POTENCIAL UTILIZACIÓN DEL ACEITE DE CARDO PARA PRODUCCIÓN DE BIODIESEL Y SU COMPARACIÓN CON EL ACEITE DE SOJA

Ana Carina Morero-Bernardita Gatti-Yair Malik
Micaela Mancini - Melisa Lanza Volpe -Vanina Cravero*

RESUMEN: El cardo (silvestre y cultivado) es una especie con potencial para ser utilizado como cultivo energético con aprovechamiento integral para producción de biocombustible sólidos (pellets) y líquidos (bioetanol y biodiesel). Los objetivos del presente trabajo fueron estudiar el perfil de ácidos grasos del aceite de cardo mediante técnicas químicas específicas, y la comparación con el perfil de ácidos grasos del aceite de soja. Los resultados obtenidos demuestran que el aceite de cardo presenta características adecuadas para ser destinado a la producción de biodiesel lo que permitiría la incorporación de un nuevo cultivo alternativo al circuito productivo-comercial con fines energéticos.

Palabras claves: cardo -biodiesel- ácidos grasos-soja.

ABSTRACT: Potential Use of Cardoon Oil for Biodiesel Production and its Comparison with Soybean Oil
Thistle (wild and cultivated) is a species with potential to be fully used as an energy crop whit full use for the production of solid and liquid (bioethanol and biodiesel) biofuels. The objective of this work was to study the fatty acids profile of cardoon oil by specific chemical techniques and its comparison with the fatty acids profile of Soybean oil. The results show that cardoon oil has suitable characteristics to be used for biodiesel production which would allow the incorporation of a new alternative crop to the production circuit for energy purposes.

Keywords: cardoon -biodiesel - fatty acids - soybean

1.-Introducción
Durante la generación, transporte y consumo de las formas convencionales de energía, el medio ambiente se ve afectado de varias maneras, incluyendo las emisiones de gases de efecto invernadero y otros contaminantes. Éste es el origen de los mayores problemas ambientales como el cambio climático y la lluvia ácida.

* Ana Carina Morero. Universidad del Centro Educativo Latinoamericano, UCEL. E-mail: acmorero@hotmail.com
Bernardita Gatti. Universidad del Centro Educativo Latinoamericano, UCEL. E-mail: bernarditagatti@hotmail.com
Yair Malik. Universidad del Centro Educativo Latinoamericano. E-mail: yaimalik@hotmail.com
Vanina Cravero. IICAR-CONICET. E-mail: vcravero@unr.edu.ar
Micaela Mancini. IICAR-CONICET. E-mail: micaelamancini@yahoo.com.ar
Melisa Lanza Volpe. Facultad de Ciencias Agrarias (UNR), E-mail: mlv2617@gmail.com
Algunas soluciones a este problema consisten en el tratamiento de los gases de combustión, la estimulación de tecnologías energéticas eficientes y un mayor uso de formas renovables de energía, como los biocombustibles.

Actualmente se utilizan distintos tipos de biocombustibles y cada uno de ellos puede tener diferente procedencia, aunque la mayoría son de origen vegetal. Aque- llos cultivos de los que es posible aprovechar su biomasa con estos fines son cono- cidos como “cultivos energéticos”.

Hay distintos tipos de cultivos energéticos: a) Oleaginosos, para producción de biodiesel (como soja, colza y girasol), b) Alcoholígenos, para producción de bioalcoholes (bioetanol) (caña de azúcar, maíz, remolacha y algunos cereales de invierno) y c) Lignocelulósicos, para la producción de combustibles sólidos (pel- letes, astillas y biocarburantes de segunda generación) tales como el sorgo papelero y algunos cultivos leñosos.

Los cultivos energéticos se presentan como una alternativa eficiente para producir energías renovables debido a: un balance neutro de CO₂, reducción de emisión de contaminantes y menor impacto ambiental comparados con la industria petroquímica. La utilización de biodiesel presenta ventajas con respecto a la utilización de combustibles derivados del petróleo tales como: es biodegradable, menos tóxico, no posee compuestos aromáticos y el contenido de azufre es bajo.

Sin embargo, una de las principales resistencias a la proliferación de la indus- tria bioenergética ha sido el temor a sus efectos sobre los precios de los productos alimenticios ya que la mayoría de los biocombustibles se obtiene a partir de maíz, soja, girasol y caña de azúcar, entre otros y a la competencia con estos cultivos en cuanto al uso de tierras agrícolas, (Fernández, 2007).

El aceite vegetal usado en la producción de biodiesel puede obtenerse de diferentes especies oleaginosas, las cuales diferen en cuanto a sus características agro- nómicas en relación con el contenido de aceite como así también en la composición del mismo y el perfil de ácidos grasos. El uso de los cultivos para la producción de biodiesel debe tener en cuenta aspectos económicos y sociales de cada país y cada región, en relación con el desarrollo local/regional (Moreira Santos, 2012).

Las principales propiedades del aceite a tener en cuenta para la producción de biodiesel son: la estabilidad oxidativa, propiedades a baja temperatura (punto de nube, punto de fluidez y el punto de obstrucción del filtro en frío), el número de cetano, viscosidad y el calor de combustión. Muchas de estas propiedades están determinadas por el perfil de ácidos grasos, ya que la cantidad de cada ácido graso presente en la molécula de triglicéridos (longitud de la cadena y en el número de do- bles enlaces) tiene una implicancia directa en las propiedades físicas del biodiesel (Knothe, 2005). El biodiesel obtenido a partir de materias primas que tienen alto contenido de ácidos grasos saturados presenta mayor resistencia a la oxidación.

El contenido de aceite en grano y el rendimiento por hectárea también son ca- racterísticas importantes al momento de la elección de una materia prima para la producción de biodiesel. En este sentido, el girasol, la colza, la jatrofa, el ricino y el maní son las oleaginosas que tienen mayor contenido de aceite en grano, con una
La totalidad de la producción argentina de biocombustibles se realiza principalmente sobre la base de aceite de soja (biodiesel) y un porcentaje menor sobre la caña de azúcar y maíz (bioetanol). En la actualidad la soja supera más de la mitad del área agrícola del país. En el periodo 2011/12 se cultivaron 32.496.000 de hectáreas, de las cuales al menos 18.530.000 correspondieron este cultivo (el 57 % de área cultivada) (Di Paola, 2013).

La producción nacional anual de soja se estima en el orden de alrededor de 57 millones de toneladas de porotos. De este valor, el 80-85% está destinado a la industria y el resto se exporta como poroto sin procesar. De las 40 – 45 millones de toneladas que se industrializan se obtiene aceite y como sub producto harina de soja. Del aceite que se obtiene (alrededor de 7 millones de toneladas), Argentina tiene la posibilidad de procesar en biodiesel 30 – 35% (aproximadamente unas 2,5 – 3 millones de toneladas). La producción nacional de biodiesel aprovecha la escala del complejo oleaginoso sojero que se concentra en la zona de mayor producción, cercana a los puertos, de manera de atender al sistema agro-exportador argentino de la forma más eficiente (Di Paola 2013). Esta producción oscila en función de los precios relativos y de las demandas, fundamentalmente de la Unión Europea, que es el principal demandante de éste biocombustible.

Solamente en la provincia de Santa Fe se obtiene el 83,4% de la producción nacional de biodiesel (Calzada & Frattini 2015). En los últimos años, numerosos autores han propuesto el uso del cardo (Cynara cardunculus var. sylvester y/o var. altilis) como cultivo alternativo para la producción de bioenergías. Su biomasa posee un elevado contenido de lignocelulosa, lo que lo hace una excelente materia prima para biorrefinerías. Por otra parte, la composición del aceite obtenido a partir de sus semillas sería adecuada para la producción de biodiesel (Fernández & Curt, 2004).

Cynara cardunculus L. es una especie perenne, perteneciente a la familia de las Compuestas (*Asteraceae*). Es originaria de la cuenca del Mediterráneo (Sonante et al., 2007), presenta un ciclo de cultivo anual y excelentes condiciones de adaptación a la gran mayoría de las tierras cerealistas de secano o de los regadíos marginales. El cardo presenta gran capacidad de adaptación a tierras marginales de nuestro país, y podría ocupar áreas semidesérticas sin necesidad de compartir superficies con cultivos tradicionales. Además puede ser cultivado sin uso de agroquímicos, razón por la cual reduce los costos de producción y los riesgos asociados a los usos de estas sustancias (Grammelis, 2008), posibilitando su cultivo en zonas periurbanas.
Si a esto unimos que el sistema agrícola productivo necesita nuevas alternativas de cultivos que amplíen el abanico de posibilidades para el agricultor, especialmente en tierras marginales, encontramos un escenario favorable para el desarrollo del cardo como cultivo alternativo.

Además, el cultivo de cardo presentaría beneficios medioambientales como: bajo requerimiento de nitrógeno, reducción de uso de agroquímicos, posibilidad de cultivo en secano, protección del suelo de erosión, competencia con malezas sin aplicación de herbicidas, y, hasta el momento, no se han detectado enfermedades que afecten el cultivo (Grammelis, 2008).

2.-Objetivos

- Determinar el porcentaje de aceite en semilla y la composición de ácidos grasos en el aceite producido por Cynara cardunculus L. var. sylvestris y var. altilis.

- Comparar el porcentaje y el perfil de ácidos grasos del aceite de cardos silvestres y cultivados con el aceite de soja como materia prima para la obtención de biodiesel.

3.-Metodología

Como material experimental se utilizaron diferentes plantas de C. cardunculus L. var. sylvestris y var. altilis, las cuales se encuentran implantadas en el campo experimental de la Facultad de Ciencias Agrarias (UNR) (33°1´S; 60°53´O).

Una vez finalizado el ciclo de cultivo se procedió a la extracción de las semillas de 20 plantas tomadas al azar de cada variedad botánica. Las mismas se homogeneizaron y luego se obtuvieron seis muestras de 5 gramos de cada variedad. Éstas fueron molidas en un molinillo eléctrico y colocadas en una estufa a 105 ºC hasta peso constante para eliminar la humedad.

La extracción del aceite se realizó mediante la técnica de Soxhlet (AOCS, 2009a). Se determinó el contenido de aceite como porcentaje del peso de las semillas. Los valores obtenidos para ambas variedades se compararon mediante la prueba de t-Student.

El perfil de ácidos grasos fue establecido mediante cromatografía gaseosa (GC) (IRAM 5651/09). Para tal fin se procedió al aislamiento de los ácidos grasos y su posterior conversión en derivados con bajas temperatura de ebullición. Los ésteres metílicos formados se extrajeron con solvente apolar (hexano) antes de su análisis por GC. El tiempo transcurrido entre la inyección de la muestra en la columna y la altura máxima observada para cada pico nos permitió determinar la concentración de los ácidos grasos.

Posteriormente se realizó una comparación entre los perfiles de ácidos grasos obtenidos en cardo con el correspondiente a la soja en base a la bibliografía especializada (Kinney y Clemente, 2005).
4.-Resultados y discusión

El porcentaje de aceite obtenido en ambas variedades botánicas oscila entre 18.33% y 22.84% para cardos cultivados y silvestres, respectivamente, no encontrándose diferencias significativas entre ambos (Tabla 1). El contenido de aceite en semillas ha sido estudiado por diferentes autores. Archontoulis et al. (2010) demostraron, en poblaciones de cardo de Grecia, que la concentración de aceite se incrementa a medida que aumenta el tamaño de las semillas dentro del rango entre 17 y 26 mg, mientras que en el rango entre 26 y 52 mg la concentración de aceite permanece constante en aproximadamente un 23 %. Sin embargo, Curt et al. (2002) reportaron hasta un máximo de 32.5 % de aceite en la semilla de cardo.

El perfil de ácidos grasos es una de las características determinantes de la calidad del biodiesel. Al igual que la mayoría de los aceites vegetales, los principales componentes del aceite de Cynara cardunculus L. son los ácidos grasos que contienen entre 16 y 18 átomos de carbono. Los perfiles de ácidos grasos obtenidos resultaron similares en ambos tipos de cardo (Tabla 1). Resultados similares fueron obtenidos por diferentes autores (Maccarone et al., 1999; Curt et al., 2002; Fernández et al., 2006).

En el aceite de cardo los ácidos insaturados (linoleico y oleico) representan cerca del 85%, mientras que los saturados (palmítico y esteárico), alrededor del 14%. Entre los ácidos grasos insaturados predomina el ácido linoleico y luego, en menor porcentaje, el ácido oleico. El ácido linolenico (C18:3) se ha detectado en una muy baja proporción (0.06 y 0.13 %) para cardos cultivados y silvestres, respectivamente.

El aceite de soja es el de mayor producción mundial, superando a los aceites de colza, palma y girasol, y es recomendado para la nutrición humana por su excelente aporte de ácidos grasos (AG) esencial. Sin embargo, también es la principal materia prima destinada a la producción de biodiesel. La semilla de soja contiene un porcentaje de aceite que oscila entre el 15 y el 25% (Kinney & Clemente, 2005), valor similar al obtenido en el presente trabajo a partir de semillas de cardo. En cuanto al perfil de ácidos grasos, contiene alrededor del 16% de ácidos grasos saturados (4% esteárico y 12% palmítico), 27% de monoinsaturados (oleico) y 57% de poliinsaturados (50% de linoleico y 7% de linolénico) (Fehr and Curtiss, 2004; Bologna et al. 2011). La comparación realizada entre los aceites obtenidos a partir de cardo y los valores reportados para aceite de soja (Tabla 1) indica que los porcentajes de ácidos saturados y los insaturados como el oleico y el linoleico son similares en ambas especies. Sin embargo, el aceite de cardo muestra menor contenido de ácido linolénico que el aceite de soja (0,1 y 7,0 %, respectivamente). Esto representa una ventaja a favor del aceite de cardo ya que el bajo contenido de linolénico es deseable para la producción de biodiesel, porque éste ácido genera inestabilidad del combustible. Por tanto, el biodiesel obtenido a partir de aceite de cardo tendría una mayor resistencia a la oxidación.

La similitud encontrada entre el aceite de soja y el aceite de cardo tanto en co...
centración como en composición avalaría la propuesta de utilización del aceite de cardo para la obtención de biodiesel, ya que los parámetros que sostienen la utilidad de esta especie como potencial cultivo oleaginoso son el rendimiento de las semillas, el perfil de ácidos grasos y el valor calórico. El cultivo de soja presenta un rendimiento promedio anual de 2,8 – 3,0 t/ha, alcanzando, en las zonas núcleo, rendimientos de hasta 5-6 t/ha. El rendimiento del cardo aún no ha sido determinado en nuestro país, sin embargo, bajo las condiciones climáticas del Mediterráneo, donde se documenta su centro de origen y se caracteriza por presentar precipitaciones escasas e irregulares (alrededor de 350 mm anuales) así como veranos cálidos y secos, estos rendimientos se estimaron en aproximadamente 1.5t/ha (Fernández & Curt, 2004). A pesar de que la soja presenta un mayor rendimiento anual, el cardo presenta la ventaja de ser un cultivo perenne que puede permanecer en producción durante 10-15 años, por lo cual el costo de establecimiento puede ser dividido durante largos periodos, disminuyendo así la incidencia de los costos del primer año.

Asimismo, el uso de *C. cardunculus* para la producción de aceite, destinado a la producción de biodiesel tendría la ventaja de que es compatible con la utilización de la biomasa con fines energéticos (bioetanol o energía obtenida a partir de combustión); sólo sería necesario desarrollar un sistema de cosecha selectivo. Una alternativa sería cosechar el total de la biomasa aérea y luego, en una planta procesadora, separar las semillas de la biomasa lignocelulósica o bien, utilizar una cosechadora con dos puntos de corte, uno a nivel del capítulo y el otro a nivel del suelo, lo que permitiría separar las semillas del resto de la biomasa en el mismo momento de la cosecha.

Por otra parte, Curt et al. (2002) demostraron que cada 100 g de semilla de *C. Cardunculus* se puede obtener 18 g de aceite limpio y 75 g de “torta proteica”. Asumiendo una producción de 14 t ha\(^{-1}\) año\(^{-1}\) de biomasa, de los cuales aproximadamente un 10% corresponde a semillas (Fernández et al., 2006) se obtendrían 0.25 t de aceite y 1.05 t de torta proteica por ha. El análisis de la composición química de dicha “torta proteica” sugiere dos posibles aplicaciones: fertilizante orgánico y alimentación animal (Curt et al., 2002).

Por tanto, el cardo es una especie que presenta características adecuadas para ser utilizado íntegramente para la generación de distintos tipos de biocombustibles sin competir con el mercado alimenticio. La incorporación del cardo al sistema agrícola productivo-comercial permitiría la utilización de regiones marginales o con problemas de sobreexplotación de acuíferos, ya que al ser un cultivo perenne, permite su recuperación, con el consiguiente beneficio medioambiental, a la vez que produce beneficios económicos favoreciendo el desarrollo de nuevas economías regionales.
Potencial utilización del aceite de cardo para producción de biodiesel y su comparación con el aceite de soja

Tabla 1: Contenido de aceite (en porcentaje) y porcentaje de los principales ácidos grasos observados en los perfiles de las diferentes muestras de cardo. Comparación con datos de soja según Kinney & Clemente, 2005.

<table>
<thead>
<tr>
<th></th>
<th>PERFIL DE ACIDOS GRASOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% de aceite</td>
</tr>
<tr>
<td></td>
<td>16:0 palmítico</td>
</tr>
<tr>
<td></td>
<td>18:0 estéárico</td>
</tr>
<tr>
<td></td>
<td>18:1 oleico</td>
</tr>
<tr>
<td></td>
<td>18:2 linoléico</td>
</tr>
<tr>
<td></td>
<td>18:3 linoléico</td>
</tr>
<tr>
<td>Cardo cultivado</td>
<td>18.33 %</td>
</tr>
<tr>
<td></td>
<td>10.84</td>
</tr>
<tr>
<td></td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>60.24</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Cardo silvestre</td>
<td>22.84 %</td>
</tr>
<tr>
<td></td>
<td>10.88</td>
</tr>
<tr>
<td></td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>22.61</td>
</tr>
<tr>
<td></td>
<td>62.3</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Soja</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

5.-Conclusión

El porcentaje de aceite obtenido a partir de las semillas así como el perfil de ácidos grasos del mismo demuestran que el aceite de cardo presenta características adecuadas para ser destinado a la obtención de biodiesel.

Por otra parte, las similitudes encontradas entre los aceites de cardo y de soja permiten postular al cardo para ser utilizado como materia prima alternativa para la producción de biodiesel.

BIBLIOGRAFÍA

Archontoulis,S.V; Struik, P.C; Yin, X; Bastiaans, I; Vos, J; Danalatos, N.G. 2010.Inflorescence characteristics, seed composition, allometric relationships predicting seed yields in the biomass crop Cynara cardunculus. GCB Bioenergy (2): 113–129.

Fernandez,J, Curt M.D.”State of the art Cyanara Cardunculus L. as and energy crop”, 2002
Fehr, W. R.; Curtiss CF. 2004.“Breeding for fatty acid composition of soybean oil.Proc”. VII World Soybean
Grammelis, P; Maliopoulou. A; Basinas, P.; Danalatos, N.G. 2008 “Cultivation and Characterization of Cy-
nara Cardunculus for Solid Biofuels Production in the Mediterranean Region”, International Journal of
Molecular Sciences ISSN 1422-0067
Oil Chemists Society.79 (9):847-854.
Processing Technology, 86(10):1059-1070.doi:101016/j.fuproc.2007.01.005
Maccarone, E.; Fallicom B;Fanella, F; Mauromical, G.;Raccuia, S.A.;Foti, S. 1999. Possible alternative uti-
lization of Cyanara spp.II.Chemiscal characterization of their grain oil.Ind Crops Prod 10:229-237
la producción de biodiesel: La influencia del contenido y la concentración de los ácidos grasos”
Sonnante, G; Pignone,D; Hammer,K. 2007. “The Domestication of artichoke and cardoon: from Roman times