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Abstract

The aim of this work was to study the effect of a high sodium (HS) diet on blood pressure

and renal function in male adult rats that have been treated with a dual Endothelin receptor

antagonist (ERA) during their early postnatal period (day 1 to 20 of life). Male Sprague-Daw-

ley rats were divided in four groups: CNS: control rats with normosodic diet; ERANS: ERA-

treated rats with normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-

treated rats with HS diet. Systolic blood pressure (SBP) was recorded before and after the

diet and 24-hour metabolic cage studies were performed. AQP2 and α-ENac expressions

were measured by western blot and real time PCR in the renal medulla. Vasopressin (AVP)

pathway was evaluated by measuring V2 receptor and adenylyl cyclase 6 (AC6) expression

and cAMP production in the renal medulla. Pre-pro ET-1mRNA was also evaluated in the

renal medulla. Only rats that had been treated with an ERA during their postnatal period

increased their SBP after consumption of a HS diet, showing an impaired capacity to excrete

sodium and water, i.e. developing salt sensitivity. This salt sensitivity would be mediated by

an increase in renomedullary expression and activity of AQP2 and α-ENaC as a conse-

quence of increased AC6 expression and cAMP production and/or a decreased ET-1 pro-

duction in the renal medulla. The knowledge of the molecular mechanisms underlying the

perinatal programming of salt sensitive hypertension will allow the development of repro-

gramming strategies in order to avoid this pathology.
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Introduction

The developing embryo and/or fetus is highly sensitive to perturbations of the maternal envi-

ronment. Adverse environmental factors (nutritional factors, physiologic or psychological

stress, endocrine imbalance, ingestion or exposition to drugs among others) can disturb the

processes of cell proliferation and differentiation, leading to changes in the normal develop-

mental pathways of mature organs and tissues [1–3]. The developing organs can mount an

adaptive response in order to ensure survival and the maintenance of critical functions of the

tissues. However, these adaptive responses may represent an increased risk for diseases later in

life; a process known as “Disease programming” [3]. The double hit hypothesis proposes that a

genetic or environmental first hit during critical periods of development makes an individual

more susceptible to a second hit later in life [4].

Bearing in mind that renal development in rodents continues along the early postnatal

period, not only the fetus is at a risk for developmental disease programming, but also the neo-

nate. Endothelin (ET) has a relevant role during embryonic development since KO animals for

any component of ET system have a lethal phenotype [5–8]. However, the role of ET system

during the postnatal period is not completely understood. We have shown previously that the

inhibition of ET system in the rat with a dual ET receptor antagonist (ERA) during the early

postnatal period affects both renal structure and function, decreasing the number of glomeruli,

the juxtamedullary filtration surface area and the glomerular filtration rate and increasing the

proteinuria, being these effects more pronounced in male rats [9]. It is widely accepted that a

reduced glomerular number predisposes to hypertension and to kidney disease in the adult-

hood [10–12]. Brenner and colleagues postulated that reduced filtration surface area associ-

ated with a low nephron number would lead to sodium retention and development of systemic

hypertension as a compensatory response to maintain sodium homeostasis [10, 13, 14].

The final control of sodium and water reabsorption takes place in the collecting duct (CD)

through the amiloride-sensitive epithelial sodium channel (ENaC) and aquaporin-2 (AQP2)

water channel respectively [15]. Both transporters are regulated by vasopressin (AVP) through

V2 receptors [16]. Considering that ENaC is responsible for the fine-tuning of sodium reab-

sorption in the last nephron segment, the role of this channel in sodium reabsorption in the

kidney is critical to maintain sodium and volume homeostasis and to control arterial blood

pressure [17–20]. Excessive AVP-dependent ENaC stimulation could be a risk factor for

sodium retention, leading to an increase in blood pressure [21].

ENaC expression and activity is tightly regulated by both aldosterone- dependent and aldo-

sterone-independent mechanisms [22, 23]; endocrine as well as local autocrine and paracrine

factors play a critical role in the modulation of ENaC, such as ET and purinergic system [17,

24]. Mice with CD-specific knockout for ET-1 are hypertensive and had reduced sodium

excretion in response to sodium loading [25]. ET-1 inhibits AVP action at both cortical and

medullary CD level, being this effect mediated, at least in part, by PKC-sensitive inhibition of

adenylyl cyclase (AC) activity [26–28]. Moreover, CD-specific knockout of ET-1 resulted in

increased sensitivity to the hydroosmotic and cAMP-stimulating effects of AVP [29] and is

associated with an increase in AC6 protein abundance [27], the protein that mediates AVP-

stimulated ENaC activity in the kidney [30].

On these bases, the aim of this work was to study the effect of a high sodium diet in adult

rats that have been treated with a dual ERA during their early postnatal period (day 1 to 20 of

life). Our hypothesis was that the renal alterations produced by ET system inhibition during

the postnatal period predispose to hypertension during adulthood, especially after a second

adverse impact, in this case a high sodium diet. This salt sensitivity would be mediated by an

increased expression and/or activity of AQP2 and α-ENaC in the animals treated with an ERA
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during their early postnatal life as a consequence of an exacerbated AVP pathway and/or a

decreased renal medullary ET production.

Materials and methods

Animals and treatments

Sprague Dawley (SD) rats were purchased from the School of Pharmacy and Biochemistry

from the University of Buenos Aires. Protocols were designed according to the National Insti-

tutes of Health Guide for the Care and Use of Laboratory Animals, the American Physiological

Society “Guiding Principles in the Care and Use of Animals” and to the 6344/96 regulation of

Argentinean National Drug Food and Medical Technology Administration (ANMAT) and

were approved by the Institutional Committee for Use and Care of Laboratory Animals from

the School of Pharmacy and Biochemistry (Cudap N˚78096/18; Res D 1388). All rats were

housed in rooms with controlled temperature (24˚C) and 12 h. dark-light cycle. Food and

water were supplied ad libitum. Adult female SD rats (approx. 250 g body weight) were mated

by exposure to a fertile SD male during 1 week. After birth, litter size was fixed in 10±1. Litters

with less than 9 pups were excluded. Newborn rats were treated daily from postnatal day 1 to

postnatal day 20 with vehicle (distilled water) or with Bosentan (Actelion, 20 mg/kg/day), a

dual ERA, which was administered orally with a micropipette. Blockade of ET receptors was

performed during the first 20 days of life, comprising all the lactation period, since in rats

growth and maturation of the kidney also continue after the completion of nephrogenesis and

it has been considered that nephrons reach terminal differentiation at the time of weaning [9].

After weaning, the animals were allowed to grow up to 65–70 days old and at that point

they received a normal sodium diet (NS; 0,3% ClNa) or a high sodium diet (HS; 8% ClNa)

[31–33] for 8 days. In this study we will only show results corresponding to male groups, so, 4

groups were conformed: CNS: control rats with normosodic diet; ERANS: ERA-treated rats

with normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with

high sodium diet.

Food and water consumption was measured daily. Arterial blood pressure was determined

before and after the administration of the diets. At the end of the experiment the animals were

anesthetized with ketamine/xylacine (100 and 10 mg/kg respectively), blood samples were

obtained by cardiac puncture, and the kidneys were immediately excised, weighed and

processed.

Determinations in the 24-hour metabolic cage studies

Twenty four-hour urine samples were collected using metabolic cages. Animals were allowed

to acclimatize to metabolic cages for two days and then fasted for 24 h before the collection of

urine. Urine samples were analyzed for total protein using a kit provided by Wiener (Proti U/

LCR; Wiener Lab., Rosario, Argentina). Urinary and plasmatic sodium and potassium concen-

trations were evaluated using an ion analyzer (Tecnolab; Mod T-412). Kinetic determinations

of serum and urinary creatinine concentrations were evaluated using a kit provided by Wiener

(Wiener Lab., Rosario, Argentina). Urine volume was measured gravimetrically.

Determination of systolic blood pressure

Systolic BP was recorded by triplicate before and after the administration of the normosodic

or high sodium diet in conscious rats by tail plethysmography (ADInstruments PowerLab 8/

30 and NIBP Controller ML125).
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Histological and histochemical evaluation

The left kidneys were decapsulated and cut longitudinally, fixed in phosphate buffered 10%

formaldehyde, pH 7.4, embedded in paraffin wax and cut to a thickness of 5μm. Renal tissue

sections were stained with hematoxylin and eosin (H-E) for histological evaluation.

Kidney sections were subjected to Masson’s trichrome and Sirius red staining to determine

the presence of early fibrosis. At least ten fields of each renal zone from three animals of each

group were analyzed.

Histochemistry. Masson´s trichrome staining. Masson’s trichrome staining was carried

out and the proportion of blue-stained fibrotic area in the different renal zones of each section

was graded semiquantitatively (0:�5%, 1: 5% to 25%, 2: 25% to 50%, 3: 50% to 75%, 4:�75%).

These examinations were performed blindly by two researchers and the mean values were cal-

culated [34].

Sirius red staining. Collagen accumulation was examined in the renal sections with the col-

lagen-specific stain picrosirius red (Sirius Red 3 in a saturated aqueous solution of picric acid

and fast green as a counterstain). Sirius Red staining is a method for collagen determination,

enabling quantitative morphometric measurements to be performed in locally defined tissue

areas [35]. Staining was scored as 0 (normal and slight staining surrounding the tubular, glo-

merular, and vascular structures), 1 (weak staining that doubles the normal label surrounding

the tubular, glomerular, and vascular structures), 2 (moderate staining in the peritubular inter-

stitium and inside the glomeruli), 3 (strong staining that replaces the glomerular and tubular

structures, compromising <25% of the cortical area), or 4 (strong staining that replaces the

glomerular and tubular structures, compromising>25% of the cortical area).

Image capture and analysis. Images from histological and histochemical sections were cap-

tured using a Nikon Alphaphot-2 YS2 light microscope (Nikon Instrument Group, Melville,

NY), coupled to a Sony color video camera digital (Model N˚ SSC-DC50A). All determina-

tions were performed blindly and under similar light, gain and offset conditions by the same

researcher.

Tissue processing for Western blot analysis. Immediately after the animals were sacrificed,

their kidneys were isolated and the renal medulla was dissected and homogenized at 3.000

rpm in an appropriate buffer (250 mmol/l sucrose, 1 mmol/l EDTA, 0.1 mmol/l PMSF and 10

mmol/l Tris-ClH), pH 7.6. Large tissue debris and nuclear fragments were removed by a low-

speed spin (1000 g, 10 min, 4˚C). Protein concentration was measured using BCATM Protein

Assay Kit (Pierce, Rockford, IL, USA). Absorbances for protein concentration measurements

were read using a RT-2100C microplate reader (Rayto, China) at 560 nm.

Western blots for AQP2 and α-ENaC. Western blot analysis was used to identify AQP2 and

α-ENaC. We evaluated α-ENaC because this is the rate-limiting subunit to form the functional

channel [23]. Blots were incubated overnight at 4˚C with the AQP2 antibody (mouse mono-

clonal anti-rat IgG1 AQP2 [sc 515770]; Santa Cruz Biotechnology, Inc., CA, USA) diluted in

blocking solution (1:200), or with α-ENaC antibody (rabbit anti-rat; diluted 1:500; Santa Cruz

Biotechnology, Inc. California, USA). Beta-tubulin was used as loading control (rabbit anti-rat

beta-tubulin; Abcam Inc., Cambridge, MA, USA). The membranes were then incubated with a

donkey anti-rabbit IgG horseradish peroxidase conjugated secondary antibody (1:3000)

(Abcam Inc., Cambridge, MA) for α-ENaC and tubulin and were incubated with mIgGκ
BP-HRP (sc-516102) HRP conjugated for AQP2 blots (1:2000); Santa Cruz Biotechnology,

Inc. California, USA. Blots were visualized using Super SignalTM West Pico Plus chemilumi-

nescent substrate (Thermo Scientific; Rockford, IL, USA).

The relative protein levels were determined by analyzing the bands with Gel Pro Analyzer

3.1 for Windows and relative protein expression was calculated as the ratio protein of interest/
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β-tubulin. The AQP2 antibody recognizes a 28-kDa band corresponding to unglycosylated

AQP2 and bands between 35–40 kDa representing glycosylated forms of the protein. The α-

ENaC antibody recognizes a 78-kDa band and the β-tubulin antibody recognizes a 50kDa

band.

Real-time PCR for AQP2, α-ENaC, V2 receptor, adenylyl cyclase-6 and Pre-pro-ET-1. Total

RNA was isolated using the SV total RNA Isolation System (Promega, Madison, WI, USA).

Total RNA was reverse transcribed to cDNA using a high capacity reverse transcription kit

(A&B, CA, USA). For real-time detection of AQP2 transcripts and the reference gene

(GAPDH), MezclaReal (Real Time PCR commercial mixture from Biodynamics, Argentina)

and specific primers were used [36, 37].

The normalized gene expression method (2–ΔΔCT) for the relative quantification of gene

expression was used. The difference in the cycle threshold (CT) for AQP2 and GAPDH for the

control untreated rats was substracted from the difference in the CT for AQP2 and GAPDH

for each of the experimental groups [38]. The following formula was applied:

DDCT ¼ ðCTAQP2 � CTGAPDHÞexperimental � ðCT AQP2 � CT GAPDHÞcontrol untreated ratsÞ:

The real-time PCR started at 94˚C for 2 min and was followed by 35 thermal cycles at 94˚C

for 15 s, 58˚C for 35 s and 72˚C for 30 s.

cAMP measurements. cAMP was measured in the renal medulla. Approximately 100 mg of

renal medulla was homogenized in ice-cold absolute ethanol and centrifuged for 15 min at

1200g. The supernatant was dried, and the remaining residue was suspended for cAMP deter-

mination by competition of [3H]-cAMP for PKA [39]. Results were expressed as pmoles

cAMP/mg of protein.

Statistics. Two-way ANOVA with Bonferroni´s post-test for multiple comparisons was per-

formed using Graph Pad Prism version 5.0 for Windows.

Results

Characterization of the experimental model

As can be seen in Fig 1, systolic blood pressure (SBP), expressed as SBP percentage difference,

only increased significantly (20% increment) in ERAHS vs both CHS and ERANS (p<0.01).

Table 1 shows weights and consumptions for the different experimental groups. There were

no significant changes in body weight (b.w.) or femur length among experimental groups.

However, there was a significant increase in renal weight expressed as g/100g of body weight

in both CHS and ERAHS when compared with their respective NS controls (p<0.01 in both

cases). Food intake, expressed per 100g b.w. was similar in all groups of rats, suggesting that

the differences seen in blood pressure were not due to different sodium intakes. As expected,

water intake significantly increased in the groups that received HS diet, being this increment

of the same magnitude in both groups (p<0.001 vs NS groups).

Renal and plasmatic functional parameters

Diuresis significantly increased in both groups that received HS diet when compared with

their respective NS groups (�p<0.05 CHS vs CNS; #p<0.05 ERAHS vs ERA NS). However, this

increment was of lower magnitude in ERAHS than in CHS rats. Fractional sodium excretion

significantly increased in both groups that received HS diet when compared with their respec-

tive NS groups (���p<0.001 vs CNS; ###p<0.001 vs ERA NS). However, this increment was sig-

nificantly lower (&p<0.05 vs CHS) in ERAHS than in CHS rats. Kaliuresis was significantly

lower in both HS groups when compared with their respective NS controls (��p<0.01 CHS vs
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CNS; ## p<0.01 ERAHS vs ERANS). Creatinine clearance significantly increased in both HS

groups when compared with their respective NS controls (�p<0.05 CHS vs CNS; # p<0.05

ERAHS vs ERANS). Proteinuria significantly increased in both groups that received HS diet vs

their respective controls with NS diet (p<0.05 in both cases). Note that the values of protein-

uria were higher (although not significant; p = 0.1182) in the rats treated postnatally with the

ERA when compared with both groups of control rats. Natremia increased in ERAHS when

Fig 1. Systolic blood pressure percentage difference (%). The change in systolic blood pressure after a normal or high sodium diet in

control and in ERA-treated rats is shown as the percentage difference. ERA: Endothelin receptor antagonist; NS: normosodic diet; HS:

high sodium diet (8% NaCl). ��p<0.01 vs CHS; ##p<0.01 vs ERA NS. Data are mean ± SEM of eight independent determinations.

https://doi.org/10.1371/journal.pone.0229756.g001

Table 1. Weights and consumptions.

CNS ERANS CHS ERAHS

Body weight (g) 376±14 380±11 371±13 370±9

Femur lenght (cm) 3.38±0.03 3.35±0.07 3.36±0.02 3.40±0.03

Renal weight (g/100g b.w.) 0.73±0.02 0.72±0.01 0.78±0.01�� 0.76±0.02##

Food intake (g/100g b.w.) 6.9±0.3 6.7±0.1 6.5±0.1 6.7±0.2

Water intake (ml/100g b.w.) 7.4±0.3 8.4±0.5 22.6±0.6��� 23.2±1.0###

ERA: Endothelin receptor antagonist. CNS: control rats with normosodic diet; ERANS: ERA-treated rats with

normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with high sodium diet. Data were

analyzed using two-way ANOVA followed by Bonferroni posttest.

��p<0.01 vs CNS;

���p<0.001 vs CNS;

##p<0.01 vs ERANS;

###p<0.001 vs ERANS. Data are mean ± SEM of 10 independent determinations, except for femur length, with 6

independent determinations.

https://doi.org/10.1371/journal.pone.0229756.t001
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compared with CHS rats (&p<0.05) while kalemia had a tendency to increase in both HS

groups vs their respective NS controls (p = 0.1137). The results correspondents to renal and

plasmatic parameters are shown in Table 2.

Histological and histochemical evaluation

The histological structure of rat kidneys in the H-E sections seemed to be unaffected (S1 Fig).

The score for both Masson´s trichrome and Sirius red staining was <1 for all the groups in the

different renal zones (Table 3); it means a normal and slight staining surrounding tubular, glo-

merular and vascular structures. There was a significant effect of the HS diet on Masson´s tri-

chrome staining in the renal cortical and juxtamedullary areas. However, the scores were< 1.

Representative images are shown in S2, S3, S4, S5 and S6 Figs.

AQP2 and α-ENaC expression

AQP2 mRNA expression significantly decreased in CHS group when compared with CNS (p<

0.05), meanwhile failed to decrease in ERAHS. Moreover, AQP2 protein expression signifi-

cantly decreased in CHS group when compared with CNS (p< 0.01) and in ERAHS group when

compared with ERANS (p<0.01). However, the expression of AQP2 protein was significantly

higher in ERAHS when compared with CHS (p<0.05). These results can be seen in Fig 2A and

2B. α-ENaC mRNA expression significantly decreased in CHS group when compared with CNS

(p< 0.05), meanwhile failed to decrease in ERAHS. Moreover, α-ENaC protein expression sig-

nificantly decreased in CHS group when compared with CNS (p< 0.05) and in ERAHS group

when compared with ERANS (p<0.05). However, the expression of α-ENaC protein was

higher although not significant (p = 0.1138) in ERAHS (0.72±0.05) when compared with CHS

(0.54±0.03). In fact, the administration of HS diet decreased 45.5% α-ENaC protein expression

in control rats while decreased 25% α-ENaC protein expression in ERA rats. These results can

be seen in Fig 3A and 3B.

The results related to AQP2 and α-ENaC in combination with those obtained when we

evaluated renal parameters suggest that ERAHS rats have an impaired ability to excrete water

and sodium.

Table 2. Renal and plasma functional parameters.

CNS ERANS CHS ERAHS

Diuresis (ml/24 h/100g b.w.) 1.9±0.5 2.2±0.4 3.5±0.6� 2.9±0.5#

Fractional Na+ excretion (FENa %) 0.43±0.03 0.36±0.03 1.37±0.15��� 1.10±0.12###&

Kaliuresis (meq/24 h/100g b.w) 0.38±0.02 0.51±0.13 0.24±0.07�� 0.23±0.06##

Creatinine clearance (ml/min/100g b.w.) 0.28±0.04 0.37±0.04 0.42±0.05� 0.53±0.06#

Proteinuria (mg/24 h/100g b.w.) 2.8±0.5 3.6±0.5 4.0±0.5� 4.9±0.5#

Natremia (meq/L) 143±1 145±1 141±2 148±2&

Kalemia (meq/L) 4.2±0.3 4.3±0.4 4.6±0.8 5.2±0.3

ERA: Endothelin receptor antagonist. CNS: control rats with normosodic diet; ERANS: ERA-treated rats with normosodic diet; CHS: control rats with high sodium diet;

ERAHS: ERA-treated rats with high sodium diet. Data were analyzed using two-way ANOVA followed by Bonferroni posttest.

�p<0.05 vs CNS;

��p<0.01 vs CNS

���p<0.001 vs CNS;

#p<0.05 vs ERANS;

##p<0.01 vs ERANS

###p<0.001 vs ERANS;

& p<0.05 vs CHS. Data are mean ± SEM of 9 independent determinations.

https://doi.org/10.1371/journal.pone.0229756.t002
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Participation of AVP pathway on AQP2 and α-ENaC altered expression in

ERAHS

Bearing in mind that AVP regulates both AQP2 and α-ENaC [16], we decided to evaluate if this

pathway was implicated in our experimental model, so we evaluated V2 receptor mRNA expres-

sion, AC6 mRNA expression and renomedullary cAMP production.

AVP-V2 receptor expression

V2 receptor mRNA expression was significantly lower in ERANS vs CNS (p<0.05) and in

ERAHS vs CHS (p<0.05), suggesting that the increased expression of AQP2 and α-ENaC in

ERAHS rats would not be due to a greater level of V2 receptor expression. This result can be

seen in Fig 4.

AC6 mRNA expression

AC6 mRNA expression increased in ERAHS vs CHS group (p<0.05). Besides, ERANS group

had a higher level of AC6 expression than CNS (p<0.05). This result can be seen in Fig 5A.

Renomedullary cAMP production

There were no significant differences between groups in renomedullary cAMP production.

However, there was a tendency to increase cAMP production (expressed as pmoles cAMP/g

protein) in ERAHS when compared with ERANS (p = 0.1655) rats meanwhile that tendency

was not seen in CHS when compared with CNS (p = 0.8204). Although cAMP production in

ERAHS was not significantly different from the value obtained for CHS, it was 25% higher.

Besides, cAMP production in ERAHS was 51% higher than in ERANS (CNS: 2.93±0.36; ERANS:

2.47±0.69; CHS: 2.82±0.29; ERAHS: 3.74±0.49). These results can be seen in Fig 5B.

Regarding AC6 expression in our experimental model, it was significantly increased in both

groups of ERA-treated rats. However, renomedullary cAMP had a tendency to increase only

in ERA HS rats, suggesting a greater activity of AC6 in this group. Thus it is probably that HS

diet differently regulates AC6 activity in ERA-treated rats than in control rats. We must con-

sider that 8 days is an acute period of time; possibly a chronic salt consumption will show

more significant changes.

Table 3. Histochemical evaluation: Masson’s trichrome and Sirius red staining.

CNS CHS ERANS ERAHS

Masson´s trichrome score (CA) 0.70±0.11 0.95±0.05� 0.80±0.09 0.90±0.07#

Masson´s trichrome score (JA) 0.75±0.10 0.96±0.05� 0.81±0.09 0.91±0.07#

Masson´s trichrome score (Medulla) 0.65±0.11 0.70±0.11 0.75±0.10 0.80±0.09

Masson´s trichrome score (Papilla) 0.33±0.13 0.41±0.12 0.46±0.14 0.67±0.14

Sirius red score (CA) 0.35±0.11 0.50±0.11 0.45±0.11 0.43±0.11

Sirius red score (JA) 0.80±0.09 0.90±0.10 0.85±0.08 0.90±0.07

Sirius red score (Medulla) 0.55±0.11 0.59±0.11 0.55±0.11 0.65±0.11

Sirius red score (Papilla) 0.33±0.13 0.44±0.13 0.30±0.15 0.71±0.13

ERA: Endothelin receptor antagonist. CNS: control rats with normosodic diet; ERANS: ERA-treated rats with

normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with high sodium diet. Data were

analyzed using two-way ANOVA followed by Bonferroni posttest.

�p<0.05 vs CNS;

#p<0.05 vs ERANS. Data are expressed as mean ± SEM. n = 3 rats/group and at least 10 fields/animal were analyzed.

https://doi.org/10.1371/journal.pone.0229756.t003
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Pre-pro ET-1 production is decreased in the renal medulla of ERAHS rats

Bearing in mind that medullary ET-1 is fundamentally important in physiologic regulation of

renal sodium and water excretion and maintenance of normal systemic blood pressure, we

measured mRNA pre-pro ET-1 by real time PCR. As expected, pre-pro ET-1 significantly

Fig 2. AQP2 expression in the renal medulla. A1. Representative Western Blot analysis of AQP2 (28 and 35–40 kDa) and tubulin (50 kDa) in

homogenates of the renal medulla. A2. AQP2 protein expression indicated as AQP2/tubulin ratio fold change from CNS rats. B. AQP2 mRNA levels

are expressed as relative values from CNS rats. The following formula was applied: ΔΔCT = (CTAQP2-CTGAPDH) experimental–(CTAQP2-CT

GAPDH) CNS rats. ERA: Endothelin receptor antagonist; NS: normosodic diet; HS: high sodium diet (8% NaCl). Data were analyzed using Two-way

ANOVA followed by Bonferroni posttest. ��p<0.01 vs CNS; ##p<0.01 vs ERANS; &p<0.05 vs CHS.. Data are mean ± SEM of four independent

determinations.

https://doi.org/10.1371/journal.pone.0229756.g002

Fig 3. α-ENaC expression in the renal medulla. A1. Representative Western Blot analysis of α-ENaC (78 kDa) and tubulin (50 kDa) in homogenates

of the renal medulla. A2. α-ENaC protein expression indicated as α-ENaC /tubulin ratio fold change from CNS rats. B. α-ENaC mRNA levels are

expressed as relative values from CNS rats. The following formula was applied: ΔΔCT = (CT α-ENaC -CTGAPDH) experimental–(CT α-ENaC -CT

GAPDH) CNS rats. ERA: Endothelin receptor antagonist; NS: normosodic diet; HS: high sodium diet (8% NaCl). Data were analyzed using Two-way

ANOVA followed by Bonferroni posttest. �p<0.05 vs CNS; #p<0.05 vs CHS.. Data are mean ± SEM of four independent determinations.

https://doi.org/10.1371/journal.pone.0229756.g003

PLOS ONE Endothelin postnatal inhibition and adult disease programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0229756 March 3, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0229756.g002
https://doi.org/10.1371/journal.pone.0229756.g003
https://doi.org/10.1371/journal.pone.0229756


Fig 4. Vasopressin V2 receptor expression in the renal medulla. Vasopressin V2 receptor mRNA levels are

expressed as relative values from CNS rats. The following formula was applied: ΔΔCT = (CTV2 receptor-CTGAPDH)

experimental–(CTAV2 receptor-CT GAPDH) CNS rats. ERA: Endothelin receptor antagonist; NS: normosodic diet;

HS: high sodium diet (8% NaCl). Data were analyzed using Two-way ANOVA followed by Bonferroni posttest.
�p<0.05 vs CNS; &p<0.05 vs CHS.. Data are mean ± SEM of five independent determinations.

https://doi.org/10.1371/journal.pone.0229756.g004

Fig 5. Adenylyl cyclase 6 expression and cAMP production in the renal medulla. A. Adenylyl cyclase 6 (AC6) mRNA levels are expressed as relative values

from CNS rats. The following formula was applied: ΔΔCT = (CTAC6-CTGAPDH) experimental–(CTAC6 receptor-CT GAPDH) CNS rats. ERA: Endothelin

receptor antagonist; NS: normosodic diet; HS: high sodium diet (8% NaCl). Data were analyzed using Two-way ANOVA followed by Bonferroni posttest.
�p<0.05 vs CNS; &p<0.05 vs CHS.. Data are mean ± SEM of four independent determinations. B. cAMP production assessed by competition of [3H]-cAMP for

PKA. ERA: Endothelin receptor antagonist; NS: normosodic diet; HS: high sodium diet (8% NaCl). Data were analyzed using Two-way ANOVA followed by

Bonferroni posttest. Data are mean ± SEM of five independent determinations.

https://doi.org/10.1371/journal.pone.0229756.g005
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increased in CHS vs CNS rats (p<0.05). On the other hand, ERANS showed significantly lower

expression of pre-pro ET-1 when compared with CNS rats (p<0.05) and besides, ERAHS failed

to increase pre-pro ET-1 expression when compared with ERANS rats. These results can be

observed in Fig 6.

Discussion

In this paper we show that adult male SD rats that had been treated with a dual ERA during

their early postnatal period have a 20% increase in their blood pressure after 8 days consuming

a high sodium diet. We had shown in a previous paper that the inhibition of the ET system

with a dual ERA produces a decrease in nephron number [9]. Although low nephron number

is not always associated with hypertension, offspring with diminished nephron number are

more susceptible to a second insult or adverse impact [40]. The increase in blood pressure

seen in ERAHS rats was not due to higher food intake because there were no significant differ-

ences in this parameter among the different experimental groups. Besides, there was neither

significant difference in body weight nor in femur length among the different experimental

groups. High salt intake increased proteinuria in both control and ERA-treated rats in a simi-

lar magnitude (p<0.05) but ERA-treated rats on a NS diet already had a proteinuria 28%

higher (although not significant; p = 0.1182) than control rats on a NS diet. Thus it is possible

that the composition and/or the function of the glomerular filtration barrier had been affected

during postnatal development in ERA-treated rats. In fact, it has been shown that both glomer-

ular endothelial cells and podocytes express ET receptors and synthetize ET-1 and there is a

cross- talk between these two cell types that may be pathologic if there is an imbalance in the

ET system [41, 42].

On the other hand, ERAHS rats showed a decreased ability to eliminate sodium and water

when compared with CHS group. This decreased ability to excrete sodium and water is in line

with the higher plasmatic sodium levels and concomitantly with the higher blood pressure in

ERAHS group.

Bearing in mind that the final control of sodium and water reabsorption takes place in the

CD through ENaC and AQP2 respectively [15], we evaluated the expression of these transport-

ers. As expected, the expression of both α-ENaC and AQP2 mRNA and proteins decreased in

CHS vs CNS rats but failed to decrease or decreased at a lower extent in ERAHS rats. These and

the above mentioned results suggest that ERAHS rats have a decreased ability to excrete sodium

and water during a sodium overload due to a higher level expression of sodium and water

transporters ENaC and AQP2. In fact, ERAHS showed a lower diuresis and fractional sodium

excretion than CHS rats. The lower diuresis and fractional sodium excretion in ERAHS was not

due to a decreased glomerular filtration rate because creatinine clearance was even higher in

both HS groups when compared with their respective controls. Thus the decreased ability to

excrete sodium and water during a sodium overload in ERAHS rats would be due to increased

sodium and water reabsorption mediated by ENaC and AQP2 respectively at CD level.

Another result of the current study is that rats treated with a high sodium diet have a decreased

ability to excrete K+. This result is in accordance with Jensen et al, who provide experimental

data showing that ENaC activity is a rate-limiting element for powerful K+ excretion, hinder-

ing K+ excretion during high Na+ conditions [43].

It is well known that AVP, through V2-receptors, is the main regulator of AQP2, stimulating

both its expression and translocation and thus promoting water reabsorption at CD level [44].

However, in the last years, it has re-emerged the concept that the ability of AVP to stimulate

water reabsorption is possible by promoting discretionary sodium reabsorption via ENaC along

the distal nephron and consequently decreasing sodium excretion [16]. Thus AVP uses V2
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receptors coupled to Gs and stimulation of AC and production of cAMP as a common signaling

pathway to increase both ENaC and AQP2 expression and activity [16]. In the current study we

show that V2 receptor mRNA expression was decreased in ERAHS rats, thus the increased α-

ENaC expression and decreased ability to excrete sodium was not consequence of an increased

V2 receptor expression in our experimental model. However, we found that AC6 expression

was increased and renomedullary cAMP had a marked tendency to increase in ERAHS rats

when compared with CHS, so these results suggest that the increased ENaC and AQP2 expres-

sion seen in ERAHS rats would be a consequence of increased AC6 and concomitantly increased

cAMP production in the renal medulla. In fact, AC6 in the CD regulates renal water excretion,

most likely through control of AVP-stimulated cAMP accumulation and AQP2 [45] and it was

recently shown that AC6 mediates AVP-stimulated ENaC activity in the kidney [30].

Another interesting result of the current study is that renomedullary Pre-pro-ET-1 production

was decreased in ERAHS when compared with CHS. In fact, as expected, we found an increment

in renomedullary Pre-pro-ET-1 production in control rats but we failed to find this increment in

ERA rats after the administration of the high sodium diet. It is well-known that medullary ET-1 is

fundamentally important in physiologic regulation of renal sodium and water excretion and

maintenance of normal systemic blood pressure [46]. Mice with CD-specific knockout of the ET-

1 gene have impaired sodium excretion in response to sodium loading and have hypertension

Fig 6. Pre-pro ET-1 expression in the renal medulla. Pre-pro ET-1 receptor mRNA levels are expressed as relative values from CNS

rats. The following formula was applied: ΔΔCT = (CT Pre-pro ET-1 -CTGAPDH) experimental–(CT Pre-pro ET-1 receptor-CT

GAPDH) CNS rats. ERA: Endothelin receptor antagonist; NS: normosodic diet; HS: high sodium diet (8% NaCl). Data were analyzed

using Two-way ANOVA followed by Bonferroni posttest. �p<0.05 vs CNS.. Data are mean ± SEM of four independent determinations.

https://doi.org/10.1371/journal.pone.0229756.g006

PLOS ONE Endothelin postnatal inhibition and adult disease programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0229756 March 3, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0229756.g006
https://doi.org/10.1371/journal.pone.0229756


which worsens with high salt intake [25]. Strait et al showed that CD ET-1 KO IMCD had greater

sensitivity to forskolin than did control IMCD, suggesting that neither the V2 receptor nor G pro-

teins can account for the increased cAMP levels in CD ET-1 KO mice, supporting a primary

change in AC activity per se. They concluded that due to the known acute inhibitory effect of ET-

1 on AVP-stimulated cAMP accumulation CD-derived ET-1 might exert a diuretic effect through

both acute modulation of AC activity and chronic down-regulation of AC protein content [27].

Therefore, the enhanced AVP pathway in the ERA-treated rats that received a HS diet may be a

consequence of the decreased renomedullary ET-1 production.

Conclusions

The results of the present study provide evidence that the inhibition of ET system during the

early postnatal period in rodents could predispose to salt sensitive hypertension during adult-

hood. This salt sensitivity would be mediated by an increased renomedullary expression and

activity of AQP2 and α-ENaC as a consequence of increased AC6 expression and cAMP pro-

duction and/or a decreased ET-1 production in the renal medulla.

The knowledge of the molecular mechanisms underlying the perinatal programming of salt

sensitive hypertension will allow the development of reprogramming strategies in order to pre-

vent this pathology.

Supporting information

S1 Raw images.

(PDF)

S1 Fig. Hematoxylin-eosin staining of the renal cortex. Representative images for Hematox-

ylin-eosin staining of the renal cortex. A = CNS (CA); B = CHS (CA); C = ERANS (CA); D =

ERAHS (CA); E = CNS(JA); F = CHS (JA); G = ERANS (JA); H = ERAHS (JA). C: control; ERA:

Endothelin receptor antagonist. NS: normosodic diet; HS: high sodium diet. CA: cortical area;

JA: juxtamedullary area. Total magnification: 400x.

(TIF)

S2 Fig. Hematoxylin-eosin staining of the renal medulla and papilla. Representative images

for Hematoxylin-eosin staining of the renal medulla (A-D) and the renal papilla (E-H). A =

CNS; B = CHS; C = ERANS; D = ERAHS; E = CNS; F = CHS; G = ERANS; H = ERAHS. C: control;

ERA: Endothelin receptor antagonist. NS: normosodic diet; HS: high sodium diet. Total mag-

nification: 400x.

(TIF)

S3 Fig. Masson’s trichrome staining of the renal cortex. Representative images for Masson’s

trichrome staining of the renal cortex. A = CNS (CA); B = CHS (CA); C = ERANS (CA); D =

ERAHS (CA); E = CNS(JA); F = CHS (JA); G = ERANS (JA); H = ERAHS (JA) C: control; ERA:

Endothelin receptor antagonist. NS: normosodic diet; HS: high sodium diet. CA: cortical area;

JA: juxtamedullary area. Total magnification: 400x.

(TIF)

S4 Fig. Masson’s trichrome staining of the renal medulla and papilla. Representative images

for Masson trichrome staining of the renal medulla (A-D) and the renal papilla (E-H). A = CNS;

B = CHS; C = ERANS; D = ERAHS; E = CNS; F = CHS; G = ERANS; H = ERAHS C: control; ERA:

Endothelin receptor antagonist. NS: normosodic diet; HS: high sodium diet. Total magnifica-

tion: 400x.

(TIF)
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S5 Fig. Sirius red staining of the renal cortex. Representative images for Sirius red staining of

the renal cortex. A = CNS (CA); B = CHS (CA); C = ERANS (CA); D = ERAHS (CA); E =

CNS(JA); F = CHS (JA); G = ERANS (JA); H = ERAHS (JA) C: control; ERA: Endothelin receptor

antagonist. NS: normosodic diet; HS: high sodium diet. CA: cortical area; JA: juxtamedullary

area. Total magnification: 400x.

(TIF)

S6 Fig. Sirius red staining of the renal medulla and papilla. Representative images for Sirius

red staining of the renal medulla (A-D) and the renal papilla (E-H). A = CNS; B = CHS; C =

ERANS; D = ERAHS; E = CNS; F = CHS; G = ERANS; H = ERAHS; C: control; ERA: Endothelin

receptor antagonist. NS: normosodic diet; HS: high sodium diet. Total magnification: 400x.

(TIF)
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