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We present a new deterministic discrete-time compartmentalmodel of COVID-19 that
explicitly takes into account relevant delays related to the stages of the disease, its
diagnosis and report system, allowing to represent the presence of imported cases. In
addition to developing themodel equations, we describe an automatic parameter
fittingmechanism using official data on the spread of the virus in Argentina. The result
consistently reflects the behavior of the diseasewith respect to characteristic times:
latency, infectious period, report of cases (confirmed and dead), and allows for
detecting automatically changes in the reproductive number and in themortality
factor.Wealso analyse themodel’s prediction capability and present simulation results
assuming different future scenarios.We discuss usage of themodel in a closed-loop
control scheme,where the explicit presence of delays plays a key role in projectingmore
realistic dynamics than that of classic continuous-timemodels.

The outbreak of the coronavirus disease 2019
(COVID-19) as of late December in the city of
Wuhan, mainland China, took eventually three

months to be classified as a pandemic by the World
Health Organization (30 January: Public Health Emer-
gency of International Concern, March 11: Pandemic,
see https://www.who.int/emergencies/diseases/novel-
coronavirus-2019/events-as-they-happen). About
the same date, on March 3rd, the first case of Severe
Acute Respiratory SyndromeCoronavirus 2 (SARS-CoV-
2) was officially reported in Argentina by theMinistry of
Health (see https://www.argentina.gob.ar/coronavirus/
informes-diarios/reportes/marzo2020). The Argentine
national administration was very early in taking quick
measures to curb the spread of the virus. Throughout
the first three weeks of March, several public activities
were progressively banned, resulting in a nationwide
mandatory lockdown (so-called Mandatory Preventive

Social Isolation, or ASPO for its initials in Spanish) as of
March 19th. Compliance with the new regulations was
exemplary over approximately three weeks, followed by
a mixture of relaxation of controls combined with a loss
of commitment by some social sectors. This resulted in
a particularly slow but sustained exponential growth of
cases. At the time of this writing, more than 650,000
positive cases have been confirmed, more than 500,000
have recovered, and around 15,000 died.

During the earlyweeks of the epidemic in the country,
several health-related systemswere stressed at unprece-
dented levels, including the information systems meant
to monitor and track the status of the epidemic nation-
wide. After five months, the result converged into a pub-
licly available subset of information updated twice a day.
The dataset bears several anomalies in the reported
dates, which are a consequence of several factors,
including people reporting symptoms very late, delays in
the testing system, and slow processing and data entry
of new cases and test results. This situation impacts
directly on data-driven approaches that try tomodel, sim-
ulate, and forecast the evolution of the disease relying on
the official datasets as primary sources of information.

The primary application of simulation models dur-
ing an on going, previously unknown, and highly infec-
tious disease is to assist health policy makers with

1521-9615 � 2020. This article is free to access and download,
along with rights for full text and data mining, re-use and
analysis.
Digital Object Identifier 10.1109/MCSE.2020.3040700
Date of publication 27 November 2020; date of current
version 26 February 2021.

January/February 2021 Published by the IEEE Computer Society Computing in Science & Engineering 35

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17,2021 at 04:04:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7657-3612
https://orcid.org/0000-0001-7657-3612
https://orcid.org/0000-0001-7657-3612
https://orcid.org/0000-0001-7657-3612
https://orcid.org/0000-0001-7657-3612
https://orcid.org/0000-0003-4038-5999
https://orcid.org/0000-0003-4038-5999
https://orcid.org/0000-0003-4038-5999
https://orcid.org/0000-0003-4038-5999
https://orcid.org/0000-0003-4038-5999


tools to assess the impact of potential interventions
within pressing time limits. Without the option to wait
for enhanced data sources, and with delayed deci-
sions potentially costing lives, it becomes highly rele-
vant to apply modeling techniques that are robust to
available data inaccuracies.

In this article, we present an approach that relies on
discrete-time difference equations with explicit delays,
tailored to best assimilate the daily data updates
reported for Argentina. The use of explicit delays has the
advantage of improving the model fitting using short
data series, which occurs not only at the beginning of
the outbreak but also after non-pharmaceutical inter-
ventions (like strict lockdowns). Additionally, it permits
using more instantaneous type of data (e.g., daily
reported cases) in a more reliable way. The use of this
type of noisy data avoids the need to wait for the stabili-
zation of the time series of cases (typically resorting to
the date of symptom onset) which imposes a lag in the
order of 1 to 2 weeks in the analysis. Another advantage
of the approach is that it yields an explicit and straight-
forward representation of the model parameters. The
combination of these facts with the discrete-time formu-
lation results in amodel that can be easily understood by
non expert policymakers.

IN THIS ARTICLE, WE PRESENT AN
APPROACH THAT RELIES ON
DISCRETE-TIME DIFFERENCE
EQUATIONSWITH EXPLICIT DELAYS,
TAILORED TO BEST ASSIMILATE THE
DAILY DATA UPDATES REPORTED
FOR ARGENTINA.

We will compare this approach with a classic con-
tinuous-time differential equation-based model without
delays, and discuss the relevance of both approaches.

MODELS OF INFECTIOUS
DISEASES AND PREVIOUSWORK
ONMODELS FOR COVID-19 IN
ARGENTINA

Modeling the spread of contagious diseases is a broad
field,1 with approaches including both deterministic or
stochastic dynamics, discrete time or continuous
time, compartmental or agent-based, with or without
explicit georeferencing, to name a few. A widely
adopted classification for epidemiological models is to
state the possible stages through which an agent can
evolve in the population model.1 This way, the agents

are conceptualized as belonging to mutually exclusive
compartments, originating the category of compart-
mental models. The most common compartments are
the Susceptible, Infected and Recovered (the SIR
model) while finer grained classifications include
stages such as Exposed (infected but not yet conta-
gious), Asymptomatic, Quarantined, Hospitalized and
Dead (obtaining for instance a SEIRDH type of model).

There is already a number of published efforts to
model the COVID-19 evolution for the Argentinian case.
Romero et al.2 propose an agent-based, spatially explicit,
and age-structured SIRD model exploring intervention
scenarios reflected by demographic, medical, social and
institutional parameters. In the work by Ahumada et al.,3

a connection is established between short-time time
series statistical forecasts and structural parameters of a
continuous-time SIRD model, with special attention on
the occurrence of epidemic waves and focusing on the
City of Buenos Aires. Borracci and Giglio4 developed a
continuous time, stochastic SEIARQmodel including age
structure, a distinction according to the severity of
infected cases and focusing on the Metropolitan Area of
Buenos Aires. Different interventions are studied consid-
ering varied percentages of the population in quarantine.
In the work by Pazos and Felicioni,5 the spread of the dis-
ease is modeled with a SEIHRD structure that is used as
the target of a predictive closed-loop control strategy
based on a proportional controller. The control goal is to
avoid the collapse of the health system while reducing
economic impact. In the work by Tagliazucchi et al.,6 the
authors chaperon the reader in a walk-through of model-
ing experiences, sharing their lessons learned from study-
ing the evolution of COVID-19 in Argentina. They
comment on varied types of SEIR models (homogeneous
and inhomogeneous, stochastic and deterministic, spa-
tially lumped and distributed, continuous and discrete
time) and include a valuable study to estimate mobility
within and between districts fromcell phone data.

An adequate choice of a combination of model
type and represented disease stages depends largely
on the questions to be answered by the model, and
consequently by the spatio-temporal scale at which
answers are expected to hold valid.

In the most abstract type of model structure, the
compartments in a compartmental model represent
the whole population for a given spatial scale (neigh-
borhood, city, country). This approach involves the
least amount of parameters, but ignores potentially
relevant dynamics at smaller scales. Such populations
can in turn be subdivided into ”classes” (e.g., age
cohorts, essential vs. non-essential personnel, etc.)
obtaining so-called ”metapopulation” models. This
subdivision into n classes comes usually at the
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expense of multiplying the number of required param-
eters by a factor between n and n2 (depending on the
interaction structure among classes). The aforemen-
tioned structures can in turn be made more spatially
explicit, for instance considering networked popula-
tions (e.g., interconnected cities) or continuous
regions where adjacent patches influence each other
according to their neighboring context (e.g., cellular
automata models). This model structure can provide
more fine-grained answers regarding the spread of the
spatial density of the disease, but requires a thorough
understanding of population mobility (which is a chal-
lenging data processing task even when reliable, non-
biased data is available) and are in general much more
difficult to validate. The degree of detail can be taken
a step further by considering agent-based models
where individuals in a population are modeled with
autonomous behavior. Here, the macroscopic indica-
tors of the disease in the population emerge from the
interactions among said agents, each of them under-
going the typical stages of the disease. Agents can be
either fixed or mobile. In the first case, the underlying
(usually random) connectivity graph determines the pos-
sibilities of contact between each pair of persons, while
in the second case agents move in space according to
given rules and the opportunities for interaction (e.g.,
contagious encounters) emerge from the aggregated
pattern of mobility. Finally, stochastic dynamics can be
factored in within all types of models, to cope with the
inherent uncertainties found in most model parameters
(e.g., incubation period, recovery delay, effective trans-
mission rate, etc.). Models with stochastic behavior pro-
vide more information on the statistical distribution of
relevant variables (such as daily new infections, recover-
ies, deaths) besides their averaged values. Inmany cases,
and particularly in the presence of unprecedented sys-
tem dynamics as in the case of COVID-19, reliable statis-
tical descriptions of model parameters are not available.
In this context, a reasonable approach is to conduct sce-
nario studies, i.e., testing for the robustness of the simu-
lated results by considering plausible sets of perturbed
values formodel parameters.

A DISCRETE TIME MODELWITH
EXPLICIT DELAYS

Compartmental models are most typically formulated in
continuous time, in the form of sets of ordinary differen-
tial equations, with fewer efforts devoted to discrete-
time variants.

A salient feature of the COVID-19 virus is its long
incubation time that delays both the start of the infec-
tion period and the time of detection. For this reason, it

seems appropriate to model explicitly the presence of
such delays. Moreover, in the case of an unprecedented
pandemic outbreak, during early spreading stages in a
given country imported cases are very frequent and
strongly influential. This was particularly true in Argen-
tina, where more than a month after the confirmation of
the first case half of the cumulative detected cases were
still imported ones.

The incorporation of explicit delays and imported
cases complicates the approach based on differential
equations, as it implies using delayed differential equa-
tions, whose numerical resolution can be challenging.9

Therefore, we propose a discrete time model with a
one-day time step that, unlike traditional discrete time
models,10 takes explicitly into account time delays (e.g.,
incubation, detection, recovery and death intervals
since the instant of exposure to the virus). In addition,
we incorporate imported cases as a forcing input signal.

We later fit the parameters of this model to pub-
licly available data provided by the Ministry of Health
of Argentina. As it will be seen, the parameters that
minimize the mean square error between data and the
simulated trajectories are consistent with known
information about COVID-19 in our country (incuba-
tion time, infectious period, recovery times, death,
detection and reporting).

The origin of the structure of compartmental mod-
els goes back to the work of Kermack and McKendrick
in 192711 and consists of classifying the population
into three different groups (or compartments):

› SðtÞ: Population susceptible to the virus in time t.
(Individuals who are not infected, nor have
immunity to the virus).

› IðtÞ: Population infected in time t. (Individuals
who are infected and can spread the virus to
those who are susceptible).

› RðtÞ: Population removed in time t. (Individuals
who have already been removed from the
dynamics, either because they have recovered
by acquiring immunity to the virus, or have died).

Each individual in the population belongs to only
one of these three groups and can evolve from one to
the other. One of the hypotheses is that the recovered
individuals acquire lifelong immunity to the virus, so
the allowed evolutions are: a) an individual of S can
become infected by entering in contact with one of
the I group (becoming part of this group), b) an indi-
vidual of the I group ends up passing to the R group
when they recover or die. The total number of individu-
als in the population is assumed to be constant with
SðtÞ þ IðtÞ þRðtÞ ¼ N .
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Other mathematical models based on the SIR model
add other compartments or additional characteristics: In
the SEIR model, the population category E (exposed) is
added to model individuals that are incubating the virus
but do not yet have the capacity to infect. Similarly, the
SEIRD model adds the category D corresponding to the
dead population due to the epidemic.

Continuous TimeModels
In large populations the variables can be taken as
continuous and the relationship between the three
groups can be represented with a system of ordinary
differential equations:

dS

dt
¼ �b � S � I

dI

dt
¼ b � S � I � g � I

dR

dt
¼ g � I

Where b and g are parameters that represent the
infection and recovery rates respectively. From the
relation of these parameters a fundamental indicator
arises: R0, the basic reproduction number. This factor
indicates, on average, how many people get infected
by a previously infected person.

Discrete-TimeModelsWith Delay
Discrete-time models,10,12 support the incorporation of
explicit delays to model behaviors that occur after a
known period of time.10 An example could be the ’latency
time’ of a disease, i.e., the time since the individual’s first
exposure to the virus until he or she starts being infective.

With respect to the incorporation of delays, there is
an antecedent in the work by Liu et al.13 where an SEIR
structure is proposed but a small distinction is made
in the compartments. Here, the compartment I repre-
sents all infected (both detected and undetected) who
are already contagious, but do not yet have symptoms.
In addition, R represents those infected who have
been detected (the R is for ‘reported’) and U repre-
sents those infected but not yet detected.

In this work, two different options are proposed to
represent latency periods. On the one hand, using
rates to represent the flows between compartments,
and on the other by means of explicit delays obtaining
Delay Difference Equations.

MODEL DESCRIPTION
In this section, we first introduce the proposed
SEIRD model and then we compare it with a classic
continuous-time SEIR model.

Model Equations
Following the idea of classic SEIRD models, we use the
following state variables:

› SðtÞ: Susceptible population
› EðtÞ: Exposed population
› IðtÞ: Infectious population
› RðtÞ: Removed population
› DðtÞ: Dead population

Note that the Dead population (D) is part of the
Removed population (R). In order to explicitly consider
the effect of delays, we also use as state variables
the number of Daily Exposed people in the last T days:
NEðtÞ;NEðt� 1Þ; . . . ;NEðt� T Þ, where T is the maxi-
mumdelay in themodel.

In addition, in order to account for imported cases,
we consider a signal UðtÞ that represents the number
of imported cases that were exposed at time t while
they were abroad and were later detected in the popu-
lation. This signal is assumed to be known. The model
parameters, that will be later fitted to the available
data, are the following:

› R0ðtÞ: Basic Reproductive Number. Average
number of individuals exposed to the virus by a
single infectious person.

› tI : Latent Time: The time elapsed since an indi-
vidual is exposed until becoming infectious.

› tR: Removal Time. The time elapsed since an
individual is exposed until he or she no longer
infects others. Notice that tR � tI ¼ tInf is the
duration of the infectious period. This time
depends not only on the time it takes to reduce
the virus load, but also on the policies applied to
isolate individuals after detecting or suspecting
the possibility of infection.

› df : Diagnostic Factor. The fraction of positive cases
that are eventually diagnosed. Notice that this
value depends on testing and diagnosis policies.

› cfrðtÞ: Case Fatality Rate: The fraction of con-
firmed cases that eventually die. We assume
that cfr may change over time.

› tD: Diagnosis Time: Time elapsed since exposure
until diagnosis. This delay depends not only on
biological features (such as symptoms onset)
but also on testing and reporting policies.

› tM :Time of Death: Time elapsed since exposure
until death.

We shall also compute the average number of
individuals exposed by a single infected person per
day as bðtÞ ¼ R0ðtÞ=ðtR � tIÞ.
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With these state variables and parameters, the
model has the following dynamics:

NEðtþ 1Þ ¼bðtÞ � IðtÞ � SðtÞ þ Uðtþ 1Þ=df
Sðtþ 1Þ ¼SðtÞ � bðtÞ � IðtÞ � SðtÞ
Eðtþ 1Þ ¼EðtÞ þNEðtþ 1Þ �NEðtþ 1� tIÞ
Iðtþ 1Þ ¼IðtÞ þNEðtþ 1� tIÞ �NEðtþ 1� tRÞ
Rðtþ 1Þ ¼RðtÞ þNEðtþ 1� tRÞ

In order to fit parameters and perform projections, the
model computes the following signals corresponding
to reported data:

Dðtþ 1Þ ¼ DðtÞ þ ðcfr � dfÞ �NEðtþ 1� tMÞ
IDðtþ 1Þ ¼ IDðtÞ þ df �NEðtþ 1� tDÞ

representing the number of accumulated deaths and
diagnosed cases, respectively.

The model relies on the following assumptions:

› The daily number of exposed people is propor-
tional to the number of infectious people and to
the fraction of susceptible population (without
taking into account the number exposed from
abroad).

› The fraction of diagnosed cases df is the same
for both local and imported cases, and it does
not change over time.

Notice that when the susceptible population
remains nearly constant, the model is almost linear.
Moreover, assuming also null initial conditions such
that the dynamics is first started by the inflow of
imported cases, it turns out that the evolution of the
observed signals IDðtÞ and DðtÞ is independent on the
detection factor df . This factor appears dividing the
input UðtÞ and multiplying the outputs IDðtÞ and DðtÞ.
This feature implies that the dynamics can be inferred
without actually knowing the detection factor df .

Parameter Fitting
In order to fit the parameters we implemented the
model described before in Octave. We used as input
the data of imported cases in Argentina. The initial
time was set to t ¼ 0 on 20/2/2020, since the first
reported cases (and the first death) date from the
beginning of March (thus bringing the first exposure
event back to around February 20th.)

We take as the output of the model the number of
deaths DðtÞ and the number of total cases detected
IDðtÞ. These numbers were compared with the corre-
sponding reported data (of deaths and case reports)
from 20/2/2020 to 25/4/2020 using the Case Report

Date (CRD). All data were obtained from the daily
reports of the Ministry of Health at https://www.argen-
tina.gob.ar/coronavirus/informe-diario, which we make
available online in a detailed interactive analysis dash-
board at http://sedcovid.exp.dc.uba.ar/.

For each set of integer values of the delays tI , tD,
tM , tR, the values of R0ðtÞ (reproductive number) and
cfrðtÞ (case fatality rate, i.e., fraction of deaths per
detected and reported case) were adjusted by least
squares, and then the set of delay values that mini-
mized the resulting cost was found. For the least-
squares adjustment, the built-in leasqr Octave function
was used, attempting to minimize the difference
between the accumulated reported cases and deaths
in the dataset and those computed by the model. In
order to minimize the norm of the relative error, the
leasqr function was invoked using a weighting matrix
that is inversely proportional to the square root of each
data point.

Denoting with ydataðtÞ , ½DdataðtÞ; IdataD ðtÞ�T and
ysim;pðtÞ , ½Dsim;pðtÞ; Isim;p

D ðtÞ�T the output data and the
simulated outputs for the set of parameters p, respec-
tively, the leasqr function tries to find the set of param-
eters p� that minimizes the following error:

e ¼
Xtf
t¼0

ðydataðtÞ � ysim;pðtÞÞ2
jydataðtÞj

The set of parameters p contains an array of values
of R0ðtÞ and cfrðtÞ at different times. In this case, we
allowed both trajectories to change twice, so p was
formed by 3 values of each parameter. The instants of
change for those parameters were the ones that
allowed minimizing the error after the optimization
procedure. As a result, we obtained the following
expressions for the reproduction and mortality rates:

R0ðtÞ ¼
2:267 t < 17=3
0:886 17=3 � t < 3=4
1:104 t � 3=4

8<
:

cfrðtÞ ¼
0:054 t < 17=3
0:061 17=3 � t < 3=4
0:072 t � 3=4

8<
:

In all cases the least squares algorithm was exe-
cuted with initial parameter guess R0ðtÞ ¼ 1 and
cfrðtÞ ¼ 0:05, which are values within the order of mag-
nitude of what is known about the virus. Convergence
to this minimum was also verified for varied initial
guess values. These parameters were obtained using
the delays tI ¼ 5, tD ¼ 11, tR ¼ 12, and tM ¼ 17, which
minimize the quadratic cost, and are also consistent
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with what is known about the virus: 5 days until the
patient becomes contagious, 11 days until detection
and report, 12 days for the effective contagious period
(considering that upon detection the person is iso-
lated) and 17 days until recovery or death.6,13 As it was
already mentioned, the time until detection, report
and isolation are strongly dependant on the local
health system in charge of processing swab tests.
Likewise, the time t1 that is obtained for minimizing
errors is almost coincident with the enforcement of
the first strict lockdown (t1 corresponds to March
17th., while the lockdown was enforced on March
19th.). The obtained time t2 corresponds to April 3rd.,
when the population began to relax its commitment
to strict confinements.

The relative mean error between measured and
simulated data is kxdata � xsimk=kxdatak ¼ 0:0613

(6:13%). Figures 1 and 2 compare the simulation results
with the data corresponding to the number of deaths
and the number of detected cases.

EXPERIMENTS AND RESULTS
In this section, we show first that the developed model
can be used to analyze the past evolution of the con-
tagion figures and to project future scenarios. Then,
we demonstrate its usefulness in evaluating non phar-
macological interventions and finally we cross-check
the model by comparing it against a classic continu-
ous time SEIR model.

Analysis and Projections
We show next the use of the model to analyze the
evolution of factors of contagion and mortality in the
past, on the one hand, and also to project the evolu-
tion of the curves in the short and medium term.

We will fit the parameters R0ðtÞ and cfrðtÞ over a
longer period, using data from 20/2 to 04/6. We will
consider that these parameters can change every 14
days. The main reason for choosing this period
between changes is that the Argentine government
updated the policies once every two weeks. A more
precise adjustment can be obtained by allowing
weekly or even daily changes, but optimizing on a
large set of parameters would eventually lead to over-
fitting. Keeping the delay parameters of the previous
experiment (tI ¼ 5, tD ¼ 11, tR ¼ 12 and tM ¼ 17) we
get then the following paths for R0ðtÞ and cfrðtÞ:

R0ðtÞ ¼

2:396 t < 16=3
0:898 16=3 � t < 29=3
1:051 30=3 � t < 12=4
1:078 13=4 � t < 26=4
2:042 27=4 � t < 10=5
1:523 t � 11=5

8>>>>>><
>>>>>>:

(1)

cfrðtÞ ¼

0:054 t < 16=3
0:061 16=3 � t < 29=3
0:064 30=3 � t < 12=4
0:068 13=4 � t < 26=4
0:031 27=4 � t < 10=5
0:018 t � 11=5

8>>>>>><
>>>>>>:

(2)

The relative mean error between measured and
simulated data results in kxdata � xsimk=kxdatak ¼ 0:015

(1:5%).
Figures 3–6 compare the simulation results with

data corresponding to the number of deaths, number
of detected cases accumulated and per day. In this
case, we extended the final simulation time to project
beyond the data used to adjust the model. We initially
consider that since 12/5 the parameters R0ðtÞ and

FIGURE 1. Total number of deaths (data and model) FIGURE 2. Total number of detected cases (data and model)
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cfrðtÞ remain constant and equal to the last adjusted
value. We also include two scenarios considering a
�10% variation of these parameters from 25/5
onwards (i.e., a period not observed from data due to
the delays). These scenarios allow for considering
small changes in the social contact and/or in the
death rate, as well as some inaccuracies in the param-
eter adjustment. Due to the unstable nature of the
model when R0 > 1, those small changes in the
parameter values imply a large difference in the trajec-
tories as time evolves (see Figure 6 where those small
changes imply that the number of daily cases is modi-
fied by a factor of 3 after six weeks).

It can be seen that the fitted model allows us
first to draw conclusions about the curve from past
data. Equations (1)-(2) show the evolution of the factor
of contagion and the effects of a quarantine and its
subsequent relaxation, as well as the decrease in

mortality per case that reflects the greater spread of
the virus among the younger population.

On the other hand, the projections from June 4
(final date of the data used for the adjustment) show
first the possibility of using the model to estimate the
future spread of the virus under different scenarios.
On the other hand, it allows analyzing the potential
effect of the increase or decrease of the social dis-
tancing reflected in the factor R0.

The coincidence between the projections made at
the beginning of June with the subsequent data up to
6 weeks later reflects not only the correctness of the
model and the accuracy in its estimated parameters,
but also the lack of change in the social behavior. We
have used the model in different large cities of Argen-
tina (Buenos Aires and Rosario, for instance) where
the initial projections were realized for more than
10 weeks.

FIGURE 3. Total number of deaths (data and model)

FIGURE 4. Daily number of deaths (data and model)

FIGURE 5. Total number of detected cases (data and model)

FIGURE 6. Daily number of detected cases (data and model)
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Applying Continuous and Discrete
Models for Non-Pharmaceutical
Interventions
In this section we will address a comparison between
a classic Continuous-time SEIR Model (CM) and
the Discrete-time SEIRD Model (DM) presented in
this work.

Different approaches were proposed to contain
the spread of COVID-19 in the absence of a vaccine,
resorting to public-health measures known as non-
pharmaceutical interventions.14 We present here a
Controlled Intermittent Lockdowns (CIL) strategy
combining periods of suppression ðR0 < 1Þ and miti-
gation ðR0 > 1Þ. The control policy is parameterized
by a threshold (maxCases) which defines when to switch
between strict lockdowns and relaxed phases. Next,
we will compare the results of applying this control
technique using the discrete (DM) and continuous
(CM) models. We shall explore the effects of setting
maxCases ¼ 50 cases.

Figure 7 illustrates the result of applying a CIL
strategy in Buenos Aires City. The CM is fitted to
detected cases from February 23rd to August 15th. We
considered cases aggregated by their Symptoms
Onset Date (SOD), as the usage of cases grouped
according to Case Report Date (CRD) may lead to
inconsistent estimates. Using SOD requires cutting
out the time series over the last ten days, as this is the
typical time it takes to collect all the notifications of
cases that share the same SOD in the past. In the CM
we considered a population proportional to the num-
ber of symptomatic cases using the detection factor
df ¼ 10%.

Figure 7 illustrates the result of applying the CIL
control to Buenos Aires City. Next, in Figure 9 we
repeat the experiment but using the DM instead.
Comparing both figures, we can notice that, for the
DM, the trajectory of daily cases moves away from
the threshold switching between phases with a

FIGURE 7. Controlled Intermittent Lockdowns (CIL) for Bue-

nos Aires City using CM. (a) Daily Cases. (b) Total Cases.
FIGURE 8. Controlled Intermittent Lockdowns (CIL) for Bue-

nos Aires City using CM with an 11-day measurement delay.

(a) Daily Cases. (b) Total Cases.
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period of about one month. Conversely, the corre-
sponding trajectory for the CM remains close to its
threshold, switching unrealistically fast between
phases. This difference in closed-loop behavior can
be explained by noting that in the DM there is a delay
between the instant when the daily cases cross the
threshold and the moment this crossing is detected.
For a fair comparison, Figure 8 illustrates the result of
applying the CIL control to Buenos Aires City but
incorporating an 11-day delay between threshold
crossing and control action. It’s worth noticing that
the results in Figures 8 and 9 have a high degree of
similarity.

The advantage of the DM here is that it does not
require any modification to reflect the actual closed
loop behavior, while the CM requires adding an addi-
tional delay that transforms the model into a set of
Delay Differential Equations. In addition, the DM
exhibits an interesting phenomenon after each lock-
down: some days after the sudden change in R0 the
number of cases has a rebound (notice it around May 15

in Figure 9). This phenomenon canbe explained by taking
into account that the number of infectious people con-
tinues growing for some days after the lockdown (the
reduction in R0 only reduces the new exposed individu-
als), and that growth is reflected back in the number of
new exposed, which depends on the number of infec-
tious people.

It is worth mentioning that the DM parameters of
this experiment were fitted without considering
imported cases, as they were not available in the data-
set for the city of Buenos Aires. Instead, we consid-
ered as imported all the cases detected prior to
certain date (April 20th.) so they acted as initial condi-
tions for the state variables NEðtÞ, EðtÞ, and IðtÞ start-
ing on that date. The parameter adjustment
procedure detected that R0 was null before April 9 (11
days before the initial date), and obtained valid values
for R0 after that. The actual fraction of imported cases
detected in Argentina after April 20th. was negligible,
so we considered that UðtÞ was null from then on with-
out introducing further relevant errors.

FIGURE 9. Controlled Intermittent Lockdowns (CIL) for Bue-

nos Aires City using the DM. (a) Daily Cases. (b) Total Cases.
FIGURE 10. Model fitting for Argentina using DM and CM. (a)

Daily Cases. (b) Total Cases.
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The same procedure was used in different experi-
ments with datasets of different cities and regions of
Argentina using only data from detected daily cases
without distinguishing between imported and local
cases. The idea can be straightforwardly applied to
any city, region or country provided that there is a
daily record of detected cases and deaths.

Discrete and Continuous Model
Comparison
In order to cross-check the model with a classic con-
tinuous-time SEIR model, we adjusted the parameters
in order to fit both models using the diagnosis dates
for the DM and the symptoms onset dates for the CM.
In both cases, we used the official data series at
national level.

Simulation results and official data series are
compared in Figure 10, with both approaches achiev-
ing a high degree of similarity. In both cases, we mea-
sured the relative mean square error between the
real and the simulated trajectories for the total num-
ber of cases, obtaining values of 1:04% and 1:08% for
the CM and DM, respectively. It is worth mentioning
that the diagnosis date data series has a much higher
dispersion than the symptom onset data series (it
can be easily appreciated in Figure 10(a), so the fact
that both approaches have a very similar error exhib-
its in fact a further advantage of the discrete time
model.

CONCLUSIONS
A simple discrete model of COVID-19 propagation
based on first principles was presented, which does
not require complex hypotheses, developments or
interpretations. Its parameters are transparent and
explicitly represent the essential characteristics of the
underlying phenomena. In addition, the model distin-
guishes imported cases, which eliminates the overes-
timation of the infection rate at the early stages of the
pandemic outbreak.

Another salient aspect of the methodology is that
there are no assumed values for the parameters; they
are instead obtained by fitting procedures with
respect to the actual measurements. That is, using
only the data reported on the number of cases and
deaths, the model allows for inferring biological, social,
and even administrative dynamics (by means of the
parameters) that influence the evolution and spread
of the virus.

Having explicit and directly interpretable parame-
ters, it is possible to study scenarios through their
modification that are otherwise cumbersome to

represent in classic models of continuous time. For
instance, the effect of a strategy of tracing and isolat-
ing close contacts of confirmed cases (during the N
days prior to detection) can be captured simply by
reducing the parameter tR.

Likewise, in terms of control strategies (non-phar-
macological interventions), having a model with
explicit delays between action and measurement is
essential to be able to study closed-loop performance.

The current work can be extended in several
directions. Firstly, multi population models based
on age and/or geographical features can be easily
represented with this methodology, using different
delay parameters for each population. We are also
exploring the possibility of adding available statistical
information. For instance, instead of considering a sin-
gle delay between detection and death, we might use
a weighted sum of delayed signals.

A simple variant of this model can be also used
for studying vaccination policies where the explicit
delays can be used to represent the delayed effec-
tiveness of a vaccine. Similarly, if reinfection is likely
after a certain period of time, a SEIRDS variant of
this model can be straightforwardly proposed.
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