
Vol.:(0123456789)

Journal of Network and Systems Management
https://doi.org/10.1007/s10922-018-9481-0

1 3

A Bio‑inspired Datacenter Selection Scheduler
for Federated Clouds and Its Application to Frost Prediction

Elina Pacini1,2 · Lucas Iacono1,2 · Cristian Mateos3 · Carlos García Garino1

Received: 14 August 2017 / Revised: 1 November 2018 / Accepted: 8 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Frost is an agro-meteorological event which causes both damage in crops and
important economic losses, therefore frost prediction applications (FPA) are very
important to help farmers to mitigate possible damages. FPA involves the execution
of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid
federated Clouds, where custom virtual machines (VM) are launched in appropriate
resources belonging to different providers. The goal of this work is to minimize both
the makespan and monetary cost. We follow a federated Cloud model where sched-
uling is performed at three levels. First, at the broker level, a datacenter is selected
taking into account certain criteria established by the user, such as lower costs
or lower latencies. Second, at the infrastructure level, a specialized scheduler is
responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are
assigned for execution into the preallocated VMs. Our proposal mainly contributes
to implementing bio-inspired strategies at two levels. Specifically, two broker-level
schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimi-
zation (PSO), which aim to select the datacenters taking into account the network
latencies, monetary cost and the availability of computational resources in data-
centers, are implemented. Then, VMs are allocated in the physical machines of that
datacenter by another intra-datacenter scheduler also based on ACO and PSO. Per-
formed experiments show that our bio-inspired scheduler succeed in reducing both
the makespan and the monetary cost with average gains of around 50% compared to
genetic algorithms.

Keywords Scientific computing · Frost prediction applications · Cloud computing ·
Scheduling · Ant colony optimization · Particle Swarm optimization · Genetic
algorithms

 * Elina Pacini
 epacini@uncu.edu.ar

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2882-766X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9481-0&domain=pdf

 Journal of Network and Systems Management

1 3

1 Introduction

Scientific computing is a field that applies computer science to solve typical
scientific problems. Scientific computing is usually associated with large-scale
computer modeling and simulation, and requires a sheer number of computing
resources to quickly deliver results for ever-growing problem sizes. A concrete
example of scientific applications are Precision Agriculture Applications, particu-
larly Frost Prediction Applications (FPA). FPAs, which are composed of multi-
ple numerical regressions [1] and machine learning techniques [2], are executed
using data collected on-field by different instruments like thermometers, weather
stations or Wireless Sensor Networks (WSNs) [3, 4]. These instruments gener-
ate considerable amounts of data, therefore somewhat powerful computational
resources are required for storing and processing data. Specifically, frost predic-
tion must be performed for each of the farms in which it is necessary to know
whether a frost can be produced or not, i.e., that the FPA is executed with data
collected from each one of the farms. Accordingly, to perform a frost prediction
in an entire region (composed of a large number of farms of different sizes and
with different number of sensor nodes), it is necessary to run the FPA on different
machines in parallel and collecting the results. Therefore, from a computational
perspective, running FPAs involves managing many independent jobs with a mas-
ter-worker structure. Indeed, users relying on FPAs need a computing environ-
ment that delivers large amounts of computational power in order to obtain the
predictions in the shortest possible time.

Cloud Computing [5, 6] brings a technological solution to the problem of frost
prediction due to their reliability, availability and resources scalability. From a
technical standpoint, Cloud permits the acquisition of fully-configured infra-
structures through virtualization technologies [5], i.e., different types of Virtual
Machine (VM) instances provide a wide spectrum of hardware and software con-
figurations under a pay-per-use scheme. Usually, VM prices vary according to the
acquired instance type and the pricing model of the Cloud provider. Concretely, a
Cloud provides some measure of reliability and scalability regarding computing
infrastructure both for data storing and FPA processing. Moreover, the economic
costs of Cloud resources for scientific computing are lower compared with that
of traditional in-house clusters [7]. However, since in single-datacenter Clouds
resource availability might be limited, the option of obtaining extra resources
from an arrangement of Cloud providers has appeared recently as an appealing
solution [8, 9]. This ability to exploit resources from multiple Cloud providers is
also called federating Clouds [10].

For executing resource intensive applications in general, and FPA in particu-
lar, when using federated Clouds it is necessary to properly manage physical
resources, since they are part of geographically distributed datacenters. There-
fore, for the efficient execution of jobs, scheduling should be performed at three
abstraction levels [11]. Firstly, at the broker level, scheduling strategies are used
for selecting datacenters taking into account issues such as network interconnec-
tions or monetary cost of allocating VMs on hosts that compose them. The broker

1 3

Journal of Network and Systems Management

generates an execution plan based on requirement criteria provided by the user
and the offerings of the available Cloud providers. At this level a broker acts as
an intermediary between the users and the Cloud providers. The broker utilizes
broker strategies to route user requests to the most appropriate datacenter. There-
fore, the optimal response time of a particular request and the efficient utiliza-
tion of the datacenters are governed through datacenter selection policies [12].
Secondly, at the infrastructure level, VM scheduling algorithms are implemented
to schedule the VM requests to the physical machines of a particular datacenter
taking into account the requirement fulfilled with the requested resources (i.e.
RAM, Memory, Bandwidth etc). Lastly, at the VM level, by using job scheduling
techniques, jobs are assigned for execution into allocated virtual resources, which
were allocated at the previous level. However, scheduling is an NP-Complete [13]
problem and therefore it is not algorithmically trivial. Moreover, the fact that fed-
erated Cloud scheduling spans these three levels makes the problem even more
challenging.

Bio-inspired strategies such as Swarm Intelligence (SI) metaheuristics have been
suggested to solve combinatorial optimization problems—such as broker/VM/job
scheduling—by simulating the collective behavior of social insects swarms [14].
Inspired by these capabilities, researchers have proposed algorithms or theories
for combinatorial optimization problems, where the most popular SI-based strate-
gies are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO).
Moreover, job scheduling in federated Clouds is also a combinatorial optimization
problem, and schedulers in this line that exploit SI have been proposed [15].

In this paper, we propose two broker schedulers based on ACO and PSO for the
efficient execution of FPAs in federated Clouds. FPAs are applications of bag-of-
task type, therefore, the execution of each FPA-job corresponds to a prediction in
a given farm, and the greater the number of predictions to be made, the greater the
number of jobs to be executed. The goal is to select the most suitable datacenter
taking into account the network latencies, monetary cost and the availability of
resources of each datacenter. The network latencies among datacenters negatively
affect the response time—makespan—delivered to the user [11]. The less the net-
work latency, the lower the influence on makespan. Moreover, when more VMs can
be allocated in datacenters to which latency is lower, more physical resources can
be exploited, and hence job execution time decreases. When a frost prediction is
performed, reducing the makespan is very important because the earlier the defense
methods start up in the presence of frost, the less the impact in the economic losses
due to the loss of crops. Then, once our broker-level scheduler has selected a data-
center to execute jobs, VMs are allocated in the physical machines of that datacenter
by another intra-datacenter schedulers based on ACO and PSO previously studied in
[16]. To allocate the VMs into hosts, this scheduler must make a different number
of “queries” (network messages) to hosts to determine their availability upon each
VM allocation attempt. The number of queries to be performed by ACO and PSO
and the latencies of datacenters also influence the makespan to the user. Besides, the
lower the makespan to the user, the lower the monetary cost when the resources are
used in a pay-per-hour basis. Finally, at the VM level, jobs are assigned to the preal-
located VMs by using FIFO, as in [16]. Briefly, in this paper we put emphasis on

 Journal of Network and Systems Management

1 3

evaluating how SI decisions taken at the broker and infrastructure levels influence
both the makespan and the monetary cost.

Specifically, we formulate our problem as minimizing the makespan, i.e., the
total execution time of all jobs, while also minimizing the monetary cost of a set of
jobs. Our approach differs from those presented in literature since none has consid-
ered SI-based strategies at two levels (see next Section for a discussion on related
efforts). Moreover, compared to previous works of our own, it is worth noting that:

– In [16] we have presented an ACO-based scheduler focused on the infrastructure
level only. However, this scheduler operates at two out of the three levels men-
tioned above, i.e. it is designed for Clouds composed of a single datacenter and
as such does not target federated Clouds.

– In [17, 18] we extended the previous scheduler to operate in federated Clouds
and we included the PSO technique. However, SI was again applied at the
infrastructure level and not at the broker level, where straightforward decision
heuristics were used instead. It is important to mention, moreover, that in such
works we implemented very simple strategies for selection of datacenters and
the algorithms were formulated for a single objective problem. Concretely, the
strategies took into account only latencies and the datacenters were selected via
three policies based on Lowest-Latency-Time-First, First-Latency-Time-First,
and Latency-Time-In-Round in order to reduce the response time. In this paper,
we formulate the problem as a multiobjective one by including the monetary cost
that had not been considered so far. Reformulating the problem as multiobjec-
tive makes it necessary to take optimal decisions in the presence of trade-offs
between two or more conflicting objectives, and in the context of this work this
means makespan and monetary cost. This makes the problem more computation-
ally challenging and it is difficult to find optimal solutions.

– On the other hand, we have included a new real application (FPA unlike Param-
eter Sweep Experiments (PSE) as in previous works of our own), whose jobs are
much more CPU-intensive and also have a greater deviation from each other with
respect to their execution times. The algorithms developed in this work were
developed taking into account the intrinsic characteristics of this type of appli-
cation, providing a response to the users in the shortest possible time and with
lower cost.

In summary, in this work we essentially extend [18] in order to also consider the
monetary cost of paid Clouds and include a new broker-level scheduler based on
ACO and PSO. Therefore, the objective of this paper is to illustrate an enhanced
multiobjective broker policy that selects datacenters based on the network latency,
monetary cost, and resources availability to ensure efficient and reliable execution of
FPA-jobs over geographically distributed datacenters.

Experimenting in Cloud environments is subject to uncontrollable factors like
network congestion and servers varying workloads. Measuring the performance
of Internet based applications using real Cloud platforms is cumbersome [19, 20].
Therefore, simulation-based approaches have been adopted in order to avoid such
issue under a stable and controllable environment. A popular toolkit for modeling

1 3

Journal of Network and Systems Management

and simulating Cloud Computing systems is CloudSim [21]. CloudSim is a broadly
accepted testbed and particularly it actually represents the most common approach
to experimentation in the area of meta-heuristics, such as SI, for resource scheduling
in Grid/Cloud environments. This observation has been documented in a survey [15]
written by some of the authors of this work.

In this paper, to set the basis for comparison and evaluate the overall performance,
we used our already proposed SI-based schedulers at the broker and infrastructure
level [16, 22], and FIFO at the VM level, in combination with an alternative sched-
uler—at the broker and infrastructure levels—based on Genetic Algorithms (GA)
[23]. This alternative scheduler was also combined with a FIFO based policy at the
VM level. Simulated experiments performed with job execution data extracted from
a real-world FPA, suggest that the use of SI schedulers at two levels—broker and
infrastructure levels—, deliver competitive performance in terms of makespan and
monetary cost. Specifically, through the use of our bio-inspired scheduler we have
obtained average gains of around a 50% with respect to GA.

The rest of the paper is organized as follows. Section 2 surveys and analyses rel-
evant related works. Section 3 presents our proposal and the involved techniques at
each level. Then, in Sect. 4 we present detailed experiments that show the viability
of the approach via a real FPA. Finally, Sect. 5 concludes the paper and presents
future extensions.

2 Related Work

Studying SI techniques, specially ACO and PSO [24–29], have been the focus of
many research studies for solving combinatorial optimization problems in the last
ten years. As shown in recent surveys and works [30–32], SI-based techniques have
been increasingly applied to distributed job scheduling in Clouds in a variety of
application domains. However, to the best of our knowledge, there are not efforts
covering the three scheduling levels and where the authors also consider the use of
SI at more than one level. The use of SI at more than one scheduling level is benefi-
cial because it helps to narrow down the search space to be explored at each sched-
uling level.

Specifically, we address the scheduling of precision agriculture applications in
federated Clouds in order to minimize both the makespan and the monetary cost of
a set of jobs considering the influence of the network interconnections and latencies
among heterogeneous datacenters. First, our approach differs from those presented
in the literature since the existing works have not considered SI-based strategies at
more than one scheduling level as we do in this paper. In previous works of our own
[11, 18], we also proposed a scheduler for federated Clouds that exploits SI and the
concept of job priorities for Parameter Sweep Experiments (PSE). However, it is
important to mention that in such works, SI was only implemented at the infrastruc-
ture level. At the broker level, datacenters were selected according to their network
latencies through three simple policies called Lowest-Latency-Time- First (LLTF),
First-Latency-Time-First (FLTF), and Latency-Time-In-Round (LTIR). In addition,
another major distinction is that in [11, 18] we considered dedicated datacenters to

 Journal of Network and Systems Management

1 3

execute the application and minimizing monetary cost was not taken into account.
However, since in public Clouds users must pay for the use of resources, and moreo-
ver, costs depend on the instance type and Cloud provider, it is also important to
reduce the monetary costs associated when FPAs are executed in federated Clouds.
In this work, we extend the above mentioned scheduler at the broker level in order
to also consider the monetary cost and include ACO and PSO based strategies at the
broker level. A Cloud broker provides an interoperability layer on top of the various
Cloud provider interfaces.

Second, works found in the literature and also summarized in Table 1 are mainly
focused on one Cloud level and do not consider advanced techniques for the three
scheduling levels as we propose in this work. As can be seen in Table 1, among
these works, we can first mention the two approaches proposed in [33, 34]. In [33]
the authors have proposed a layered federated Cloud management architecture that
incorporates the concepts of meta-brokering, Cloud brokers and automated, on-
demand service deployment. The meta-brokering1 component allows the system to
interconnect the various Cloud brokers2 available in the system. The broker compo-
nent is responsible for managing the VMs instances hosted on a specific infrastruc-
ture as a service provider. In order to fast track the VMs instantiation, this architec-
ture uses an automatic service deployment component that is capable of optimizing
its delivery by decomposing and replicating it among the various cloud infrastruc-
tures. In this work, the authors proposed a federated Cloud solution that acts as an
entry point to Cloud federations and deals with broker issues. However, [33] has
not considered the use of SI-based strategies, and moreover, the authors have exem-
plified (not evaluated) the interaction of the various components of their proposed
architecture through a low-level use case and not with a real application such as the
FPA proposed in this paper. Then, in [34] the authors have presented another ini-
tial approach to the federated Clouds but considering a layered model based on the
Infrastructure, Platform and Software as a Service models. In this work the benefits
of decoupling the different layers have been discussed so that the execution of an
application can be supported by diverse providers implementing different parts of
the layer functionality. The authors have also introduced a motivational scenario to
illustrate this layered model based on a Weather Research and Forecasting (WRF)
application for domain experts which accepts high level parameters relating to user
requirements such as cost or execution time. Besides, in this work it is shown how
these requirements are either used in the negotiation process, where negotiation is
constrained to well-defined sets of parameters among different providers, or trans-
formed to new arguments to lower levels in the Cloud stack by using prediction
models and inter-layer translation mechanisms. However, even though the authors
have discussed different brokering strategies for providers to assign parts of the
execution application to other partners while enforcing user policies, none of the
strategies have been implemented yet. Besides, the authors in [34] have not obtained

1 Analogous to the broker level in our paper.
2 Analogous to the infrastructure level in our paper.

1 3

Journal of Network and Systems Management

Ta
bl

e
1

 S
um

m
ar

y
of

 th
e

an
al

yz
ed

 a
pp

ro
ac

he
s

Pa
pe

r
Sc

he
du

lin
g

le
ve

l
A

lg
or

ith
m

s
O

bj
ec

tiv
e

C
lo

ud
 E

nv
iro

nm
en

t
C

on
str

ai
nt

D
ed

ic
at

ed
 D

at
ac

en
te

r

O
ur

 p
ro

po
sa

l
B

ro
ke

r,
in

fr
as

tru
ct

ur
e,

V

M
A

CO
, P

SO
M

ak
es

pa
n,

 m
on

et
ar

y
co

st
Fe

de
ra

te
d

cl
ou

d
Re

so
ur

ce
s a

va
ila

bi
lit

y
N

ot
 d

ed
ic

at
ed

[1
8]

B
ro

ke
r,

in
fr

as
tru

ct
ur

e,

V
M

LL
TF

, F
LT

F,
 L

TI
R

 a
d-

ho
c

po
lic

ie
s

M
ak

es
pa

n
Fe

de
ra

te
d

cl
ou

d
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[1
1]

B
ro

ke
r,

in
fr

as
tru

ct
ur

e,

V
M

LL
TF

, F
LT

F,
 L

TI
R

 a
d-

ho
c

po
lic

ie
s

M
ak

es
pa

n,
 fl

ow
tim

e
Fe

de
ra

te
d

cl
ou

d
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[3
3]

B
ro

ke
r

N
/A

N
/A

Fe
de

ra
te

d
cl

ou
d

W
ith

ou
t c

on
str

ai
nt

D
ed

ic
at

ed
[3

4]
B

ro
ke

r
N

/A
N

/A
Fe

de
ra

te
d

cl
ou

d
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[1
2]

B
ro

ke
r

V
SB

R
P

M
ak

es
pa

n,
 lo

ad
 b

al
an

c-
in

g
Fe

de
ra

te
d

cl
ou

d
w

ith
ou

t c
on

str
ai

nt
N

ot
 d

ed
ic

at
ed

[3
5]

B
ro

ke
r,

in
fr

as
tru

ct
ur

e
In

te
ge

r p
ro

gr
am

m
in

g
ba

se
d

al
go

rit
hm

M
on

et
ar

y
co

st,
 lo

ad

ba
la

nc
in

g
Fe

de
ra

te
d

cl
ou

d
C

lo
ud

 to
 d

ep
lo

y
th

e
V

M
s,

lo
ad

 b
al

an
ci

ng
,

ha
rd

w
ar

e
co

nfi
gu

ra
-

tio
n

of
 in

di
vi

du
al

V

M
s,

bu
dg

et

D
ed

ic
at

ed

[3
6]

B
ro

ke
r

M
O

-G
A

, g
re

ed
y

he
u-

ris
tic

En
er

gy
 c

on
su

m
pt

io
n

Fe
de

ra
te

d
cl

ou
d

W
ith

ou
t c

on
str

ai
nt

N
ot

 d
ed

ic
at

ed

[3
7]

B
ro

ke
r

C
os

t o
pt

im
iz

at
io

n
po

lic
y/

pe
rfo

rm
an

ce

op
tim

iz
at

io
n

po
lic

y

M
on

et
ar

y
co

st,
 m

ak
es

-
pa

n
Fe

de
ra

te
d

cl
ou

d
B

ud
ge

t,
pe

rfo
rm

an
ce

,
in

st
an

ce
 ty

pe
s

N
ot

 d
ed

ic
at

ed

[2
3]

B
ro

ke
r,

in
fr

as
tru

ct
ur

e
D

ijk
str

a,
 G

A
M

on
et

ar
y

co
st

Fe
de

ra
te

d
C

lo
ud

W
ith

ou
t c

on
str

ai
nt

D
ed

ic
at

ed
[3

8]
B

ro
ke

r
H

yb
rid

 A
CO

-P
SO

M
on

et
ar

y
co

st
Fe

de
ra

te
d

cl
ou

d
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[3
9]

B
ro

ke
r

M
O

PS
O

Re
sp

on
se

 ti
m

e
of

 u
se

r
re

qu
es

t,
ec

on
om

ic

pr
ofi

t o
f p

ro
vi

de
r,

en
er

gy
 c

on
su

m
pt

io
n

Io
T-

or
ie

nt
ed

 fe
de

ra
te

d
C

lo
ud

W
ith

ou
t c

on
str

ai
nt

D
ed

ic
at

ed

[4
0]

In
fr

as
tru

ct
ur

e
A

CO
En

er
gy

 c
on

su
m

pt
io

n
Si

ng
le

 d
at

ac
en

te
r

W
ith

ou
t c

on
str

ai
nt

D
ed

ic
at

ed

 Journal of Network and Systems Management

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Pa
pe

r
Sc

he
du

lin
g

le
ve

l
A

lg
or

ith
m

s
O

bj
ec

tiv
e

C
lo

ud
 E

nv
iro

nm
en

t
C

on
str

ai
nt

D
ed

ic
at

ed
 D

at
ac

en
te

r

[4
1]

In
fr

as
tru

ct
ur

e
A

CO
To

ta
l r

es
ou

rc
e

ut
ili

za
-

tio
n,

 e
ne

rg
y

co
ns

um
p-

tio
n

Si
ng

le
 d

at
ac

en
te

r
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[4
2]

In
fr

as
tru

ct
ur

e
PS

O
M

ak
es

pa
n,

 e
ne

rg
y

co
n-

su
m

pt
io

n
Si

ng
le

 d
at

ac
en

te
r

W
ith

ou
t c

on
str

ai
nt

D
ed

ic
at

ed

[4
3]

V
M

H
on

ey
 b

ee
M

ak
es

pa
n,

 lo
ad

 b
al

an
c-

in
g

Si
ng

le
 d

at
ac

en
te

r
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

[4
4]

V
M

A
CO

M
ak

es
pa

n,
 lo

ad
 b

al
an

c-
in

g
Fe

de
ra

te
d

cl
ou

d
W

ith
ou

t c
on

str
ai

nt
N

ot
 d

ed
ic

at
ed

[4
5]

V
M

PS
O

Ec
on

om
ic

 p
ro

fit
 o

f a

pr
ov

id
er

H
yb

rid
 c

lo
ud

Ta
sk

 d
ea

dl
in

es
D

ed
ic

at
ed

[4
6]

N
/A

H
yb

rid
 P

SO
-F

G
A

En
er

gy
 c

on
su

m
pt

io
n

Fe
de

ra
te

d
cl

us
te

r
W

ith
ou

t c
on

str
ai

nt
D

ed
ic

at
ed

1 3

Journal of Network and Systems Management

results from the execution of the application with their proposed model as we do in
this work, but they merely exemplify how the process works.

Then, a number of studies for Cloud broker-level strategies are discussed in [12,
35–37]. In particular, in [12] the authors proposed a heuristic-based technique called
Variable Service Broker Routing Policy (VSBRP) that aims to achieve minimum
makespan and considers the network latency, bandwidth and the size of the job. The
proposed service broker policy has been proposed in order to reduce the overloading
of the datacenters by redirecting the user requests to the next datacenter that yields
better response and makespan. Moreover, in [35], the authors proposed a Cloud bro-
kering approach that restricts the deployment of VMs across multiple heterogeneous
datacenters according to some placement constraints (e.g., Clouds to deploy the VMs)
defined by the user. Users can also steer the VM allocation by specifying maximum
budget and minimum performance, as well as constraints with respect to load balanc-
ing, hardware configuration of individual VMs and budget. The implemented algo-
rithms are based on integer programming formulations which enable price-perfor-
mance placement trade-offs. Then, in [36, 37] the authors proposed different strategies
at the broker level to optimize the scheduling of jobs across multiple providers. In the
work presented in [36] the authors proposed a multi-objective genetic algorithm (MO-
GA) for broker scheduling with the aim to optimize three objectives namely, energy
consumption, CO2 emission, and the generated profit of a geographically distributed
datacenters. On the other hand, in [37] the scheduler performs an optimal deployment
of the jobs among datacenters optimizing a particular cost function based on different
optimization criteria (e.g., monetary cost optimization or performance optimization)
and different user constraints (e.g., budget, performance, instances types).

Some other works that deserve special attention are [23, 38, 39]. In [23], the authors
used at the broker level the Dijkstra algorithm [47] to select the datacenter with the low-
est monetary cost, and a GA for allocating VMs at the infrastructure level. Then, in [38],
a broker federation strategy based on a hybrid ACO-PSO algorithm was proposed in
order to solve the nonlinear integer programming problem and obtain the price bene-
fits of reserved VMs. The broker is formed through a dynamic pricing method for geo-
distributed datacenters. In this work the proposed strategy takes advantage of the price
gap between on-demand and reserved VMs and the cost saving achieved is significant
through the broker federation. Although in [23] the authors target both the broker and
the infrastructure levels, the goal was to reduce the monetary costs without considering
the completion time. Likewise, in [38] only the monetary was considered cost without
paying attention to the completion time. For scientific applications in general, and FPAs
in particular, the completion time is very important [22], since it allows users to acceler-
ate result processing. The faster the frosts prediction results are known, the faster the
defense methods can be triggered to prevent damages if frosts occur. On the other hand,
in [39] a Cloud brokering as a multi-objective optimization problem was presented to
find the appropriate connections between users and providers. This work was proposed
for a Cloud brokering problem in an Internet of Things (IoT) Cloud system. For this,
a multi-objective PSO (MOPSO) was proposed for maximizing the economic profit of
the broker while minimizing the response time of requests from users and the energy
consumption of service providers. However, although in these works [23, 38, 39] the
authors have proposed the use of SI-based strategies in federated Clouds, in [38, 39], the

 Journal of Network and Systems Management

1 3

SI-based algorithms were implemented at the broker level without considering how the
VMs are allocated at the infrastructure level, and without taking into account network
issues, such as the inter-datacenter network latencies as we consider in our work. On the
other hand, none of these works have considered the makespan which is a very impor-
tant metric to consider when we work with scientific applications where the response
time to the user is crucial. Finally, unlike these works, our work is subject to resource
availability constraint in each data center, which is also important when working in non-
dedicated Clouds.

With respect to works which address the scheduling problem at the infrastruc-
ture level—intra-datacenter—using SI-based strategies as we propose in this work,
few efforts have been found [15]. Among them we can mention [40, 41]. In [40]
the authors proposed a VM scheduler based on the ACO to perform the dynamical
placement of VMs according to the current load on physical machines. The goal of
this work was to minimize the energy consumption in a Cloud composed of a single
datacenter. Then, in [41] the authors proposed a multi-objective ACO for the VM
allocation problem. The goal of this work was to obtain a set of solutions that simul-
taneously maximize total resource utilization and minimize energy consumption. On
the other hand, in the work [42] the authors proposed a PSO algorithm whose pur-
pose is to map efficiently a set of VM instances in a set of physical machines while
reducing both the energy consumption and makespan. This algorithm makes the best
possible use of the power saving states of idle physical machines and instantaneous
workload on the operational physical machines. However, although in these works
SI-based algorithms at the infrastructure level have been used, the schedulers were
proposed for Clouds composed of a single datacenter and not for federated Clouds.
Besides, these works do not pay attention to monetary cost, and only in [42] the
authors considered the makespan, achieving competitive performance as evidenced
by experiments performed via CloudSim [21], which is also used in this paper.

Finally, there are some works that apply SI at the VM level, among them we can
mention [43–46]. In [43] a honey bee inspired load balancing algorithm was proposed.
The goal of this algorithm is to achieve well-balanced load across VMs for maximiz-
ing the throughput. Throughput is the number of jobs that can be executed over a long
period of time. The proposed algorithm also balances the priorities of jobs on the
machines in such a way that the amount of waiting time of the jobs in the queue is
minimal. Moreover, in [44] the authors proposed an ACO scheduler to perform efficient
distribution of jobs by finding the best VMs to execute jobs. The aim of this work was
minimizing the makespan and improve load balancing in the VMs. Moreover, in [45],
a PSO based scheduling algorithm is proposed for hybrid Clouds. An hybrid Cloud is
a Cloud environment which uses a mix of on-premises, private Cloud and third-party,
public Cloud services with orchestration between the two platforms. Authors claim that
by allowing workloads to move between private and public Clouds as computing needs
and costs change, hybrid Clouds give a greater flexibility. In this work a private Cloud
is able to outsource its jobs to other Clouds when its local VMs are not enough to sat-
isfy users requirements. The scheduling problem in the proposed hybrid Cloud model
has been formulated as a kind of deadline constrained job scheduling problem, in which
each job has an strict deadline and the objective is to maximize the profit of a provider
under the premise of guaranteeing each job deadline constraint. Another work is [46],

1 3

Journal of Network and Systems Management

where the authors have presented a multi-objective algorithm combining PSO and a
GA with a Fuzzy crossover operator (MPSO-FGA) for solving the scheduling of par-
allel applications in Federated cluster environments with the aim of to minimize both
the overall energy consumption and the makespan for a whole workload. The algo-
rithm takes advantage of a weighted blacklist for effective representation of the com-
putational resources availability, settled considering resources heterogeneity, commu-
nication resources contention and application requirements. It is important to mention
that the work in [43] was proposed for Clouds composed of a single datacenter where
the notion of broker level does not apply. Moreover, in [44–46], the authors focus on
assigning jobs assuming the existence of pre-allocated VMs, i.e., the SI-based schedul-
ing algorithms were applied at the VM level and not at the broker or the infrastructure
level. It is important to mention that all these works [43–46] are complementary to the
one proposed in this paper because so far we have not explored SI at the VM level.

It is worth noting that, from the related works found, most of the works which
consider SI for federated Clouds have been proposed taking into account only one
of the scheduling levels without considering metrics such as makespan and mon-
etary cost, rendering difficult their applicability to execute FPAs in federated Cloud
environments. For FPAs, the use of Clouds can be very beneficial due to the fact that
frost fairly accurate frost predictions can be obtained from any geographical location
24 hours a day and 365 days a year. Such predictions are useful so that farmers are
on alert to the event and can take precautions in their farms before a frost actually
occurs. The next Section explains our bio-inspired approach in detail, which consid-
ers the three scheduling levels and besides, takes into account the issues of latencies,
monetary cost and resources availability of datacenters.

3 Approach Overview

This paper focuses on providing users with a Cloud scheduler that supports the efficient
execution of CPU-intensive applications and particularly Frost Prediction Applications
(FPA). The main characteristic of FPAs is the need to obtain the results—predictions—
in the shortest possible time in order to mitigate damage caused by frosts. Moreover,
since resource usage incurs direct monetary costs, they should also be minimized.
Therefore, the goal of our scheduler is to achieve a balance between the monetary costs
and the makespan of a set of FPA-jobs when the jobs are executed into a federated
Cloud. Makespan is the period of time between a user makes a request to the Cloud
and he/she gets the answer (including the impact of the inter-datacenter latencies), i.e.,
the period of time in which a user requests a number of VMs to execute its FPAs, and
the time in which all the FPA jobs finish their execution. Conceptually, an FPA is a
set of N = 1, 2,… , n independent jobs, where each job corresponds to a frost predic-
tion in a farm within the same region. The jobs are executed on m Cloud machines.
The makespan, of a job j in schedule S is denoted Cj(S) and hence the makespan is
Cmax(S) = maxjCj(S) . Achieving a low makespan is important since it means starting
up defense methods as soon as possible and thus minimizing frost damage.

For running applications in federated Clouds, resources should be scheduled at
three levels as shown in Fig. 1. A broker is created for each user that connects to

 Journal of Network and Systems Management

1 3

the Cloud. Each broker knows who are the providers that are part of the federation.
The relation of each broker is colored with green and blue dotted lines. In addition,
Fig. 1a illustrates how jobs sent by User N are executed in the datacenter of Cloud
Provider 2. Then, Fig. 1b shows the intra-datacenter scheduling activities—inside
Cloud Provider 2—, i.e., at the infrastructure level and the VM level.

The proposed scheduler proceeds as follows. Firstly, at the broker level, a data-
center Dbri

 is selected via an SI-based scheduler (for the purposes of this paper, we

Frost Prediction Application (FPA)

Broker 1 Broker N...

Provider 1 Provider 2

...job1 job2 jobN

Broker-level: Scheduler

 based on ACO and PSO

Provider M

User NUser 1

(a)

(b)

VM-level: Scheduler based on FIFO

Infrastructure-level: Scheduler based on ACO, PSO, GA

Logical,

user-owned

clusters (VMs)

Physical Machines

of Provider 2

...job1 jobNjob2

Fig. 1 Federated cloud: overview. a Federated cloud, b scheduling intra-datacenter

1 3

Journal of Network and Systems Management

consider ACO and PSO schedulers). In order to achieve a balance between the mon-
etary cost and the makespan, at this level, the selected datacenter will be the one
which provides the best balance between the monetary cost of the datacenter and the
lowest communication latency to a broker. The less the network latency, the lower
the influence on makespan to the user. For them, two weights have been assigned to
the two individual metrics, i.e., a weight for the monetary cost (weightMC) and a
weight for the communication latency (weightCL). Then, we assign the weights
(weightMC, weightCL) = (0.5, 0.5) with the aim of balancing these two basic met-
rics. In addition, the selected datacenter must meet a certain percentage of available
resources. In this paper, we consider non-dedicated datacenters, i.e., they might
already have allocated VMs from other users or applications. At the infrastructure
level (Fig. 1b), via another bio-inspired VM schedulers, user VMs are allocated in
the physical resources (i.e., hosts) belonging to the selected datacenter at the broker
level. Only, when there are no available hosts in the datacenter to allocate the VMs,
a new datacenter Dbrj

(j ≠ i) is selected at the broker level. It is important to mention,

moreover, that this two-step selection serves the purpose of delimiting the elements
to be explored in the search space by the bio-inspired algorithms (datacenters in the
first step, physical hosts in the second one). In addition, solving the problem of the
broker and infrastructure levels in a single step in federated Clouds would make the
implementation of a bio-inspired algorithm very expensive due to the coordination
messaging through the network and the influence of latencies. Finally, at the VM
level, jobs are assigned to the preallocated VMs through a FIFO policy. Next sub-
sections explain in more detail each the sub-schedulers employed at each level.
Basic theory about SI-based strategies, which will help to understand the ideas
implemented in the proposed approach, can be found in Appendix A.

3.1 Broker level Scheduler

Once a user makes a request to a broker, the scheduler at the broker level is executed
to select the first datacenter to allocate the VMs, which are managed by the sched-
uler employed at the infrastructure level. Furthermore, the scheduler at this level can
decide to deploy the VMs in a remote datacenter when there are insufficient physical
resources in the datacenter where the VM creation was issued. At present, the poli-
cies studied at this level for the purposes of this paper are explained below.

3.1.1 Scheduler Based on ACO

Each time a user requests to a broker a number of VMs in which execute his/her
FPA-jobs an ant is initialized for finding the most suitable datacenter (Algorithm 1).
To this end, three parameters are initialized. A step parameter keeps track of the
number of steps carried out by an ant, maxStep is equals to a predefined number of
steps (i.e., the completion criterion of the ant work), and vmPercentage is a user-
defined percentage value used by the ant to know whether a datacenter has enough
resources to allocate at least these percentage of VMs. For them, each datacenter

 Journal of Network and Systems Management

1 3

keeps track of the resources availability in terms of total available processing power,
bandwidth , memory and storage availability. Resource availability is updated every
time a VM is allocated/deallocated in/from a host in a datacenter and it is then used
by the ant to estimate the percentage of VMs to allocate in a datacenter.

When an ant is created, a list of suitable datacenters in which the VMs can be
allocated is built (getSuitableDatacenters(dcList)). A datacenter is suitable if it has
hosts with processing power, storage capacity and memory greater than or equal to
that of required by the VMs. The ant is randomly initialized in one of the obtained
datacenters. A local table containing information both of the weighted metric, i.e.,
weightedMetric = weightMC ∗ MonetaryCost + weightCL ∗ CommunicationLatency , and an
estimate of the percentage of VMs that can be allocated in each datacenter is created
(InitializeLocalTable()) by the first ant which visits the datacenter. Monetary Cost is
the hourly processing cost of a datacenter’s resources.

1 3

Journal of Network and Systems Management

In each iteration, the ant estimates the percentage of VMs that can be allo-
cated in the datacenter which is visiting through the (calculateVMsPercentage
(resourcesAvailability, vmList)) method and calculate the weighted metric by
collecting the monetary cost and latency information of the datacenter through
getWeightedMetric(dc). This datacenter information collected by the ant is added
to its private information table—localTable—, which is maintained in each data-
center through (localTable.update(vmPercentageEstimation, weightedMetric)).
The percentage of VMs that can be allocated in a datacenter is:

where resourcesAvailability is the total available processing power in a datacenter
in MIPS --among all host which in addition have enough memory, bandwidth and
storage-- , hostProcessingPower is the processing power in MIPS of its hosts, and
vmListSize is the number of VMs not allocated by the ant in any datacenter so far.

The information table contains both the estimation percentage of VMs that
can be allocated and the weighted metric of the datacenter the ant is visiting.
Besides, the ant adds to the table the weighted metric of other datacenters,
which were added to the table when the ant visited these datacenters. For them,
the ant performs a predefined number of steps, i.e., maxSteps, looking for the
datacenter that allows both allocating at least the predefined percentage of VMs
(vmPercentage parameter) as well as achieving the best balance between mon-
etary cost of their resources and communication latency intra-datacenter. At this
level it is important to select datacenters with a lower latency because later, at
the infrastructure level, latencies have a great influence when creating the VMs,
and therefore, in the final makespan to the user.

Every time an ant moves from one datacenter to another it has two choices:
moving to a random datacenter using a constant probability or searchRate
through the randomlyChooseNextStep() method, or using the information table
of the current datacenter (through chooseNextStep() method). The searchRate
decreases with a decreaseRate factor as time passes, thus, the ant will be less
dependent on random choice. Every time an ant visits a datacenter, it updates
the datacenter information table with the information of other datacenters, but
at the same time the ant collects the information already provided by the table
of that datacenter, if any. The information table acts as a pheromone trail that
an ant leaves while it is moving in order to choose better paths rather than
wandering randomly in the federated Cloud. Entries of each information table
are the datacenters that the ant has visited on their way to select the most suit-
able datacenter together with their weighted metric and percentage of VMs to
allocate.

When the ant reads the table in a datacenter, it chooses the entry with the low-
est weighted metric, which also meets the predefined percentage of VMs to allo-
cate. If the weighted metric of the visited datacenter is smaller than any other

vmPercentageEstimation =
resourcesAvailability∕hostProcessingPower

vmListSize
∗ 100,

 Journal of Network and Systems Management

1 3

datacenter in the table and in addition it meets the percentage of VMs defined, the
ant chooses the datacenter with the smallest weighted metric. On the other hand,
if the weighted metric of the visited datacenter is equal to any datacenter in the
table, the ant selects the datacenter which has lower latency, that is, the ant pri-
oritizes the makespan of the FPA. This process is repeated until step = maxSteps
(finishing criterion). Finally, the ant invokes the infrastructure-level scheduler
through VmScheduler(selectedDatacenter,vmList) method with the selected data-
center and the list of VMs to allocate. If the complete set of required VMs are not
allocated in the selected datacenter, the ACOBrokerScheduler is executed again to
select a new datacenter.

3.1.2 Scheduler Based on PSO

In this scheduler, a particle is initialized for finding the most suitable datacenter
in which to allocate the VMs requested by an user for executing his/her FPA-
jobs. Analogously to the example based on nature described in Appendix A,
each particle is considered a bee and each datacenter represent locations in the
field with different density of flowers. A particle is created each time a data-
center is requested to allocate the user VMs. When a particle is created, it is
initialized in a random datacenter, i.e., in a random place in the field. The den-
sity of flowers of each datacenter is determined both the estimation percentage
of VMs that can be allocated and the weighted metric (which is calculated as in
ACO) of the datacenter which the particle is visiting. This definition helps to
search in the search space and try to balance both the monetary costs and the
makespan. The smaller the weighted metric on a datacenter, the better the flow-
ers concentration. In addition, each time a particle visit a datacenter it check that
the datacenter meets the percentage of VMs to allocate defined by the user. In
the algorithm (see Algorithm 3), every time a datacenter is required, a particle is
initialized in a random datacenter (getInitialDatacenter()). Each particle in the
search space takes a position according to the weighted metric of the datacenter
in which is initialized through the getWM(datacenterId) method. The weighted
metric is calculated as well as ACO. The neighborhood of each particle is com-
posed by the remaining datacenters excluding the one in which the particle is
initialized, i.e., the neighborhood represents other places in the field with differ-
ent flower concentration. The neighborhood of that particle is obtained through
the getNeighbors(datacenterId,neighborSize) method. Each one of the neigh-
bors—datacenters—that compose the neighborhood are selected randomly until
the neighborhoodSize parameter defined by the user is reached.

1 3

Journal of Network and Systems Management

In each iteration of the algorithm, the particle moves to the neighbors of its cur-
rent datacenter in search of a datacenter with the lowest weighted metric, and which
also meets the percentage of VMs to allocate defined by the user. The velocity of
each particle is defined by the weighted metric difference between the datacenter to
which the particle has been previously assigned with respect to its other neighboring
datacenters. If any of the datacenters in the neighborhood has a lower weighted met-
ric than the (randomly chosen) original datacenter, then the particle is moved to the
neighbor datacenter with a greater velocity. Taking into account that the particles
moved through datacenters of their neighborhood in search of a datacenter with the
lowest weighted metric, the algorithm reaches a local optimum quickly. Thus, each
particle makes a move from their associated datacenter to the neighbor which has
the minimum weighted metric. If all its neighbors have a greater weighted metric
than the associated datacenter itself, the particle is not moved from the current data-
center. Moreover, if the weighted metric of its neighbors is equal to the weighted
metric of the particle associated datacenter, the particle selects the neighbor which
has lower latency, that is, the particle prioritizes the makespan of the FPA, as in
ACO. Finally, the particle calls the infrastructure-level scheduler with the selected
datacenter and the list of VMs to allocate. If the total number of VMs are not allo-
cated in the selected datacenter, the PSOBrokerScheduler is executed again to select
a new datacenter.

 Journal of Network and Systems Management

1 3

3.1.3 Alternative Scheduler Based on GA

This algorithm is implemented at this level for comparative purposes with our
schedulers based on ACO and PSO. In the algorithm, proposed in [23], the popula-
tion structure is represented as the set of datacenters. Each chromosome is an indi-
vidual in the population that represents a subset of the searching space. Each gene
(field in a chromosome) is a datacenter, and the last field in this structure is the
fitness field, which indicates the suitability of the datacenters in each chromosome,
i.e., the fitness field indicates the result of the fitness function and it is calculated as
the inverse of the accumulated weighted metrics of all datacenters that compose the
chromosome. The weighted metric in each is datacenter is calculated in the same
way as ACO and PSO.

A chromosome with higher fitness indicates that its associated set of datacenters
has the most suitable datacenters to be selected. Each chromosome keeps combina-
tions of datacenters and its associated fitness. This fitness value is updated every
time a datacenter is requested by a broker to indicate the suitability of the datacent-
ers in each chromosome.

In each generation, a new population P2 originated from the initial population P
is formed by selecting chromosomes using a Roulette method, given a probability
of selection proportional to the chromosome fitness. This P2 population is recom-
bined using a uniform crossover with the aim of exploring more possible datacenters
with better fitness than the current selection. The evaluation step is done over the
P2 population to update the fitness field of this new recombined population. Chro-
mosomes with low fitness in P are replaced by the better individuals in P2. Thus,
the algorithm preserves the best individuals to increase the probability of a better
selection. At the end of generations, two sorting steps are done: one local to provide
a sorted list of datacenters in the chromosome with higher fitness, and a global sort,
to provide a sorted list of individuals with better fitness. The selection will begin
in the first datacenter of the first chromosome. If this datacenter is not suitable for
allocating the percentage of VMs defined by the user, then the next datacenter in the
chromosome with better fitness is selected.

3.2 Intra‑Datacenter Scheduler

To implement the infrastructure level policy, we use the ACO and PSO algorithms
we previously proposed in [11]. Below we describe these algorithms and an alterna-
tive scheduler based on GA that we use at this level for comparative purposes to our
proposal.

3.2.1 Scheduler Based on ACO

The scheduler at the infrastructure level is performed to find those hosts in the
selected datacenter at the broker level that have availability to allocate VMs.
Here, each ant works independently and represents a VM “looking” for the best
host to which it can be allocated, i.e., an ant is initialized for each VM allocated

1 3

Journal of Network and Systems Management

to the datacenter. A master table containing information on the load of each host
is initialized. To do this, first, a list of all suitable hosts in which can be allocated
the VM is obtained. In each iteration, the ant collects the load information of
the host that it is visiting and adds this information to its private load history.
The ant then updates a load information table of visited hosts, which is main-
tained in each host. This table contains information of the own load of an ant,
as well as load information of other hosts, which were added to the table when
other ants visited the host. Like in the ACO based broker algorithm, the load
table of each host acts as a pheromone trail and it is useful to guide other ants
to choose better paths. The load is calculated on each host taking into account
the CPU utilization made by all the VMs that are executing on each host, i.e.,
load = numberOfExecutingVMs∕numberOfPEsInHost , where numberOfExecut-
ingVMs is the number of VMs that are executing in the host, and numberOfPEs-
InHost is the total number of cores in the host. This metric is useful for an ant to
choose the least loaded host to allocate its VM.

When an ant moves from one host H to another it has two choices: moving to
a random host using a constant probability or searchRate, or using the load table
information of H. Again, the search rate decreases with a decreaseRate factor as
time passes. This process is repeated until the finishing criterion, i.e., performing
a predefined number of steps (maxAntSteps), is met. Due to the fact that the data-
centers have different numbers of hosts with each other, the maxAntSteps varies
depending on the datacenter being explored. Specifically, the maxAntSteps param-
eter varies for each datacenter according to a user-defined percentage value. Finally,
the ant delivers its VM to the current host and finishes its task. Besides, every time
the ant allocate its associated VM, the total availability of the datacenter in which
the VM is allocated is updated. In the same way, every time a VM finishes its task
and is released, the total availability of the datacenter in which the VM is released is
updated, thus increasing the overall availability of the datacenter.

Since each step by an ant involves moving through the intra-datacenter network
to obtain information regarding the availability of the hosts from the selected data-
center, it incurs latencies. We have added a control to minimize the number of steps
performed by an ant: every time an ant visits a host that has not allocated VMs yet,
i.e., the host load is equal to zero, the ant allocates its associated VM to it directly
without performing further steps. It is important to note also that although laten-
cies are minimized at this level, they have much less impact on the makespan than
those produced inter-datacenter. The smaller the number messages sent to the hosts
through the network, the smaller the impact of the latencies in the makespan given
to the user, and therefore, a lower monetary cost (because of the pay-per-hour basis
of Clouds). This control to minimize the number of steps performed by an ant favors
sending less number of messages regardless the network topology of the datacenter.

3.2.2 Scheduler Based on PSO

In order to find the hosts that have availability to allocate VMs this algorithm is
started. Similarly to the PSO at the broker level, each particle works indepen-
dently and represents a VM looking for the best host—in the previously selected

 Journal of Network and Systems Management

1 3

datacenter—to which it can be allocated. Following the aforementioned analogy at
the broker level, in this algorithm each VM is considered a bee and each host repre-
sent locations in the field with different density of flowers. When a VM is created, a
particle is initialized in a random host. The density of flowers of each host is deter-
mined by its load.

This definition helps to search in the load search space and try to minimize the
load. The smaller the load on a host, the better the flower concentration. This means
that the host has more available resources to allocate a VM. In the algorithm, for
each VM requested by the user, a particle is initialized in a random host of the
selected, i.e., in a random place of flower in the field. Each particle in the search
space takes a position according to the load of the host in which is initialized. Load
refers to the total CPU utilization within a host and is calculated as well as ACO.
The neighborhood of each particle is composed by the remaining hosts in the data-
center excluding the one in which the particle is initialized, i.e., in the same way that
at the broker level, the neighborhood represents other places in the field with differ-
ent flower concentration. The neighborhood of that particle is obtained randomly.
Moreover, like the maxAntSteps parameter of ACO, in this algorithm the size of the
neighborhoodHostsSize parameter varies depending of the datacenter which is being
explored according to a predefined percentage value.

In each iteration of the algorithm, the particle moves to the neighbors of its cur-
rent host in search of a host with a lower load. The velocity v of each particle is
defined by the load difference between the host to which the particle has been previ-
ously assigned with respect to its other neighboring hosts. If any of the hosts in the
neighborhood is less loaded than the original host, then the particle is moved to the
neighbor host with a greater velocity. Thus, each particle makes a move from their
associated host to one of its neighbors, which has the minimum load among all. If
all its neighbors are busier than the associated host itself, the particle is not moved
from the current host. Finally, the particle delivers its associated VM to the host
with the lower load among their neighbors and finishes its task.

Since each move a particle performs involves traveling through the intra-data-
center network, similarly to ACO, a control to minimize the number of moves that a
particle performs have been added: every time a particle moves from the associated
host to a neighbor host that has not allocated VMs yet, the particle allocates its asso-
ciated VM to it immediately. Again, although latencies are minimized at this level,
they have much less impact on the makespan than those produced inter-datacenter.

3.2.3 Alternative Scheduler Based on GA

Similarly to the GA at the broker level, the population structure is represented as a
subset of physical resources that compose the selected datacenter at the broker level.
Again, each chromosome is an individual in the population that represents a part of
the search space. Each gene (field in a chromosome) is a host in the datacenter, and
the last field in this structure is the fitness field, which indicates the suitability of
the hosts, i.e., the result of the fitness function and it is calculated as the inverse of
the accumulated load of all hosts composing the chromosome. The load in each is
host is calculated taking into account the number of VMs that are executing in it. A

1 3

Journal of Network and Systems Management

chromosome with higher fitness indicates that its associated set of hosts has the most
free cores to perform the current allocation. The chromosome selection mechanism
as well as the steps of crossover and fitness evaluation are performed in the same
way as the GA at the broker level.

3.3 VM Scheduler

Once the VMs have been allocated to hosts at the infrastructure level, the scheduler
proceeds to assign the jobs to these VMs. The VMs were instantiated by the sched-
uler at the infrastructure level from the VM images supported (i.e., offered) by each
datacenter which meet the requirements of memory, CPU, storage and bandwidth
established by the user. The user is the one who indicates which are the characteris-
tics of the VMs that needs to instantiate at the moment of requesting the VMs to the
Cloud. Concretely, the VMs are instantiated by the scheduler at the infrastructure
level from the VM images supported by each datacenter and that meets the require-
ments of memory, CPU, storage and bandwidth established by the user. The user is
the one who indicates which are the characteristics of the VMs that needs to instan-
tiate at the moment of requesting VMs to the federated Cloud.

At this level, the scheduling algorithm uses two lists, one containing the jobs that
have been sent by the user, i.e., a FPA, and the other list contains all user VMs that
are already allocated to a host and hence are ready to execute jobs. The algorithm
iterates the list of all jobs and then, retrieves jobs by a FIFO policy. Each time a job
is obtained from the list it is submitted to be executed in a VM in a round robin fash-
ion. Internally, the algorithm maintains a queue for each VM that contains its list of
jobs to be executed. The procedure is repeated until all jobs have been submitted for
execution using the allocated VMs. To ensure fairness, jobs within a VM waiting
queue are executed one at a time by competing for CPU time with other jobs from
other VMs in the same hosts.

4 Evaluation

To assess the effectiveness of our scheduler and constituting policies/techniques, we
processed a frost prediction application (FPA) with data extracted from real sensors
in the field. Broadly, the experimental methodology involved two steps. First, we
executed a precision agriculture application in a single amazon instance by vary-
ing the number of sensor nodes to be processed, which allowed us to gather real job
data, i.e., processing times and input/output file data sizes (see Sect. 4.1). By means
of the generated job data, we instantiated the CloudSim simulation toolkit, which is
explained in Sect. 4.2. Lastly, the obtained results regarding the performance of our
proposal compared to some Cloud scheduling alternatives are reported in Sect. 4.3.

 Journal of Network and Systems Management

1 3

4.1 Frost Prediction Application

The study of frosts prediction is of special interest in many places around the world
[48], and in particular in the Province of Mendoza, Argentina [49]. The reason is
because frosts are one of the main causes of crops damage in the region and gener-
ates large economic losses in agricultural production,3 mainly when they occur in
spring season, affecting vineyards and fruit trees. In Mendoza, mainly adventive and
radiation frosts occur, and while the first ones are predictable with traditional mete-
orological numerical models [1], the second ones are not.

Although frost happens every years, defense methods like heathers, sprinklers
and wind turbines are used by farmers in order to minimize frost damage. Frost
defense methods are activated by alarms generated by Frost Alarm Systems (FAS).
FAS perform on-field data acquisition and data management. Moreover, FAS ensure
production quality and guarantee crops traceability. The on-field data acquisition
process can be performed using traditional instruments like thermometers, weather
stations or Wireless Sensor Networks (WSNs) [3, 4]. Compared to traditional meas-
urement instruments and weather stations, WSNs have the advantage that they can
cover extensive areas with low cost devices called sensor nodes. This advantage is
of special interest for studying frosts, due to the dependence of this phenomenon
with terrain characteristics like presence of weeds, trees or adjacency to mountains.
Sometimes it has been observed the occurrence of frost only in a few hectares of the
farm (such as those at the base of mountains) and in other hectares of the same farm
(such as those surrounded by trees) the event was not observed.

For the purposes of this paper, we based our research on an FPA based on the
method presented by Snyder and Melo-Abreu [1]. In order to perform the frost pre-
diction, the method takes temperature and humidity data—collected through a WSN
and weather stations—and calculates and dew points in the days in which radiation
frosts occurred. These days must belong to the month in which the prediction is per-
formed (regardless of the year). In addition, it is necessary that temperature, humid-
ity and dew points have been registered two hours after sunset in the prediction day.
An example of the data collected format are provided in Appendix B.

Formally, the minimum temperature is calculated by the following multiple
regression (MR) equation in 1:

where Tp is the minimum temperature to be predicted, To and D0 are the temperature
and dew point, respectively, registered the same day of the frost prediction two hours
after sunset, i is the MR intercept value. Finally, sT is the temperature slope and sD
the dew point slope. The values of sT and i are calculated from the Eqs. 2 and 3,
respectively.

(1)Tp = sT ∗ To + sD ∗ D0 + i ,

(2)sT =

∑

(Th0 − T̄h0)(Tm − T̄m)
∑

(Th0 − T̄h0)
2

,

3 Historical statistics can be found here (in Spanish): http://acovi .com.ar/obser vator io/wp-conte nt/uploa
ds/2014/09/Ambie ntal5 .xlsx.

http://acovi.com.ar/observatorio/wp-content/uploads/2014/09/Ambiental5.xlsx
http://acovi.com.ar/observatorio/wp-content/uploads/2014/09/Ambiental5.xlsx

1 3

Journal of Network and Systems Management

where Th0 are historical temperatures registered two hours after sunset in the same
month in which the frost prediction is performed, Tm is the minimum temperature
that happened in those days, and n is the number of historical data. Finally, T̄h0 and
T̄m are the average temperatures data. The dew point slope sD is calculated by using
the Eq. 4:

where Dh0 are historical dew points two hour after sunset in the same month in
which the frost prediction is performed and R the residuals. The parameters D̄h0 and
R̄ are the average values of Dh0 and R, respectively. Finally, the residual is calculated
with the expression: R = Tm − sT ∗ To + i.

The FPA was coded in Java. An MySQL database was used for storing both the
WSN and weather stations data, and the obtained results after running the FPA.
Moreover, the integration of WSN data with Cloud infrastructures was performed
through a WSN-Cloud integration platform called Sensor Cirrus.4 Sensor Cirrus
[50] manages the WSN data using Cloud services and includes the development
of the FPA for data processing. Figure 2 illustrates a scheme of the FPA [51].

As can be seen in step (1) of Fig. 2, a database containing weather stations and
sensors nodes data is generated. Next, in step (2), the FPA gets from the database the
needed data to execute the frost prediction (To , Do , etc.). Finally, in step (3) the FPA
is executed in the Cloud resulting in the minimum temperature that will occur in the
night (4).

4.2 CloudSim Instantiation

In this work, data have been collected through WSNs and weather stations instru-
mented in the field, in order to simulate a frost prediction in a region of the Prov-
ince of Mendoza, Argentina. For this purpose, a scenario in which 40 farms are
instrumented has been modeled and simulated, each one of them with a different
number of sensor nodes that vary between 10 and 1000 sensor nodes depend-
ing on the farm size (see Table 2). Then, in order to perform a prediction for
each one of the farms, historical data (temperature, humidity and dew points) of
50 days in which there have been frosts are considered. The historical data was
obtained from the National Oceanic and Atmospheric Administration5 database

(3)i =

∑

Tm − sT
∑

Th0

n
,

(4)sD =

∑

(Dh0 − D̄h0)(R − R̄)
∑

(Dh0 − D̄h0)
2

,

4 https ://senso rcirr us.com/.
5 http://www.noaa.gov/.

https://sensorcirrus.com/
http://www.noaa.gov/

 Journal of Network and Systems Management

1 3

and collected through meteorological stations (see Appendix B). These 50 days
must correspond the same month in which the prediction is performed (regard-
less the year), i.e., if the prediction is performed in July, historical data of 50 days
with frost in July must be collected.

After gathering real data through the WSNs deployed in each one of the
farms, we employed a single m1.large instance from Amazon EC2 to run the
FPA with data from each one of the 40 farms. The reason why this instance type
was chosen to set VMs in CloudSim is because in [50] was the instance which
achieved the lowest makespan for executing different number of sensor nodes.
Specifically, in [50] the experiments were performed in a real Cloud in order
to find out which type of Amazon EC2 instance have better performance for

Weather Stations and
WSN database generation

FPA input data retrieval

FPA execution

Results sending

(1)

(2)

(3)

(4)

Weather Stations

User

Fig. 2 Frost prediction application: overview

1 3

Journal of Network and Systems Management

executing FPAs. The metrics measured in such work were the execution time and
economic cost. The experiments consisted of executing the FPA with data from
different number of sensors nodes in different types of Amazon EC2 instances
(t1.micro, m1.small, m1.large, m1.xlarge and c3.xlarge), i.e., 40 FPA-jobs were
executed in the different types of instances with data from10 to 1000 sensors
nodes depending of the farm size. Once the FPA was executed, the shortest exe-
cution times and economic costs were obtained when executing the FPA in the
m1.large instance.

The execution of 40 FPA-jobs (see Table 2) resulted in 40 input files (sen-
sor nodes data) and 40 output files (with frost prediction information). The test
was solved using Sensor Cirrus [50]. Once the execution times were obtained, we
approximated for each field frost prediction—or job—the number of executed CPU
instructions by the following formula NIi = mipsCPU ∗ Ti , where NIi is the number
of million instructions (MI) to be executed by, or associated to, a job i, mipsCPU is
the processing power of the CPU of our real computer measured in MIPS, and Ti is
the time that took to run the job i on the VM. We have used such measure (MIPS)
because in CloudSim the processing power both of the physical machines and the

Table 2 Real FPA-jobs execution times (in one VM) and lengths

FPA-job Id Number
of sensor
nodes in a
farm

Execu-
tion time
(s)

Length
(MI)

FPA-job Id Number
of sensor
nodes in a
farm

Execu-
tion times
(s)

Length (MI)

1 10 44 221,324 21 100 463 2,313,542
2 10 47 233,880 22 100 430 2,152,085
3 10 55 273,556 23 100 659 3,294,133
4 10 64 321,629 24 100 617 3,084,405
5 20 104 519,922 25 200 851 4,254,854
6 20 135 676,868 26 200 1190 5,952,555
7 20 155 774,263 27 200 1054 5,269,906
8 20 146 729,481 28 200 858 4,289,475
9 30 119 596,530 29 400 1341 6,704,712
10 30 124 619,631 30 400 3192 15,962,055
11 30 138 690,664 31 400 1620 8,098,335
12 30 109 543,668 32 400 1498 7,490,760
13 60 276 1,379,523 33 800 2924 14,621,554
14 60 240 1,198,350 34 800 3094 15,468,715
15 60 226 1,129,402 35 800 3158 15,792,208
16 60 231 1,155,044 36 800 2642 13,212,840
17 80 261 1,306,605 37 1000 4763 23,818,010
18 80 329 1,646,019 38 1000 5516 27,579,553
19 80 281 1,405,579 39 1000 5050 25,251,201
20 80 268 1,338,041 40 1000 2979 14,894,086

 Journal of Network and Systems Management

1 3

VMs must be configured in MIPS. As a consequence, the same must be done to
configure jobs, which have associated a length expressed in MI. Subsequently, once
the simulation is performed, the makespan of jobs is reported in seconds. Next is an
example of how to calculate the number of instructions of a job that took 463 sec-
onds to execute. The VM (EC2 instance) where the experiment was executed had a
processing power of 5000.21 MIPS. Then, the approximated number of instructions
for the job was 2,313,542 MI (Million Instructions). Resulting jobs execution times
for the 40 farms are shown in Table 2. Note that in a real-world scenario the overall
execution time of a job n times in the same machine will not be exactly the same
the n times. The reason is because the jobs executions times depend on the load
state of the underlying resources at the moment they are executed. For this reason,
in order to perform more realistic experiments, the real jobs execution times showed
in Table 2 were randomly modified with a margin of variability between −0.20 and
0.20% [52].

After gathering real job data, we instantiated the CloudSim toolkit [21], which is
heavily used within the community to evaluate Cloud solutions. The experimental
scenario consists of a federated Cloud composed of 10 heterogeneous datacenters.
The network topology is defined using BRITE [53]. BRITE is a topology generation
tool that provides a topology file used by CloudSim to define the different Cloud
nodes that compose a commonly-found federation (i.e., datacenters, brokers) and the
network connections among them. Each datacenter is composed of a different num-
ber of hosts which are not all dedicated, i.e., some of them are busy executing pre-
existing jobs in other VMs. In our scenario, each datacenter has already allocated a
random number of VMs, which involve a percentage of busy hosts between 30 and
80%, i.e., of the total datacenter availability. The characteristics of the the datacent-
ers and the machines that compose them are shown in Table 3. All hosts have an
internal bandwidth of 1,000 Mbps. Moreover, a user requests 100 VMs to execute its

Table 3 Cloud datacenters (DC) characteristics

DC # Hosts Latency (s) Monetary cost
(hourly)

Hosts characteristics

Proc. power
(MIPS)

RAM (GB) Storage Cores

D1 30 0.80 $1,11 7200 32 500 GB 8
D2 50 1.75 $1,42 9900 32 1 TB 6
D3 20 0.32 $0,19 8036 16 500 GB 8
D4 30 2.00 $1,22 7500 16 1 TB 8
D5 50 0.25 $1,32 7200 32 500 GB 8
D6 10 1.50 $0,35 4008 8 1 GB 4
D7 20 0.29 $0,17 5618 12 500 GB 6
D8 20 2.20 $0,73 5200 8 500 GB 4
D9 50 0.50 $0,13 6600 12 500 GB 8
D10 50 1.20 $1,57 7527 16 500 GB 8

1 3

Journal of Network and Systems Management

FPA-jobs. Each VM has the same characteristics as a m1.large instance of Amazon
EC2 (5000 MIPS, 7.5 GB RAM, 100 GB image size and 2 CPU).

The number of instructions to be executed by each job (Length in Table 2) varies
between 221,324 MI and 25,579,553 MI. Moreover, the experiments have input file
and output file sizes of 1.6 MB and 2.03 MB, respectively.

In this work, we evaluated the performance of executing the frost prediction in an
entire region as we increased the number of FPA-jobs—described in Table 2—to be
performed. Specifically, for each region-specific frost prediction, we evaluated the
performance of their associated FPA-jobs in the simulated Cloud as we increased
the number of FPA-jobs to be executed, i.e., 40 ∗ i jobs with i = 25, 50,… , 250 .
This is, the base job set comprising 40 farms (showed in Table 2) were cloned to
obtain larger sets, i.e., regions composed of a greater number of farms. Therefore,
the base FPA-jobs set to perform varies between 1000 and 10,000.

4.3 Performed Experiments

Next we report the results when executing the FPA in an entire region, which means
the prediction of the FPA-jobs in the simulated federated Cloud. Execution is han-
dled using our three-level scheduler and two GA-based alternative schedulers both
for selecting datacenters and assigning VMs to hosts. Due to their high CPU require-
ments, the jobs that are waiting to be executed in a VM are executed one at a time
by competing for the CPU time with other jobs from other VMs that are allocated
in the same physical machine. In other words, a time-shared CPU scheduling policy
was used at the datacenter level, which ensures fairness. Particularly, we study/com-
bine the two SI-based policies for selecting datacenters at the broker level discussed
in Sects. 3.1.1 and 3.1.2, and the policies for mapping VMs to hosts described in
Sects. 3.2.1 and 3.2.2 while comparing them against GA [23] (see Sects. 3.1.3
and 3.2.3).

In our experiments both at the broker and infrastructure levels, the specific-
parameter of each algorithm (e.g., neighborhoodSize and neighborhoodHostSize in
PSO, maxSteps and maxAntSteps in ACO and chromosomeSize in GA), has been
configured so as to explore up to 60% of the number of datacenters—neighborhood-
Size and maxSteps—and the number of hosts of each datacenter—neighborhood-
HostSize and maxAntSteps—, i.e., the value of the specific-parameter is equals to 6
when the number of datacenters is equal to 10 and is equal to 12 when the number
the host at the infrastructure level is equal to 20. Furthermore, in the ACO algo-
rithms we have set the mutation rate and decay rate parameters with values equal to
0.6 and 0.1, respectively, and the GA population size equals 100. In [23] the authors
have set the chromosome size equal to the number of hosts, but in this paper we have
reduced this number in order to reduce network consumption and being fair to GA
with respect to ACO and PSO. Finally, the vmPercentage parameter has been set to
60%, i.e., each selected datacenter by an ant should be available to allocate at least
60% of the requested VMs by the user. For simplicity, from now on, we will refer
to policies at the broker level as BPSO, BACO, BGA in order to differentiate them
from schedulers at the infrastructure level. In all cases, the competing policies both

 Journal of Network and Systems Management

1 3

at the broker level and the infrastructure level were also used in conjunction with the
VM-level FIFO-based policy for handling jobs within VMs.

Figure 3 illustrates the makespan results when executing the FPA described in
Sect. 4.1. Moreover, each one of the subfigures in Fig. 3 compare the makespan
for each one of the policies implemented at the broker level (BPSO, BACO, BGA)
and all the considered scheduling algorithms at the infrastructure level (PSO, ACO,
GA), respectively. Below we show how each one of the scheduling levels (broker,
infrastructure and VM) have influenced the performance metrics.

As can be seen in Fig. 3a our BPSO algorithm is the one that delivers the low-
est makespan to the user with respect to BACO and BGA. The lowest makespan is
obtained when BPSO is combined with PSO at the infrastructure level. The low-
est makespan is equal to 202.02 and 1456.96 minutes when the number of jobs to
be executed is 1000 and 10,000, respectively. In the second place is BPSO com-
bined with ACO, whose makespans are equal to 216.07 and 1535.33 minutes when
the number of jobs is increased from 1000 to 10,000, and in the third place is
BACO combined with PSO (see Fig. 3b), whose makespans vary between 262.76
and 1935.57 minutes when the number of jobs are 1000 and 10,000, respectively.
This happens because most VMs are allocated in datacenters with lower latencies,
and therefore they have less influence in the completion time—makespan—when
PSO, ACO and GA—at the infrastructure level—send network messages to the
hosts to inquire about their availability. Besides, since all the broker schedulers con-
sider both network latencies and the percentage of VMs that can be allocated in a

Fig. 3 Makespan as the number of FPA-jobs increases. a BPSO-based broker, b BACO-based broker, c
BGA-based broker

1 3

Journal of Network and Systems Management

datacenter, they avoid to explore datacenters with lower latency but which can allo-
cate few VMs. It is desirable to avoid exploring datacenters with limited availability
of resources because such searches involve making use of network resources and
therefore, a greater number of latencies influence the overall execution time of the
application.

Table 4 shows the average gain of using the combination of BPSO-PSO—the
policies through which the lowest makespan was obtained—regarding BACO and
BGA combined with PSO, ACO and GA—the competing meta-heuristic algorithm
considered in this work at the infrastructure level—. The makespan average gains
are calculated as in equation 5, where FPAbaseSet is equals to 40 jobs—40 instru-
mented farms—and i = 25, 50,… , 250 ; and makespan (BrokerS-InfrastructureS) is
the combination of the schedulers at the broker level with the schedulers at the infra-
structure level (e.g., BACO-PSO, BACO-ACO, etc.).

As can be seen, the best average gains of BPSO-PSO—48.18% and 51.88%—are
obtained regarding BACO-GA and BGA-GA, respectively. It is important to note,
however, that the use of BPSO-PSO yield also important gains w.r.t. BACO-PSO,
BACO-ACO, BGA-PSO and BGA-ACO, whose gains around 25% and 33%.

Secondly, among all the algorithms implemented at the infrastructure level and
regardless the policy used at the broker level, Fig. 3a–c show that the described PSO
and ACO performed rather well compared to GA regarding the makespan, being
PSO the algorithm that achieves the best performance. At this level, each algorithm
sends a different number of messages to the hosts to query about their availability
and allocate the VMs. With respect to PSO and ACO, they make less use of network
resources than GA, being PSO the one which sends less network messages. The
number of messages to send both by PSO and ACO depends of the neighborhood-
HostSize and the maxAntSteps parameters, respectively, i.e., the maximum number
of moves that a particle/ant performs to allocate its associated VM, which is equal
to the 60% of a datacenter size. It is important to note that, when PSO and ACO
find an idle host, they allocate the current VM and immediately stop hosts explora-
tion. This action reduces the total number of messages sent through the network, and
therefore, the total latencies which influence the overall makespan. Finally, GA is
the algorithm that produces the greatest makespan in all cases. Since GA contains

(5)

makespanGain

=

[

∑

j=FPAbaseSet∗i

(makespanj(BrokerS − InfrastructureS) − makespanj(BPSO − PSO)

(makespanj(BrokerS − InfrastructureS))

]

/

10

Table 4 Average gains of using the combination BPSO-PSO w.r.t. BACO and BGA (0-100%)

BACO BGA

PSO (%) ACO (%) GA (%) PSO (%) ACO (%) GA (%)

BPSO-PSO 24.67 25.79 48.18 31.82 33.48 51.88

 Journal of Network and Systems Management

1 3

a population size of 100 and the chromosome sizes are of 60% of a datacenter size,
to calculate the fitness value, the algorithm sends one message for each host of the
chromosome to know its availability and obtain the chromosome containing the best
fitness value. The number of messages sent by GA depends on both the number of
host within each chromosome and the population size.

The reason why, regardless of the policy used at the broker level, PSO provides
the shortest makespan, it is because this algorithm does not repeat the visited hosts
in each allocation of a VM. As we explained in Sect. 3.2.2, each particle visits each
one of the hosts in its neighborhood, which are different from each other, looking for
the host with the lowest load. This increases the chances of PSO of finding a host
with load equals to zero, thereby reducing the total number of moves to perform.
Moreover, in the ACO algorithm there is the possibility that an ant visits some hosts
more than once, thereby reducing the total number of different visited hosts. This is
because ACO uses a random function in the early steps to choose the host to which
it performs the movement. This random function may force the ant to repeat visiting
a host when moving from one host to another.

Complementary, Fig. 4 summarizes the relative makespan reduction regarding
the worst competitor—GA—as the number of jobs is increased and for all schedul-
ers at the broker level. Besides, due to the fact that the PSO and ACO makespan
results are very close, Table 5 shows the obtained gains of using PSO and ACO at
the infrastructure level with respect to GA as the number of jobs increase. As can be
seen, the greatest gains are obtained when BPSO is used, being PSO the scheduler
which achieves the best gains. Concretely, the gain of BPSO-PSO with respect to

Fig. 4 Relative makespan reduction regarding GA. a BPSO-based broker, b BACO-based broker, c
BGA-based broker

1 3

Journal of Network and Systems Management

BPSO-GA yielded as a result 63.13% when the number of jobs is equal to 1,000. In
the second place is BPSO-ACO, whose gains with respect to BPSO-GA yield as a
result 59.93%. Note that the larger the number of jobs to be executed, the lower the
impact of the latencies in the makespan, and therefore, the lower gains. The reason
is because the latencies are set at the moment of creating the virtual infrastructure.

Due to the fact that our aim is to reduce both the makespan and monetary cost, in
Fig. 5 it can be seen that important monetary cost reductions are also obtained when
we use first, the BPSO-PSO and second, the BPSO-ACO schedulers. The reason is
because, as we show above, the selection of datacenters with lower latencies pro-
duce important improvements in the makespan, and therefore, important reduction
in monetary costs. Due to Cloud VMs are leased per execution hour, the monetary
costs are closely related to the application’s makespan. Particularly, Figs. 4b and 5a,
c illustrate the monetary costs by each one of the schedulers implemented at the bro-
ker level. As shown in all the subfigures, regardless of the policy used at the broker
level, PSO is the algorithm that produces the lower monetary cost to the user with
respect to ACO and GA. Particularly, the lowest monetary cost is obtained when
BPSO is combined with PSO as well as the makespan. The lower the makespan
the lower the monetary cost for the user. Similarly to the makespan, the average
gains obtained by BPSO-PSO regarding BGA-GA and BACO-GA are 47.40% and
50.48%, respectively. Moreover, the use of BPSO-PSO yield also gains w.r.t. BACO-
PSO, BACO-ACO, BGA-PSO and BGA-ACO, with gains between 24% and 36%.
This average gains means that our proposed scheduler achieves a greater effective-
ness and system reactivity when executing the FPA, i.e., it allows to obtain the frost
predictions in a lower time and at a lower cost. Obtaining the frost predictions in a
low time is important due to the fact that it allows the farmers to be alerted as soon
as possible to a possible frost phenomenon. Reducing costs is important because it
would also allow farmers to instrument their farms with a greater number of sensors

Table 5 Makespan Gains of using PSO and ACO w.r.t. GA (0–100%)

Number of
FPA-jobs

BPSO BACO BGA

Gains PSO
w.r.t. GA

Gains ACO
w.r.t. GA

Gains PSO
w.r.t. GA

Gains ACO
w.r.t. GA

Gains PSO
w.r.t. GA

Gains ACO
w.r.t. GA

1000 63.13 59.93 57.91 56.14 54.63 50.00
2000 48.62 47.06 46.47 41.90 45.21 40.22
3000 41.54 39.20 38.44 35.23 37.93 33.53
4000 36.47 34.64 33.06 31.90 31.95 29.44
5000 32.38 31.31 30.67 28.79 29.92 26.65
6000 28.81 27.98 26.56 22.97 25.68 20.71
7000 24.40 23.98 22.39 19.83 21.82 18.82
8000 22.20 21.16 19.36 16.91 18.58 14.80
9000 21.83 18.46 20.23 16.56 19.78 14.02
10,000 19.42 14.94 18.11 13.60 16.50 11.72

 Journal of Network and Systems Management

1 3

nodes. A greater number the sensors nodes would allow either to achieve a more
accurate prediction or to extend the surface of the field to be installed.

5 Conclusions

Federated Clouds [10] potentially provide plenty of resources to users, specially
when the number of VMs required by a user exceeds the maximum capacity that
can be provided by a single provider or datacenter. Then, broker/VM/job scheduling
plays a fundamental role since it is basically NP-complete [13], and thus many vari-
ants based on approximation techniques have been proposed. In our view, in feder-
ated Clouds, scheduling should be performed at three levels (broker, infrastructure
and VM) [11], making the problem even more challenging compared to other dis-
tributed environments.

SI-inspired algorithms have received increasing attention in the Cloud research
community for dealing with a large number of optimization problems, such as
Cloud scheduling [15, 30]. SI refers to the collective behavior that emerges from
a swarm of social insects. Social insect colonies collectively solve complex prob-
lems through intelligent emergent behavior. Historically, researchers have proposed
algorithms exploiting this idea for solving a variety of combinatorial optimization
problems. Moreover, scheduling in Clouds is a combinatorial optimization prob-
lem, and many schedulers based on SI, particularly ACO and PSO, have been pro-
posed. Basically, researchers have introduced changes to the traditional bio-inspired

Fig. 5 Monetary cost as the number of FPA-jobs increases. a PSO-based broker, b ACO-based broker, c
GA-based broker

1 3

Journal of Network and Systems Management

techniques to achieve different Cloud scheduling goals [15]. However, to the best of
our knowledge, existing efforts do not address in general federated Clouds where the
different providers/datacenters geographically distributed are selected through these
strategies.

Therefore, in this work we have presented a three level Cloud scheduler based on
SI for the efficient execution, in terms of the makespan and monetary cost, of FPAs
on federated Clouds. The novelty of this scheduler is the inclusion of SI at broker
level. Concretely, the scheduler includes at the broker level two policies—BPSO and
BACO—that consider network information, monetary costs and resources availabil-
ity of datacenters. Then, at the infrastructure level, the policies at the broker level
are also combined with two bio-inspired strategies—based on ACO and PSO—for
the efficient allocation of VMs in the hosts of a selected datacenter. Finally, at the
VM level, through a FIFO policy, jobs are assigned to the allocated VMs. Simu-
lated experiments performed with CloudSim and real FPA job data suggest that our
bio-inspired three-level scheduler provide a better balance between makespan and
monetary cost to the user regarding GA. Particularly, when PSO, ACO and GA are
combined with BPSO, the makespan and monetary cost are the lowest w.r.t. BACO
and BGA being BPSO-PSO the lowest among them. Particularly, when PSO, ACO
and GA are combined with BPSO, the makespan and monetary cost are the low-
est w.r.t. BACO and BGA being BPSO-PSO the lowest among them. Average gains
range from approximately 10% and 32%.

We are extending this work in several directions. We will explore the ideas
exposed in this paper in the context of other bio-inspired techniques such as Artifi-
cial Bee Colony (ABC) [54, 55], which is also extensively used to solve combinato-
rial optimization problems. Another issue to consider is enhance the scheduler with
dynamic optimization capabilities, enabling the dynamic reallocation (migration) of
VMs from one host to another. The migration of VMs might allow to meet a spe-
cific optimization criteria such as reduce the number of hosts in use for minimiz-
ing energy consumption or balance the workload of all resources to avoid resources
saturation and performance slowdown.

An aspect that deserves special attention is to incorporate other types of scientific
experiments. Some examples of applications that could benefit from being executed
in Clouds are scientific workflows. Scientific workflows applications [52, 56, 57]
are common in areas such as bioinformatics, earthquake science, and astronomy,
and its main feature is based on the jobs are executed according to their dependen-
cies, and besides, the jobs have the characteristic of being not only CPU intensive
but also data intensive. Data intensive computing [58] is a type of parallel com-
puting application which typically processes terabytes or petabytes of data and it is
often referred to as Big Data. This application types devote most of their processing
time to I/O and manipulation/movement of data. Due to the fact that these applica-
tions require the transfer of large volumes of data, it is important to develop new
scheduling strategies at the broker level that not only consider the latency of data-
centers in which jobs will be executed, but also their bandwidths. This will provide
excellent research opportunities for new schedulers based on SI-based optimization
techniques.

 Journal of Network and Systems Management

1 3

In addition, in order to improve the performance of the proposed scheduler it is
also important to extend the use of bio-inspired algorithms to the VM level. In the
FPA used in this work, the execution of a job corresponds to the frost prediction in
a farm, and moreover, each farm is instrumented with different number of sensors
nodes (depending on the farm size). The greater the number of sensor nodes a farm
has, the greater amount of data to be processed to predict the frost and, therefore, the
greater the execution time and monetary cost to execute each job. Implementing bio-
inspired strategies that have information about the jobs sizes would allow a better
search of a suitable VM to execute each job, and as a consequence, it could greatly
help improve the overall performance of the FPA. At this level we plan to explore
both ACO and PSO as well as other SI-based algorithms such as ABC or Artificial
Fish Swarm Algorithm (AFSA) [59].

Finally, we plan to explore other types of network topologies approaching real-
life Cloud scenarios, such as fat-tree and leaf-spine. However, for this type of topol-
ogies to be included it is necessary to completely redesign the scheduling algorithms
so that they are able to route the different nodes. Moreover, for evaluation purposes,
we could explore FTCloudSim [60], an extension to CloudSim that in principle sup-
ports fat-tree datacenter topologies.

Acknowledgements We acknowledge the financial support provided by ANPCyT through grants PICT-
2012-2731, PICT-2014-1430 and PICT-2015-1435, and UNCuyo project project 06/B308. We want to
thank the anonymous reviewers for their valuable comments and suggestions that helped to improve the
quality of this paper.

Appendix A: Swarm Intelligence Techniques

SI [61] bases on studying collective behaviors that emerge from interactions between
individuals and the environment which they live in to solve optimization problems.
Examples of systems in which SI inspires are ants colonies, fish schools, birds
flocks, and herds of land animals, where the whole group of individuals perform a
desired task (i.e., feeding), which might not be made individually. For example, an
ant is relatively unintelligent, but when it is part of a colony, some behaviors emerge
from the interactions between ants, such as searching for food. Moreover, an indi-
vidual fish makes dynamic decisions to swim in one direction or another but only
up to a certain point. If there are several fishes, when the first fish swims near a food
source, the other fishes will listen to the first fish instead of following other instincts.

According to M. Dorigo and M. Birattari [62], in an SI system (a) there are many
individuals, (b) the individuals are relatively homogeneous, i.e., they are either all
identical or they belong to a few typologies, (c) the interactions among the individu-
als are based on simple behavioral rules that exploit only local information that the
individuals exchange directly or via the environment, and (d) the overall behavior of
the system results from the interactions of individuals with each other and with their
environment, i.e., the group behavior self-organizes.

The following subsections briefly describe the most popular SI techniques—i.e.,
ACO and PSO—that are widely used in job scheduling problems such as the one

1 3

Journal of Network and Systems Management

addressed in this paper. This appendix has been partially extracted from a paper of
our own [15].

Ant Colony Optimization

The ACO algorithm [63] arises from the way real ants behave in nature. An interest-
ing aspect of this behavior is how ants manage to locate short paths to reach a food
source from their nest. The ACO algorithm can solve computational problems since
the algorithm has the ability to reduce paths and precisely to find the shortest paths.
In nature, ants move randomly from one place to another to search for food. On the
return to its nest each ant leaves an hormone—called pheromone—that lures other
working ants to the same course. When more and more ants choose the same path,
the pheromone trail is intensified and even more ants will further choose it. Over
time the shortest paths will be intensified by the pheromone faster. That is because
the ants will both reach the food source and travel back to their nest at a faster rate.
Furthermore, if over time ants do not follow a certain path, its pheromone trail evap-
orates. From an algorithmic point of view, the pheromone evaporation process is
useful for preventing the convergence to a local optimum solution.

Figure 6 shows two possible nest-food source paths. Figure 6a shows that ants
will move randomly at the beginning and choose one of the two paths. The ants that
follow the faster path will naturally get to the objective before other ants, and in
doing so the former group of ants will leave a pheromone trail. Moreover, the ants
that perform the round-trip faster, strengthen more quickly the quantity of phero-
mone in the shorter path (see Fig. 6b). The ants that reach the food source through
the slower path will find attractive to return to the nest using the faster path. Eventu-
ally, most ants will choose the left path as shown in Fig. 6c.

ACO employs artificial pheromone trails that play the role of information that is
dynamically updated by ants to reflect their accumulated experience in contribut-
ing to solve an entire problem. In practice, to optimize job scheduling problems,
the ACO algorithm is mapped to graphical representations, usually graphs. A graph
for example may include jobs and executing physical resources or machines (nodes)
and scheduling decisions (arcs). Each job can be carried out by an ant to search for
machines with available computing resources.

Fig. 6 Adaptive behavior of ants

 Journal of Network and Systems Management

1 3

Particle Swarm Optimization

PSO [64] mimics the behavior of natural processes from animals such as birds and
insects such as bees. In PSO the general term “particle” is used to represent birds,
bees or any other individuals who exhibit social and group behavior. Suppose a
group of bees flies over the countryside looking for flowers. Their goal is to find as
many flowers as possible. At the beginning, bees do not have knowledge of the field
and fly to random locations with random velocities looking for flowers. Each bee
has the capability of remember the places where it saw more flowers, and moreover,
somehow knows the places where other bees have found a high density of flowers.
These two pieces of information—nostalgia and social knowledge—are used by the
bees to continually modify their trajectory, i.e., each bee alters its path between the
two directions to fly somewhere between the two points and find a greater density of
flowers.

A bee may fly over a place with more flowers than it had been found by any bee
in the swarm. The whole swarm would then be drawn toward that location by con-
sidering the bees own individual discovery. In this way the bees explore the field
by overflying locations with the greatest flower concentration and then being pulled
back toward them. Constantly, they are checking the territory they fly over against
previously found locations of highest concentration hoping to find the absolute high-
est concentration of flowers. Eventually, the process leads all bees to the one single
place F in the field with the highest concentration of flowers. After that, bees will
be unable to find any points of higher flower concentration, so they will be always
drawn back to F. This social behavior is shown in Fig. 7.

When used to model job scheduling, a PSO algorithm instantiation consists of
particles, each maintaining one potential solution to the entire scheduling problem.
The design of the representation of a particle is different for each type of problem.

Fig. 7 PSO modeling using as example the movement of a bees swarm on a flowers field. a Bees are
attracted to areas of highest concentration of flowers found by each individual, b bees are attracted to the
area with the highest flowers concentration of the whole swarm

1 3

Journal of Network and Systems Management

An example of how to represent particles when modeling the job scheduling prob-
lem is placing the position of a particle in an n-dimensional search space. Each
dimension i is the job to schedule, and the corresponding value represents the
machine in which a job can be allocated. Furthermore, the global best position will
indicate the best possible schedule.

Appendix B: Data Information from Weather Stations and Sensor
Nodes

Table 6 illustrates the data structure used for running the FPA. This data were
extracted from a raw dataset provided by the National Oceanic and Atmospheric
Administration6 database. The dataset contains 10 years of atmospheric data (from
2003 to 2013) that correspond to the the weather station of the Plumerillo Airport,
Mendoza. Atmospheric data are expressed in METeorological Aerodrome Report
(METAR) format. METAR format is commonly used by pilots in pre-flight weather
briefing and by meteorologists for weather forecasting.

In the Table 6, the first five columns show the acquisition time data including
year, month, day, hour and minute, respectively. Column six indicates cloud cover-
age (in METAR notation) and columns seven and eight indicate the temperature and
humidity levels, respectively.

Table 6 Weather station data used for the FPA

Sensors Data

Year Month Day Hour Minute Cloud coverage Temperature Humidity

2003 3 5 6 0 OVC 24 57
2003 3 5 7 0 OVC 22 59
2003 3 5 8 0 BKN 22 59
2003 3 5 9 0 BKN 23 51
2003 3 5 10 0 BKN 22 52
2003 3 5 11 0 BKN 22 57
2003 3 5 12 0 BKN 23 57
2003 3 5 13 0 BKN 23 57
2003 3 5 14 0 BKN 23 57
2003 3 5 15 0 BKN 25 57
2003 3 5 16 0 BKN 25 56
2003 3 5 17 0 BKN 24 56
2003 3 5 18 0 BKN 22 56
2003 3 5 19 0 SCT 21 61
2003 3 5 20 0 SCT 22 59

6 http://www.noaa.gov/.

http://www.noaa.gov/

 Journal of Network and Systems Management

1 3

Table 7 details METAR cloud coverage notation which is reported by the number
of “oktas” (eighths) of the sky that is occupied by clouds. First column indicates the
METAR abbreviation and the second column represents the abbreviation descrip-
tion. For example, in the first row of Table 6, OVC indicates that on 5/3/2003 at
06:00 am, the sky was overcast, i.e., with full cloud coverage. Regarding okta, this is
a unit of measurement to describe the amount of cloud coverage at any given loca-
tion, e.g., five oktas are equal to five octaves of the sky covered with clouds.

References

 1. Snyder, R.L., de Melo-Abreu, J.P.: Frost Protection: Fundamentals, Practice and Economics, Vol-
ume 1 of Environment and Natural Resources Series. Food and Agriculture Organization of the
United Nations (FAO), Rome (2005)

 2. Bishop, C.: Pattern Recognition and Machine Learning, Volume 20 of Information Science and Sta-
tistics. Springer, Berlin (2006)

 3. Oliveira, L., Rodrigues, J.: Wireless sensor networks: a survey on environmental monitoring. J.
Commun. 6(2), 143–151 (2011)

 4. Rehman, A., Abbasi, A.Z., Islam, N., Shaikh, Z.A.: A review of wireless sensors and networks’
applications in agriculture. Comput. Stand. Interfaces 36(2), 263–270 (2014)

 5. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT plat-
forms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput.
Syst. 25(6), 599–616 (2009)

 6. Mauch, V., Kunze, M., Hillenbrand, M.: High performance cloud computing. Future Gener. Com-
put. Syst. 29(6), 1408–1416 (2013) (Including Special sections: High Performance Computing
in the Cloud & Resource Discovery Mechanisms for P2P Systems)

 7. Zhai, Y., Liu, M., Zhai, J., Ma, X., Chen, W.: Cloud versus in-house cluster: evaluating Amazon
cluster compute instances for running mpi applications. In: State of the Practice Reports, vol. 11, pp.
1–11. ACM (2011)

 8. Coutinho, R.C., Drummond, L.M., Frota, Y., de Oliveira, D.: Optimizing virtual machine allocation
for parallel scientific workflows in federated clouds. Future Gener. Comput. Syst. 46, 51–68 (2014)

 9. Petri, I., Beach, T., Mengsong, Z., Montes, J.D., Rana, O., Parashar, M.: Exploring models and
mechanisms for exchanging resources in a federated cloud. In: IEEE International Conference on
Cloud Engineering (IC2E), pp. 215–224. IEEE (2014)

 10. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Virtual machine provisioning through satellite com-
munications in federated cloud environments. Future Gener. Comput. Syst. 28(1), 85–93 (2012)

Table 7 METAR Cloud coverage notation

Abbreviation Description

SCK “No cloud/Sky clear”
CLR “No clouds below 12,000 ft (3,700 m)”
NSC “No significant cloud”, i.e., none below 5,000 ft (1,500 m)
FEW “Few” = 1–2 oktas
SCT “Scattered” = 3–4 oktas
BKN “Broken” = 5–7 oktas
OVC “Overcast” = 8 oktas, i.e., full cloud coverage
VV Clouds cannot be seen because of fog or heavy precipita-

tion, so vertical visibility is given instead

1 3

Journal of Network and Systems Management

 11. Pacini, E., Mateos, C., García Garino, C., Careglio, C., Mirasso, A.: A bio-inspired scheduler for
minimizing makespan and flowtime of computational mechanics applications on federated clouds. J.
Intell. Fuzzy Syst. 31(3), 1731–1743 (2016)

 12. Manasrah, A.M., Smadi, T., ALmomani, A.: A variable service broker routing policy for data center
selection in cloud analyst. J. King Saud Univ. Comput. Inf. Sci. 29(3), 365–377 (2017)

 13. Woeginger, G.: Exact algorithms for NP-Hard problems: a survey. In: Junger, M., Reinelt, G.,
Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You Shrink!, volume 2570 of Lecture
Notes in Computer Science, pp. 185–207. Springer (2003)

 14. Kennedy, J.: Swarm Intelligence. In: Zomaya, Albert Y. (ed.) Handbook of Nature-Inspired and
Innovative Computing, pp. 187–219. Springer, New York (2006)

 15. Pacini, E., Mateos, C., García Garino, C.: Distributed job scheduling based on Swarm Intelligence:
a survey. Comput. Electr. Eng. 40(1), 252–269 (2014). 40th-year commemorative issue

 16. Pacini, E., Mateos, C., García Garino, C.: Balancing throughput and response time in online scien-
tific clouds via ant colony optimization. Adv. Eng. Softw. 84, 31–47 (2015)

 17. Pacini, E., Mateos, C., García Garino, C.: SI-based scheduling of parameter sweep experiments on
federated clouds. In: Hernandez, G., et. al. (eds.) First HPCLATAM—CLCAR Joint Conference
Latin American High Performance Computing Conference (CARLA), volume 845 of High Perfor-
mance Computing. Communications in Computer and Information Science, pp. 28–42. Springer
(2014)

 18. Pacini, E., Mateos, C., García Garino, C.: A three-level scheduler to execute scientific experiments
on federated clouds. IEEE Latin Am. Trans. 13(10), 3359–3369 (2015)

 19. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

 20. Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Performance analysis
of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst.
22(6), 931–945 (2011)

 21. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algo-
rithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

 22. Pacini, E., Mateos, C., García Garino, C.: Multi-objective Swarm Intelligence schedulers for online
scientific clouds. Special Issue on Cloud Computing. Computing, pp. 1–28 (2014)

 23. Agostinho, L., Feliciano, G., Olivi, L., Cardozo, E., Guimaraes, E.: A Bio-inspired approach to pro-
visioning of virtual resources in federated Clouds. In: Ninth International Conference on Depend-
able, Autonomic and Secure Computing (DASC), DASC 11, pp. 598–604, Washington, DC, USA,
12–14 December 2011. IEEE Computer Socienty (2011)

 24. Chandra Mohan, B., Baskaran, R.: A survey: ant colony optimization based recent research and
implementation on several engineering domain. Expert Syst. Appl. 39(4), 4618–4627 (2012)

 25. Mahdiyeh, E., Hussain, S., Mohammad, K., Azah, M.: A survey of the state of the art in Particle
Swarm Optimization. Res. J. Appl. Sci. Eng. Technol. 4(9), 1181–1197 (2012)

 26. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel Ant Colony Optimization.
Appl. Soft Comput. 11(8), 5181–5197 (2011)

 27. Poli, R.: Analysis of the publications on the applications of Particle Swarm Optimisation. J. Artif.
Evol. Appl. 2008(4), 1–10 (2008)

 28. Tavares Neto, R.F., Godinho Filho, M.: Literature review regarding Ant Colony Optimization
applied to scheduling problems: guidelines for implementation and directions for future research.
Eng. Appl. Artif. Intell. 26(1), 150–161 (2013)

 29. Vlachos, A.: Ant colony system algorithm solving a thermal generator maintenance scheduling
problem. J. Intell. Fuzzy Syst. 24(4), 713–723 (2013)

 30. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO-based scheduling algorithms in
cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017)

 31. Singha, U., Jain, S.: An analysis of swarm intelligence based load balancing algorithms in a cloud
computing environment. Int. J. Hybrid Inf. Technol 8(1), 249–256 (2015)

 32. Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud computing resource
scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4), 63:1–63:33
(2015)

 Journal of Network and Systems Management

1 3

 33. Marosi, A.C., Kecskemeti, G., Kertesz, A., Kacsuk, P.: Fcm: anarchitecture for integrating iaas
cloud systems. In: Cloud computing 2011: the second international conference on cloud computing,
GRIDs, and virtualization, pp. 7–12. IARIA (2011)

 34. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong, L., Sadjadi, S.M.,
Parashar, M.: Cloud federation in a layered service model. J. Comput. Syst. Sci. 78(5), 1330–1344
(2012). JCSS Special Issue: Cloud Computing 2011

 35. Tordsson, J., Montero, R.S., Moreno Vozmediano, Rl, Llorente, I.M.: Cloud brokering mechanisms
for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst.
28(2), 358–367 (2012)

 36. Kessaci, Y., Melab, N., Talbi, E.-G.: A pareto-based metaheuristic for scheduling HPC applications
on a geographically distributed cloud federation. Cluster Comput. 16(3), 451–468 (2013)

 37. Lucas-Simarro, J.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Scheduling strat-
egies for optimal service deployment across multiple clouds. Future Gener. Comput. Syst. 29(6),
1431–1441 (2013) (Including Special sections: High Performance Computing in the Cloud &
Resource Discovery Mechanisms for P2P Systems)

 38. Song, Y., Peng, J., Liu, K., Jiang, F., Liu, W., Huang, Z.: A hybrid particle swarm ant colony based
resource reservation for geo-distributed cloud service. In: 2016 IEEE Global Communications Con-
ference (GLOBECOM), pp 1–6. IEEE (2016)

 39. Kumrai, T., Ota, K., Dong, M., Kishigami, J., Sung, D.K.: Multiobjective optimization in cloud bro-
kering systems for connected internet of things. IEEE Internet Things J. 4(2), 404–413 (2016)

 40. Feller, E., Rilling, L., Morin, C.: Energy-Aware Ant Colony based workload placement in clouds.
In: 12th International Conference on Grid Computing, number 8 in Grid ’11, pp. 26–33. IEEE Com-
puter Society (2011)

 41. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for vir-
tual machine placement in cloud computing. J. Comput. Syst. Sci. 79(8), 1230–1242 (2013)

 42. Jeyarani, R., Nagaveni, N., Vasanth Ram, R.: Design and implementation of adaptive power-aware
virtual machine provisioner (APA-VMP) using swarm intelligence. Future Gener. Comput. Syst.
28(5), 811–821 (2012)

 43. Dhinesh Babu, L.D., Venkata Krishna, P.: Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303 (2013)

 44. de Oliveira, G.S., Ribeiro, E., Ferreira, D.A., Araújo, A.P.,Holanda, M., Walter, M.E.: ACOsched: a
scheduling algorithm in afederated Cloud infrastructure for bioinformatics applications. In: Interna-
tional Conference on Bioinformatics and Biomedicine, pp. 8–14. IEEE (2013)

 45. Zhang, G., Zuo, X.: Deadline constrained task scheduling based on standard-pso in a hybrid cloud.
In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in Swarm Intelligence: 4th International Conference,
ICSI 2013, pp. 200–209, Harbin, China. Springer, Berlin (2013)

 46. Gabaldon, E., Vila, S., Guirado, F., Lerida, J.L., Planes, J.: Energy efficient scheduling on heteroge-
neous federated clusters using a fuzzy multi-objective meta-heuristic. In: IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)

 47. Sedeño Noda, A., Raith, A.: A dijkstra-like method computing all extreme supported non-domi-
nated solutions of the biobjective shortest path problem. Comput. Oper. Res. 57, 83–94 (2015)

 48. Breque, F., Nemer, M.: Frosting modeling on a cold flat plate: comparison of the different assump-
tions and impacts on frost growth predictions. Int. J. Refrig. 69, 340–360 (2016)

 49. Brun Laguna, K., Diedrichs, A.L., Chaar, J.E., Dujovne, D., Taffernaberry, J.C., Mercado, G., Wat-
teyne, T.: A demo of the peach iot-based frost event prediction system for precision agriculture.
In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), pp. 1–3. IEEE (2016)

 50. Iacono, L., Vázquez-Poletti, J.L., García Garino, C., Llorente, I.M.: A Model to Calculate Amazon
EC2 Instance Performance in Frost Prediction Applications. In: Hernández, G., et al. (eds.) High
Performance Computing: First HPCLATAM—CLCAR Latin American Joint Conference, CARLA
2014, pp. 68–82. Springer, Berlin (2014)

 51. Iacono, L., Vázquez-Poletti, J.L., García Garino, C., Llorente, I.M.: A performance models for frost
prediction on public cloud infrastructures. Comput. Inf. 37(4), 815–837 (2018)

 52. Monge, D.A., Pacini, E., Mateos, C., García Garino, C.: Meta-heuristic based autoscaling of cloud-
based parameter sweep experiments with unreliable virtual machines instances. Comput. Electr.
Eng. 69, 364–377 (2018)

1 3

Journal of Network and Systems Management

 53. Jung, J.K., Jung, S.M., Kim, T.K., Chung, T.M.: A study on the cloud simulation with a network
topology generator. World Acad. Sci. Eng. Technol. 6(11), 303–306 (2012)

 54. Madivi, R., Kamath, S.S.: An hybrid bio-inspired task scheduling algorithm in cloud environment.
In Fifth International Conference on Computing, Communications and Networking Technologies
(ICCCNT), pp. 1–7. IEEE (2014)

 55. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee col-
ony (ABC) algorithm and applications. Artif. Intell. Rev. (2012)

 56. Ghafarian, T., Javadi, B.: Cloud-aware data intensive workflow scheduling on volunteer computing
systems. Future Gener. Comput. Syst. 51, 87–97 (2015)

 57. Zhao, Y., Li, Y., Raicu, L., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific workflow manage-
ment in the cloud. Future Gener. Comput. Syst. 46, 3–16 (2015)

 58. Philip Chen, C.L., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technolo-
gies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

 59. Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A.N.: Artificial fish swarm algorithm: a survey
of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev.
42(4), 965–997 (2014)

 60. Zhou, A., Wang, S., Yang, C., Sun, L., Sun, Q., Yang, F.: Ftcloudsim: support for cloud service reli-
ability enhancement simulation. Int. J. Web Grid Serv. 11(4), 347–361 (2015)

 61. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press, Oxford (1999)

 62. Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)
 63. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: algorithms, applications,

and advances. In: Handbook of Metaheuristics, volume 57 of International Series in Operations
Research and Management Science, chapter 9, pp. 250–285. Springer (2003)

 64. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco
(2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Elina Pacini received her Ph.D. degree in Computer Science from the UNICEN, in 2014, and a B.Sc. in
Information Systems Engineering from the UTN-FRM, Argentina, in 2005. She is Adjunct Professor at
the UNCuyo and member of the ITIC and the CONICET. She is interested in job and VM scheduling,
Cloud Computing and scientific applications.

Lucas Iacono received his Ph.D. degree in Engineering from the Mendoza University, in 2015, and a
B.Sc. in Electronic and Electrical Engineering from the same institution in 2007. He is a full professor at
the UNCuyo and member of the ITIC. His research interests include Mobile Robotics, Internet of Things
and Cloud Computing.

Cristian Mateos received his Ph.D. degree in Computer Science from the UNICEN, in 2008, and his
M.Sc. in Systems Engineering in 2005. He is a full time Adjunct Professor at the UNICEN and member
of the ISISTAN and the CONICET. He is interested in parallel/distributed programming, Grid middle-
wares, Service-oriented Computing and Mobile Computing.

Carlos García Garino received his Ph.D. degree from Universidad Politécnica de Cataluña, Spain, in
1993, and the Civil Engineering degree from UBA, Argentina, in 1978. He is a full Professor at the
UNCuyo, and director of the ITIC. He is interested in Computer Networks, Distributed Computing and
Computational Mechanics.

 Journal of Network and Systems Management

1 3

Affiliations

Elina Pacini1,2 · Lucas Iacono1,2 · Cristian Mateos3 · Carlos García Garino1

 Lucas Iacono
 liacono@uncu.edu.ar

 Cristian Mateos
 cmateos@conicet.gov.ar

 Carlos García Garino
 cgarcia@itu.uncu.edu.ar

1 ITIC and Facultad de Ingeniería, UNCuyo University, Mendoza, Argentina
2 CONICET, Buenos Aires, Argentina
3 ISISTAN-CONICET, UNICEN University, Tandil, Buenos Aires, Argentina

http://orcid.org/0000-0003-2882-766X

	A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and Its Application to Frost Prediction
	Abstract
	1 Introduction
	2 Related Work
	3 Approach Overview
	3.1 Broker level Scheduler
	3.1.1 Scheduler Based on ACO
	3.1.2 Scheduler Based on PSO
	3.1.3 Alternative Scheduler Based on GA

	3.2 Intra-Datacenter Scheduler
	3.2.1 Scheduler Based on ACO
	3.2.2 Scheduler Based on PSO
	3.2.3 Alternative Scheduler Based on GA

	3.3 VM Scheduler

	4 Evaluation
	4.1 Frost Prediction Application
	4.2 CloudSim Instantiation
	4.3 Performed Experiments

	5 Conclusions
	Acknowledgements
	References

