is sharp in the following sense: If D ∈ [0, 0.26], η > 0,
ξ ∈ (0, 1], Λ1 = ξ(1 − 2η) and for every 1-Lipschitz function f : [0, 1] → R such that
f(0) = 0 and f(x) ≥ Dx on [0, 1] we have

(7.1) T(f) ≥ 1− Λ1 =⇒ f(x) >
x

3
− ηξ on [0, ξ],

then Λ1 < Λ(D).
Indeed, if η > 1/3 − D then Λ1 = ξ(1 − 2η) < 1 − 2(1/3 − D) = 1/3 + 2D, which

is less than Λ(D) when D ∈ [0, 0.26]. So we can suppose that η ≤ 1/3 − D. Let
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x1 = ξ(4/3− η)/(1 +D), x2 = min(x1, 1) and

f3(x) =

{
min(x,−x+ x2(1 +D)) on [0, x2]

Dx on [x2, 1]
.

Then f3 is 1-Lipschitz, f3(0) = 0, f3(x) ≥ Dx on [0, 1] and f3(x) = −x+ x2(1 +D) on
[x0, x2], where

x0 = x2
1 +D

2
≤ x1

1 +D

2
= ξ(2/3− η/2) < ξ.

It is easy to see that the set of hard points of f3 is [2
3
x2(1+D), x2] and so by Lemma 5.4

we have T(f3) = x2(1 − 2D)/3. The assumptions η ≤ 1/3 −D and ξ ≤ 1 imply that
ξ ≤ x2, hence ξ ∈ [x0, x2], and we have

f3(ξ) = −ξ + x2(1 +D) ≤ −ξ + x1(1 +D) = ξ/3− ηξ.
Thus by our assumption (7.1) we must have x2(1−2D)/3 = T(f3) < 1−Λ1. If x1 ≥ 1
then x2 = 1, so we obtain Λ1 < 2(1 +D)/3. It is easy to check that Λ(x) ≥ 2(1 + x)/3
on [0, 1/2], so in this case we obtained Λ1 < Λ(D) as we claimed. So we can suppose
that x1 < 1 and so x2 = x1. Then x2(1− 2D)/3 < 1− Λ1 gives

(7.2) ξ(4/3− η)
1− 2D

3(1 +D)
< 1− ξ(1− 2η).

Let

δ = Λ1 −
2

3
(1 +D) = ξ(1− 2η)− 2

3
(1 +D).

We can clearly suppose that Λ1 ≥ Λ(D). Since Λ(D) ≥ 2
3
(1 + D), we obtain δ ≥ 0.

We also have δ ≤ 1/12 since this is clear if ξ ≤ 3/4 and follows from (7.2) and the
assumption η ≤ 1/3 − D if ξ > 3/4. For this value of δ let f1 be the 1-Lipschitz
function defined above (to show the sharpness of (5.26) of Proposition 5.15). Then
f1(0) = 0, f1(x) ≥ Dx on [0, 1] and T(f1) = 1−2D

3
−δ = 1−Λ1, so by (7.1) we must have

f1(x) > x
3
− ηξ on [0, ξ]. Since ξ ≤ 1 and η > 0 we have 3δ = 3ξ(1− 2η)− 2(1 +D) ≤

3ξ−2 ≤ ξ. Thus we get f1(3δ) > δ−ηξ. Since f1(3δ) = 3δD this gives ηξ > δ(1−3D).
From the definition of δ we get ξ = δ + 2ηξ + 2

3
(1 + D). Considering δ, ξ and ηξ

as variables and D as a parameter, substituting the above expression into (7.2), and
then using that ηξ > δ(1 − 3D), after some calculations one gets δ < (1+D)(1−2D)

18(3−4D+5D2)
,

which yields Λ1 = δ + 2
3
(1 +D) < Λ(D), as we claimed.

We remark that if η = 1/3 −D, ξ = 1,Λ1 = ξ(1 − 2η) = 1/3 + 2D then (7.1) holds,
since then f(x) ≥ Dx on [0, 1] already implies that f(x) ≥ x/3 − ηξ on [0, ξ]. So in
order to make Corollary 5.17 sharp for every D ∈ [0, 1/3), the function Λ(D) has to
replaced by max(Λ(D), 1/3+2D), which is equal to Λ(D) if and only ifD ≤ 0.2609 . . ..
However, this version would not improve any of our distance set estimates.
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Finally, we claim that Propositions 5.23, 5.24 and 5.25 are also sharp, up to the
error terms. Indeed, given a 1-Lipschitz function f : [0, 1] → R and ` ∈ N, let
σ = σf,` ∈ [−1, 1]` be the sequence

σi = ` (f(i/`)− f((i− 1)/`)) .

It is not hard to show that for any positive integer L ≤ ` and good integer partition
P of (0, L] there exists a good partition (an) of [0, L/`] such that T(f |[0, L/`], (an)) ≤
1
`
M(σ|(0, L],P) +O(log `/`), thus

T(f |[0, L/`]) ≤ 1

`
Mτ (σ|(0, L]) +O(log `/`).

Thus, starting with the functions defined in this section that witness the sharpness
of Propositions 5.2 and 5.5 and Corollary 5.17, this way we get sequences that show
the sharpness of Propositions 5.23, 5.24 and 5.25, up to the error terms.
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