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Abstract
Frost is an agro-meteorological event which causes both damage in crops and 
important economic losses, therefore frost prediction applications (FPA) are very 
important to help farmers to mitigate possible damages. FPA involves the execution 
of many CPU-intensive jobs. This work focuses on efficiently running FPAs in paid 
federated Clouds, where custom virtual machines (VM) are launched in appropriate 
resources belonging to different providers. The goal of this work is to minimize both 
the makespan and monetary cost. We follow a federated Cloud model where sched-
uling is performed at three levels. First, at the broker level, a datacenter is selected 
taking into account certain criteria established by the user, such as lower costs 
or lower latencies. Second, at the infrastructure level, a specialized scheduler is 
responsible for mapping VMs to datacenter hosts. Finally, at the VM level, jobs are 
assigned for execution into the preallocated VMs. Our proposal mainly contributes 
to implementing bio-inspired strategies at two levels. Specifically, two broker-level 
schedulers based on Ant Colony Optimization (ACO) and Particle Swarm Optimi-
zation (PSO), which aim to select the datacenters taking into account the network 
latencies, monetary cost and the availability of computational resources in data-
centers, are implemented. Then, VMs are allocated in the physical machines of that 
datacenter by another intra-datacenter scheduler also based on ACO and PSO. Per-
formed experiments show that our bio-inspired scheduler succeed in reducing both 
the makespan and the monetary cost with average gains of around 50% compared to 
genetic algorithms.
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1 Introduction

Scientific computing is a field that applies computer science to solve typical 
scientific problems. Scientific computing is usually associated with large-scale 
computer modeling and simulation, and requires a sheer number of computing 
resources to quickly deliver results for ever-growing problem sizes. A concrete 
example of scientific applications are Precision Agriculture Applications, particu-
larly Frost Prediction Applications (FPA). FPAs, which are composed of multi-
ple numerical regressions [1] and machine learning techniques [2], are executed 
using data collected on-field by different instruments like thermometers, weather 
stations or Wireless Sensor Networks (WSNs) [3, 4]. These instruments gener-
ate considerable amounts of data, therefore somewhat powerful computational 
resources are required for storing and processing data. Specifically, frost predic-
tion must be performed for each of the farms in which it is necessary to know 
whether a frost can be produced or not, i.e., that the FPA is executed with data 
collected from each one of the farms. Accordingly, to perform a frost prediction 
in an entire region (composed of a large number of farms of different sizes and 
with different number of sensor nodes), it is necessary to run the FPA on different 
machines in parallel and collecting the results. Therefore, from a computational 
perspective, running FPAs involves managing many independent jobs with a mas-
ter-worker structure. Indeed, users relying on FPAs need a computing environ-
ment that delivers large amounts of computational power in order to obtain the 
predictions in the shortest possible time.

Cloud Computing [5, 6] brings a technological solution to the problem of frost 
prediction due to their reliability, availability and resources scalability. From a 
technical standpoint, Cloud permits the acquisition of fully-configured infra-
structures through virtualization technologies [5], i.e., different types of Virtual 
Machine (VM) instances provide a wide spectrum of hardware and software con-
figurations under a pay-per-use scheme. Usually, VM prices vary according to the 
acquired instance type and the pricing model of the Cloud provider. Concretely, a 
Cloud provides some measure of reliability and scalability regarding computing 
infrastructure both for data storing and FPA processing. Moreover, the economic 
costs of Cloud resources for scientific computing are lower compared with that 
of traditional in-house clusters [7]. However, since in single-datacenter Clouds 
resource availability might be limited, the option of obtaining extra resources 
from an arrangement of Cloud providers has appeared recently as an appealing 
solution [8, 9]. This ability to exploit resources from multiple Cloud providers is 
also called federating Clouds [10].

For executing resource intensive applications in general, and FPA in particu-
lar, when using federated Clouds it is necessary to properly manage physical 
resources, since they are part of geographically distributed datacenters. There-
fore, for the efficient execution of jobs, scheduling should be performed at three 
abstraction levels [11]. Firstly, at the broker level, scheduling strategies are used 
for selecting datacenters taking into account issues such as network interconnec-
tions or monetary cost of allocating VMs on hosts that compose them. The broker 
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generates an execution plan based on requirement criteria provided by the user 
and the offerings of the available Cloud providers. At this level a broker acts as 
an intermediary between the users and the Cloud providers. The broker utilizes 
broker strategies to route user requests to the most appropriate datacenter. There-
fore, the optimal response time of a particular request and the efficient utiliza-
tion of the datacenters are governed through datacenter selection policies [12]. 
Secondly, at the infrastructure level, VM scheduling algorithms are implemented 
to schedule the VM requests to the physical machines of a particular datacenter 
taking into account the requirement fulfilled with the requested resources (i.e. 
RAM, Memory, Bandwidth etc). Lastly, at the VM level, by using job scheduling 
techniques, jobs are assigned for execution into allocated virtual resources, which 
were allocated at the previous level. However, scheduling is an NP-Complete [13] 
problem and therefore it is not algorithmically trivial. Moreover, the fact that fed-
erated Cloud scheduling spans these three levels makes the problem even more 
challenging.

Bio-inspired strategies such as Swarm Intelligence (SI) metaheuristics have been 
suggested to solve combinatorial optimization problems—such as broker/VM/job 
scheduling—by simulating the collective behavior of social insects swarms [14]. 
Inspired by these capabilities, researchers have proposed algorithms or theories 
for combinatorial optimization problems, where the most popular SI-based strate-
gies are Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). 
Moreover, job scheduling in federated Clouds is also a combinatorial optimization 
problem, and schedulers in this line that exploit SI have been proposed [15].

In this paper, we propose two broker schedulers based on ACO and PSO for the 
efficient execution of FPAs in federated Clouds. FPAs are applications of bag-of-
task type, therefore, the execution of each FPA-job corresponds to a prediction in 
a given farm, and the greater the number of predictions to be made, the greater the 
number of jobs to be executed. The goal is to select the most suitable datacenter 
taking into account the network latencies, monetary cost and the availability of 
resources of each datacenter. The network latencies among datacenters negatively 
affect the response time—makespan—delivered to the user [11]. The less the net-
work latency, the lower the influence on makespan. Moreover, when more VMs can 
be allocated in datacenters to which latency is lower, more physical resources can 
be exploited, and hence job execution time decreases. When a frost prediction is 
performed, reducing the makespan is very important because the earlier the defense 
methods start up in the presence of frost, the less the impact in the economic losses 
due to the loss of crops. Then, once our broker-level scheduler has selected a data-
center to execute jobs, VMs are allocated in the physical machines of that datacenter 
by another intra-datacenter schedulers based on ACO and PSO previously studied in 
[16]. To allocate the VMs into hosts, this scheduler must make a different number 
of “queries” (network messages) to hosts to determine their availability upon each 
VM allocation attempt. The number of queries to be performed by ACO and PSO 
and the latencies of datacenters also influence the makespan to the user. Besides, the 
lower the makespan to the user, the lower the monetary cost when the resources are 
used in a pay-per-hour basis. Finally, at the VM level, jobs are assigned to the preal-
located VMs by using FIFO, as in [16]. Briefly, in this paper we put emphasis on 
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evaluating how SI decisions taken at the broker and infrastructure levels influence 
both the makespan and the monetary cost.

Specifically, we formulate our problem as minimizing the makespan, i.e., the 
total execution time of all jobs, while also minimizing the monetary cost of a set of 
jobs. Our approach differs from those presented in literature since none has consid-
ered SI-based strategies at two levels (see next Section for a discussion on related 
efforts). Moreover, compared to previous works of our own, it is worth noting that:

– In [16] we have presented an ACO-based scheduler focused on the infrastructure 
level only. However, this scheduler operates at two out of the three levels men-
tioned above, i.e. it is designed for Clouds composed of a single datacenter and 
as such does not target federated Clouds.

– In [17, 18] we extended the previous scheduler to operate in federated Clouds 
and we included the PSO technique. However, SI was again applied at the 
infrastructure level and not at the broker level, where straightforward decision 
heuristics were used instead. It is important to mention, moreover, that in such 
works we implemented very simple strategies for selection of datacenters and 
the algorithms were formulated for a single objective problem. Concretely, the 
strategies took into account only latencies and the datacenters were selected via 
three policies based on Lowest-Latency-Time-First, First-Latency-Time-First, 
and Latency-Time-In-Round in order to reduce the response time. In this paper, 
we formulate the problem as a multiobjective one by including the monetary cost 
that had not been considered so far. Reformulating the problem as multiobjec-
tive makes it necessary to take optimal decisions in the presence of trade-offs 
between two or more conflicting objectives, and in the context of this work this 
means makespan and monetary cost. This makes the problem more computation-
ally challenging and it is difficult to find optimal solutions.

– On the other hand, we have included a new real application (FPA unlike Param-
eter Sweep Experiments (PSE) as in previous works of our own), whose jobs are 
much more CPU-intensive and also have a greater deviation from each other with 
respect to their execution times. The algorithms developed in this work were 
developed taking into account the intrinsic characteristics of this type of appli-
cation, providing a response to the users in the shortest possible time and with 
lower cost.

In summary, in this work we essentially extend [18] in order to also consider the 
monetary cost of paid Clouds and include a new broker-level scheduler based on 
ACO and PSO. Therefore, the objective of this paper is to illustrate an enhanced 
multiobjective broker policy that selects datacenters based on the network latency, 
monetary cost, and resources availability to ensure efficient and reliable execution of 
FPA-jobs over geographically distributed datacenters.

Experimenting in Cloud environments is subject to uncontrollable factors like 
network congestion and servers varying workloads. Measuring the performance 
of Internet based applications using real Cloud platforms is cumbersome [19, 20]. 
Therefore, simulation-based approaches have been adopted in order to avoid such 
issue under a stable and controllable environment. A popular toolkit for modeling 
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and simulating Cloud Computing systems is CloudSim [21]. CloudSim is a broadly 
accepted testbed and particularly it actually represents the most common approach 
to experimentation in the area of meta-heuristics, such as SI, for resource scheduling 
in Grid/Cloud environments. This observation has been documented in a survey [15] 
written by some of the authors of this work.

In this paper, to set the basis for comparison and evaluate the overall performance, 
we used our already proposed SI-based schedulers at the broker and infrastructure 
level [16, 22], and FIFO at the VM level, in combination with an alternative sched-
uler—at the broker and infrastructure levels—based on Genetic Algorithms (GA) 
[23]. This alternative scheduler was also combined with a FIFO based policy at the 
VM level. Simulated experiments performed with job execution data extracted from 
a real-world FPA, suggest that the use of SI schedulers at two levels—broker and 
infrastructure levels—, deliver competitive performance in terms of makespan and 
monetary cost. Specifically, through the use of our bio-inspired scheduler we have 
obtained average gains of around a 50% with respect to GA.

The rest of the paper is organized as follows. Section 2 surveys and analyses rel-
evant related works. Section 3 presents our proposal and the involved techniques at 
each level. Then, in Sect. 4 we present detailed experiments that show the viability 
of the approach via a real FPA. Finally, Sect.  5 concludes the paper and presents 
future extensions.

2  Related Work

Studying SI techniques, specially ACO and PSO [24–29], have been the focus of 
many research studies for solving combinatorial optimization problems in the last 
ten years. As shown in recent surveys and works [30–32], SI-based techniques have 
been increasingly applied to distributed job scheduling in Clouds in a variety of 
application domains. However, to the best of our knowledge, there are not efforts 
covering the three scheduling levels and where the authors also consider the use of 
SI at more than one level. The use of SI at more than one scheduling level is benefi-
cial because it helps to narrow down the search space to be explored at each sched-
uling level.

Specifically, we address the scheduling of precision agriculture applications in 
federated Clouds in order to minimize both the makespan and the monetary cost of 
a set of jobs considering the influence of the network interconnections and latencies 
among heterogeneous datacenters. First, our approach differs from those presented 
in the literature since the existing works have not considered SI-based strategies at 
more than one scheduling level as we do in this paper. In previous works of our own 
[11, 18], we also proposed a scheduler for federated Clouds that exploits SI and the 
concept of job priorities for Parameter Sweep Experiments (PSE). However, it is 
important to mention that in such works, SI was only implemented at the infrastruc-
ture level. At the broker level, datacenters were selected according to their network 
latencies through three simple policies called Lowest-Latency-Time- First (LLTF), 
First-Latency-Time-First (FLTF), and Latency-Time-In-Round (LTIR). In addition, 
another major distinction is that in [11, 18] we considered dedicated datacenters to 
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execute the application and minimizing monetary cost was not taken into account. 
However, since in public Clouds users must pay for the use of resources, and moreo-
ver, costs depend on the instance type and Cloud provider, it is also important to 
reduce the monetary costs associated when FPAs are executed in federated Clouds. 
In this work, we extend the above mentioned scheduler at the broker level in order 
to also consider the monetary cost and include ACO and PSO based strategies at the 
broker level. A Cloud broker provides an interoperability layer on top of the various 
Cloud provider interfaces.

Second, works found in the literature and also summarized in Table 1 are mainly 
focused on one Cloud level and do not consider advanced techniques for the three 
scheduling levels as we propose in this work. As can be seen in Table  1, among 
these works, we can first mention the two approaches proposed in [33, 34]. In [33] 
the authors have proposed a layered federated Cloud management architecture that 
incorporates the concepts of meta-brokering, Cloud brokers and automated, on-
demand service deployment. The meta-brokering1 component allows the system to 
interconnect the various Cloud brokers2 available in the system. The broker compo-
nent is responsible for managing the VMs instances hosted on a specific infrastruc-
ture as a service provider. In order to fast track the VMs instantiation, this architec-
ture uses an automatic service deployment component that is capable of optimizing 
its delivery by decomposing and replicating it among the various cloud infrastruc-
tures. In this work, the authors proposed a federated Cloud solution that acts as an 
entry point to Cloud federations and deals with broker issues. However, [33] has 
not considered the use of SI-based strategies, and moreover, the authors have exem-
plified (not evaluated) the interaction of the various components of their proposed 
architecture through a low-level use case and not with a real application such as the 
FPA proposed in this paper. Then, in [34] the authors have presented another ini-
tial approach to the federated Clouds but considering a layered model based on the 
Infrastructure, Platform and Software as a Service models. In this work the benefits 
of decoupling the different layers have been discussed so that the execution of an 
application can be supported by diverse providers implementing different parts of 
the layer functionality. The authors have also introduced a motivational scenario to 
illustrate this layered model based on a Weather Research and Forecasting (WRF) 
application for domain experts which accepts high level parameters relating to user 
requirements such as cost or execution time. Besides, in this work it is shown how 
these requirements are either used in the negotiation process, where negotiation is 
constrained to well-defined sets of parameters among different providers, or trans-
formed to new arguments to lower levels in the Cloud stack by using prediction 
models and inter-layer translation mechanisms. However, even though the authors 
have discussed different brokering strategies for providers to assign parts of the 
execution application to other partners while enforcing user policies, none of the 
strategies have been implemented yet. Besides, the authors in [34] have not obtained 

1 Analogous to the broker level in our paper.
2 Analogous to the infrastructure level in our paper.
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results from the execution of the application with their proposed model as we do in 
this work, but they merely exemplify how the process works.

Then, a number of studies for Cloud broker-level strategies are discussed in [12, 
35–37]. In particular, in [12] the authors proposed a heuristic-based technique called 
Variable Service Broker Routing Policy (VSBRP) that aims to achieve minimum 
makespan and considers the network latency, bandwidth and the size of the job. The 
proposed service broker policy has been proposed in order to reduce the overloading 
of the datacenters by redirecting the user requests to the next datacenter that yields 
better response and makespan. Moreover, in [35], the authors proposed a Cloud bro-
kering approach that restricts the deployment of VMs across multiple heterogeneous 
datacenters according to some placement constraints (e.g., Clouds to deploy the VMs) 
defined by the user. Users can also steer the VM allocation by specifying maximum 
budget and minimum performance, as well as constraints with respect to load balanc-
ing, hardware configuration of individual VMs and budget. The implemented algo-
rithms are based on integer programming formulations which enable price-perfor-
mance placement trade-offs. Then, in [36, 37] the authors proposed different strategies 
at the broker level to optimize the scheduling of jobs across multiple providers. In the 
work presented in [36] the authors proposed a multi-objective genetic algorithm (MO-
GA) for broker scheduling with the aim to optimize three objectives namely, energy 
consumption, CO2 emission, and the generated profit of a geographically distributed 
datacenters. On the other hand, in [37] the scheduler performs an optimal deployment 
of the jobs among datacenters optimizing a particular cost function based on different 
optimization criteria (e.g., monetary cost optimization or performance optimization) 
and different user constraints (e.g., budget, performance, instances types).

Some other works that deserve special attention are [23, 38, 39]. In [23], the authors 
used at the broker level the Dijkstra algorithm [47] to select the datacenter with the low-
est monetary cost, and a GA for allocating VMs at the infrastructure level. Then, in [38], 
a broker federation strategy based on a hybrid ACO-PSO algorithm was proposed in 
order to solve the nonlinear integer programming problem and obtain the price bene-
fits of reserved VMs. The broker is formed through a dynamic pricing method for geo-
distributed datacenters. In this work the proposed strategy takes advantage of the price 
gap between on-demand and reserved VMs and the cost saving achieved is significant 
through the broker federation. Although in [23] the authors target both the broker and 
the infrastructure levels, the goal was to reduce the monetary costs without considering 
the completion time. Likewise, in [38] only the monetary was considered cost without 
paying attention to the completion time. For scientific applications in general, and FPAs 
in particular, the completion time is very important [22], since it allows users to acceler-
ate result processing. The faster the frosts prediction results are known, the faster the 
defense methods can be triggered to prevent damages if frosts occur. On the other hand, 
in [39] a Cloud brokering as a multi-objective optimization problem was presented to 
find the appropriate connections between users and providers. This work was proposed 
for a Cloud brokering problem in an Internet of Things (IoT) Cloud system. For this, 
a multi-objective PSO (MOPSO) was proposed for maximizing the economic profit of 
the broker while minimizing the response time of requests from users and the energy 
consumption of service providers. However, although in these works [23, 38, 39] the 
authors have proposed the use of SI-based strategies in federated Clouds, in [38, 39], the 
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SI-based algorithms were implemented at the broker level without considering how the 
VMs are allocated at the infrastructure level, and without taking into account network 
issues, such as the inter-datacenter network latencies as we consider in our work. On the 
other hand, none of these works have considered the makespan which is a very impor-
tant metric to consider when we work with scientific applications where the response 
time to the user is crucial. Finally, unlike these works, our work is subject to resource 
availability constraint in each data center, which is also important when working in non-
dedicated Clouds.

With respect to works which address the scheduling problem at the infrastruc-
ture level—intra-datacenter—using SI-based strategies as we propose in this work, 
few efforts have been found [15]. Among them we can mention [40, 41]. In [40] 
the authors proposed a VM scheduler based on the ACO to perform the dynamical 
placement of VMs according to the current load on physical machines. The goal of 
this work was to minimize the energy consumption in a Cloud composed of a single 
datacenter. Then, in [41] the authors proposed a multi-objective ACO for the VM 
allocation problem. The goal of this work was to obtain a set of solutions that simul-
taneously maximize total resource utilization and minimize energy consumption. On 
the other hand, in the work [42] the authors proposed a PSO algorithm whose pur-
pose is to map efficiently a set of VM instances in a set of physical machines while 
reducing both the energy consumption and makespan. This algorithm makes the best 
possible use of the power saving states of idle physical machines and instantaneous 
workload on the operational physical machines. However, although in these works 
SI-based algorithms at the infrastructure level have been used, the schedulers were 
proposed for Clouds composed of a single datacenter and not for federated Clouds. 
Besides, these works do not pay attention to monetary cost, and only in [42] the 
authors considered the makespan, achieving competitive performance as evidenced 
by experiments performed via CloudSim [21], which is also used in this paper.

Finally, there are some works that apply SI at the VM level, among them we can 
mention [43–46]. In [43] a honey bee inspired load balancing algorithm was proposed. 
The goal of this algorithm is to achieve well-balanced load across VMs for maximiz-
ing the throughput. Throughput is the number of jobs that can be executed over a long 
period of time. The proposed algorithm also balances the priorities of jobs on the 
machines in such a way that the amount of waiting time of the jobs in the queue is 
minimal. Moreover, in [44] the authors proposed an ACO scheduler to perform efficient 
distribution of jobs by finding the best VMs to execute jobs. The aim of this work was 
minimizing the makespan and improve load balancing in the VMs. Moreover, in [45], 
a PSO based scheduling algorithm is proposed for hybrid Clouds. An hybrid Cloud is 
a Cloud environment which uses a mix of on-premises, private Cloud and third-party, 
public Cloud services with orchestration between the two platforms. Authors claim that 
by allowing workloads to move between private and public Clouds as computing needs 
and costs change, hybrid Clouds give a greater flexibility. In this work a private Cloud 
is able to outsource its jobs to other Clouds when its local VMs are not enough to sat-
isfy users requirements. The scheduling problem in the proposed hybrid Cloud model 
has been formulated as a kind of deadline constrained job scheduling problem, in which 
each job has an strict deadline and the objective is to maximize the profit of a provider 
under the premise of guaranteeing each job deadline constraint. Another work is [46], 
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where the authors have presented a multi-objective algorithm combining PSO and a 
GA with a Fuzzy crossover operator (MPSO-FGA) for solving the scheduling of par-
allel applications in Federated cluster environments with the aim of to minimize both 
the overall energy consumption and the makespan for a whole workload. The algo-
rithm takes advantage of a weighted blacklist for effective representation of the com-
putational resources availability, settled considering resources heterogeneity, commu-
nication resources contention and application requirements. It is important to mention 
that the work in [43] was proposed for Clouds composed of a single datacenter where 
the notion of broker level does not apply. Moreover, in [44–46], the authors focus on 
assigning jobs assuming the existence of pre-allocated VMs, i.e., the SI-based schedul-
ing algorithms were applied at the VM level and not at the broker or the infrastructure 
level. It is important to mention that all these works [43–46] are complementary to the 
one proposed in this paper because so far we have not explored SI at the VM level.

It is worth noting that, from the related works found, most of the works which 
consider SI for federated Clouds have been proposed taking into account only one 
of the scheduling levels without considering metrics such as makespan and mon-
etary cost, rendering difficult their applicability to execute FPAs in federated Cloud 
environments. For FPAs, the use of Clouds can be very beneficial due to the fact that 
frost fairly accurate frost predictions can be obtained from any geographical location 
24 hours a day and 365 days a year. Such predictions are useful so that farmers are 
on alert to the event and can take precautions in their farms before a frost actually 
occurs. The next Section explains our bio-inspired approach in detail, which consid-
ers the three scheduling levels and besides, takes into account the issues of latencies, 
monetary cost and resources availability of datacenters.

3  Approach Overview

This paper focuses on providing users with a Cloud scheduler that supports the efficient 
execution of CPU-intensive applications and particularly Frost Prediction Applications 
(FPA). The main characteristic of FPAs is the need to obtain the results—predictions—
in the shortest possible time in order to mitigate damage caused by frosts. Moreover, 
since resource usage incurs direct monetary costs, they should also be minimized. 
Therefore, the goal of our scheduler is to achieve a balance between the monetary costs 
and the makespan of a set of FPA-jobs when the jobs are executed into a federated 
Cloud. Makespan is the period of time between a user makes a request to the Cloud 
and he/she gets the answer (including the impact of the inter-datacenter latencies), i.e., 
the period of time in which a user requests a number of VMs to execute its FPAs, and 
the time in which all the FPA jobs finish their execution. Conceptually, an FPA is a 
set of N = 1, 2,… , n independent jobs, where each job corresponds to a frost predic-
tion in a farm within the same region. The jobs are executed on m Cloud machines. 
The makespan, of a job j in schedule S is denoted Cj(S) and hence the makespan is 
Cmax(S) = maxjCj(S) . Achieving a low makespan is important since it means starting 
up defense methods as soon as possible and thus minimizing frost damage.

For running applications in federated Clouds, resources should be scheduled at 
three levels as shown in Fig. 1. A broker is created for each user that connects to 
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the Cloud. Each broker knows who are the providers that are part of the federation. 
The relation of each broker is colored with green and blue dotted lines. In addition, 
Fig. 1a illustrates how jobs sent by User N are executed in the datacenter of Cloud 
Provider 2. Then, Fig. 1b shows the intra-datacenter scheduling activities—inside 
Cloud Provider 2—, i.e., at the infrastructure level and the VM level.

The proposed scheduler proceeds as follows. Firstly, at the broker level, a data-
center Dbri

 is selected via an SI-based scheduler (for the purposes of this paper, we 

Frost Prediction Application (FPA)

Broker 1 Broker N...

Provider 1 Provider 2

...job1 job2 jobN

Broker-level: Scheduler

 based on ACO and PSO

Provider M

User NUser 1
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(b)

VM-level: Scheduler based on FIFO

Infrastructure-level: Scheduler based on ACO, PSO, GA

Logical, 

user-owned

clusters (VMs)

Physical Machines 

of Provider 2

...job1 jobNjob2

Fig. 1  Federated cloud: overview. a Federated cloud, b scheduling intra-datacenter
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consider ACO and PSO schedulers). In order to achieve a balance between the mon-
etary cost and the makespan, at this level, the selected datacenter will be the one 
which provides the best balance between the monetary cost of the datacenter and the 
lowest communication latency to a broker. The less the network latency, the lower 
the influence on makespan to the user. For them, two weights have been assigned to 
the two individual metrics, i.e., a weight for the monetary cost (weightMC) and a 
weight for the communication latency (weightCL). Then, we assign the weights 
(weightMC, weightCL) = (0.5, 0.5) with the aim of balancing these two basic met-
rics. In addition, the selected datacenter must meet a certain percentage of available 
resources. In this paper, we consider non-dedicated datacenters, i.e., they might 
already have allocated VMs from other users or applications. At the infrastructure 
level (Fig. 1b), via another bio-inspired VM schedulers, user VMs are allocated in 
the physical resources (i.e., hosts) belonging to the selected datacenter at the broker 
level. Only, when there are no available hosts in the datacenter to allocate the VMs, 
a new datacenter Dbrj

(j ≠ i) is selected at the broker level. It is important to mention, 

moreover, that this two-step selection serves the purpose of delimiting the elements 
to be explored in the search space by the bio-inspired algorithms (datacenters in the 
first step, physical hosts in the second one). In addition, solving the problem of the 
broker and infrastructure levels in a single step in federated Clouds would make the 
implementation of a bio-inspired algorithm very expensive due to the coordination 
messaging through the network and the influence of latencies. Finally, at the VM 
level, jobs are assigned to the preallocated VMs through a FIFO policy. Next sub-
sections explain in more detail each the sub-schedulers employed at each level. 
Basic theory about SI-based strategies, which will help to understand the ideas 
implemented in the proposed approach, can be found in Appendix A.

3.1  Broker level Scheduler

Once a user makes a request to a broker, the scheduler at the broker level is executed 
to select the first datacenter to allocate the VMs, which are managed by the sched-
uler employed at the infrastructure level. Furthermore, the scheduler at this level can 
decide to deploy the VMs in a remote datacenter when there are insufficient physical 
resources in the datacenter where the VM creation was issued. At present, the poli-
cies studied at this level for the purposes of this paper are explained below.

3.1.1  Scheduler Based on ACO

Each time a user requests to a broker a number of VMs in which execute his/her 
FPA-jobs an ant is initialized for finding the most suitable datacenter (Algorithm 1). 
To this end, three parameters are initialized. A step parameter keeps track of the 
number of steps carried out by an ant, maxStep is equals to a predefined number of 
steps (i.e., the completion criterion of the ant work), and vmPercentage is a user-
defined percentage value used by the ant to know whether a datacenter has enough 
resources to allocate at least these percentage of VMs. For them, each datacenter 
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keeps track of the resources availability in terms of total available processing power, 
bandwidth , memory and storage availability. Resource availability is updated every 
time a VM is allocated/deallocated in/from a host in a datacenter and it is then used 
by the ant to estimate the percentage of VMs to allocate in a datacenter.

When an ant is created, a list of suitable datacenters in which the VMs can be 
allocated is built (getSuitableDatacenters(dcList)). A datacenter is suitable if it has 
hosts with processing power, storage capacity and memory greater than or equal to 
that of required by the VMs. The ant is randomly initialized in one of the obtained 
datacenters. A local table containing information both of the weighted metric, i.e., 
weightedMetric = weightMC ∗ MonetaryCost + weightCL ∗ CommunicationLatency , and an 
estimate of the percentage of VMs that can be allocated in each datacenter is created 
(InitializeLocalTable()) by the first ant which visits the datacenter. Monetary Cost is 
the hourly processing cost of a datacenter’s resources. 
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In each iteration, the ant estimates the percentage of VMs that can be allo-
cated in the datacenter which is visiting through the (calculateVMsPercentage 
(resourcesAvailability, vmList)) method and calculate the weighted metric by 
collecting the monetary cost and latency information of the datacenter through 
getWeightedMetric(dc). This datacenter information collected by the ant is added 
to its private information table—localTable—, which is maintained in each data-
center through (localTable.update(vmPercentageEstimation, weightedMetric)). 
The percentage of VMs that can be allocated in a datacenter is:

where resourcesAvailability is the total available processing power in a datacenter 
in MIPS --among all host which in addition have enough memory, bandwidth and 
storage-- , hostProcessingPower is the processing power in MIPS of its hosts, and 
vmListSize is the number of VMs not allocated by the ant in any datacenter so far.

The information table contains both the estimation percentage of VMs that 
can be allocated and the weighted metric of the datacenter the ant is visiting. 
Besides, the ant adds to the table the weighted metric of other datacenters, 
which were added to the table when the ant visited these datacenters. For them, 
the ant performs a predefined number of steps, i.e., maxSteps, looking for the 
datacenter that allows both allocating at least the predefined percentage of VMs 
(vmPercentage parameter) as well as achieving the best balance between mon-
etary cost of their resources and communication latency intra-datacenter. At this 
level it is important to select datacenters with a lower latency because later, at 
the infrastructure level, latencies have a great influence when creating the VMs, 
and therefore, in the final makespan to the user.

Every time an ant moves from one datacenter to another it has two choices: 
moving to a random datacenter using a constant probability or searchRate 
through the randomlyChooseNextStep() method, or using the information table 
of the current datacenter (through chooseNextStep() method). The searchRate 
decreases with a decreaseRate factor as time passes, thus, the ant will be less 
dependent on random choice. Every time an ant visits a datacenter, it updates 
the datacenter information table with the information of other datacenters, but 
at the same time the ant collects the information already provided by the table 
of that datacenter, if any. The information table acts as a pheromone trail that 
an ant leaves while it is moving in order to choose better paths rather than 
wandering randomly in the federated Cloud. Entries of each information table 
are the datacenters that the ant has visited on their way to select the most suit-
able datacenter together with their weighted metric and percentage of VMs to 
allocate.

When the ant reads the table in a datacenter, it chooses the entry with the low-
est weighted metric, which also meets the predefined percentage of VMs to allo-
cate. If the weighted metric of the visited datacenter is smaller than any other 

vmPercentageEstimation =
resourcesAvailability∕hostProcessingPower

vmListSize
∗ 100,
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datacenter in the table and in addition it meets the percentage of VMs defined, the 
ant chooses the datacenter with the smallest weighted metric. On the other hand, 
if the weighted metric of the visited datacenter is equal to any datacenter in the 
table, the ant selects the datacenter which has lower latency, that is, the ant pri-
oritizes the makespan of the FPA. This process is repeated until step = maxSteps 
(finishing criterion). Finally, the ant invokes the infrastructure-level scheduler 
through VmScheduler(selectedDatacenter,vmList) method with the selected data-
center and the list of VMs to allocate. If the complete set of required VMs are not 
allocated in the selected datacenter, the ACOBrokerScheduler is executed again to 
select a new datacenter.

3.1.2  Scheduler Based on PSO

In this scheduler, a particle is initialized for finding the most suitable datacenter 
in which to allocate the VMs requested by an user for executing his/her FPA-
jobs. Analogously to the example based on nature described in Appendix A, 
each particle is considered a bee and each datacenter represent locations in the 
field with different density of flowers. A particle is created each time a data-
center is requested to allocate the user VMs. When a particle is created, it is 
initialized in a random datacenter, i.e., in a random place in the field. The den-
sity of flowers of each datacenter is determined both the estimation percentage 
of VMs that can be allocated and the weighted metric (which is calculated as in 
ACO) of the datacenter which the particle is visiting. This definition helps to 
search in the search space and try to balance both the monetary costs and the 
makespan. The smaller the weighted metric on a datacenter, the better the flow-
ers concentration. In addition, each time a particle visit a datacenter it check that 
the datacenter meets the percentage of VMs to allocate defined by the user. In 
the algorithm (see Algorithm 3), every time a datacenter is required, a particle is 
initialized in a random datacenter (getInitialDatacenter()). Each particle in the 
search space takes a position according to the weighted metric of the datacenter 
in which is initialized through the getWM(datacenterId) method. The weighted 
metric is calculated as well as ACO. The neighborhood of each particle is com-
posed by the remaining datacenters excluding the one in which the particle is 
initialized, i.e., the neighborhood represents other places in the field with differ-
ent flower concentration. The neighborhood of that particle is obtained through 
the getNeighbors(datacenterId,neighborSize) method. Each one of the neigh-
bors—datacenters—that compose the neighborhood are selected randomly until 
the neighborhoodSize parameter defined by the user is reached.
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In each iteration of the algorithm, the particle moves to the neighbors of its cur-
rent datacenter in search of a datacenter with the lowest weighted metric, and which 
also meets the percentage of VMs to allocate defined by the user. The velocity of 
each particle is defined by the weighted metric difference between the datacenter to 
which the particle has been previously assigned with respect to its other neighboring 
datacenters. If any of the datacenters in the neighborhood has a lower weighted met-
ric than the (randomly chosen) original datacenter, then the particle is moved to the 
neighbor datacenter with a greater velocity. Taking into account that the particles 
moved through datacenters of their neighborhood in search of a datacenter with the 
lowest weighted metric, the algorithm reaches a local optimum quickly. Thus, each 
particle makes a move from their associated datacenter to the neighbor which has 
the minimum weighted metric. If all its neighbors have a greater weighted metric 
than the associated datacenter itself, the particle is not moved from the current data-
center. Moreover, if the weighted metric of its neighbors is equal to the weighted 
metric of the particle associated datacenter, the particle selects the neighbor which 
has lower latency, that is, the particle prioritizes the makespan of the FPA, as in 
ACO. Finally, the particle calls the infrastructure-level scheduler with the selected 
datacenter and the list of VMs to allocate. If the total number of VMs are not allo-
cated in the selected datacenter, the PSOBrokerScheduler is executed again to select 
a new datacenter.
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3.1.3  Alternative Scheduler Based on GA

This algorithm is implemented at this level for comparative purposes with our 
schedulers based on ACO and PSO. In the algorithm, proposed in [23], the popula-
tion structure is represented as the set of datacenters. Each chromosome is an indi-
vidual in the population that represents a subset of the searching space. Each gene 
(field in a chromosome) is a datacenter, and the last field in this structure is the 
fitness field, which indicates the suitability of the datacenters in each chromosome, 
i.e., the fitness field indicates the result of the fitness function and it is calculated as 
the inverse of the accumulated weighted metrics of all datacenters that compose the 
chromosome. The weighted metric in each is datacenter is calculated in the same 
way as ACO and PSO.

A chromosome with higher fitness indicates that its associated set of datacenters 
has the most suitable datacenters to be selected. Each chromosome keeps combina-
tions of datacenters and its associated fitness. This fitness value is updated every 
time a datacenter is requested by a broker to indicate the suitability of the datacent-
ers in each chromosome.

In each generation, a new population P2 originated from the initial population P 
is formed by selecting chromosomes using a Roulette method, given a probability 
of selection proportional to the chromosome fitness. This P2 population is recom-
bined using a uniform crossover with the aim of exploring more possible datacenters 
with better fitness than the current selection. The evaluation step is done over the 
P2 population to update the fitness field of this new recombined population. Chro-
mosomes with low fitness in P are replaced by the better individuals in P2. Thus, 
the algorithm preserves the best individuals to increase the probability of a better 
selection. At the end of generations, two sorting steps are done: one local to provide 
a sorted list of datacenters in the chromosome with higher fitness, and a global sort, 
to provide a sorted list of individuals with better fitness. The selection will begin 
in the first datacenter of the first chromosome. If this datacenter is not suitable for 
allocating the percentage of VMs defined by the user, then the next datacenter in the 
chromosome with better fitness is selected.

3.2  Intra‑Datacenter Scheduler

To implement the infrastructure level policy, we use the ACO and PSO algorithms 
we previously proposed in [11]. Below we describe these algorithms and an alterna-
tive scheduler based on GA that we use at this level for comparative purposes to our 
proposal.

3.2.1  Scheduler Based on ACO

The scheduler at the infrastructure level is performed to find those hosts in the 
selected datacenter at the broker level that have availability to allocate VMs. 
Here, each ant works independently and represents a VM “looking” for the best 
host to which it can be allocated, i.e., an ant is initialized for each VM allocated 
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to the datacenter. A master table containing information on the load of each host 
is initialized. To do this, first, a list of all suitable hosts in which can be allocated 
the VM is obtained. In each iteration, the ant collects the load information of 
the host that it is visiting and adds this information to its private load history. 
The ant then updates a load information table of visited hosts, which is main-
tained in each host. This table contains information of the own load of an ant, 
as well as load information of other hosts, which were added to the table when 
other ants visited the host. Like in the ACO based broker algorithm, the load 
table of each host acts as a pheromone trail and it is useful to guide other ants 
to choose better paths. The load is calculated on each host taking into account 
the CPU utilization made by all the VMs that are executing on each host, i.e., 
load = numberOfExecutingVMs∕numberOfPEsInHost , where numberOfExecut-
ingVMs is the number of VMs that are executing in the host, and numberOfPEs-
InHost is the total number of cores in the host. This metric is useful for an ant to 
choose the least loaded host to allocate its VM.

When an ant moves from one host H to another it has two choices: moving to 
a random host using a constant probability or searchRate, or using the load table 
information of H. Again, the search rate decreases with a decreaseRate factor as 
time passes. This process is repeated until the finishing criterion, i.e., performing 
a predefined number of steps (maxAntSteps), is met. Due to the fact that the data-
centers have different numbers of hosts with each other, the maxAntSteps varies 
depending on the datacenter being explored. Specifically, the maxAntSteps param-
eter varies for each datacenter according to a user-defined percentage value. Finally, 
the ant delivers its VM to the current host and finishes its task. Besides, every time 
the ant allocate its associated VM, the total availability of the datacenter in which 
the VM is allocated is updated. In the same way, every time a VM finishes its task 
and is released, the total availability of the datacenter in which the VM is released is 
updated, thus increasing the overall availability of the datacenter.

Since each step by an ant involves moving through the intra-datacenter network 
to obtain information regarding the availability of the hosts from the selected data-
center, it incurs latencies. We have added a control to minimize the number of steps 
performed by an ant: every time an ant visits a host that has not allocated VMs yet, 
i.e., the host load is equal to zero, the ant allocates its associated VM to it directly 
without performing further steps. It is important to note also that although laten-
cies are minimized at this level, they have much less impact on the makespan than 
those produced inter-datacenter. The smaller the number messages sent to the hosts 
through the network, the smaller the impact of the latencies in the makespan given 
to the user, and therefore, a lower monetary cost (because of the pay-per-hour basis 
of Clouds). This control to minimize the number of steps performed by an ant favors 
sending less number of messages regardless the network topology of the datacenter.

3.2.2  Scheduler Based on PSO

In order to find the hosts that have availability to allocate VMs this algorithm is 
started. Similarly to the PSO at the broker level, each particle works indepen-
dently and represents a VM looking for the best host—in the previously selected 
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datacenter—to which it can be allocated. Following the aforementioned analogy at 
the broker level, in this algorithm each VM is considered a bee and each host repre-
sent locations in the field with different density of flowers. When a VM is created, a 
particle is initialized in a random host. The density of flowers of each host is deter-
mined by its load.

This definition helps to search in the load search space and try to minimize the 
load. The smaller the load on a host, the better the flower concentration. This means 
that the host has more available resources to allocate a VM. In the algorithm, for 
each VM requested by the user, a particle is initialized in a random host of the 
selected, i.e., in a random place of flower in the field. Each particle in the search 
space takes a position according to the load of the host in which is initialized. Load 
refers to the total CPU utilization within a host and is calculated as well as ACO. 
The neighborhood of each particle is composed by the remaining hosts in the data-
center excluding the one in which the particle is initialized, i.e., in the same way that 
at the broker level, the neighborhood represents other places in the field with differ-
ent flower concentration. The neighborhood of that particle is obtained randomly. 
Moreover, like the maxAntSteps parameter of ACO, in this algorithm the size of the 
neighborhoodHostsSize parameter varies depending of the datacenter which is being 
explored according to a predefined percentage value.

In each iteration of the algorithm, the particle moves to the neighbors of its cur-
rent host in search of a host with a lower load. The velocity v of each particle is 
defined by the load difference between the host to which the particle has been previ-
ously assigned with respect to its other neighboring hosts. If any of the hosts in the 
neighborhood is less loaded than the original host, then the particle is moved to the 
neighbor host with a greater velocity. Thus, each particle makes a move from their 
associated host to one of its neighbors, which has the minimum load among all. If 
all its neighbors are busier than the associated host itself, the particle is not moved 
from the current host. Finally, the particle delivers its associated VM to the host 
with the lower load among their neighbors and finishes its task.

Since each move a particle performs involves traveling through the intra-data-
center network, similarly to ACO, a control to minimize the number of moves that a 
particle performs have been added: every time a particle moves from the associated 
host to a neighbor host that has not allocated VMs yet, the particle allocates its asso-
ciated VM to it immediately. Again, although latencies are minimized at this level, 
they have much less impact on the makespan than those produced inter-datacenter.

3.2.3  Alternative Scheduler Based on GA

Similarly to the GA at the broker level, the population structure is represented as a 
subset of physical resources that compose the selected datacenter at the broker level. 
Again, each chromosome is an individual in the population that represents a part of 
the search space. Each gene (field in a chromosome) is a host in the datacenter, and 
the last field in this structure is the fitness field, which indicates the suitability of 
the hosts, i.e., the result of the fitness function and it is calculated as the inverse of 
the accumulated load of all hosts composing the chromosome. The load in each is 
host is calculated taking into account the number of VMs that are executing in it. A 
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chromosome with higher fitness indicates that its associated set of hosts has the most 
free cores to perform the current allocation. The chromosome selection mechanism 
as well as the steps of crossover and fitness evaluation are performed in the same 
way as the GA at the broker level.

3.3  VM Scheduler

Once the VMs have been allocated to hosts at the infrastructure level, the scheduler 
proceeds to assign the jobs to these VMs. The VMs were instantiated by the sched-
uler at the infrastructure level from the VM images supported (i.e., offered) by each 
datacenter which meet the requirements of memory, CPU, storage and bandwidth 
established by the user. The user is the one who indicates which are the characteris-
tics of the VMs that needs to instantiate at the moment of requesting the VMs to the 
Cloud. Concretely, the VMs are instantiated by the scheduler at the infrastructure 
level from the VM images supported by each datacenter and that meets the require-
ments of memory, CPU, storage and bandwidth established by the user. The user is 
the one who indicates which are the characteristics of the VMs that needs to instan-
tiate at the moment of requesting VMs to the federated Cloud.

At this level, the scheduling algorithm uses two lists, one containing the jobs that 
have been sent by the user, i.e., a FPA, and the other list contains all user VMs that 
are already allocated to a host and hence are ready to execute jobs. The algorithm 
iterates the list of all jobs and then, retrieves jobs by a FIFO policy. Each time a job 
is obtained from the list it is submitted to be executed in a VM in a round robin fash-
ion. Internally, the algorithm maintains a queue for each VM that contains its list of 
jobs to be executed. The procedure is repeated until all jobs have been submitted for 
execution using the allocated VMs. To ensure fairness, jobs within a VM waiting 
queue are executed one at a time by competing for CPU time with other jobs from 
other VMs in the same hosts.

4  Evaluation

To assess the effectiveness of our scheduler and constituting policies/techniques, we 
processed a frost prediction application (FPA) with data extracted from real sensors 
in the field. Broadly, the experimental methodology involved two steps. First, we 
executed a precision agriculture application in a single amazon instance by vary-
ing the number of sensor nodes to be processed, which allowed us to gather real job 
data, i.e., processing times and input/output file data sizes (see Sect. 4.1). By means 
of the generated job data, we instantiated the CloudSim simulation toolkit, which is 
explained in Sect. 4.2. Lastly, the obtained results regarding the performance of our 
proposal compared to some Cloud scheduling alternatives are reported in Sect. 4.3.
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4.1  Frost Prediction Application

The study of frosts prediction is of special interest in many places around the world 
[48], and in particular in the Province of Mendoza, Argentina [49]. The reason is 
because frosts are one of the main causes of crops damage in the region and gener-
ates large economic losses in agricultural production,3 mainly when they occur in 
spring season, affecting vineyards and fruit trees. In Mendoza, mainly adventive and 
radiation frosts occur, and while the first ones are predictable with traditional mete-
orological numerical models [1], the second ones are not.

Although frost happens every years, defense methods like heathers, sprinklers 
and wind turbines are used by farmers in order to minimize frost damage. Frost 
defense methods are activated by alarms generated by Frost Alarm Systems (FAS). 
FAS perform on-field data acquisition and data management. Moreover, FAS ensure 
production quality and guarantee crops traceability. The on-field data acquisition 
process can be performed using traditional instruments like thermometers, weather 
stations or Wireless Sensor Networks (WSNs) [3, 4]. Compared to traditional meas-
urement instruments and weather stations, WSNs have the advantage that they can 
cover extensive areas with low cost devices called sensor nodes. This advantage is 
of special interest for studying frosts, due to the dependence of this phenomenon 
with terrain characteristics like presence of weeds, trees or adjacency to mountains. 
Sometimes it has been observed the occurrence of frost only in a few hectares of the 
farm (such as those at the base of mountains) and in other hectares of the same farm 
(such as those surrounded by trees) the event was not observed.

For the purposes of this paper, we based our research on an FPA based on the 
method presented by Snyder and Melo-Abreu [1]. In order to perform the frost pre-
diction, the method takes temperature and humidity data—collected through a WSN 
and weather stations—and calculates and dew points in the days in which radiation 
frosts occurred. These days must belong to the month in which the prediction is per-
formed (regardless of the year). In addition, it is necessary that temperature, humid-
ity and dew points have been registered two hours after sunset in the prediction day. 
An example of the data collected format are provided in Appendix B.

Formally, the minimum temperature is calculated by the following multiple 
regression (MR) equation in 1:

where Tp is the minimum temperature to be predicted, To and D0 are the temperature 
and dew point, respectively, registered the same day of the frost prediction two hours 
after sunset, i is the MR intercept value. Finally, sT is the temperature slope and sD 
the dew point slope. The values of sT and i are calculated from the Eqs. 2 and 3, 
respectively.

(1)Tp = sT ∗ To + sD ∗ D0 + i ,

(2)sT =

∑

(Th0 − T̄h0)(Tm − T̄m)
∑

(Th0 − T̄h0)
2

,

3 Historical statistics can be found here (in Spanish): http://acovi .com.ar/obser vator io/wp-conte nt/uploa 
ds/2014/09/Ambie ntal5 .xlsx.

http://acovi.com.ar/observatorio/wp-content/uploads/2014/09/Ambiental5.xlsx
http://acovi.com.ar/observatorio/wp-content/uploads/2014/09/Ambiental5.xlsx
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where Th0 are historical temperatures registered two hours after sunset in the same 
month in which the frost prediction is performed, Tm is the minimum temperature 
that happened in those days, and n is the number of historical data. Finally, T̄h0 and 
T̄m are the average temperatures data. The dew point slope sD is calculated by using 
the Eq. 4:

where Dh0 are historical dew points two hour after sunset in the same month in 
which the frost prediction is performed and R the residuals. The parameters D̄h0 and 
R̄ are the average values of Dh0 and R, respectively. Finally, the residual is calculated 
with the expression: R = Tm − sT ∗ To + i.

The FPA was coded in Java. An MySQL database was used for storing both the 
WSN and weather stations data, and the obtained results after running the FPA. 
Moreover, the integration of WSN data with Cloud infrastructures was performed 
through a WSN-Cloud integration platform called Sensor Cirrus.4 Sensor Cirrus 
[50] manages the WSN data using Cloud services and includes the development 
of the FPA for data processing. Figure 2 illustrates a scheme of the FPA [51].

As can be seen in step (1) of Fig. 2, a database containing weather stations and 
sensors nodes data is generated. Next, in step (2), the FPA gets from the database the 
needed data to execute the frost prediction ( To , Do , etc.). Finally, in step (3) the FPA 
is executed in the Cloud resulting in the minimum temperature that will occur in the 
night (4).

4.2  CloudSim Instantiation

In this work, data have been collected through WSNs and weather stations instru-
mented in the field, in order to simulate a frost prediction in a region of the Prov-
ince of Mendoza, Argentina. For this purpose, a scenario in which 40 farms are 
instrumented has been modeled and simulated, each one of them with a different 
number of sensor nodes that vary between 10 and 1000 sensor nodes depend-
ing on the farm size (see Table  2). Then, in order to perform a prediction for 
each one of the farms, historical data (temperature, humidity and dew points) of 
50 days in which there have been frosts are considered. The historical data was 
obtained from the National Oceanic and Atmospheric Administration5 database 

(3)i =

∑

Tm − sT
∑

Th0

n
,

(4)sD =

∑

(Dh0 − D̄h0)(R − R̄)
∑

(Dh0 − D̄h0)
2

,

4 https ://senso rcirr us.com/.
5 http://www.noaa.gov/.

https://sensorcirrus.com/
http://www.noaa.gov/
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and collected through meteorological stations (see Appendix B). These 50 days 
must correspond the same month in which the prediction is performed (regard-
less the year), i.e., if the prediction is performed in July, historical data of 50 days 
with frost in July must be collected.

After gathering real data through the WSNs deployed in each one of the 
farms, we employed a single m1.large instance from Amazon EC2 to run the 
FPA with data from each one of the 40 farms. The reason why this instance type 
was chosen to set VMs in CloudSim is because in [50] was the instance which 
achieved the lowest makespan for executing different number of sensor nodes. 
Specifically, in [50] the experiments were performed in a real Cloud in order 
to find out which type of Amazon EC2 instance have better performance for 

Weather Stations and 
WSN database generation

FPA input data retrieval

FPA execution

Results sending

(1)

(2)

(3)

(4)

Weather Stations

User

Fig. 2  Frost prediction application: overview
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executing FPAs. The metrics measured in such work were the execution time and 
economic cost. The experiments consisted of executing the FPA with data from 
different number of sensors nodes in different types of Amazon EC2 instances 
(t1.micro, m1.small, m1.large, m1.xlarge and c3.xlarge), i.e., 40 FPA-jobs were 
executed in the different types of instances with data from10 to 1000 sensors 
nodes depending of the farm size. Once the FPA was executed, the shortest exe-
cution times and economic costs were obtained when executing the FPA in the 
m1.large instance.

The execution of 40 FPA-jobs (see Table  2) resulted in 40 input files (sen-
sor nodes data) and 40 output files (with frost prediction information). The test 
was solved using Sensor Cirrus [50]. Once the execution times were obtained, we 
approximated for each field frost prediction—or job—the number of executed CPU 
instructions by the following formula NIi = mipsCPU ∗ Ti , where NIi is the number 
of million instructions (MI) to be executed by, or associated to, a job i, mipsCPU is 
the processing power of the CPU of our real computer measured in MIPS, and Ti is 
the time that took to run the job i on the VM. We have used such measure (MIPS) 
because in CloudSim the processing power both of the physical machines and the 

Table 2  Real FPA-jobs execution times (in one VM) and lengths

FPA-job Id Number 
of sensor 
nodes in a 
farm

Execu-
tion time 
(s)

Length 
(MI)

FPA-job Id Number 
of sensor 
nodes in a 
farm

Execu-
tion times 
(s)

Length (MI)

1 10 44 221,324 21 100 463 2,313,542
2 10 47 233,880 22 100 430 2,152,085
3 10 55 273,556 23 100 659 3,294,133
4 10 64 321,629 24 100 617 3,084,405
5 20 104 519,922 25 200 851 4,254,854
6 20 135 676,868 26 200 1190 5,952,555
7 20 155 774,263 27 200 1054 5,269,906
8 20 146 729,481 28 200 858 4,289,475
9 30 119 596,530 29 400 1341 6,704,712
10 30 124 619,631 30 400 3192 15,962,055
11 30 138 690,664 31 400 1620 8,098,335
12 30 109 543,668 32 400 1498 7,490,760
13 60 276 1,379,523 33 800 2924 14,621,554
14 60 240 1,198,350 34 800 3094 15,468,715
15 60 226 1,129,402 35 800 3158 15,792,208
16 60 231 1,155,044 36 800 2642 13,212,840
17 80 261 1,306,605 37 1000 4763 23,818,010
18 80 329 1,646,019 38 1000 5516 27,579,553
19 80 281 1,405,579 39 1000 5050 25,251,201
20 80 268 1,338,041 40 1000 2979 14,894,086
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VMs must be configured in MIPS. As a consequence, the same must be done to 
configure jobs, which have associated a length expressed in MI. Subsequently, once 
the simulation is performed, the makespan of jobs is reported in seconds. Next is an 
example of how to calculate the number of instructions of a job that took 463 sec-
onds to execute. The VM (EC2 instance) where the experiment was executed had a 
processing power of 5000.21 MIPS. Then, the approximated number of instructions 
for the job was 2,313,542 MI (Million Instructions). Resulting jobs execution times 
for the 40 farms are shown in Table 2. Note that in a real-world scenario the overall 
execution time of a job n times in the same machine will not be exactly the same 
the n times. The reason is because the jobs executions times depend on the load 
state of the underlying resources at the moment they are executed. For this reason, 
in order to perform more realistic experiments, the real jobs execution times showed 
in Table 2 were randomly modified with a margin of variability between −0.20 and 
0.20% [52].

After gathering real job data, we instantiated the CloudSim toolkit [21], which is 
heavily used within the community to evaluate Cloud solutions. The experimental 
scenario consists of a federated Cloud composed of 10 heterogeneous datacenters. 
The network topology is defined using BRITE [53]. BRITE is a topology generation 
tool that provides a topology file used by CloudSim to define the different Cloud 
nodes that compose a commonly-found federation (i.e., datacenters, brokers) and the 
network connections among them. Each datacenter is composed of a different num-
ber of hosts which are not all dedicated, i.e., some of them are busy executing pre-
existing jobs in other VMs. In our scenario, each datacenter has already allocated a 
random number of VMs, which involve a percentage of busy hosts between 30 and 
80%, i.e., of the total datacenter availability. The characteristics of the the datacent-
ers and the machines that compose them are shown in Table 3. All hosts have an 
internal bandwidth of 1,000 Mbps. Moreover, a user requests 100 VMs to execute its 

Table 3  Cloud datacenters (DC) characteristics

DC # Hosts Latency (s) Monetary cost 
(hourly)

Hosts characteristics

Proc. power 
(MIPS)

RAM (GB) Storage Cores

D1 30 0.80 $1,11 7200 32 500 GB 8
D2 50 1.75 $1,42 9900 32 1 TB 6
D3 20 0.32 $0,19 8036 16 500 GB 8
D4 30 2.00 $1,22 7500 16 1 TB 8
D5 50 0.25 $1,32 7200 32 500 GB 8
D6 10 1.50 $0,35 4008 8 1 GB 4
D7 20 0.29 $0,17 5618 12 500 GB 6
D8 20 2.20 $0,73 5200 8 500 GB 4
D9 50 0.50 $0,13 6600 12 500 GB 8
D10 50 1.20 $1,57 7527 16 500 GB 8
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FPA-jobs. Each VM has the same characteristics as a m1.large instance of Amazon 
EC2 (5000 MIPS, 7.5 GB RAM, 100  GB image size and 2 CPU).

The number of instructions to be executed by each job (Length in Table 2) varies 
between 221,324 MI and 25,579,553 MI. Moreover, the experiments have input file 
and output file sizes of 1.6 MB and 2.03 MB, respectively.

In this work, we evaluated the performance of executing the frost prediction in an 
entire region as we increased the number of FPA-jobs—described in Table 2—to be 
performed. Specifically, for each region-specific frost prediction, we evaluated the 
performance of their associated FPA-jobs in the simulated Cloud as we increased 
the number of FPA-jobs to be executed, i.e., 40 ∗ i jobs with i = 25, 50,… , 250 . 
This is, the base job set comprising 40 farms (showed in Table 2) were cloned to 
obtain larger sets, i.e., regions composed of a greater number of farms. Therefore, 
the base FPA-jobs set to perform varies between 1000 and 10,000.

4.3  Performed Experiments

Next we report the results when executing the FPA in an entire region, which means 
the prediction of the FPA-jobs in the simulated federated Cloud. Execution is han-
dled using our three-level scheduler and two GA-based alternative schedulers both 
for selecting datacenters and assigning VMs to hosts. Due to their high CPU require-
ments, the jobs that are waiting to be executed in a VM are executed one at a time 
by competing for the CPU time with other jobs from other VMs that are allocated 
in the same physical machine. In other words, a time-shared CPU scheduling policy 
was used at the datacenter level, which ensures fairness. Particularly, we study/com-
bine the two SI-based policies for selecting datacenters at the broker level discussed 
in Sects. 3.1.1 and 3.1.2, and the policies for mapping VMs to hosts described in 
Sects.  3.2.1 and 3.2.2 while comparing them against GA [23] (see Sects.  3.1.3 
and 3.2.3).

In our experiments both at the broker and infrastructure levels, the specific-
parameter of each algorithm (e.g., neighborhoodSize and neighborhoodHostSize in 
PSO, maxSteps and maxAntSteps in ACO and chromosomeSize in GA), has been 
configured so as to explore up to 60% of the number of datacenters—neighborhood-
Size and maxSteps—and the number of hosts of each datacenter—neighborhood-
HostSize and maxAntSteps—, i.e., the value of the specific-parameter is equals to 6 
when the number of datacenters is equal to 10 and is equal to 12 when the number 
the host at the infrastructure level is equal to 20. Furthermore, in the ACO algo-
rithms we have set the mutation rate and decay rate parameters with values equal to 
0.6 and 0.1, respectively, and the GA population size equals 100. In [23] the authors 
have set the chromosome size equal to the number of hosts, but in this paper we have 
reduced this number in order to reduce network consumption and being fair to GA 
with respect to ACO and PSO. Finally, the vmPercentage parameter has been set to 
60%, i.e., each selected datacenter by an ant should be available to allocate at least 
60% of the requested VMs by the user. For simplicity, from now on, we will refer 
to policies at the broker level as BPSO, BACO, BGA in order to differentiate them 
from schedulers at the infrastructure level. In all cases, the competing policies both 
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at the broker level and the infrastructure level were also used in conjunction with the 
VM-level FIFO-based policy for handling jobs within VMs.

Figure  3 illustrates the makespan results when executing the FPA described in 
Sect.  4.1. Moreover, each one of the subfigures in Fig.  3 compare the makespan 
for each one of the policies implemented at the broker level (BPSO, BACO, BGA) 
and all the considered scheduling algorithms at the infrastructure level (PSO, ACO, 
GA), respectively. Below we show how each one of the scheduling levels (broker, 
infrastructure and VM) have influenced the performance metrics.

As can be seen in Fig. 3a our BPSO algorithm is the one that delivers the low-
est makespan to the user with respect to BACO and BGA. The lowest makespan is 
obtained when BPSO is combined with PSO at the infrastructure level. The low-
est makespan is equal to 202.02 and 1456.96 minutes when the number of jobs to 
be executed is 1000 and 10,000, respectively. In the second place is BPSO com-
bined with ACO, whose makespans are equal to 216.07 and 1535.33 minutes when 
the number of jobs is increased from 1000 to 10,000, and in the third place is 
BACO combined with PSO (see Fig. 3b), whose makespans vary between 262.76 
and 1935.57 minutes when the number of jobs are 1000 and 10,000, respectively. 
This happens because most VMs are allocated in datacenters with lower latencies, 
and therefore they have less influence in the completion time—makespan—when 
PSO, ACO and GA—at the infrastructure level—send network messages to the 
hosts to inquire about their availability. Besides, since all the broker schedulers con-
sider both network latencies and the percentage of VMs that can be allocated in a 

Fig. 3  Makespan as the number of FPA-jobs increases. a BPSO-based broker, b BACO-based broker, c 
BGA-based broker
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datacenter, they avoid to explore datacenters with lower latency but which can allo-
cate few VMs. It is desirable to avoid exploring datacenters with limited availability 
of resources because such searches involve making use of network resources and 
therefore, a greater number of latencies influence the overall execution time of the 
application.

Table  4 shows the average gain of using the combination of BPSO-PSO—the 
policies through which the lowest makespan was obtained—regarding BACO and 
BGA combined with PSO, ACO and GA—the competing meta-heuristic algorithm 
considered in this work at the infrastructure level—. The makespan average gains 
are calculated as in equation 5, where FPAbaseSet is equals to 40 jobs—40 instru-
mented farms—and i = 25, 50,… , 250 ; and makespan (BrokerS-InfrastructureS) is 
the combination of the schedulers at the broker level with the schedulers at the infra-
structure level (e.g., BACO-PSO, BACO-ACO, etc.).

As can be seen, the best average gains of BPSO-PSO—48.18% and 51.88%—are 
obtained regarding BACO-GA and BGA-GA, respectively. It is important to note, 
however, that the use of BPSO-PSO yield also important gains w.r.t. BACO-PSO, 
BACO-ACO, BGA-PSO and BGA-ACO, whose gains around 25% and 33%.

Secondly, among all the algorithms implemented at the infrastructure level and 
regardless the policy used at the broker level, Fig. 3a–c show that the described PSO 
and ACO performed rather well compared to GA regarding the makespan, being 
PSO the algorithm that achieves the best performance. At this level, each algorithm 
sends a different number of messages to the hosts to query about their availability 
and allocate the VMs. With respect to PSO and ACO, they make less use of network 
resources than GA, being PSO the one which sends less network messages. The 
number of messages to send both by PSO and ACO depends of the neighborhood-
HostSize and the maxAntSteps parameters, respectively, i.e., the maximum number 
of moves that a particle/ant performs to allocate its associated VM, which is equal 
to the 60% of a datacenter size. It is important to note that, when PSO and ACO 
find an idle host, they allocate the current VM and immediately stop hosts explora-
tion. This action reduces the total number of messages sent through the network, and 
therefore, the total latencies which influence the overall makespan. Finally, GA is 
the algorithm that produces the greatest makespan in all cases. Since GA contains 

(5)

makespanGain

=

[

∑

j=FPAbaseSet∗i

(makespanj(BrokerS − InfrastructureS) − makespanj(BPSO − PSO)

(makespanj(BrokerS − InfrastructureS))

]

/

10

Table 4  Average gains of using the combination BPSO-PSO w.r.t. BACO and BGA (0-100%)

BACO BGA

PSO (%) ACO (%) GA (%) PSO (%) ACO (%) GA (%)

BPSO-PSO 24.67 25.79 48.18 31.82 33.48 51.88
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a population size of 100 and the chromosome sizes are of 60% of a datacenter size, 
to calculate the fitness value, the algorithm sends one message for each host of the 
chromosome to know its availability and obtain the chromosome containing the best 
fitness value. The number of messages sent by GA depends on both the number of 
host within each chromosome and the population size.

The reason why, regardless of the policy used at the broker level, PSO provides 
the shortest makespan, it is because this algorithm does not repeat the visited hosts 
in each allocation of a VM. As we explained in Sect. 3.2.2, each particle visits each 
one of the hosts in its neighborhood, which are different from each other, looking for 
the host with the lowest load. This increases the chances of PSO of finding a host 
with load equals to zero, thereby reducing the total number of moves to perform. 
Moreover, in the ACO algorithm there is the possibility that an ant visits some hosts 
more than once, thereby reducing the total number of different visited hosts. This is 
because ACO uses a random function in the early steps to choose the host to which 
it performs the movement. This random function may force the ant to repeat visiting 
a host when moving from one host to another.

Complementary, Fig.  4 summarizes the relative makespan reduction regarding 
the worst competitor—GA—as the number of jobs is increased and for all schedul-
ers at the broker level. Besides, due to the fact that the PSO and ACO makespan 
results are very close, Table 5 shows the obtained gains of using PSO and ACO at 
the infrastructure level with respect to GA as the number of jobs increase. As can be 
seen, the greatest gains are obtained when BPSO is used, being PSO the scheduler 
which achieves the best gains. Concretely, the gain of BPSO-PSO with respect to 

Fig. 4  Relative makespan reduction regarding GA. a BPSO-based broker, b BACO-based broker, c 
BGA-based broker
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BPSO-GA yielded as a result 63.13% when the number of jobs is equal to 1,000. In 
the second place is BPSO-ACO, whose gains with respect to BPSO-GA yield as a 
result 59.93%. Note that the larger the number of jobs to be executed, the lower the 
impact of the latencies in the makespan, and therefore, the lower gains. The reason 
is because the latencies are set at the moment of creating the virtual infrastructure.

Due to the fact that our aim is to reduce both the makespan and monetary cost, in 
Fig. 5 it can be seen that important monetary cost reductions are also obtained when 
we use first, the BPSO-PSO and second, the BPSO-ACO schedulers. The reason is 
because, as we show above, the selection of datacenters with lower latencies pro-
duce important improvements in the makespan, and therefore, important reduction 
in monetary costs. Due to Cloud VMs are leased per execution hour, the monetary 
costs are closely related to the application’s makespan. Particularly, Figs. 4b and 5a, 
c illustrate the monetary costs by each one of the schedulers implemented at the bro-
ker level. As shown in all the subfigures, regardless of the policy used at the broker 
level, PSO is the algorithm that produces the lower monetary cost to the user with 
respect to ACO and GA. Particularly, the lowest monetary cost is obtained when 
BPSO is combined with PSO as well as the makespan. The lower the makespan 
the lower the monetary cost for the user. Similarly to the makespan, the average 
gains obtained by BPSO-PSO regarding BGA-GA and BACO-GA are 47.40% and 
50.48%, respectively. Moreover, the use of BPSO-PSO yield also gains w.r.t. BACO-
PSO, BACO-ACO, BGA-PSO and BGA-ACO, with gains between 24% and 36%. 
This average gains means that our proposed scheduler achieves a greater effective-
ness and system reactivity when executing the FPA, i.e., it allows to obtain the frost 
predictions in a lower time and at a lower cost. Obtaining the frost predictions in a 
low time is important due to the fact that it allows the farmers to be alerted as soon 
as possible to a possible frost phenomenon. Reducing costs is important because it 
would also allow farmers to instrument their farms with a greater number of sensors 

Table 5  Makespan Gains of using PSO and ACO w.r.t. GA (0–100%)

Number of 
FPA-jobs

BPSO BACO BGA

Gains PSO 
w.r.t. GA

Gains ACO 
w.r.t. GA

Gains PSO 
w.r.t. GA

Gains ACO 
w.r.t. GA

Gains PSO 
w.r.t. GA

Gains ACO 
w.r.t. GA

1000 63.13 59.93 57.91 56.14 54.63 50.00
2000 48.62 47.06 46.47 41.90 45.21 40.22
3000 41.54 39.20 38.44 35.23 37.93 33.53
4000 36.47 34.64 33.06 31.90 31.95 29.44
5000 32.38 31.31 30.67 28.79 29.92 26.65
6000 28.81 27.98 26.56 22.97 25.68 20.71
7000 24.40 23.98 22.39 19.83 21.82 18.82
8000 22.20 21.16 19.36 16.91 18.58 14.80
9000 21.83 18.46 20.23 16.56 19.78 14.02
10,000 19.42 14.94 18.11 13.60 16.50 11.72
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nodes. A greater number the sensors nodes would allow either to achieve a more 
accurate prediction or to extend the surface of the field to be installed.

5  Conclusions

Federated Clouds [10] potentially provide plenty of resources to users, specially 
when the number of VMs required by a user exceeds the maximum capacity that 
can be provided by a single provider or datacenter. Then, broker/VM/job scheduling 
plays a fundamental role since it is basically NP-complete [13], and thus many vari-
ants based on approximation techniques have been proposed. In our view, in feder-
ated Clouds, scheduling should be performed at three levels (broker, infrastructure 
and VM) [11], making the problem even more challenging compared to other dis-
tributed environments.

SI-inspired algorithms have received increasing attention in the Cloud research 
community for dealing with a large number of optimization problems, such as 
Cloud scheduling [15, 30]. SI refers to the collective behavior that emerges from 
a swarm of social insects. Social insect colonies collectively solve complex prob-
lems through intelligent emergent behavior. Historically, researchers have proposed 
algorithms exploiting this idea for solving a variety of combinatorial optimization 
problems. Moreover, scheduling in Clouds is a combinatorial optimization prob-
lem, and many schedulers based on SI, particularly ACO and PSO, have been pro-
posed. Basically, researchers have introduced changes to the traditional bio-inspired 

Fig. 5  Monetary cost as the number of FPA-jobs increases. a PSO-based broker, b ACO-based broker, c 
GA-based broker
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techniques to achieve different Cloud scheduling goals [15]. However, to the best of 
our knowledge, existing efforts do not address in general federated Clouds where the 
different providers/datacenters geographically distributed are selected through these 
strategies.

Therefore, in this work we have presented a three level Cloud scheduler based on 
SI for the efficient execution, in terms of the makespan and monetary cost, of FPAs 
on federated Clouds. The novelty of this scheduler is the inclusion of SI at broker 
level. Concretely, the scheduler includes at the broker level two policies—BPSO and 
BACO—that consider network information, monetary costs and resources availabil-
ity of datacenters. Then, at the infrastructure level, the policies at the broker level 
are also combined with two bio-inspired strategies—based on ACO and PSO—for 
the efficient allocation of VMs in the hosts of a selected datacenter. Finally, at the 
VM level, through a FIFO policy, jobs are assigned to the allocated VMs. Simu-
lated experiments performed with CloudSim and real FPA job data suggest that our 
bio-inspired three-level scheduler provide a better balance between makespan and 
monetary cost to the user regarding GA. Particularly, when PSO, ACO and GA are 
combined with BPSO, the makespan and monetary cost are the lowest w.r.t. BACO 
and BGA being BPSO-PSO the lowest among them. Particularly, when PSO, ACO 
and GA are combined with BPSO, the makespan and monetary cost are the low-
est w.r.t. BACO and BGA being BPSO-PSO the lowest among them. Average gains 
range from approximately 10% and 32%.

We are extending this work in several directions. We will explore the ideas 
exposed in this paper in the context of other bio-inspired techniques such as Artifi-
cial Bee Colony (ABC) [54, 55], which is also extensively used to solve combinato-
rial optimization problems. Another issue to consider is enhance the scheduler with 
dynamic optimization capabilities, enabling the dynamic reallocation (migration) of 
VMs from one host to another. The migration of VMs might allow to meet a spe-
cific optimization criteria such as reduce the number of hosts in use for minimiz-
ing energy consumption or balance the workload of all resources to avoid resources 
saturation and performance slowdown.

An aspect that deserves special attention is to incorporate other types of scientific 
experiments. Some examples of applications that could benefit from being executed 
in Clouds are scientific workflows. Scientific workflows applications [52, 56, 57] 
are common in areas such as bioinformatics, earthquake science, and astronomy, 
and its main feature is based on the jobs are executed according to their dependen-
cies, and besides, the jobs have the characteristic of being not only CPU intensive 
but also data intensive. Data intensive computing [58] is a type of parallel com-
puting application which typically processes terabytes or petabytes of data and it is 
often referred to as Big Data. This application types devote most of their processing 
time to I/O and manipulation/movement of data. Due to the fact that these applica-
tions require the transfer of large volumes of data, it is important to develop new 
scheduling strategies at the broker level that not only consider the latency of data-
centers in which jobs will be executed, but also their bandwidths. This will provide 
excellent research opportunities for new schedulers based on SI-based optimization 
techniques.
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In addition, in order to improve the performance of the proposed scheduler it is 
also important to extend the use of bio-inspired algorithms to the VM level. In the 
FPA used in this work, the execution of a job corresponds to the frost prediction in 
a farm, and moreover, each farm is instrumented with different number of sensors 
nodes (depending on the farm size). The greater the number of sensor nodes a farm 
has, the greater amount of data to be processed to predict the frost and, therefore, the 
greater the execution time and monetary cost to execute each job. Implementing bio-
inspired strategies that have information about the jobs sizes would allow a better 
search of a suitable VM to execute each job, and as a consequence, it could greatly 
help improve the overall performance of the FPA. At this level we plan to explore 
both ACO and PSO as well as other SI-based algorithms such as ABC or Artificial 
Fish Swarm Algorithm (AFSA) [59].

Finally, we plan to explore other types of network topologies approaching real-
life Cloud scenarios, such as fat-tree and leaf-spine. However, for this type of topol-
ogies to be included it is necessary to completely redesign the scheduling algorithms 
so that they are able to route the different nodes. Moreover, for evaluation purposes, 
we could explore FTCloudSim [60], an extension to CloudSim that in principle sup-
ports fat-tree datacenter topologies.
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Appendix A: Swarm Intelligence Techniques

SI [61] bases on studying collective behaviors that emerge from interactions between 
individuals and the environment which they live in to solve optimization problems. 
Examples of systems in which SI inspires are ants colonies, fish schools, birds 
flocks, and herds of land animals, where the whole group of individuals perform a 
desired task (i.e., feeding), which might not be made individually. For example, an 
ant is relatively unintelligent, but when it is part of a colony, some behaviors emerge 
from the interactions between ants, such as searching for food. Moreover, an indi-
vidual fish makes dynamic decisions to swim in one direction or another but only 
up to a certain point. If there are several fishes, when the first fish swims near a food 
source, the other fishes will listen to the first fish instead of following other instincts.

According to M. Dorigo and M. Birattari [62], in an SI system (a) there are many 
individuals, (b) the individuals are relatively homogeneous, i.e., they are either all 
identical or they belong to a few typologies, (c) the interactions among the individu-
als are based on simple behavioral rules that exploit only local information that the 
individuals exchange directly or via the environment, and (d) the overall behavior of 
the system results from the interactions of individuals with each other and with their 
environment, i.e., the group behavior self-organizes.

The following subsections briefly describe the most popular SI techniques—i.e., 
ACO and PSO—that are widely used in job scheduling problems such as the one 
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addressed in this paper. This appendix has been partially extracted from a paper of 
our own [15].

Ant Colony Optimization

The ACO algorithm [63] arises from the way real ants behave in nature. An interest-
ing aspect of this behavior is how ants manage to locate short paths to reach a food 
source from their nest. The ACO algorithm can solve computational problems since 
the algorithm has the ability to reduce paths and precisely to find the shortest paths. 
In nature, ants move randomly from one place to another to search for food. On the 
return to its nest each ant leaves an hormone—called pheromone—that lures other 
working ants to the same course. When more and more ants choose the same path, 
the pheromone trail is intensified and even more ants will further choose it. Over 
time the shortest paths will be intensified by the pheromone faster. That is because 
the ants will both reach the food source and travel back to their nest at a faster rate. 
Furthermore, if over time ants do not follow a certain path, its pheromone trail evap-
orates. From an algorithmic point of view, the pheromone evaporation process is 
useful for preventing the convergence to a local optimum solution.

Figure 6 shows two possible nest-food source paths. Figure 6a shows that ants 
will move randomly at the beginning and choose one of the two paths. The ants that 
follow the faster path will naturally get to the objective before other ants, and in 
doing so the former group of ants will leave a pheromone trail. Moreover, the ants 
that perform the round-trip faster, strengthen more quickly the quantity of phero-
mone in the shorter path (see Fig. 6b). The ants that reach the food source through 
the slower path will find attractive to return to the nest using the faster path. Eventu-
ally, most ants will choose the left path as shown in Fig. 6c.

ACO employs artificial pheromone trails that play the role of information that is 
dynamically updated by ants to reflect their accumulated experience in contribut-
ing to solve an entire problem. In practice, to optimize job scheduling problems, 
the ACO algorithm is mapped to graphical representations, usually graphs. A graph 
for example may include jobs and executing physical resources or machines (nodes) 
and scheduling decisions (arcs). Each job can be carried out by an ant to search for 
machines with available computing resources.

Fig. 6  Adaptive behavior of ants
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Particle Swarm Optimization

PSO [64] mimics the behavior of natural processes from animals such as birds and 
insects such as bees. In PSO the general term “particle” is used to represent birds, 
bees or any other individuals who exhibit social and group behavior. Suppose a 
group of bees flies over the countryside looking for flowers. Their goal is to find as 
many flowers as possible. At the beginning, bees do not have knowledge of the field 
and fly to random locations with random velocities looking for flowers. Each bee 
has the capability of remember the places where it saw more flowers, and moreover, 
somehow knows the places where other bees have found a high density of flowers. 
These two pieces of information—nostalgia and social knowledge—are used by the 
bees to continually modify their trajectory, i.e., each bee alters its path between the 
two directions to fly somewhere between the two points and find a greater density of 
flowers.

A bee may fly over a place with more flowers than it had been found by any bee 
in the swarm. The whole swarm would then be drawn toward that location by con-
sidering the bees own individual discovery. In this way the bees explore the field 
by overflying locations with the greatest flower concentration and then being pulled 
back toward them. Constantly, they are checking the territory they fly over against 
previously found locations of highest concentration hoping to find the absolute high-
est concentration of flowers. Eventually, the process leads all bees to the one single 
place F in the field with the highest concentration of flowers. After that, bees will 
be unable to find any points of higher flower concentration, so they will be always 
drawn back to F. This social behavior is shown in Fig. 7.

When used to model job scheduling, a PSO algorithm instantiation consists of 
particles, each maintaining one potential solution to the entire scheduling problem. 
The design of the representation of a particle is different for each type of problem. 

Fig. 7  PSO modeling using as example the movement of a bees swarm on a flowers field. a Bees are 
attracted to areas of highest concentration of flowers found by each individual, b bees are attracted to the 
area with the highest flowers concentration of the whole swarm
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An example of how to represent particles when modeling the job scheduling prob-
lem is placing the position of a particle in an n-dimensional search space. Each 
dimension i is the job to schedule, and the corresponding value represents the 
machine in which a job can be allocated. Furthermore, the global best position will 
indicate the best possible schedule.

Appendix B: Data Information from Weather Stations and Sensor 
Nodes

Table  6 illustrates the data structure used for running the FPA. This data were 
extracted from a raw dataset provided by the National Oceanic and Atmospheric 
Administration6 database. The dataset contains 10 years of atmospheric data (from 
2003 to 2013) that correspond to the the weather station of the Plumerillo Airport, 
Mendoza. Atmospheric data are expressed in METeorological Aerodrome Report 
(METAR) format. METAR format is commonly used by pilots in pre-flight weather 
briefing and by meteorologists for weather forecasting.

In the Table  6, the first five columns show the acquisition time data including 
year, month, day, hour and minute, respectively. Column six indicates cloud cover-
age (in METAR notation) and columns seven and eight indicate the temperature and 
humidity levels, respectively.

Table 6  Weather station data used for the FPA

Sensors Data

Year Month Day Hour Minute Cloud coverage Temperature Humidity

2003 3 5 6 0 OVC 24 57
2003 3 5 7 0 OVC 22 59
2003 3 5 8 0 BKN 22 59
2003 3 5 9 0 BKN 23 51
2003 3 5 10 0 BKN 22 52
2003 3 5 11 0 BKN 22 57
2003 3 5 12 0 BKN 23 57
2003 3 5 13 0 BKN 23 57
2003 3 5 14 0 BKN 23 57
2003 3 5 15 0 BKN 25 57
2003 3 5 16 0 BKN 25 56
2003 3 5 17 0 BKN 24 56
2003 3 5 18 0 BKN 22 56
2003 3 5 19 0 SCT 21 61
2003 3 5 20 0 SCT 22 59

6 http://www.noaa.gov/.

http://www.noaa.gov/
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Table 7 details METAR cloud coverage notation which is reported by the number 
of “oktas” (eighths) of the sky that is occupied by clouds. First column indicates the 
METAR abbreviation and the second column represents the abbreviation descrip-
tion. For example, in the first row of Table  6, OVC indicates that on 5/3/2003 at 
06:00 am, the sky was overcast, i.e., with full cloud coverage. Regarding okta, this is 
a unit of measurement to describe the amount of cloud coverage at any given loca-
tion, e.g., five oktas are equal to five octaves of the sky covered with clouds.
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