
ar
X

iv
:1

70
6.

02
40

0v
1

 [
cs

.P
L

]
 7

 J
un

 2
01

7

Decoding Lua: Formal Semantics for the Developer
and the Semanticist

Mallku Soldevila
FAMAF, UNC and CONICET

Argentina
mes0107@famaf.unc.edu.ar

Beta Ziliani
FAMAF, UNC and CONICET

Argentina
bziliani@famaf.unc.edu.ar

Bruno Silvestre
INF, UFG
Brazil

brunoos@inf.ufg.br

Daniel Fridlender
FAMAF, UNC
Argentina

fridlend@famaf.unc.edu.ar

Fabio Mascarenhas
DCC, UFRJ

Brazil
fabiom@dcc.ufrj.br

Abstract

We provide formal semantics for a large subset of the Lua
programming language, in its version 5.2. We validate our
model by mechanizing it and testing it against the test suite
of the reference interpreter of Lua, con�rming that ourmodel
accurately represents the language.
In addition, we set us an ambitious goal: to target both a

PL semanticist —not necessarily versed in Lua—, and a Lua
developer —not necessarily versed in semantic frameworks.
To the former, we present the peculiarities of the language,
and how we model them in a traditional small-step opera-
tional semantics, embedded within Felleisen-Hieb’s reduc-

tion semantics with evaluation contexts. �e mechanization
is, naturally, performed in PLT Redex, the de facto tool for
mechanizing reduction semantics.
To the reader unfamiliar with such concepts, we provide,

to our best possible within the space limitations, a gentle
introduction of the model. It is our hope that developers of
the di�erent Lua implementations and dialects understand
the model and consider it both for testing their work and for
experimenting with new language features.

ACM Reference format:

Mallku Soldevila, Beta Ziliani, Bruno Silvestre, Daniel Fridlender,

and Fabio Mascarenhas. 2016. Decoding Lua: Formal Semantics

for the Developer and the Semanticist. In Proceedings of ACM Con-

ference, Washington, DC, USA, July 2017 (Conference’17), 12 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Abstract-

ing with credit is permi�ed. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior speci�c permission and/or

a fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction

Lua is a lightweight imperative scripting language, featur-
ing dynamic typing, automatic memory management, data
description facilities, andmetaprogrammingmechanisms to
adapt the language to speci�c domains [12]. �e typical use
case of a Lua application is as an extension library embed-
ded in a host application, commonly wri�en in C or C++. In
that se�ing, Lua o�ers the possibility to add scripting facil-
ities to the host application, combining the �exibility and
rapid prototyping of a dynamic language within the static
guarantees and optimizations of stricter programming lan-
guages.
Lua is extensively used inmany diverse applications, rang-

ing from gamedevelopment, most notably by “AAA” games [6]
but also in mobile games and game frameworks, plugin de-
velopment (for example, in the photo editing so�ware Adobe
Photoshop Lightroom1, and the type-se�ing system LuaTex2),
web application �rewalls3 , and embedded systems4.

Lua is informally speci�ed by both its reference manual
and its reference interpreter, developed and maintained by
the core Lua authors. �anks to Lua’s success, several alter-
native implementations5, as well as code linters and static
analyzers6 can be found in the wild. However, the informal
nature of the speci�cation means that developers of those
tools must resort to their intuition, formed by study of the
reference manual, inspection of the source code of the inter-
preter, and experimentation.
In this work, we present a comprehensive formalization

of (most of) Lua 5.2, which we argue will facilitate the de-
velopment and testing of these alternative implementations
and analysis tools, as well as the prototyping of new features
and extensions to the Lua language.

1h�p://www.adobe.com/devnet/photoshoplightroom.html
2h�p://www.luatex.org/languages.html
3h�ps://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
4h�ps://www.lua.org/uses.html
5h�p://lua-users.org/wiki/LuaImplementations
6h�p://lua-users.org/wiki/ProgramAnalysis

1

http://arxiv.org/abs/1706.02400v1
http://www.adobe.com/devnet/photoshoplightroom.html
http://www.luatex.org/languages.html
https://blog.cloudflare.com/cloudflares-new-waf-compiling-to-lua
https://www.lua.org/uses.html
http://lua-users.org/wiki/LuaImplementations
http://lua-users.org/wiki/ProgramAnalysis

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

�e formalism we use to express the semantics of Lua
is mainly Felleisen-Hieb’s reduction semantics with evalu-
ation contexts [5], be�er known as just reduction seman-

tics. �is formalism, together with concepts from standard
small-step operational semantics, has already been proven
useful for tackling the formalization of real programming
languages [1, 4, 10, 11].
While providing the semantics on paper is an important

contribution, it does not su�ce to ensure that our character-
ization of the language is correct. For this reason we mecha-
nize the semantics in PLTRedex [9], following the success of
previously mechanized reduction semantics for other script-
ing languages such as JavaScript [1] and Python [11].
We tested the mechanization of our formal semantics of

Lua against the test suite of the reference interpreter, suc-
cessfully passing every test within the scope of the formal-
ization. We take this as strong evidence to support the claim
that our semantics is a sound representation of the selected
subset of the language’s features, including:

• Every type of Lua value, except coroutines and user-

data (see below);
• Metatables;
• Identity of closures;
• Dynamic execution of source code;
• Error handling (throwing error objects and catching
them with protected mode).

• A large collection of the services of the standard li-
brary.

We purposely le� out the following features for future work:
• Coroutines, in essence single-shot delimited contin-
uations;

• Userdata, opaque handles to data from the host ap-
plication and native libraries;

• Garbage collection;
• �e goto statement;
• Services from the standard library that interface with
the operating system, such as �le manipulation, or
have large complexC implementations, such as string
pa�ern matching.

Our work is heavily motivated by previous work formaliz-
ing andmechanizing other scripting languages [1, 11]. How-
ever, we take a di�erent path, motivated by the speci�cities
of Lua. �e most important di�erence is that we do not at-
tempt to reduce the language to a minimal core, and then
specify a desugaring or elaboration step from source pro-
grams to this minimal core. We keep most of the original
surface syntax of Lua, with minimal changes. Our goal is
to make the semantics and its traces understandable by pro-
grammers that are already familiar with the Lua language
but are not used to the concepts of reduction semantics that
form the core of our formalization.
Another important di�erence is that we keep a strict sep-

aration between the semantic model (what forms the core
of what is presented in this work) and its mechanization.

1 local function memoize(fn)

2 local t = {}

3 return function(x)

4 local y = t[x]

5 if y == nil then y = fn(x) ; t [x] = y end

6 return y

7 end

8 end

9

10 local memsum = memoize(function(x)

11 local a = 1

12 for i = 1,x do a = a + i end

13 return a

14 end)

Figure 1. Memoization in Lua.

While this is a rather technical point, it has an impact in the
model, which we will timely discuss.
�e rest of the paper is organized as follows: Section 2

presents a very brief description of Lua, with emphasis on
some of the features that we formalize in later sections; Sec-
tion 3 presents the basic concepts that our formalization
uses, via a formalization of a very small subset of Lua; Sec-
tion 4 expands the formalization of the previous section to
show the most important parts of our complete semantics;
Section 5 brie�y discusses the mechanization and its tests;
Section 6 discusses related work; �nally, Section 7 summa-
rizes our contributions and discusses future avenues of re-
search.

2 Lua, an extensible scripting language

Weorganize our presentation of Lua around the examples of
memoization and object-oriented programming, shown in
�gures 1 and 2, respectively. �ey serve to introduce several
characteristics of Lua: its syntax, the versatility of its single
data structure (tables), its metaprogramming mechanisms
and some aspects of its scoping rules.

2.1 Memoization

�e code7 shown in Figure 1 implements a memoization
function, memoize, which takes a function fn as argument
and returns its memoized version. �e values of fn already
computed will be stored in a table (t in line 2). At their core,
tables are associative arrays that can be indexed with any
Lua value except nil. We will show later in this section that
tables also come with syntax sugar and metaprogramming
facilities that can greatly extend their functionality beyond
simple associative arrays.
Line 3 is where the memoized version of fn is returned

through an anonymous function. �is function takes x as

7Taken from h�p://lua-users.org/wiki/FuncTables .

2

http://lua-users.org/wiki/FuncTables

Decoding Lua: Formal Semantics. . . Conference’17, July 2017, Washington, DC, USA

argument and, before computing fn(x), performs a look-up
in the table for value x (line 4). If the result of the look-up is
nil it means no result was found, so it proceeds to compute
fn(x) and store it in the table (line 5). �e resulting value,
either computed or retrieved from the table, is returned in
line 6. �e function memoize is used in lines 10–14 to im-
prove the performance of a function that performs a sum
from 1 to x.
All procedures and functions in Lua, anonymous or named,

are �rst-class values, and form lexically-scoped closures. �e
anonymous function that memoize returns will e�ectively
capture into its scope the table t, as expected.
Note that the de�nitions of memoize, t, andmemsum are

pre�xed by the keyword local. Without it, all of these dec-
larations are simple assignments, and do not introduce new
names in the current scope. In an assignment, if there is
no variable in scope with that name, then the variable is
global: the assignment will actually store its rvalue in a ta-
ble called the environment, with a string containing the vari-
able’s name as the key. Using a variable that is not in scope
also looks up the variable in the environment.
�e environment is available to the programmer through

a variable ENV, which is always in scope. �is means that
any occurrence of a variable x that is not in scope is just syn-
tax sugar for ENV[“x”]. Since it is a variable, the program-
mer can change the environment at will by simply assigning
another table to ENV.

2.2 Simple OOP in Lua

Another interesting example8 is listed in Figure 2. It presents
the implementation of some basics concepts of object-oriented
programming, namely classes and objects, by combining ta-
bles, �rst-class functions, and the metatable mechanism. It
also presents some syntax sugar provided by Lua to be�er
support OOP.
In Lua, a class is essentially implemented as a dictionary

(e.g., table), in which the method names form the keys of the
dictionary, and the method implementations are the associ-
ated values. Objects are also model with tables, containing
the �elds and their values.
In the example, we have a class MyClass with its corre-

sponding constructor (line 4) and only one �eld value with
its se�er (line 10) and ge�er (line 14). �e function decla-
rations in these lines are actually syntax sugar for assign-
ments, where the le�-hand sides are, respectively,MyClass[“new”],
MyClass[“set value”], and MyClass[“get value”]. For the
two methods on line 10 and line 14 the use of : instead of
. also includes an extra �rst parameter for these functions,
named self.
In the last lines of Figure 2 we show how to create an in-

stance of MyClass (line 18), and how to invoke the methods.
In line 20 we can observe the invocation of set value with

8Taken from h�p://lua-users.org/wiki/ObjectOrientationTutorial .

1 local MyClass = {}

2MyClass. index = MyClass

3

4 function MyClass.new(init)

5 local self = setmetatable ({}, MyClass)

6 self . value = init

7 return self

8 end

9

10 function MyClass:set value(newval)

11 self . value = newval

12 end

13

14 function MyClass:get value ()

15 return self . value

16 end

17

18 local mc = MyClass.new(5)

19 print (mc:get value ()) >> 5

20mc:set value (6)

21 print (mc:get value ()) >> 6

Figure 2. OOP based on Lua’s metatable mechanism.

yet another syntax sugar: mc:set value(6) is equivalent to
mc[“set value”](mc, 6).
If classes containmethods, and objects contain �elds, how

is mc[“set value”] looking up the set value method? �e
answer is the metatable mechanism, used in lines 2 and 5.
In line 5, the call to setmetatable assigns MyClass as the
metatable of the empty table {} passed as argument, and
then returns this empty table.
A metatable can modify the behavior of a table with re-

gards to most of Lua’s operations. For this example, the
behavior we are modifying is look-up of non-existing keys.
Each behavior that can be modi�ed has an associated han-
dler. For look-up of non-existing keys the handler is called
index (line 2). A handler is usually a function, but in the

case of index it can be another table, in this caseMyClass.
A non-existing key then will be looked up in this table, and
this is how mc[“set value”] results in the method set value
fromMyClass.
Lua also speci�es handlers for se�ing a non-existing key,

for calling a value as if it were a function, for most of the bi-
nary and unary operators, for se�ing �nalizers, and even for
some functions in the standard library. Lua programmers
typically use metatables for object-oriented programming
(including more elaborated object models than class-based
single inheritance), for operator overloading, and for prox-
ies.

3

http://lua-users.org/wiki/ObjectOrientationTutorial

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

s ::= if e then s else s end | ;

v ::= nil | bool literal

e ::= v | e binop e | unop e

binop ::= and | or

unop ::= not

Figure 3. Syntax of simple statements and expressions

v < {nil, false}

if v then s1 else s2 end →s s1

v = nil ∨ v = false

if v then s1 else s2 end →s s2

Figure 4. Semantics of the conditional statement.

not v →e
δ(not, v)

op ∈ {and, or}

v op e →e
δ(op, v, e)

Figure 5. Semantics of expressions.

δ(and, v , e) =

{

v if v = false ∨ v = nil
e otherwise

δ(or, v , e) =

{

v if v , false ∧ v , nil
e otherwise

δ(not, v) =

{

true if v = false ∨ v = nil
false otherwise

Figure 6. δ function: boolean operators.

3 Basics of the formalization

In this section, we gently introduce the semantic framework
used throughout the paper by providing semantics to a small
subset of Lua. Essentially, we mix classical ideas from oper-
ational semantics based on abstract machines —the notion
of “operational”, how a program performs its computations,
and the representation of a store or memory— together with
reduction semantics with evaluation contexts [9], formalism
from which we take the tools for modeling the concepts of
environment and continuations, and to obtain a modular de-
scription of the semantics from simple computations to the
execution of complete programs.
An interesting aspect of Felleisen-Hieb’s reduction seman-

tics is the possibility of de�ning the semantics of a language
by decomposing it into fragments, describing the fragment’s
semantics in isolation with a separate relation. For our small
subset of the Lua language, we describe three fragments:
pure statements, pure expressions (following Lua’s distinc-
tion of statements and expressions), and stateful (i.e., mem-
ory changing) statements. �en, we compose the three us-
ing a fourth relation, therefore �nally providing the seman-
tics for entire programs.
We show the grammar for stateless programs in Figure 3.

�e statements are conditional branching and skip (denoted
with ;). �e expressions are nil (the absence of a useful
value), boolean constants, and logical operators. Of course,

σ ’ = (r, v),σ

σ : local x = v in s end →s σ
σ ’ : s[x\r]

σ ’ = σ [r := v]

σ : r = v →s σ
σ ’ : ;

σ : r →e σ
σ : σ (r)

Figure 7. Semantics of variables and references.

we are not able to write any useful program. In the coming
sections we will grow our language until we reach Lua.
Figure 4 introduces the typical operational semantics for

the conditional statement, modeled with the→s relation be-
tween stateless statements. �e �rst rule states that, in a
boolean context (the conditional of the if), any value dif-
ferent from nil and false is considered true, and therefore
the then branch is considered. Note that we write above the
line the conditions in which the rule applies. When no con-
dition is required, the line will be omi�ed. �e second rule
states that, for false or nil, the else branch is considered.
Figure 5 gives the semantics of expressions using a sep-

arate →e relation. We use an interpretation function δ , as
seen in the literature, which provides meaning to operators
using denotational semantics. In contrast to the relations
over terms presented so far, denotational semantics are not
tight to single computation steps. Figure 6 shows (a simpli-
�ed version of9) the δ -equations for boolean operators.
We proceed now to extend the language with imperative

features: (local) variables. Statements are enlargedwith vari-
able de�nition and assignment:

s ::= ... | local x = e in s end | x = e

In order to describe its operational semantics, wemust intro-
duce a model of the memory store. We model it as a partial
function from a set of references to values, denoted as σ . We
refer to σ as the “values’ store”, or simply store.
As for references, we will not force any speci�c repre-

sentation, just ask them to satisfy some simple properties
to ensure the relation modeling the semantics of variables
stays decidable. More speci�cally, we ask the domain of σ
(referred as to dom(σ)) to be a �nite set, with elements that
must be syntactically represented, but di�erent from any
other syntactic object in the language. We further assume it
is always possible to obtain a fresh reference from the store.
We extend the grammar of expressions with references:

e ::= ... | r

References, in contrast to all the language constructs we
mentioned so far, do not belong to the Lua source language,
i.e., they cannot be wri�en down by a developer. �ey are
run-time constructs: syntactic extensions made to the lan-
guage for the sole purpose of obtaining a small-step seman-
tics of the language. We will see other examples of such
constructs in the coming sections.

9�e actual equations use Lua’s parenthesized expressions, introduced in

4.1.

4

Decoding Lua: Formal Semantics. . . Conference’17, July 2017, Washington, DC, USA

E ::= [] | if E then s else s end
| local x = E in s end |
| x = E | E binop e | v binop E | unop E

Figure 8. Evaluation contexts.

e →e e′

σ : E[[e]] 7→ σ : E[[e′]]

s →s s′

σ : E[[s]] 7→ σ : E[[s′]]

σ : s →s σ
σ
′ : s′

σ : E[[s]] 7→ σ
′ : E[[s′]]

σ : e →e σ
σ
′ : e′

σ : E[[e]] 7→ σ
′ : E[[e′]]

Figure 9. Semantics of programs.

Figure 7 describes the semantics for the de�nition and as-
signment of local variables. We use a new →s σ relation,
which maps a pair of a store σ and a statement s with an-
other pair of a new store σ ′ and the resulting statement s′.
As shown in the rule for the introduction of local vari-

ables, when the right side of the de�nition is a value v we
put it in the store with a fresh reference r . �en, we replace
each occurrence of variable x in the scope of the local state-
ment by the new reference r .
An important property of this semantics is that variables

are never free, as substitution will always replace them by
references right before they would become free. �is will
have an impact on closure creation (see 4.2).
Returning to Figure 7, the second rule shows variable as-

signment, withσ [r := v] denoting a storeσ ′ such that dom(σ ′) =

dom(σ), where σ
′(r) = v and ∀r’ ∈ dom(σ ′), r’ , r ⇒

σ
′(r’) = σ (r’). Note that the assignment reduces to an empty

statement ;, indicating that there is nothing else to do for
this particular statement. �e third and �nal rule shows
that references appearing in expressions are always implic-
itly dereferenced.
We have already de�ned three di�erent relations, each of

them computing a bit of a program:→e computes an expres-
sion, →s an stateless statement, and →s σ an stateful state-
ment. Now we are ready to combine the three to perform
the execution of a full program. To that e�ect we de�ne the
7→ relation. �is relation will say exactly when each of the
previously de�ned relations will trigger, at the same time
de�ning the order in which statement or expression must
be executed next.
Here is where evaluation contexts play a central role. �ey

describe the syntax of the language with the addition of a
new construction: a hole, usually denoted as []. Evaluation
contexts will play di�erent roles in later sections, but for the
moment the (only) hole in a program will be �lled in with
the next statement or expression to be executed.
Figure 8 de�nes the evaluation context E for the small

subset of Lua we described so far. We can see from the def-
inition the order we expect evaluation to take place: in an
if, the guard must be evaluated �rst. In the de�nition of

s ::= … | while e do s end | break | s s
v ::= … | number literal | string literal

binop ::= … | strictbinop
strictbinop ::= + | - | * | / |ˆ| % | .. | < | ≤ | > | ≥ | ==

unop ::= … | - | #

Figure 10. Syntax of the remaining stateless subset.

s ::= … | $iter e do s end | L s Mlabel
label ::= Break

Figure 11. Run-time statements forwhile and break.

while e do s end →s L $iter e do s end MBreak

$iter e do s end →s if e then s $iter e do s end

else ; end

; s →s s

L E lf[[break]] MBreak →s ;

L ; MBreak →s ;

Figure 12. Semantics of stateless statements.

e ::= … | L e Mlabel
label ::= … | ArithWO | ConcatWO | OrdWO | . . .

Figure 13. Run-time expressions for errors.

variables we evaluate the rvalue for the de�nition �rst. In a
binary operation, we evaluate the le� operand �rst10.
Figure 9 de�nes the 7→ relation. Both E[[e]] and E[[s]] de-

note an evaluation context where the hole is �lled with the
respective expression or statement, if this yields a syntacti-
cally valid term of the language. If the evaluation context is
well-de�ned, together with the relations that describes com-
putation steps, there is a unique decomposition of a valid
term into an evaluation context and a subterm, and this sub-
termwill match one and only one of the semantic rules. �e
subterm that is �lling the hole gives the current focus of the
computation.
With all of the main ingredients in place, we are now

ready to provide semantics to Lua.

4 A formal description of Lua

In this section, we describe the highlights of our formal-
ization of the semantics of Lua, the main contribution of
this work. Section 4.1 covers the stateless subset of the lan-
guage, Section 4.2 covers the imperative subset, Section 4.3
describes the concepts added to support standard library ser-
vices, Section 4.4 covers the semantics of metatables, and
Section 4.5 wraps up with the semantics of complete pro-
grams and error handling.

5

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

op ∈ {+, -, *, /, ˆ ,%,<,≤} v1, v2 ∈ number

v1 op v2 →e
δ(op, v1, v2)

op ∈ {+, -, *, /,ˆ ,%}
v1 < number ∨ v2 < number

ν1 = δ(tonumber, v1, 10) ∈ number
ν2 = δ(tonumber, v2, 10) ∈ number

v1 op v2 →e
δ(op,ν1,ν2)

op ∈ {+, -, *, /,ˆ ,%}
v1 < number ∨ v2 < number

(δ(tonumber, v1, 10) < number ∨
δ(tonumber, v2, 10) < number)

v1 op v2 →e L v1 op v2 MArithWO

Figure 14. Semantics of stateless expressions.

4.1 Stateless Lua

We extend the stateless subset presented in Section 3 with
while loops, breaks, composition of statements, and num-
bers and strings with their corresponding operations (Fig-
ure 10).
Correspondingly, we extend the relation →s with the se-

mantics of the new statements (Figure 12). First, a while
loop begins by wrapping the whole loop in a Break label,
changing also the name fromwhile to $iter. �e purpose of
the label is to mark the point in which a break should con-
tinue the execution, and the renaming is necessary to avoid
repeatedly unfolding a while and piling up labels. Labels
and $iter are new run-time statements (Figure 11). �en, a
loop marked with $iter is unfolded as usual, using the con-
ditional to check the guard and perform a new iteration.
In a composition of two statements, when the one on the

le� is a skip (;), we continue with the second. More interest-
ingly, when the execution �nds a break inside a (labeled)
block, the whole code is replaced with a skip, to signal the
execution of the break has exited. �is is achieved by using
a new evaluation context Elf, which represents a program in
which no other labeled term occur (its de�nition is elided for
brevity). By not having other labels, we know the one sur-
rounding this context is the one we have to break. �e last
rule removes the label once the execution of a loop reached
skip.
Having de�ned the semantics for statements, we turn our

a�ention to expressions (Figure 14). For brevity we focus
only on arithmetic operators, but similar rules exists for
strings. �e �rst rule state that, if operands v1 and v2 are
both numbers, and the operation is relevant to numbers, we
delegate the result to the δ function already introduced in
3. �e second rule covers the case where one or both of the

10Our de�nition enforces le�-to-right evaluation of expressions. Even if

this is le� unspeci�ed in Lua’s reference manual, the two most popular

implementations of Lua, the reference interpreter and LuaJIT (luajit.org),

both evaluate expressions le�-to-right.

v ::= . . . | function l (x , . . .) s end
| function l (x , . . . , …) s end

s ::= . . . | e (e , . . .) | e : x (e , . . .) | return e

| local x , . . . = e, . . . in s end | var , . . . = e , . . .
var ::= x | e [e]
e ::= . . . | (e) | {field , . . . } | e(e , . . .) | e : x (e , . . .)
field ::= e | [e] = e

Figure 15. Syntax of the remaining imperative subset.

v ::= . . . | objr
e ::= . . . | < e , … >

label ::= … | Return | Index | NewIndex | WFunCall

Figure 16. Store-related run-time terms.

δ(rawget, objr, v1, θ1) , nil
θ2 = δ(rawset, objr, v1, v2, θ1)

θ1 : objr [v1] = v2 →s θ
θ2 : ;

δ(rawget, objr, v1, θ) = nil

θ : objr [v1] = v2 →s θ
θ : L objr [v1] = v2 MNewIndex

δ(type, v1) , ”table”

θ : v1 [v2] = v3 →s θ
θ : L v1 [v2] = v3 MNewIndex

Figure 17. Field update.

v2 = δ(rawget, objr, v1, θ) v2 , nil

θ : objr [v1] →e θ
θ : v2

δ(rawget, objr, v, θ) = nil

θ : objr [v] →e θ
θ : L objr [v] MIndex

δ(type, v1) , “table”

θ : v1 [v2] →e θ
θ : L v1 [v2] MIndex

Figure 18. Field indexing.

operands are not numbers, but can be coerced into a num-
ber by the external function tonumber. In that case, we
coerce the operands and do the operation. �ere is similar
rule for concatenation, elided for brevity, when one of the
operands is a string and the other a number. Finally, the
last rule applies when the operands cannot be coerced into
numbers. In this case we label the expression with ArithWO

(some labels are listed in Figure 13, where WO stands for
Wrong Operands), to signal the error. At this point, exe-
cution is stuck here, but in Section 4.4 we show how the
metatable mechanism handles this erroneous situation.

4.2 Imperative Lua

�e imperative subset is made up of functions, function ap-
plication, tables, �eld indexing, and �eld update. Despite
being values, Lua functions are in the imperative subset be-
cause parameters are mutable variables, so they are allo-
cated in the σ store. Tables are mutable objects, and we

6

luajit.org

Decoding Lua: Formal Semantics. . . Conference’17, July 2017, Washington, DC, USA

∀ 1 ≤ i, field i = v ∨ field i = [v] = v ′

θ2 = (objr, < addkeys({field1, ...}) , nil >), θ1

θ1 : {field1, ...} →e θ
θ2 : objr

Figure 19. Object creation.

σ
′
= (r1, v’1), ..., (rn, v’n),σ

i ≤ m ⇒ v’ i = v i i > m ⇒ v’ i = nil

σ : (function l (x1, ..., xn) s end) (v1, ..., vm) →funcall

σ
′ : L s [x1\r1, ..., xn\rn] MReturn

σ
′
= (r1, v1), ..., (rn, vn),σ

i ≤ m ⇒v’ i = v i i > m ⇒ v’ i = nil
tuple = < vn+1, ..., vm >

σ : (function l (x1, ..., xn,…) s end) (v1, ..., vm)

→funcall
σ
′ : L s [x1\r1, ..., xn\rn,…\tuple] MReturn

δ(type, v) , “function”

σ : v (v1, ..., vn) →funcall
σ : L v (v1, ..., vn) MWFunCall

σ : v :name (e1,...,en) →funcall
σ : v[“name”] (v ,e1,...,en)

Figure 20. Function and method calls.

σ : L ; MReturn →funcall
σ : ;

σ : L E lf[[return < v, ... >]] MReturn →funcall

σ : < v, ... >

σ : L E lf[[return < v, ... >]] MBreak →funcall

σ : return < v, ... >

Figure 21. Semantics of return.

allocate them in a separate store, denoted with θ . Object
references, the domain of θ , are considered values, so are in
the image of σ . We ask form them to satisfy the same prop-
erties as asked for references σ , together with the possibility
of distinguish syntactically between each kind of reference.
�e image of θ only contains tables.
Functions are labeled so each function in the source pro-

gram has a unique label l. How labels are represented is not
important; as long as they are comparable. �is reproduces
the correct semantics of function equality in Lua, where two
identical functions are not equal if they are de�ned in di�er-
ent parts of the source �le, as shown in the following inter-
action with the reference interpreter:

> f = function() end

> g = function() end

> print (f == g)

false

A source function may evaluate to di�erent values dur-
ing the evaluation of the program, due to di�erent substi-
tutions of their free variables. Our use of substitution and

references means that we do not need to have explicit clo-
sures, a function de�nition is itself a closure once the focus
of evaluation has reached it.
Figure 16 adds tuples, used for returning multiple values

from function application, and for functions that can handle
a variable number of arguments (vararg functions) through
the… vararg operator. Wrapping an expression in parenthe-
sis has a semantic e�ect in Lua: if the expression evaluates
to a tuple the parenthesis discards all but the �rst value of
the tuple (if the tuple is empty the parenthesized expression
evaluates to nil).
Besides being “truncated” to their �rst value, these tuples

can also be concatenated with another tuple, depending on
their syntactical place in the program: in an expression list
e1, . . . , en the tuples of expressions e1 to en−1 evaluate to
their �rst value, or nil for the empty tuple (the same behav-
ior as parenthesized expressions). �ese n − 1 values then
form a tuple of their own, which is concatenated with the
tuple of en . Semantically, this is done through reductions be-
tween tuples that “�a�ens” tuples of tuples until reaching a
tuple where none of the values are another tuple.
�e new statements also include multiple variable de�ni-

tion and assignment, which generalizes the single-variable
versions introduced in Section 3. �e reduction rules for
these statements are not shown here for reasons of brevity,
but are a straightforward extension of the simpler versions:
in case of multiple assignment, the evaluation contexts as-
sure that all lvalues are evaluated before rvalues, and the
tuples for both sides are �a�ened, then lvalues are paired
with their corresponding rvalue, with any lvalues that do
not have a corresponding rvalue paired with nil.
Figure 17 describes assignment to table �elds. It uses

some services modeled by the δ function: δ (type, v) is the
type of the value; δ (rawget, objr, v, θ) is primitive table in-
dexing, yielding either the value associated with v in θ (objr)
or nil if there is no associated value; δ (rawset, objr, vk , v, θ)
is primitive table update, yielding a new θ where the table
referenced by objr associates v with value vk .
�e rules show�eld update under 3 di�erent circumstances:

when the operation is made over an actual table with an ex-
isting key; when the operation is made over an actual ta-
ble but with an unknown key; and when the assignment is
carried over a non-table value. �e last two cases just tag
the expression with NewIndex, which will be handled by the
metatable mechanism explained in Section 4.4. Field access
(Figure 18) have similar rules, but tagging exceptional situ-
ations with Index.
Figure 19 provides meaning to table constructors. Its com-

plete semantics actually depends upon the meta-function
addkeys, which adds absent keys in the constructor (see Fig-
ure 15 for the syntax of table constructors). It works by sup-
plying consecutive natural numbers as keys, starting with
1.

7

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

l ∈ {type, assert, error, pcall, select, ...}

θ : $builtIn l (v1, ..., vn) →
builtIn

θ : δ(l, v1, ..., vn)

l ∈ {ipairs, next, pairs, getmetatable, ...}

θ : $builtIn l (v1, ..., vn) →
builtIn

θ : δ(l, v1, ..., vn, θ)

l ∈ {rawset, setmetatable}
θ2 = δ(l, v1, ..., vn, θ1)

θ1 : $builtIn l (v1, ..., vn) →
builtIn

θ2 : v1

Figure 22. Interface with the δ function.

Figure 20 shows function andmethod application, described
with a new relation→funcall. Formal parameters are mutable
variables, so a fresh reference is allocated for each parame-
ter. �e �rst rule covers all the cases involving the applica-
tion of a non-vararg function: when it is applied to the same
number of arguments as formal parameters, when it is ap-
plied to fewer arguments, with unpaired parameters receiv-
ing nil, and when it is applied to more arguments, with ex-
tra arguments silently ignored. Similar to what we did with
while loops in the previous section, we also label the body
with Return, to indicate the point to which a return state-
ment must go. It is, roughly speaking, the syntactic equiva-
lent to the return address saved in an activation frame.
Returning to Figure 20, the second rule shows the case of

a vararg function call: the di�erence just resides on what is
done with surplus arguments: in this case, they are put into
a tuple expression, which replaces the vararg expression (…)
in the body of the function.
�e third rule has to do with one of the exceptional situ-

ations that can be managed by the metatable mechanism: a
function call over a non-function value. Again, at this point
we just label the whole expression with a tag that indicates
what happened. �e last rule shows how themethod invoca-
tion is translated into a table look-up, with the object being
injected as the �rst argument of the function.
Figure 21 shows the semantics of the return statement

as well as implicitly returning by reaching the end of the
function. �e ideas used in this rules are analogous to the
ones expressed when de�ning the semantics of the break
statement, in Section 4.1.

4.3 Built-in services

In Lua, built-in services o�ered by Lua’s standard library are
stored in the execution environment, a table named ENV,
where the keys are the names of the services and the values
are their de�nitions. For instance, when we access the ta-
ble �eld named “type”, we access the function that given an
element provides its type (as a string):

> print (type({}))

table

(Remember from Section 2: using an identi�er not in scope
is equal to accessing ENV.) We can override its de�nition
and obtain a di�erent behavior:

> type = function () return 'not a type ' end

> print (type({}))

not a type

However, the original type function is still accessible from
other services in the library. We can see this when we call
next, the function that iterates over the �elds in a table:

> next (1)

stdin :1: bad argument (table expected, got number)

In order to model this behavior, prior to the execution
of a program the ENV table must be populated with the
functions from the standard library. But these functions are
just wrappers for a special (run-time) expression $builtIn.
When evaluated, this expression calls the δ function with
the actual de�nition of the function. Built-in services, like
next, might call other services through the $builtIn term
instead of ordinary function application, e�ectively repro-
ducing the early binding that is required.
While it might sound a bit intricate, this design gives the

formalization several desirable properties: compliance with
the semantics as de�ned in the reference manual and the
reference interpreter, and a modular way of tackling the for-
malization of built-in services. And at the level of themecha-
nization, it allows us to experiment and test against di�erent
implementations of these services with minimal changes in
the rest of the formalization.
Figure 22 gives the semantics of $builtIn using three rules,

corresponding to three di�erent kinds of services: services
that do not operate on tables, so do not need to access the ob-
ject store θ , services that read from tables, and services that
update existing tables, yielding a new θ . �e antecedents of
the �rst two rules show just some of the services that are
in each category; the actual list of services includes almost
all the built-in basic functions of the Lua language, together
with services from the libraries math, string and table.

�e δ function de�nes, in a denotational way, the actual
fundamental details of the semantics of the built-in services
and the primitive operators of the language. In the rest of
this section we discuss an interesting example: the pairs
built-in function (Figure 23).
�e built-in service pairs is used to iterate a table using

a for loop. It must return three values: an iterator function,
the object to index, and the �rst index. According to the
equations in the �gure, there are three di�erent scenarios:
In the �rst case, when the table objr has a custom handler
h in the pairs key of its metatable, calls this handler to
get the iterator triplet. �e metafunction indexmetatable
queries the metatable (metatables are discussed further in

8

Decoding Lua: Formal Semantics. . . Conference’17, July 2017, Washington, DC, USA

δ(pairs,objr, θ) =

(function $getIter ()

local v1 , v2 , v3 = h(objr) in

return < v1, v2 , v3 >

end)()
where h = indexmetatable(objr, “ pairs”, θ)
and h , nil

δ(pairs,objr, θ) =
< function $next (table , index)

return $builtIn next(table , index)

end, objr , nil>
if indexmetatable(objr, “ pairs”, θ) = nil

δ(pairs,v, θ) = $builtIn error(msg .. $builtIn type(v))
if δ(type, v) , “table”
where msg = “table expected, got ”

Figure 23. Basic functions of the standard library: pairs.

Section 4.4). Also note that we let δ yield not only values
but any valid expression.
It might look odd why we create a function whose body

calls h, instead of directly returning it. �e reason is twofold:
First, according to the manual, we must only return the
�rst three values returned by the indexed function. �is
is achieved by creating three variables, one for each value,
and return only those. If there are more values, they are
discarded. Second, since local and return are not valid ex-

pressions, and in this case, δ must return an expression (not
necessarily a value!), we wrap this code in a closure.
In the second case, when the table has no metatable or

no handler for pairs, the reference manual indicates that
pairs(t) returns “the next function, the table t, and nil”. �is
case models this behavior by wrapping a call to $builtIn
next, as mentioned earlier in this section. �e label of this
function guarantees that it will be the same function that is
bound to next in our initial environment.
�e third and �nal case of pairs constructs an expression

that will assemble an error message and then throw an error
using the error built-in primitive. As with next, we cannot
look-up the error built-in function in the environment, as it
could have been rebound by the programmer.
Before concluding this section, we note that we let the in-

terpretation function de�ne the meaning of every primitive
operator and library service using a denotational approach,
following the tradition of Landin’s ISWIM language [7]. Sev-
eral of these primitives could also be given operational se-
mantics, however, we decide to stick to ISWIM’s philosophy,
which prioritizes cohesion, modularity, and expressivity.

4.4 Metatables

�e most notable feature of Lua is its metaprogramming
mechanism, metatables, that lets the programmer adapt the
language to speci�c domains. Withmetatables Lua canmain-
tain its original design decision to “keep the language simple

and small”[13], while still being able to cope with a variety
of programming concepts11.
Brie�y, metatables let the programmer specify fallbacks

for certain operations: arithmetic over non-numeric values,
concatenation over non-string values, equality between ob-
jects that do not have the same identity, application over
values that are not functions, indexing or updating a �eld
over a value that is not a table, etc.
Metatables are plain tables, and the fallbacks that a par-

ticular metatable supports are typically functions associated
with a unique string key for each operation (e.g. add for
the fallback to the plus operator, or newindex for the fall-
back to �eld update). Lua libraries are free to extend this
mechanism with their own fallbacks (like the pairs built-in
function of the previous section, which can look up pairs
in the metatable, if it exists). Each Lua table can have its
own metatable, while values of other types share a single
metatable for each type.
We have shown in previous sections that regular seman-

tics of operations just labels the expression or statement in-
volvedwhen it reaches a casewhere a fallback in ametatable
could be used. �is approach simpli�es the regular seman-
tics, and improves the modularity of the formalization. �e
relations →e metatable and →s metatable that we show in this
section take these labeled terms and act accordingly.
Figure 24 shows how →e metatable resolves arithmetic op-

erations over operands of unexpected type, a condition la-
beledwith ArithWO.�emetafunction getbinhandler is anal-
ogous to those described in the Lua reference manual: it
looks for a handler �rst in the metatable of the le� operand
v1, then themetatable of the right one v2, by looking into the
corresponding �eld in those metatables. We also abstract
the mapping between binary operators and their metatable
keys with the metafunction binopeventkey.
Looking up a fallback in a metatable is guaranteed to ei-

ther return the fallback or return nil because of two invari-
ants: a metatable is always a table, and the metatable of a
metatable, it if exists, is ignored for this look-up. �is means
that abstracting this look-up with a metafunction does not
compromise the small-step nature of our semantics.
�e �rst rule of Figure 24 shows how the operation is

rewri�en as an application of the handler on the two operands
as arguments. If the handler is not a function this may trig-
ger yet another fallback. �e second rule shows what hap-
pens when no handler is found: an error is thrown using
the error built-in service. We also abstract the construction
of error messages with the #errmessage metafunction.
Figure 25 describes how the metatable mechanism works

for �eld updates over a non-table value or a missing key.
Again, we make use of metafunctions that abstracts the in-
ner workings of the metatable mechanism: indexmetatable,

11See section “Code Structure / Programming Paradigms” at

lua-users.org/wiki/LuaDirectory

9

lua-users.org/wiki/LuaDirectory

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

v3 = getbinhandler(v1, v2, binopeventkey(op), θ) v3 , nil

θ : L v1 op v2 MArithWO →e metatable
θ : v3 (v1, v2)

getbinhandler(v1, v2, binopeventkey(op), θ) = nil t1 = δ(type, v1) t2 = δ(type, v2)

θ : L v1 op v2 MArithWO →e metatable
θ : $builtIn error (#errmessage(ArithWO, t1, t2))

Figure 24. Metatable mechanism for arithmetic binary expressions.

v4 = indexmetatable(v1, “ newindex”, θ) δ(type, v4) = “function”

θ : L v1 [v2] = v3 MNewIndex →s metatable
θ : v4 (v1, v2, v3)

v4 = indexmetatable(v1, “ newindex”, θ) v4 , nil δ(type, v4) , “function”

θ : L v1 [v2] = v3 MNewIndex →s metatable
θ : v4 [v2] = v3

indexmetatable(objr, “ newindex”, θ1) = nil θ2 = δ(rawset, objr, v1, v2, θ1)

θ1 : L objr [v1] = v2 MNewIndex →s metatable
θ2 : ;

indexmetatable(v1, “ newindex”, θ) = nil t = δ(type, v1) t , “table”

θ : L v1 [v2] = v3 MNewIndex →s metatable
θ : $builtIn error (#errmessage(NewIndex, t))

Figure 25. Metatable mechanism for �eld update.

σ :θ : Enp[[$err v]] 7→ σ :θ : $err v
σ :θ : E[[L Enp[[$err v]] MProtMd]] 7→ σ : θ : E[[<false, v>]]

σ :θ : E[[L ; MProtMd]] 7→ σ :θ : E[[<true>]]
σ :θ : E[[L <v, ...> MProtMd]] 7→ σ :θ : E[[<true, v, ...>]]

Figure 26. Errors.

which looks for themetatable of its �rst argument and looks
up the fallback with the key passed as its second argument.
�e �rst two rules of Figure 25 shows how this case re-

solves di�erently depending on whether the handler is a
function or not (typically, in the second case the handler
will be a table). �e last two rules show how the absence
of handler has di�erent results depending on whether the
original value is a table or not.

4.5 Semantics of programs and error handling

�e de�nition of the 7→ reduction relation that describes the
full semantics of Lua is essentially a straightforward exten-
sion of the simpler relation given in Figure 10. �e domain
now includes θ , and maps the relations that were described
in previous sections. Each of these relations is extended
with the θ and σ stores as needed. We omit these de�nitions
for brevity.
More interestingly, in order to model the semantics of

Lua’s exception handling, wemust extend this relation. Lua’s
exception handling consist of two built-in functions: error,
which throws an error (any Lua value, usually a string), and
pcall, which executes a function in protected mode. As any
other built-in function, this behavior can be override by a
developer.

Normally an error aborts the program, but if it is thrown
in the context of a pcall, it is caught. In that case, pcall re-
turns false and the error, otherwise, it returns true and the
values returned by the function called.

Figure 26 describes the part of the 7→ relation that models
error propagation and handling. For it, two new run-time
constructs are added: $err to denote an error, and L s MProtMD

to denote code that must be executed in protected mode.
In the �rst rule, the evaluation context Enp is identical to
E , except that there are no occurrences of L E MProtMD. �e
rule essentially aborts the whole program if there is no pro-
tected context around the error. �e second rule aborts up
to the �rst occurrence of a protected mode label, if there is
one. �e other three rules transition out of protected mode
whether an error occurred or not.

�e astute reader might wonder why we are modeling er-
ror handling here, and not as its own relation as we did with
all the other parts of the semantics. �e reason is merely
technical: the rule that aborts the whole program, if isolated
in its own relation, would break the unique decomposition

property of evaluation contexts, in which there is a single
way for decomposing a term into an evaluation context and
the contents of its hole. We could have put just this rule
explicitly in 7→ while having the others in an hypothetical
→error relation, but decided to keep all aspects of a feature
together.

5 Mechanization

�e formalization of the semantics was carried in parallel
with its mechanization in PLT Redex [9]. �is tool helped us
recognize problems in our �rst a�empts at formalizing Lua,
and allowed us to experiment with new ideas before adding
them to the formalization. It also allowed us to execute part

10

Decoding Lua: Formal Semantics. . . Conference’17, July 2017, Washington, DC, USA

File Features tested Coverage

calls.lua functions and calls 77.83%

closure.lua closures 48.5%

constructs.lua syntax and 63.18%
short-circuit opts.

events.lua metatables 90.4%

locals.lua local variables 62.3%
and environments

math.lua numbers and 82.2%
math lib

nextvar.lua tables, next, and for 53.24%

sort.lua (parts of) table 24.1%
library

vararg.lua vararg 100%

Figure 27. Lua 5.2’s test suite coverage.

of test suite of the reference interpreter of the language12,
providing evidence that our semantics is in compliance with
it.
Naturally, we could not use the whole test suite, for the

following reasons:
• Language features not covered by our formalization:
coroutines, the goto statement, and garbage collec-
tion;

• Standard library functions not covered in our formal-
ization: �le handling and string pa�ern matching.
�e Lua standard library is implemented in C, so the
parts we cover were ported by hand to the subset of
Lua covered by the formalization;

• �e debug library, as it is heavily tied with the im-
plementation details of the interpreter;

• Several other tests that test implementation details
of the interpreter, and not the language. According
to the Lua authors, the goal of the test suite is to
test their reference implementation of Lua, and not
to serve as a conformance test for alternative imple-
mentations13.

In practice, from the 25 .lua �les present in the test suite,
which actually test some feature of the language, we are able
to port and run 9 against our PLT Redex mechanization. Fig-
ure 27 shows the percentage of LOCs actually tested from
each of these remaining �les, totaling 1256 LOCs success-
fully tested. It is important to remark that every �le and line
not tested is for the reasons explained above, and every line
(in the 9 �les tested) that fall within the scope of this work
successfully passes the test. We take this as strong evidence
that the mechanization of our formal semantics behaves ex-
actly the same as the reference Lua interpreter.

12Available at h�ps://www.lua.org/tests/.
13h�ps://www.lua.org/wshop15/Ierusalimschy.pdf

Unfortunately, we do not have the space to discuss the
code, which we plan to do in an extended version of this ar-
ticle. For the moment, we refer the reader to the documen-
tation accompanying the code a�ached as supplementary
material.

Dynamic loading of code By implementing our parser di-
rectly in Racket (the language upon which PLT Redex is
based), we mechanized easily the load service: Lua’s com-
piler available at runtime.
�ere are several details tomention related to the solution

implemented, but for reasons of space we point out themost
prominent:

• It covers the two modes: when the program to be
compiled is passed as a string, orwhen it is a function
from which the service obtains the program’s string.

• It can handle the compilation of code on a modi�ed
global environment.

• For completion, we emulate the case of the compila-
tion of binary chunks (that is, a pre-compiled version
of the code). �is feature is implemented in conjunc-
tion with the service string.dump, which returns a
string containing a binary representation of a func-
tion, given as a parameter.

6 Related work

We mentioned already that the present development is in-
spired by the work done in [1, 10, 11], although not with-
out its di�erences. For a start, we tackle a smaller language,
and use this fact to model its semantics without shrinking
much the core language. As a result, we do not need to con-
sider an external parser or interpreter: everything is coded
in Racket, and we can call the parser as a service of the li-
brary (Section 5). Another important di�erence is that we
keep a certain distance between formalization and mecha-
nization: this is why our model of memory is kept abstract,
and why we put special emphasis in distinguishing the run-
time constructs from the constructs of the source language.
Speci�c to Lua’s semantics, [8] presents the operational

semantics of Featherweight Lua, a minimal core of Lua. It
considers a subset of features from the ones presented here,
and as such cannot be tested against realistic Lua code. �e
mechanization is implemented in Haskell, which is not as
�exible as PLT Redex to extend and change the model to
cover a more realistic subset of the language.
�ere are several other important works related with real

programming languages’ semantics. K-Java [3] features a
complete formal semantics for Java, which is also mecha-
nized using the tool K. JavaScript, in turn, has several for-
mal semantics: besides the aforementioned [1, 10], JSCert [2]
is a formalization of the language in the Coq proof assistant,
together with an interpreter extracted from the formaliza-
tion. [14] also introduces a small-step operational semantics

11

Conference’17, July 2017, Washington, DC, USA Soldevila et al.

for JavaScript, including proofs of several properties of the
model.

7 Conclusion

Wegive a small-step operational semantics for a large subset
of the Lua programming language, as speci�ed both by its
informal reference manual and by its reference implemen-
tation. We did so with li�le or no syntactical di�erences be-
tween the actual syntax of Lua and the terms on which we
de�ne the semantics, therefore having a lightweight elabo-
ration or desugaring step.
�e semantics tackles complex Lua features such as its

metatable mechanism, dynamic execution of source code,
error handling, and a several standard library functions that
have no Lua implementation. It is de�ned in a modular
way, and could be extended to tackle absent features such as
coroutines and the goto statement without modifying what
is already speci�ed.
We also provide a mechanization of the formal semantics

in PLT Redex. A large part of the test suite for the reference
interpreter has been successfully tested against this mecha-
nization, providing evidence that we are successfully mod-
eling the behavior of the language. As a plus, since our lan-
guage resembles closely Lua, the traces of execution keep
the code almost as wri�en by the developer.
�e development of the formal semantics, its mechaniza-

tion, and its test suite make up a tool that both semanticists
and Lua developers can use for understanding and extend-
ing the features of the language.
�ere are several further avenues for development. Be-

sides adding missing features such as coroutines and goto
statements, and the new operators and large integer types of
version 5.3, the formal semantics and its mechanization can
provide a basis for specifying, implementing, and formally
proving correct static analyses for Lua programs.

References
[1] C. Sa�oiu A. Guha and S. Krishnamurthi. �e essence of javascript.

In ECOOP ’10, 2010.

[2] Martin Bodin, Arthur Chargueraud, Daniele Filare�i, Philippa Gard-

ner, Sergio Ma�eis, Daiva Naudziuniene, Alan Schmi�, and Gareth

Smith. A trusted mechanised javascript speci�cation. In POPL ’14,

2014.

[3] Denis Bogdanas and Grigore Rou. K-java: A complete semantics of

java. In POPL ’15, 2015.

[4] Steven Jacone�e Casey Klein, JayMcCarthy and Robert Bruce Findler.

A semantics for context-sensitive reduction semantics. In APLAS’11,

2011.

[5] Ma�hias Felleisen and Robert Hieb. �e revised report on the syn-

tactic theories of sequential control and state. �eoretical Computer

Science, 103:235–271, 1992.

[6] R. Ierusalimschy, L.H. de Figueiredo, and W. Celes. �e evolution of

an extension language: a history of lua. In Brazilian Symposium on

Programming Languages, 2001.

[7] P. J. Landin. �e next 700 programming languages. Communications

of the ACM, 9:157–166, 1966.

[8] Hanshu LIN. Operational semantics for featherweight lua. Master’s

thesis, San Jos State University, march 2015.

[9] Ma�hew Fla� Ma�hias Felleisen, Robert Bruce Finlder. Semantics

Engineering with PLT Redex. �e MIT Press, 2009.

[10] Joe Gibbs Politz, Ma�hew J. Carroll, Benjamin S. Lerner, Justin Pom-

brio, and Shriram Krishnamurthi. A tested semantics for ge�ers, set-

ters, and eval in javascript. In DLS ’12, 2012.

[11] Joe Gibbs Politz, Alejandro Martinez, Ma�hew Milano, Sumner War-

ren, Daniel Pa�erson, Junsong Li Beijing, Anand Chitipothu Banga-

lore, and Shriram Krishnamurthi. Python: the full monty. InOOPSLA

’13, 2013.

[12] L. H. de Figueiredo R. Ierusalimschy andW. Celes. Lua �� an extensi-

ble extension language. So�ware: Practice and Experience, 26(6):635–

652, 1996.

[13] Waldemar Celes Roberto Ierusalimschy, Luiz Henrique de Figueiredo.

”the evolution of an extension language: a history of lua”. In Brazilian

Symposium on Programming Languages, 2001.

[14] John C. Mitchell Sergio Ma�eis and Ankur Taly. An operational se-

mantics for javascript. In APLAS ’08, 2008.

12

	Abstract
	1 Introduction
	2 Lua, an extensible scripting language
	2.1 Memoization
	2.2 Simple OOP in Lua

	3 Basics of the formalization
	4 A formal description of Lua
	4.1 Stateless Lua
	4.2 Imperative Lua
	4.3 Built-in services
	4.4 Metatables
	4.5 Semantics of programs and error handling

	5 Mechanization
	6 Related work
	7 Conclusion
	References

