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demiological studies demonstrate that there are sex differences in the
incidence, prevalence, and outcomes of cerebrovascular disease
(CVD). The present study compared the structure and composition of
the middle cerebral artery (MCA), neurovascular coupling, and cere-
brovascular function and cognition in young Sprague-Dawley (SD)
rats. Wall thickness and the inner diameter of the MCA were smaller
in females than males. Female MCA exhibited less vascular smooth
muscle cells (VSMCs), diminished contractile capability, and more
collagen in the media, and a thicker internal elastic lamina with fewer
fenestrae compared with males. Female MCA had elevated myogenic
tone, lower distensibility, and higher wall stress. The stress/strain
curves shifted to the left in female vessels compared with males. The
MCA of females failed to constrict compared with a decrease of
15.5 � 1.9% in males when perfusion pressure was increased from 40
to 180 mmHg. Cerebral blood flow (CBF) rose by 57.4 � 4.4 and
30.1 � 3.1% in females and males, respectively, when perfusion
pressure increased from 100 to 180 mmHg. The removal of endothelia
did not alter the myogenic response in both sexes. Functional hyper-
emia responses to whisker-barrel stimulation and cognition examined
with an eight-arm water maze were similar in both sexes. These
results demonstrate that there are intrinsic structural differences in the
MCA between sexes, which are associated with diminished myogenic
response and CBF autoregulation in females. The structural differ-
ences do not alter neurovascular coupling and cognition at a young
age; however, they might play a role in the development of CVD after
menopause.

NEW & NOTEWORTHY Using perfusion fixation of the middle
cerebral artery (MCA) in calcium-free solution at physiological pres-
sure and systematically randomly sampling the sections prepared from
the same M2 segments of MCA, we found that there are structural
differences that are associated with altered cerebral blood flow (CBF)
autoregulation but not neurovascular coupling and cognition in young,
healthy Sprague-Dawley (SD) rats. Understanding the intrinsic dif-
ferences in cerebrovascular structure and function in males and
females is essential to develop new pharmaceutical treatments for
cerebrovascular disease (CVD).

cerebral blood flow autoregulation; cognitive function; distensibility;
myogenic response; sex difference

INTRODUCTION

Epidemiological studies have clearly indicated that there are
sex differences in the incidence, prevalence, and outcomes of
cerebrovascular disease (CVD), including stroke and dementia.
Young women are protected from CVD through adulthood but
are at higher risk after the onset of menopause than men (30,
62, 66). Hormone replacement therapy does not reduce CVD
risk in postmenopausal women in clinical trials (69, 79),
suggesting that changes in the levels in sex hormones are not
the sole contributing factor to the sex differences in cerebral
vascular disease. Therefore, a better understanding of the
intrinsic differences in the cerebral vasculature in male and
female subjects and the influence of this divergence to vascular
function will provide essential insight into CVD biology for the
development of new pharmaceutical targets to improve treat-
ments of CVD.

The most common pathologically affected aspect of the
cerebral vasculature is the middle cerebral artery (MCA). As
the largest branch of the internal carotid artery, the MCA
provides blood supply to the lateral convexity of the hemi-
sphere, including frontal, parietal, temporal, and occipital
lobes, as well as the lateral sulcus, insula cortex, lenticular
nucleus, and internal capsule (52, 85). Ischemic stroke com-
prises 85%, and 15% is hemorrhagic stroke (67). Embolism of
the lenticulostriate branches of the MCA is the most common
cause of ischemic stroke; ~33% of saccular aneurysms (the
most common subtype of aneurysm) are found in the MCA,
and aneurysm disruption is the most common cause of hem-
orrhagic stroke (52). Stroke survivors face long-term disability
and cognitive deficits (37). Previous studies demonstrated that
females have smaller MCA compared with males in humans
(45, 51, 64) and in rats (61). The MCA in females has greater
responses to hypercapnia, nitric oxide (NO), and flow-medi-
ated vasodilation (31, 47, 54, 56) and lower responses to
angiotensin II (ANG II) as well as endothelin-1 (ET-1)-induced
vasoconstriction (1, 62).

The smaller MCA in females is associated with the elevated
basal vascular tone and enhanced flow velocity under hyper-
capnia conditions (47, 54). Females have lower artery compli-
ance (70, 77). Moreover, females have higher cerebral bloodCorrespondence: F. Fan (e-mail: ffan@umc.edu).
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flow at rest and during cognitive activities (35, 56), although
the underlying mechanisms are not well understood.

The present study determined whether there are sex differ-
ences in the intrinsic passive mechanical properties of the
MCA isolated from young, healthy male and female Sprague-
Dawley (SD) rats and if they contribute to the differences in
cerebral vascular function between sexes that may influence
the onset and outcomes of CVD.

MATERIALS AND METHODS

Animals

All experiments were performed on 3-mo-male and female SD rats.
The rats were bred in the colonies maintained at the University of
Mississippi Medical Center (UMMC). All the animals housed under
standard laboratory animal conditions, including a 12-h:12-h light-
dark cycle with free access to food and water. The UMMC animal
care facility is approved by the American Association for the Accred-
itation of Laboratory Animal Care. All protocols involving animals
were approved by the Institutional Animal Care and Use Committees
(IACUC) of the UMMC.

Pressure Myography

Isolation of the MCA. Male and female SD rats were euthanized
using 4% isoflurane. The rats were weighed, and the brains were
collected and immediately placed in an ice-cold calcium-free physi-
ological salt solution (PSS0Ca), as we previously described (27). A
5 � 3 mm section from the brain containing the MCA was removed
and placed in ice-cold PSS0Ca supplemented with 1% bovine serum
albumin (BSA). A branch-free M2 segment of the MCA with inner
diameters (ID) ranging from 150 to 200 �m was dissected, as we
previously described (26, 27).

Myogenic reactivity. Intact MCAs dissected from 11 male and 12
female SD rats were cannulated with glass pipettes in a pressure
myograph chamber (Living System Instrumentation, Burlington, VT).
The chamber was coupled to an inverted microscope (Olympus,
Center Valley, PA) and bathed with 37°C oxygenated (21% O2-5%
CO2-74% N2) PSS containing CaCl2 (1.6 mM). Endothelial denuda-
tion was applied to the MCAs isolated from five male and five female
SD rats by slowly perfusing 5–8 mL air through the lumen of the
vessels, as described previously (10). The effective removal of the
endothelium was validated by the elimination of the Acetylcholine-
induced vasodilation (Ach; 10�8 to 10�4 mol/L). The MCA was
equilibrated at an initial intraluminal pressure of 40 mmHg for 30 min
to develop a spontaneous myogenic tone. The myogenic response was
compared by measuring the IDs of the MCA in response to increased
intraluminal pressures ranging from 40 to 180 mmHg in steps of 20
mmHg using a �10 objective lens and imaged using a digital camera
(MU1000, AmScope) as we previously described (26, 55).

Passive mechanical properties of MCA. After the myogenic reac-
tivity was compared, the MCA was washed thoroughly with PSS0Ca at
5 mmHg of intraluminal pressure. The outer and inner diameters
(OD0Ca and ID0Ca) of the MCA were recorded under calcium-free
conditions at 5 mmHg; then, the perfusion pressure was raised to 40
mmHg and then 180 mmHg in a 20-mmHg increment. The passive
mechanical properties of the MCA including wall thickness (WT),
cross-sectional area (CSA), wall-to-lumen ratio, distensibility, incre-
mental distensibility, circumferential wall strain, circumferential wall
stress, and myogenic tone were calculated at each transmural pressure
step using the equations (see Fig. 5A) described previously (4, 9, 12,
20, 34, 38, 40, 59). The slopes (�-values) of the elastic modulus
(stress-strain curves) were compared to determine the arterial stiff-
ness. The �-value is directly proportional to the tangential or incre-
mental elastic modulus obtained by fitting the stress-strain curves to
an exponential model, y � �e�x, where y is circumferential stress, x is

the circumferential strain, and � is the wall stress at the original
diameter at 5 mmHg.

Histology and Immunohistochemistry

Sample selection and preparation for vascular smooth muscle cells
and collagen. Male and female SD rats were anesthetized with 2%
isoflurane. The rats were weighed and perfused with 10% neutral-
buffered formalin (Sigma-Aldrich, St. Louis, MO) intracardially at the
perfusion pressure of 100 mmHg. The brains were collected and
postfixed with 10% formalin. Two days later, a small rectangle square
of brain tissue, ~4–5 mm in each length, containing the M1 and M2
segments of the MCA, was dissected and embedded with paraffin. We
prepared 3-�m-thick serial cross sections encompassing the first 1–2
mm of the M2 segment of MCA. This segment of MCA displays a
nearly uniform cylindrical shape. We systematically randomly sam-
pled (SRS) a series of sections for stereology. The first section was
randomly selected from the first 10 sections at the bifurcation point of
the M1 to M2 segments of MCA and every 10th section thereafter. A
total of six to eight sections of each animal was studied.

Determination of the VSMC content in the wall of the MCA. The
VSMC content in the wall of the MCA was examined by immuno-
fluorescent staining using an antibody against �-smooth muscle actin
(�-SMA). Formalin-fixed and paraffin-embedded (FFPE) MCA sec-
tions were deparaffinized using xylene, followed by dehydration using
a series of ethanol with decreasing concentrations. After being washed
with deionized water, FFPE sections were incubated with proteinase
K (S3020, Agilent, Santa Clara, CA) for 7 min for antigen retrieval.
The sections were washed three times and incubated with the Protein
Block Serum-Free Blocking (X0909, Agilent, Santa Clara, CA) for 1
h at room temperature, and followed by incubation with a primary
antibody against mouse �-SMA (1:300, A5228, Sigma-Aldrich) and
secondary antibody (goat anti-mouse Alexa Fluor 555, 1:1000,
A21424, Thermo Fisher Scientific, Waltham, MA). The slides were
then applied with a drop of an antifade mounting medium with DAPI
(H-1200, Vector Laboratories, Burlingame, CA) and coverslipped.
Images were obtained using a Nikon C2 laser scanning confocal on an
Eclipse Ti2 inverted microscope (Nikon, Melville, NY) using a �60
oil immersion objective and a �3 digital zoom (total magnification of
�9,600). A series of optical sections were captured with a z step of
1.15 �m, and three images were used to generate a z-projection.
Quantitation of �-SMA was determined by comparing the average
intensities of the red fluorescence normalizing with CSA using NIS-
Elements Imaging Software 4.6 (Nikon). The numbers of VSMCs
determined by the distinct intercellular space between each cell were
manually counted and normalized with CSA. All the images were
taken using the same laser intensity, brightness, and contrast.

Determination of the collagen content in the wall of the MCA.
Masson’s trichrome staining was used to evaluate the collagen content
in the wall of the MCA. Images were taken using a Nikon Eclipse 55i
microscope and a DS-FiL1 color camera (Nikon). Quantitation of
collagen in media and adventitial layers in the wall of the MCA was
determined by comparing the average intensities of the blue staining
using NIS-Elements Imaging Software 4.6 (Nikon).

Determination of the elastin content in the wall of the MCA. The
elastin content in the wall of the MCA was determined using an
approach described previously (34) based on the observation that a
linear relationship exists between autofluorescence intensity and elas-
tin content (5, 9). Briefly, a freshly isolated M2 of MCA was
cannulated with glass pipettes in a pressure myograph chamber
(Living System Instrumentation). After equilibration in PSS0Ca, the
vessels were fixed using 4% paraformaldehyde at 37°C at the perfu-
sion pressure of 100 mmHg for 1 h. The vessels were incubated with
0.1 M sodium hydroxide at 75°C for 1 h to digest nonelastin compo-
nents (9). The vessels were then removed from the pressure myograph
and mounted in VECTASHIELD antifade mounting medium (H-
1000, Vector Laboratories) on slides with a silicon spacer (500-�m
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depth, 13-mm diameter; Grace Bio Laboratories, Bend, Oregon) to
avoid compression.

Elastin autofluorescence was visualized, and images were captured
at excitation and emission wavelengths of 488 nm and 500–560 nm,
respectively (9, 34), using a Nikon C2 laser scanning confocal on an
Eclipse Ti2 inverted microscope (Nikon) using a �60 oil immersion
objective, �3 zoom (total magnification of �9,600). A series of
optical sections of each MCA at three to four different regions were
imaged with a z step of 0.3 �m, and a stack of three images, including
all areas with intensive fluorescence, was compiled to generate a
z-projection. Quantitation of elastin was determined by comparing the
mean autofluorescence intensities per view using NIS-Elements Im-
aging Software 4.6 (Nikon). We also compared the thickness of
internal elastic lamina (IEL), fenestrae numbers, and area per view.
All the images were taken with the same laser intensity, brightness,
and contrast.

Western Blot Analysis

The MCAs were isolated from male and female SD rats and
homogenized in ice-cold radioimmunoprecipitation assay (RIPA, Sig-
ma-Aldrich) buffer containing protease and phosphatase inhibitors
(Thermo Fisher Scientific) using a ground glass homogenizer fol-
lowed by using a bead-beating technology with a FastPrep-24 homog-
enizer (MP Biomedicals, Santa Ana, CA). Samples were transferred to
a prechilled tube and sonicated on ice. The homogenate was centri-
fuged at 9,000 g for 15 min at 4°C. Protein concentration was
determined by the Bradford method (Bio-Rad Laboratories, Hercules,
CA). Aliquots of supernatant protein (10 �g for �-SMA and 30 �g for
elastin) were separated on a 10% SDS-PAGE gel and transferred to
nitrocellulose membranes using a Trans-Blot Turbo Transfer System
(Bio-Rad). Membranes were blocked with 5% nonfat milk at room
temperature for 1 h and incubated with rabbit anti-elastin (1:200,
ab217356, Abcam, Cambridge, MA) and mouse anti-�-SMA (1:
1,000, A2547, Sigma-Aldrich) antibodies at 4°C overnight, followed
by horseradish peroxidase (HRP)-conjugated goat anti-rabbit (1:
5,000, ab6721, Abcam) and rabbit anti-mouse (1:20,000, ab97046,
Abcam) secondary antibodies, respectively. The membranes were
exposed to the SuperSignal West Dura substrate (Thermo Fisher
Scientific), and the optical densities of bands were imaged and
analyzed using a ChemiDoc Imager system (Bio-Rad). The mem-
branes were then stripped and incubated with a rabbit anti-GAPDH
antibody (1: 1,000, 2118S, Cell Signaling Technology, Danvers, MA)
followed by goat anti-rabbit (1: 2,000, Cell Signaling) secondary
antibody as a loading control.

CBF Responses

CBF responses to pressure and whisker stimulation in six male and
seven female SD rats were compared following the protocol described
previously (23, 24, 46). Briefly, the rats were anesthetized using
ketamine (30 mg/kg) and inactin (50 mg/kg). This combination could
maintain near-normal arterial pressure (110–120 mmHg) and has
minimal effect on the autoregulation of CBF. The trachea was can-
nulated, and the animals were connected to a ventilator (SAR-830,
CWE, Inc., Ardmore, PA). CO2 level was continually monitored and
controlled at the range of 30–35 mmHg using an end-tidal CO2

Analyzer (CAPSTAR-100, CWE, Inc.). Cannulas were implanted in
the femoral artery and vein for drug delivery and monitoring the mean
arterial pressure (MAP). The head of the rat was fixed in a stereotaxic
apparatus (model 900, David Kopf, Tujunga, CA), and the bone
covering the left and right parietal bones (2 mm posterior and 6 mm
lateral to the bregma) was thinned using a low-speed air drill until a
thin translucent cranial window remained. A laser-Doppler flowmeter
(LDF, PF5010, Perimed, Inc., Las Vegas, NV) probe was placed over
the cranial windows in areas with no visible vessels in the field.

Functional hyperemia. Functional hyperemia was determined by
measuring the CBF response to whisker stimulation using LDF. The

right whiskers were stimulated at 10 Hz for 60 s, as previously
described (46). The LDF probe was immersed in the mineral oil on the
left closed cranial window above the somatosensory cortex. Three
trials were conducted every 5 min, and data were averaged for each
experimental condition.

Autoregulation of CBF. Baseline CBF was recorded at 100 mmHg,
followed by an elevation of blood pressure in steps of 20 mmHg up to
180 mmHg by infusing phenylephrine (0.5–5 �g/min, P6126, Sigma-
Aldrich) via the femoral vein. Blood pressure was maintained for 5
min at each step, and CBF was obtained when a steady-state CBF was
achieved. Then, phenylephrine was withdrawn, allowing MAP to
return to 100 mmHg, and a new baseline LDF signal was recorded.
MAP was reduced to 40 mmHg in steps of 20 mmHg by graded
hemorrhage, and CBF was obtained at each MAP level.

Cell Contraction Assay

Isolation of cerebral vascular smooth muscle cells. Primary cere-
bral VSMCs were isolated from 3-wk-old male and female SD rats, as
described previously (26). The animals were euthanized using 4%
isoflurane. The brains were collected, and the MCAs were dissected.
The MCA was placed in ice-cold Tyrode’s solution, PH 7.4. The
MCA was cut into small pieces and incubated in low Ca2	 Tyrode’s
buffer, as we described previously (26) supplemented with dithiothre-
itol (2 mg/mL, Sigma-Aldrich) and papain (22.5 U/mL, Sigma-
Aldrich) at 37°C for 15 min with gentle rotation. The MCA pieces
were then pelleted at 1,000 RPM and resuspended in fresh Tyrode’s
solution containing trypsin inhibitor (10,000 U/mL, Sigma-Aldrich),
collagenase (250 U/mL, Sigma-Aldrich), and elastase (2.4 U/mL,
Sigma-Aldrich) with gentle rotation for 15 min at 37°C. The digested
MCAs were centrifuged at 1,500 rpm for 10 min at 37°C, and the
VSMCs were resuspended and released in Dulbecco’s modified Ea-
gle’s medium (DMEM, Thermo Fisher Scientific) containing 20%
fetal bovine serum and 1% penicillin/streptomycin. The cells were
seeded into a CellTak (Thermo Scientific) precoated six-well plate,
and early passages (P2-P3) of the primary VSMCs were used for
following experiments.

Cell constriction assay. Cell contractile capability of male and
female primary VSMCs isolated from SD rats was conducted using a
collagen gel-based cell constriction assay kit (Cell Biolabs, San
Diego, CA). The VSMCs were suspended in culture medium at a
density of 2 � 106 cells/mL, which was mixed with collagen gel
working solution on the ice at a ratio of 1:4. The mixture at a final
volume of 500 �L containing 2 � 105 cells was placed in each well
of 24-well plate and incubated at 37°C for 1 h, and then, 1 mL culture
medium was gently added to each collagen gel. The cells were further
incubated 2 days at 37°C in a 5% CO2 atmosphere to develop
contractile stress. The stressed matrix was detached from the wall
using a sterile needle to initiate contraction. Changes in the collagen
gel size were imaged before (time 0) and 120 min after additional
stimulation at 30-min interval and quantified with NIS-Elements
Imaging Software 4.6 (Nikon).

Eight-Arm Water Maze

Spatial learning and short- or long-term memory were compared
with an eight-arm radial water maze (57). The rats were placed in the
testing room 2 h before training to equilibrate to the new environment.
The rats were trained to recognize the platform located in one of the
eight arms on the morning of the first day, and four 	 four trials were
conducted 2 and 24 h posttraining, respectively. Time to reach the
platform was recorded.

Statistics

All data are presented as mean values � SE. A two-way ANOVA
for repeated measures followed by a Holm-Sidak post hoc test was
used to compare the significant differences between male and female
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SD rats in corresponding values in the pressure myograph studies. The
significance of differences between groups in corresponding values of
MAP, body weight, cell contraction assay, Western blot, and immu-
nohistochemistry was compared using Student’s t test. The stress-
strain curves were fitted using the Levenberg-Marquardt regression
method (linear and nonlinear regressions), and the slopes were com-
pared by using Student’s t test. All statistical analyses were performed
using GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA). A
value of P 
 0.05 was considered significant.

RESULTS

Sex Differences in MAP, Body, and Brain Weights

As demonstrated in Fig. 1, 3-mo-old female SD rats have
significantly lower MAP, body, and brain weights (101.0 � 1.5
mmHg, 214.4 � 7.6 g, and 1.68 � 0.02 g, respectively) com-
pared with age-matched male SD rats (120.8 � 4.3 mmHg,
380.6 � 13.8 g, and 1.97 � 0.03 g, respectively).

Sex Differences in the VSMCs Content in the Wall of the
MCA

Differences in VSMCs content were determined by immu-
nofluorescence staining using an antibody �-SMA. We found
that there were fewer VSMC layers in the wall of the MCA in
female rats (Fig. 2A). The numbers of VSMCs/mm2 were 4%
less in the MCA of females compared with males (Fig. 2B).
The average fluorescent intensity/�m2 was decreased by 18%
in the MCA of female versus male rats (Fig. 2C). The expres-
sion of �-SMA in isolated MCAs was significantly decreased
in females compared with males examined by Western blot
(Fig. 2, D and E).

Sex Differences in the Collagen Content in the Wall of the
MCA

Masson’s trichrome staining was used to determine sex
differences in the collagen content in the wall of the MCA (Fig.
3). We found that average blue intensity, stained by methyl
blue that is collagen specific, was significantly increased in the
tunica media but did not display significant differences in the
tunica adventitia in the wall of the MCA of females compared
with men.

Sex Differences in the Elastin Content in the Wall of the
MCA

Sex differences in the elastin content in the wall of the MCA
estimated by confocal microscopy are presented in Fig. 4.
Consistent with the previous report (44), we found that the
external elastic lamina was absent in rat MCA in both sexes.
IEL thickness was thicker in the MCA in females (Fig. 4A) in
association with higher autofluorescence intensity (Fig. 4, B
and E), smaller fenestrae areas (Fig. 4, C and E), and fewer
number of fenestrations (Fig. 4, D and E). The expression of
elastin in isolated MCAs was significantly increased in females
compared with males examined by Western blot (Fig. 4F).

Sex Differences in Vascular Characteristics of the MCA

Figure 5 presents the vascular characteristics of the MCA
isolated from 3-mo-old male and female SD rats. ID0Ca of the
MCA was similar in male and female rats at 5 mmHg of
intraluminal pressure but were smaller in females at perfusion
pressures from 40 to 180 mmHg (Fig. 5B). WT and CSA of
MCA were smaller in female versus male rats at intraluminal
pressures from 5 to 180 mmHg (Fig. 5, C and D), but the
wall-to-lumen ratio was lower only at a pressure of 5 mmHg
(Fig. 5E).

Sex Differences in the Myogenic Response and CBF
Autoregulation of the MCA

The MCA of male and female SD rats displayed a similar
vasoconstrictive response to increases in perfusion pressure
from 40 to 120 mmHg. In contrast, female vessels failed to
constrict and exhibited forced dilation over the pressure range
of 140–180 mmHg. The female MCA was 16% larger at 180
mmHg in comparison with males (Fig. 6A). There was no
significant difference in the myogenic response between endo-
thelium-intact MCA and endothelium-denuded MCA in both
male and female SD rats (Fig. 6A). As depicted in Fig. 6B,
there was no significant difference in CBF autoregulation in
male and female SD rats when blood pressures were in the
range from 40 to 140 mmHg. However, females, but not males,
exhibited autoregulatory breakthrough at blood pressure
greater than 140 mmHg. CBF increased by 57.4 � 4.4% in
females versus 30.1 � 3.1% in males, respectively, at a perfu-

Fig. 1. Sex differences in mean arterial pressure (MAP), body, and brain weights. A: comparison of MAP in 3-mo-old male and female Sprague-Dawley (SD)
rats. B: comparison of body weight in 3-mo-old male and female SD rats. C: comparison of brain weight in 3-mo-old male and female SD rats. Mean values � SE
are presented. Numbers indicate the number of animals studied per group. *P 
 0.05 from the corresponding values in female vs. male SD rats.
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sion pressure of 180 mmHg. These results indicate that female
SD rats have a reduced range of CBF autoregulation compared
with age-matched males in response to higher pressures.

Sex Differences in Cerebral VSMC Contractile Capability

The effects of sex differences in cerebral VSMC contractile
capability are presented in Fig. 6C. The VSMCs isolated from
female cerebral vasculature exhibited a weaker contractile

capability, and the gel size was reduced by 26.0 � 0.4% versus
31.9 � 0.5% in cells isolated from men.

Sex Differences in Mechanical Properties of the MCA

The MCA of females exhibited less distensibility at perfu-
sion pressures from 40 to 180 mmHg (Fig. 7A), and lower
incremental distensibility at perfusion pressures from 40 to 100
mmHg (Fig. 7B). Female MCA had more wall stress at perfu-

Fig. 2. Sex differences in the VSMC content in the wall of the middle cerebral artery (MCA). A: representative images of immunofluorescence staining of
�-smooth muscle actin (�-SMA) in the wall of the MCA of male and female Sprague-Dawley (SD) rats. B: comparison of VSMC numbers of cell/mm2 cross
section the wall of the MCA of male and female SD rats. C: comparison of the red average fluorescent intensity [fluorescence unit (FU)]/�m2 in the wall of the
MCA of male and female SD rats. D and E: representative images of Western blot and quantification of the expression of �-SMA in isolated MCAs of male
and female SD rats. Mean values � SE are presented. Five male and five female rats were used for immunofluorescent staining. For Western blot, protein samples
were extracted from 7 male and 5 female rats. The protein was pooled in each sex, and triplets were used in each experiment. Experiments were repeated 3 times.
Each dot represents 1 view or 1 of the triplets, but average numbers obtained in each rat was used for statistical analysis. *P 
 0.05 from the corresponding values
in female rats vs. male rats.

Fig. 3. Sex differences in the collagen content in the wall of
the middle cerebral artery (MCA). A: representative images of
the comparison of sex differences in the collagen content in the
wall of the MCA using Masson’s trichrome staining. B: com-
parison of the average blue intensity [fluorescence unit (FU)]/
�m2 cross-section area in the tunica media and adventitia of the
MCA of male and female Sprague-Dawley (SD) rats. Mean
values � SE are presented. Five male and five female rats were
studied. *P 
 0.05 from the corresponding values in female rats
vs. male rats.
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sion pressures from 40 to 180 mmHg (Fig. 7C). The stress-
strain curves of MCA shifted to the left in females compared
with males (Fig. 7D). The �-values (Fig. 7E), the indicator of
vascular stiffness, were significantly increased in the MCA of
females (10.0 � 0.7) than males (7.4 � 0.7). The MCA devel-
oped a more myogenic tone in females at the perfusion pres-
sures ranging from 40 to120 mmHg (Fig. 7F). However, there
was no significant difference in the myogenic tone between
male and female SD rats when perfusion pressure was in-
creased further to 140–180 mmHg.

A summary of the sex differences in vascular characteristics
of the MCA at a perfusion pressure of 100 mmHg is presented
in Fig. 7G. At calcium-free conditions, the MCA of female SD
rats displayed smaller ID0ca, OD0ca, WT, and CSA, but there
were no changes in the wall-to-lumens ratio. The MCA of
female SD rats had less distensibility and incremental disten-
sibility. However, they exhibited higher myogenic tone and
wall stress under the same perfusion pressure.

Sex Differences in Functional Hyperemia and Cognitive
Function

The time course of changes in cortical CBF in response to
whisker stimulation is presented in Fig. 8A. The average of
CBF increased during the 60-s stimulation period was to the

same extent in females (by 30.3 � 1.4%) versus male (by
29.2 � 3.3%) SD rats.

The females took the same time to escape from an eight-arm
water maze compared with males (Fig. 8B), indicating there
were no significant differences in spatial learning and memory
function in these rats at a young age.

DISCUSSION

CVD is the leading cause of dementia and death among
middle-aged and elderly adults globally (13, 72, 78). Men and
women display profound divergence in the onset, progression,
and outcomes of CVD (16). Young women are protected from
CVD throughout adulthood but are at higher risk than men
after menopause (30, 62, 66). Indeed, the changes in sex
hormones with age in women are essential factors contributing
to the differences in cerebral vascular protection in women;
however, hormone replacement therapy does not reduce CVD
risk in postmenopausal women (69, 79). In addition, women
have a longer life span. When superimposing with hyperten-
sion, diabetes, and atrial fibrillation, postmenopausal women
have higher CVD risk and more negative outcomes than
age-matched men (33). Current pharmacological interventions
cannot prevent and do not reduce the increased risk of CVD in
postmenopausal women, suggesting a better understanding of

Fig. 4. Sex differences in the elastin content in the wall of the middle cerebral artery (MCA). A: comparison of internal elastic lamina (IEL) thickness in the MCA
of male and female Sprague-Dawley (SD) rats. B: comparison of the autofluorescence intensity [fluorescence unit (FU)] in the IEL on the MCA of male and
female SD rats. C: comparison of the fenestrae areas in the IEL on the MCA of male and female SD rats. D: comparison of the fenestrae numbers in the IEL
on the MCA of male and female SD rats. E: representative images of the elastin autofluorescence in the IEL detected by confocal microscopy. F: representative
images of Western blot and quantification of the expression of elastin in isolated MCA of male and female SD rats. Mean values � SE are presented. Five male
and five female rats were used for the detection of elastin autofluorescence. For Western blot, protein samples were extracted from 7 male and 5 female rats.
The protein was pooled for each sex, and triplets were used in each experiment. Experiments were repeated 3 times. Each dot represents 1 view or 1 of the triplets,
but average numbers obtained from each rat were used for statistical analysis. *P 
 0.05 from the corresponding values in female rats vs. male rats.
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sex differences in structure and function of the cerebral vas-
culature is needed to determine the underlying mechanisms.

In the present study, we compared the intrinsic structure, the
proportional composition, passive distensibility, and stiffness
of MCA; myogenic reactivity in response to elevations in
transluminal pressure; functional hyperemia and autoregula-
tion of CBF in vivo; as well as cognitive function using
age-matched young, healthy male and female SD rats. We
found that first, female SD rats at 12-wk of age exhibited lower

MAP, body, and brain weights compared with age-matched
males. Second, the MCA dissected from female SD rats dis-
played fewer VSMCs and more collagen in the media of the
vascular wall in associated with a thicker IEL. Third, VSMCs
of females exhibited a weaker contractile capability. Fourth,
wall thickness and the inner diameter of the MCA were smaller
in females. 5) Fifth, female MCA had a greater myogenic tone
and wall stress but less distensibility. Sixth, female MCA had
reduced constrictive responses to elevations in perfusion pres-

Fig. 5. Sex differences in vascular characteristics of the middle
cerebral artery (MCA). A: Equations used for the calculation of
vascular mechanical properties. IDCa, inner diameter in Ca2	

solution; ID0Ca, inner diameter in Ca2	 free solution; OD0Ca:
outer diameter in Ca2	 free solution; ID0Ca5mmH, inner diameter
in Ca2	 free solution at a pressure of 5 mmHg; P, perfusion
pressure, 1 mmHg � 1,334 dyne/cm2. B: comparison of ID0Ca

of endothelium-intact and endothelium-denuded MCA isolated
from 3-mo-old male and female Sprague-Dawley (SD) rats. C:
comparison of the wall thickness (WT) of MCA of male and
female SD rats. D: comparison of the cross-sectional areas
(CSA) of MCA of male and female SD rats. E: comparison of
the wall-to-lumen ratios of MCA of male and female SD rats.
Mean values � SE are presented. Six male and seven female
rats were studied using endothelium-intact MCA. Five male
and five female rats were studied using endothelium-denuded
MCA. *P 
 0.05 from the corresponding values in female vs.
male rats.
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sure ex vivo (myogenic response) and in vivo (CBF autoreg-
ulation). Forced dilation of the MCA occurred at pressures
�140 mmHg in females, which mediated autoregulatory
breakthrough at high pressures. Seventh, the removal of the
endothelium in the MCA did not alter the myogenic response
in both males and females. Eighth, we did not find sex
differences in functional hyperemia and cognitive function.

We took into account the fact that several factors could
influence the results. First, we compared the wall structure and
components using the same M2 segments of MCA as for the
measurements of myogenic reactivity. Second, we performed
perfusion fixation of the MCA with 10% neutral-buffered
formalin in calcium-free PSS solution at 100 mmHg to mimic
the in vivo blood pressure of these rats. Third, we systemati-
cally randomly sampled (SRS) series of 3 �m thick sections
encompassing the first 150 �m of M2 segment from the
bifurcation point of the M1 segment of the MCA where the
vessels are nearly uniformly cylindrical. The first section was
randomly selected from the first 10 sections of the bifurcation
point of M1 to M2 segments of MCA, and six to eight
subsequent sections from each animal were studied. Fourth, we
compared VSMCs and collagen content in the tunica media
layer of the arterial wall, which are the main active elements to
determine the passive mechanical properties of arteries (20).
We also compared elastin in the tunica intima layer and
collagen in the tunica adventitia layer. Finally, we did not
monitor the estrous cycle in females in this study based on
several considerations: 1) we did not find any differences in the
myogenic response and CBF autoregulation in another study at
various stages in the estrous cycle (82); 2) recent studies
demonstrated that the effects of the estrous cycle on 142
cardiovascular phenotypes were much less than sex differences
(17); 3) CBF autoregulation is unaffected by cycle in young
females (28); and 4) the rats used in this study were bred in the
colonies maintained at our institution. Females were group-
housed since birth, which can reach cycle synchronously (49).

VSMCs provide structural integrity and mediate the diame-
ter changes in response to stimulation. In rats, VSMC is the
most abundant cell type that occupies up to 73% in cerebral
arteries of 25-wk-old male Wistar-Kyoto (WKY) rats (7) and
65% at 10-mo-old age (4). These results suggest that the
number of cerebral VSMCs may decrease with age in rats,
which is consistent with other studies in mice indicating the
myogenic response and autoregulation of CBF are impaired
with age, especially when superimposed with hypertension (75,
76). A significant intrinsic property of VSMCs is the myogenic
response, which constricts the vessels in response to elevations
in intraluminal pressure (22). VSMCs dynamically regulate the
diameter of the vessels by constricting and relaxing in response
to stimuli, such as vasoconstrictors, stretch, vasodilators, and
metabolic factors. Under pathological conditions, these cells
can migrate and proliferate that play essential roles in vascular
inflammation and atherosclerosis (50). Interestedly, we found
that there are more layers of VSMCs in the wall of MCA in
males than in females. This result is consistent with less
�-SMA expression in isolated MCAs in females than males
using Western blot analysis. The female MCA exhibited a
thinner wall and smaller CSA, a narrower lumen than males.
However, the wall-to-lumen ratio was the same between the
two sexes.

Elastin in the vascular wall stabilizes the arterial structure
and endows vessels with elasticity (41, 68). IEL and endothe-
lial cells make up the intima. In the media, elastin is organized
in sheets (lamellae) with collagen, VSMCs, and extracellular
matrix (ECM) (80). Rats cerebral arteries lack the external
elastic lamina, which is similar to humans (44). Elastin is
autofluorescent, and a linear relationship exists between fluo-
rescence intensity and elastin content (9). Based on this rela-
tionship, we found there were fewer fenestrations of elastin in
the IEL of MCA of females in comparison with males. This
result is consistent with our finding of more elastin expression
in isolated MCAs from females using Western blot analysis.

Fig. 6. Sex differences in the myogenic response of the middle cerebral artery (MCA), cerebral blood flow (CBF) autoregulation, and cerebral VSMC contractile
capability. A: comparison of the myogenic response of MCA of female vs. male Sprague-Dawley (SD) rats in response to an elevation in perfusion pressure.
B: the relationships of CBF and mean arterial pressure (MAP) were compared in male and female SD rats. C: comparison of sex differences in cerebral VSMC
contractile capability as of %constriction to initial size is presented. Representative images are shown in the inset. The white dotted circles represent the gel area.
Mean values � SE are presented. Cerebral VSMCs were isolated from 6 male and 6 female rats. The cell contraction experiments were repeated 3 times, and
triplicates were used in each experiment. *P 
 0.05 from the corresponding values in female vs. male rats.
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Fenestrations in IEL of cerebral arteries and other resistant
arteries exist in rodents (9, 60, 63) and other mammals (36).
The size of fenestrations is increased from birth to middle age
in humans and rodents and followed a gradual decline with
aging (34, 44). However, fenestration size and the fraction of

area were smaller in resistant vessels of stroke-prone sponta-
neously hypertensive rat (SP-SHR) (6) and spontaneously
hypertensive rat (SHR) (63) than WKY rats. Clinical studies
indicated the function of elastin in cerebral arteries declined
with aging, although the fraction remained unchanged (29).

Fig. 7. Sex differences in mechanical properties of the middle cerebral artery (MCA). A: comparison of the distensibility of the MCA of female vs. male
Sprague-Dawley (SD) rats. B: comparison of the incremental distensibility of the MCA of female vs. male SD rats. C: comparison of the wall stress of the MCA
of female vs. male SD rats. D: comparison of the stress-strain relationships of the MCA of female vs. male SD rats. E: comparison of the slopes of the elastic
modulus curves (�-values) of the MCA of female vs. male SD rats. F: comparison of the myogenic tone of the MCA of female vs. male SD rats. G: comparison
of sex differences in vascular characteristics of the MCA at a perfusion pressure of 100 mmHg. All data are presented as mean values � SE. Six male and seven
female rats were studied. *P 
 0.05 from the corresponding values in female vs. male rats.
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Collagen is a reinforcing structural element and the major
nondistensible component in the arterial wall. Within the
media, it surrounds the vessels in a helical shape, and this
structural arrangement, along with elastin and VSMCs, is
responsible for maintaining the structural integrity of the ves-
sels as well as its distensibility or lack thereof. In the adven-
titia, collagen is arranged longitudinally along the vessel wall
and markedly contributes to vascular stiffness and compliance
(80). Our results demonstrated that there was markedly more
collagen content in the media but not the adventitia of MCA in
females in comparison with males.

Indeed, chronic hypertension in some models promotes
hypertrophic remodeling and reduces the distensibility of ce-
rebral arteries in association with increased collagen content in
the vascular wall (3, 39). In the present studies, we found that
3-mo-old female SD rats had a significantly lower MAP
compared with age-matched men; however, the MAPs in
females (101.0 � 1.5 mmHg) and males (120.8 � 4.3 mmHg)
were within the normotensive range. Thus, we think the struc-
tural and functional alterations we observed between male and
female SD rats were not induced by the small difference in
MAP.

This sexual dimorphism in the intrinsic structure of the
MCA would be expected to alter the myogenic reactivity and
passive mechanical properties between males and females.
Indeed, we found that basal myogenic tone was enhanced in
female MCA. This observation is consistent with previous
findings (54). However, the molecular and cellular mechanisms
involved in the increased tone are still unclear. Estrogen
enhances the production of NO and other vasodilators (31, 56),
which would be expected to reduce myogenic tone. On the
other hand, female MCA has a greater response to NO, a lower
response to ANG-II and ET-1, and no response to thromboxane
A2 agonists (1, 43). Many other factors that contribute to the
regulation of cerebral vascular function have been reported,
such as peroxisome proliferator-activated receptor-� (11), es-
trogen receptors (86), transient receptor potential channels,
integrins, and actin cytoskeletal dynamics that involving acti-
vation of protein kinase C, mitogen-activated protein kinases,

and RhoA-Rho kinase pathways, etc. (22, 25), may all play
roles in the enhanced basal vascular tone in females as we
observed in our studies. Clearly, more in-depth investigations
are needed to determine the causes and functional conse-
quences of elevated tone in females. The incremental disten-
sibility and circumferential wall strain were reduced in female
MCA relative to males. Females exhibited more circumferen-
tial wall stress, a leftward shift of the elastic modulus (stress-
strain curves) indicating less distensibility, and larger �-values,
which were calculated from the elastic modulus using an
exponential model and directly proportional to tangential elas-
tic modulus as an indicator of intrinsic arterial stiffness inde-
pendent of geometry (58, 60). The parameters in female MCA
compared with male MCA are similar to the difference in the
myogenic and structural properties of the MCA in SP-SHR
versus SHR (40). The MCA in SP-SHR has a smaller passive
lumen diameter, reduced distensibility, a leftward shift stress-
strain relationship, but an increased vascular wall thickness.
These structural changes are associated with an increased
incidence of hemorrhagic stroke in this strain.

It is logical to expect that a stiffer and less distensible vessel
in females constricts less in response to elevations in perfusion
pressure, as demonstrated in our results. Although female
MCA exhibited higher responses to hypercapnia, NO, and
flow-mediated vasodilation (31, 47, 54, 56), we found that
removal of endothelial cells in MCA had no effects on the
myogenic response in both sexes, indicating endothelial cells
did not play a significant role in the reduced pressure-induced
vascular reactivity in females. This finding is consistent with
previous reports that the myogenic responses were independent
of the endothelium in both human and rat cerebral resistant
arteries (48, 81). The myogenic response is mainly determined
by VSMCs within the tunica media layer. Stretch-activated ion
channels on the VSMCs are the mechanosensors allowing
Ca2	 influx to induce vasoconstriction (32, 84). Calcium-
activated K	 channels are a negative feedback mechanism
resulting in VSMCs membrane hyperpolarization and reduced
vasoconstriction (8, 53). A recent study indicated that VSMCs
isolated from MCAs of adult female rats exhibited higher BK

Fig. 8. Sex differences in functional hyperemia and cognitive function. A: Comparison of functional hyperemia responses of female vs. male Sprague-Dawley
(SD) rats as presented as a time course of percentage changes of cortical cerebral blood flow (CBF) in response to whisker stimulation. Averaged percentage
changes in CBF during 60 s stimulation are presented as the inserted graph. B: Comparison of cognitive function of female vs. male SD rats determined using
an eight-arm water maze. All data are presented as mean values � SE. Six male and seven female rats were studied.
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channel current densities compared with males leading to
attenuated myogenic reactivity (61). In addition, a higher basal
vascular tone would be expected to blunt subsequent myogenic
responses (53). In addition to fewer VSMCs in the MCA wall
in females, we found that at a given number, primary VSMCs
isolated from female MCA had less contractile capability than
VSMCs of male MCA. These factors led to a diminished
myogenic response in female MCA in association with an
attenuated CBF autoregulation, as demonstrated in our results.
CBF autoregulation is mainly regulated by the myogenic re-
sponse. Female vessels exhibited a forced dilation of the MCA
and an autoregulatory breakthrough at pressures above 140
mmHg. The increased slope of the CBF autoregulation curve at
high pressures in females is likely affected by the reduced
myogenic response but unlikely due to decreased distensibility
of the MCA. Autoregulation of CBF is critical for brain
homeostasis to maintain constant blood flow despite changes in
systemic pressure (65). Impaired autoregulation of CBF and
the myogenic response of the large cerebral arteries and arte-
rioles can increase transmission of pressure to downstream
small arterioles and capillaries, leading to microhemorrhages,
blood-brain barrier leakage, and ischemic injury in various
pathologic conditions (21, 23, 24, 83).

At first glance, our results are controversial with others that
females have better autoregulation than males at all ages (19,
28). This discrepancy is primarily due to differences in the
experimental design and methods used in these studies. We
measured the CBF in response to changes in blood pressure,
while human studies examined the ability to maintain CBF at
given (physiological) pressure in response to elevated, inspired
CO2 or postural changes (19, 28). These studies thus showed
that women were better able to dilate the cerebral circulation
and maintain CBF under these conditions compared with men

but did not have evidence that women have better “autoregu-
lation” in response to fluctuation of pressure changes. Another
consideration is that we assessed CBF by transcranial Doppler
measurements of blood flow velocity in the pial arteries. The
missed link between smaller vessels, less compliance, elevated
tone, reduced the myogenic response, and attenuated CBF
autoregulation to higher CBF in female MCA could be ex-
plained that women had elevated basal flow velocities in the
MCA examined in 304 healthy men and women (42) and
enhanced flow velocity under hypercapnia condition were
found higher in women (47, 54).

Functional hyperemia mediated by neurovascular coupling
mechanisms is essential in regulating CBF in response to
neuronal activities and is independent of changes in blood
pressure (2, 14, 15, 18, 73). Endothelial cells, pericytes, and
astrocytes play a critical role in functional hyperemia (74). We
found that functional hyperemia responses to whisker-barrel
stimulation were not different between males and females,
which is consistent with recent human studies (71). In addition,
the differences in the structure and function of the MCA did
not induce subsequent pathological effects on cognitive func-
tion examined with eight-arm water maze in females.

In summary (Fig. 9), our results demonstrated that the MCA
of female SD rats exhibits more elastin expression in associa-
tion with a thicker IEL with smaller fenestrae areas and fewer
fenestrae numbers compared with the MCA of males. In the
media layer of the MCA, females had less VSMCs and more
collagen contents. Primary VSMCs isolated from female MCA
had diminished contractile capability than males. We found
that female rats had a thinner vascular wall and a smaller inner
diameter of the MCA compared with males but had no changes
in the wall-to-lumen ratio. Female MCA developed higher
basal myogenic tone, lower distensibility, and higher wall

Fig. 9. Summary of the fundamental structural differences in the M2 branch of the middle cerebral artery (MCA) between sexes. MCA of female rats has a smaller
inner diameter, thinner wall, less VSMCs and more collagen in the tunica media, and a thicker internal elastic lamina under calcium-free conditions compared
with men. IEL, internal elastic lamina.
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stress in association with less myogenic response and CBF
autoregulation compared with males. The structural differences
did not alter neurovascular coupling responses and cognition at
a young age; however, they might play a role in the develop-
ment of CVD after menopause or in hypertension.
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