
ESAIM: M2AN 55 (2021) S993–S1019 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2020068 www.esaim-m2an.org

MIXED METHODS FOR DEGENERATE ELLIPTIC PROBLEMS AND
APPLICATION TO FRACTIONAL LAPLACIAN

Maŕıa E. Cejas1,*, Ricardo G. Durán2 and Mariana I. Prieto3

Abstract. We analyze the approximation by mixed finite element methods of solutions of equations
of the form −div (𝑎∇𝑢) = 𝑔, where the coefficient 𝑎 = 𝑎(𝑥) can degenerate going to zero or infinity.
First, we extend the classic error analysis to this case provided that the coefficient 𝑎 belongs to the
Muckenhoupt class 𝐴2. The analysis developed applies to general mixed finite element spaces satisfying
the standard commutative diagram property, whenever some stability and interpolation error estimates
are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary
order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex
quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the
family of meshes. For the lowest order case we show that the regularity assumption can be removed
and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally
we apply the results to a problem arising in the solution of the fractional Laplace equation.
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1. Introduction

In this paper we analyze the approximation by mixed finite element methods of degenerate second order
elliptic problems. There is a vast bibliography concerning this kind of methods (see e.g. the books [7, 8] and
references therein). However, as far as we know, only very few papers have considered the degenerate case (we
can mention [5, 28]).

Let 𝒟 ⊂ R𝑛, 𝑛 ≥ 2, be a bounded Lipschitz polytope and 𝑎 ∈ 𝐿1
loc(R𝑛) be a non-negative function. We

assume that the boundary is decomposed into two disjoint parts Γ𝐷 and Γ𝑁 . Given 𝑔 and 𝑓 defined in 𝒟 and
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on Γ𝑁 respectively and belonging to appropriate spaces, we consider the problem⎧⎨⎩−div (𝑎∇𝑢) = 𝑔 in 𝒟
𝑢 = 0 on Γ𝐷

−𝑎∇𝑢 ·𝑛𝑛𝑛 = 𝑓 on Γ𝑁

(1.1)

where 𝑛𝑛𝑛 denotes the unit exterior normal vector. If Γ𝑁 = 𝜕𝒟 we assume the usual compatibility condition∫︀
𝒟 𝑔 =

∫︀
𝜕𝒟 𝑓 .

We have written the problem in this form in order to simplify notation. However, it is easy to see that all
our arguments apply to general problems where the coefficient 𝑎 is replaced by a matrix 𝐴 = 𝐴(𝑥) satisfying
𝜆𝑎(𝑥)|𝜉|2 ≤ 𝜉𝑇 𝐴(𝑥)𝜉 ≤ Λ𝑎(𝑥)|𝜉|2, for all 𝑥 ∈ 𝒟, where 𝜆 and Λ are positive constants.

We are interested in degenerate problems in the sense that the coefficient 𝑎 can become infinite or zero in
subsets of 𝒟 with vanishing 𝑛−dimensional measure. We will assume that 𝑎 belongs to the Muckenhoupt class
𝐴2, in particular 𝑎−1 ∈ 𝐿1(𝒟) and, therefore, the usual mixed method is well defined.

Recall that a non-negative measurable function 𝑎 ∈ 𝐿1
loc(R𝑛) belongs to 𝐴2 if

[𝑎]𝐴2 := sup
𝑄

(︂
1
|𝑄|

∫︁
𝑄

𝑎

)︂(︂
1
|𝑄|

∫︁
𝑄

𝑎−1

)︂
< ∞,

where the supremum is taken over all cube 𝑄 with faces parallel to the coordinate axes.
The class 𝐴2 was introduced to characterize the weights for which the Hardy–Littlewood maximal operator

defined for 𝑓 ∈ 𝐿1
loc(R𝑛) by

ℳ𝑓(𝑥) = sup
𝑟>0

1
|𝐵(𝑥, 𝑟)|

∫︁
|𝑥−𝑦|≤𝑟

|𝑓(𝑦)|d𝑦,

is bounded in the associated weighted 𝐿2-norm (see for instance [12, 29]). After that, it was used in the theory
of elliptic equations (see e.g. the pioneering work [19]) and, more recently, in the analysis of finite element
approximations [4, 30,31].

When dealing with anisotropic estimates we will work with the more restrictive strong 𝐴2 class, which will
be denoted by 𝐴𝑠

2 and is defined by

[𝑎]𝐴𝑠
2

:= sup
𝑅

(︂
1
|𝑅|

∫︁
𝑅

𝑎

)︂(︂
1
|𝑅|

∫︁
𝑅

𝑎−1

)︂
< ∞,

where the supremum is taken now over all 𝑛-dimensional rectangles with faces parallel to the coordinate axes.
It is known that 𝑎 ∈ 𝐴𝑠

2 if and only if 𝑎 belongs to 𝐴2 of one variable for each variable, uniformly in the other
variables (see [21,26]).

Given a weight 𝑎, we will denote with 𝐿2
𝑎(𝒟) the usual Hilbert space with measure 𝑎 d𝑥. We will also work

with the weighted Sobolev space

𝐻1
𝑎(𝒟) =

{︀
𝑣 ∈ 𝐿2

𝑎(𝒟) : |∇𝑣| ∈ 𝐿2
𝑎(𝒟)

}︀
with its natural norm. We recall that 𝐶∞(𝒟) is dense in 𝐻1

𝑎(𝒟) (see e.g. [25]).
Introducing the variable vector field 𝜎𝜎𝜎 = −𝑎∇𝑢, problem (1.1) can be transformed into the equivalent first

order system ⎧⎪⎨⎪⎩
𝜎𝜎𝜎 + 𝑎∇𝑢 = 0 in 𝒟

div𝜎𝜎𝜎 = 𝑔 in 𝒟
𝑢 = 0 on Γ𝐷

𝜎𝜎𝜎 ·𝑛𝑛𝑛 = 𝑓 on Γ𝑁 .

(1.2)

Then, mixed finite element methods are based on a weak formulation of this system and they approximate
simultaneously 𝜎𝜎𝜎 and 𝑢. One motivation for using this type of methods is that, in many applications, the
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variable of physical interest is 𝜎𝜎𝜎 and, therefore, it might be more efficient to approximate it directly instead of
obtaining it from a computed approximation of 𝑢. A typical example of this situation is the Darcy equation
arising in the simulation of flows in porous media. Indeed, it is many times argued that 𝜎𝜎𝜎 is smoother than ∇𝑢.
Although this is probably true in practice, it is not possible to give a mathematical foundation to this statement
in general (see [20] for an interesting discussion on this subject).

As an application of our results we will consider a problem arising in the solution of the fractional Laplace
equation (−∆)𝑠𝑣 = 𝑓 .

The rest of the paper is organized as follows. In Section 2 we recall the mixed finite element method for (1.1)
and extend the classic error analysis to the case of degenerate problems. A fundamental tool is the existence of
right inverses of the divergence in weighted norms when the weight belongs to the class 𝐴2. The analysis given
in this section can be applied to general mixed finite element spaces which satisfy the so called commutative
diagram property whenever a stability property in a weighted norm for the interpolation operator is valid.
Next, in Section 3, we consider the case of Raviart–Thomas elements of arbitrary order on simplicial elements
in R𝑛 and prove the stability property mentioned above and optimal order error estimates in weighted norms
under the usual regularity assumption on the family of meshes, namely, bounded ratio between outer and inner
diameters. At the end of this section we explain how the error estimates can be obtained also for the Raviart–
Thomas approximation using general convex quadrilateral elements in two dimensions, assuming an appropriate
regularity assumption. In Section 4 we consider anisotropic error estimates for the Raviart–Thomas spaces of
lowest order and prove some weighted interpolation error estimates, where the weights involve the distance to
some part of the boundary, for rectangular and prismatic elements. These estimates are of interest in problems
with boundary layers. Two important tools in this part of the analysis are the so-called improved Poincaré
inequalities and the use of the restricted “Strong 𝐴2 class”. In Section 5, we consider the approximation of
the fractional Laplace equation which leads to a particular degenerate problem of the type considered in the
previous sections. We show in this example how the weighted error estimates proved for anisotropic elements can
be used to design a priori adapted meshes giving almost optimal order with respect to the number of degrees
of freedom. Finally, in Section 6 we present some numerical results.

2. Mixed finite element approximations

To introduce the correct mixed finite element formulation we first analyze the problem in order to know the
natural spaces for the original variable 𝑢 and its associated vector variable 𝜎𝜎𝜎 = −𝑎∇𝑢.

The basic tools for the analysis are the weighted Poincaré inequalities given in the next lemma. The first one
is well known while the other is a simple consequence of it.

We will make use of the classic Gagliardo trace theorem, namely, for any Lipschitz domain 𝒟 there exists a
constant 𝐶, depending only on 𝒟, such that

‖𝑣‖𝐿1(𝜕𝒟) ≤ 𝐶‖𝑣‖𝑊 1,1(𝒟) ∀𝑣 ∈ 𝑊 1,1(𝒟). (2.1)

Observe that if 𝑎 ∈ 𝐴2 we have that
𝐻1

𝑎(𝒟) ⊂ 𝑊 1,1(𝒟), (2.2)

indeed, 𝑎−1 ∈ 𝐿1(𝒟) and therefore by the Schwarz inequality we have

‖𝑣‖𝑊 1,1(𝒟) ≤
(︂∫︁

𝒟
𝑎−1

)︂1/2

‖𝑣‖𝐻1
𝑎(𝒟). (2.3)

Consequently, traces on 𝜕𝒟 or on any measurable subset of it are well defined for functions in 𝐻1
𝑎(𝒟). In

particular we can introduce the space

𝐻1
𝑎,Γ𝐷

(𝒟) =
{︀
𝑣 ∈ 𝐻1

𝑎(𝒟) : 𝑣|Γ𝐷
= 0
}︀

.

We denote with 𝑢𝒟 and 𝑢Γ𝐷
the averages of 𝑢 over 𝒟 and Γ𝐷 respectively. In general, along the paper we will

write 𝑢𝑆 for the average of 𝑢 over a set 𝑆.
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Lemma 2.1. Let 𝒟 be a Lipschitz domain, Γ𝐷 ⊂ 𝜕𝒟 with positive (𝑛− 1)-measure, and 𝑎 ∈ 𝐴2. Then,

‖𝑢− 𝑢𝒟‖𝐿2
𝑎(𝒟) ≤ 𝐶‖∇𝑢‖𝐿2

𝑎(𝒟) ∀𝑢 ∈ 𝐻1
𝑎(𝒟) (2.4)

‖𝑢− 𝑢Γ𝐷
‖𝐿2

𝑎(𝒟) ≤ 𝐶‖∇𝑢‖𝐿2
𝑎(𝒟) ∀𝑢 ∈ 𝐻1

𝑎(𝒟), (2.5)

where the constant depends only on 𝒟, |Γ𝐷| and [𝑎]𝐴2 .

Proof. The first one is the well known weighted Poincaré inequality. It was first proved in [19] for the case of a
ball and extended for very general domains in several papers (see e.g. [11, 14,24]).

To prove (2.5), taking into account (2.4), it is enough to estimate ‖𝑢𝒟 − 𝑢Γ𝐷
‖

𝐿2
𝑎(𝒟)

. But,

‖𝑢𝒟 − 𝑢Γ𝐷
‖

𝐿2
𝑎(𝒟)

=
(︂∫︁

𝒟
𝑎

)︂1/2

|𝑢𝒟 − 𝑢Γ𝐷
| ≤

(︂∫︁
𝒟

𝑎

)︂1/2 1
|Γ𝐷|

∫︁
Γ𝐷

|𝑢𝒟 − 𝑢|,

using (2.1), (2.3), and then (2.4), we have∫︁
Γ𝐷

|𝑢𝒟 − 𝑢| ≤ 𝐶‖𝑢𝒟 − 𝑢‖𝑊 1,1(𝒟) ≤ 𝐶

(︂∫︁
𝒟

𝑎−1

)︂1/2

‖𝑢𝒟 − 𝑢‖𝐻1
𝑎(𝒟)

≤ 𝐶

(︂∫︁
𝒟

𝑎−1

)︂1/2

‖∇𝑢‖𝐿2
𝑎(𝒟)

so that

‖𝑢𝒟 − 𝑢Γ𝐷
‖

𝐿2
𝑎(𝒟)

≤ 𝐶

(︂∫︁
𝒟

𝑎

)︂1/2(︂∫︁
𝒟

𝑎−1

)︂1/2

‖∇𝑢‖𝐿2
𝑎(𝒟),

and we conclude the proof observing that(︂∫︁
𝒟

𝑎

)︂1/2(︂∫︁
𝒟

𝑎−1

)︂1/2

≤ 𝐶[𝑎]1/2
𝐴2

with a constant depending on 𝒟. �

Consequently, using standard arguments we can prove the well-posedness of problem (1.1).

Theorem 2.2. Given 𝑎 ∈ 𝐴2, 𝑔 ∈ 𝐿2
𝑎−1(𝒟) and 𝑓 ∈ 𝐿∞(Γ𝑁 ), the problem⎧⎨⎩−div(𝑎∇𝑢) = 𝑔 in 𝒟

𝑢 = 0 on Γ𝐷

−𝑎∇𝑢 ·𝑛𝑛𝑛 = 𝑓 on Γ𝑁

has a unique solution 𝑢 ∈ 𝐻1
𝑎(𝒟), provided

∫︀
𝒟 𝑔 =

∫︀
𝜕𝒟 𝑓 in the case Γ𝑁 = 𝜕𝒟. Moreover,

‖𝑢‖𝐻1
𝑎(𝒟) ≤ 𝐶

{︁
‖𝑔‖𝐿2

𝑎−1 (𝒟) + ‖𝑓‖𝐿∞(Γ𝑁 )

}︁
. (2.6)

Proof. The result follows from standard arguments using the Lax–Milgram theorem. Indeed, considering first
the case Γ𝐷 ̸= ∅, the weak form of the problem is given by: Find 𝑢 ∈ 𝐻1

𝑎,Γ𝐷
(𝒟) such that∫︁

𝒟
𝑎∇𝑢 · ∇𝑣 =

∫︁
𝒟

𝑔𝑣 −
∫︁

Γ𝑁

𝑓𝑣 ∀𝑣 ∈ 𝐻1
𝑎,Γ𝐷

(𝒟).

The left hand side is a continuous bilinear form in 𝐻1
𝑎,Γ𝐷

(𝒟) and, in view of (2.5), it is coercive. Since
𝑔 ∈ 𝐿2

𝑎−1(𝒟), using again (2.5), it follows that the first term on the right defines a continuous linear form
in 𝐻1

𝑎,Γ𝐷
(𝒟). Finally, to see that the second term on the right also defines a continuous linear form we use that

𝑓 ∈ 𝐿∞(Γ𝑁 ) and (2.1) combined with the Schwarz inequality.
The case Γ𝑁 = 𝜕𝒟 can be treated analogously using now (2.4). �
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Remark 2.3. For simplicity we have assumed that 𝑓 ∈ 𝐿∞(Γ𝑁 ). It is clear from the proof that this hypothesis
can be relaxed: it is enough that 𝑓 belong to the dual of the space formed by restrictions to Γ𝑁 of functions in
𝐻1

𝑎(𝒟). In the particular case of the application considered in the last section this space is characterized as a
fractional Sobolev space.

Let us now introduce the appropriate spaces for the formulation and analysis of mixed approximations. Taking
into account Theorem 2.2, the appropriate space for the vector variable 𝜎𝜎𝜎 = −𝑎∇𝑢 is

𝐻𝑎−1(div,𝒟) = {𝜏𝜏𝜏 ∈ 𝐿2
𝑎−1(𝒟)𝑛 : div 𝜏𝜏𝜏 ∈ 𝐿2

𝑎−1(𝒟)}

which is a Hilbert space with norm given by

‖𝜏𝜏𝜏‖2𝐻𝑎−1 (div,𝒟) = ‖𝜏𝜏𝜏‖2𝐿2
𝑎−1 (𝒟) + ‖div 𝜏𝜏𝜏‖2𝐿2

𝑎−1 (𝒟).

To treat Neumann boundary conditions we need to see that the normal component is well defined for any
𝜏𝜏𝜏 ∈ 𝐻𝑎−1(div,𝒟) on 𝜕𝒟 whenever 𝑎 ∈ 𝐴2. It is known (see e.g. [15]) that there exists 𝑞 < 2 such that 𝑎−1 ∈ 𝐴𝑞,
and therefore, an argument analogous to that used to obtain (2.2) gives that 𝐿2

𝑎−1(𝒟) ⊂ 𝐿𝑝(𝒟) for 𝑝 = 2/𝑞.
Then,

𝐻𝑎−1(div,𝒟) ⊂ 𝑊 𝑝(div,𝒟) = {𝜏𝜏𝜏 ∈ 𝐿𝑝(𝒟)𝑛 : div 𝜏𝜏𝜏 ∈ 𝐿𝑝(𝒟)}

and it is known that, for 𝜏𝜏𝜏 ∈ 𝑊 𝑝(div,𝒟), 𝜏𝜏𝜏 ·𝑛𝑛𝑛 is well defined as a distribution that belongs to 𝑊−1/𝑝,𝑝(𝜕𝒟).
In the mixed formulation Neumann type boundary conditions are imposed in an essential way, and so we will

work with the subspace

𝐻𝑎−1,Γ𝑁
(div,𝒟) = {𝜏𝜏𝜏 ∈ 𝐻𝑎−1(div,𝒟) : 𝜏𝜏𝜏 ·𝑛𝑛𝑛 = 0 on Γ𝑁}.

Dividing by 𝑎, the first equation in (1.2) can be rewritten as

𝑎−1 𝜎𝜎𝜎 +∇𝑢 = 0 in 𝒟,

and multiplying by test functions and integrating by parts, we obtain the weak mixed formulation of problem
(1.2), namely, find 𝜎𝜎𝜎 ∈ 𝐻𝑎−1(div,𝒟) and 𝑢 ∈ 𝐿2

𝑎(𝒟) such that

𝜎𝜎𝜎 ·𝑛𝑛𝑛 = 𝑓 on Γ𝑁 (2.7)

and ⎧⎪⎪⎨⎪⎪⎩
∫︁
𝒟

𝑎−1 𝜎𝜎𝜎 · 𝜏𝜏𝜏 −
∫︁
𝒟

𝑢 div 𝜏𝜏𝜏 = 0 ∀𝜏𝜏𝜏 ∈ 𝐻𝑎−1,Γ𝑁
(div,𝒟)∫︁

𝒟
𝑣 div𝜎𝜎𝜎 =

∫︁
𝒟

𝑔𝑣 ∀𝑣 ∈ 𝐿2
𝑎(𝒟).

(2.8)

Observe that the Dirichlet boundary condition is implicit in the weak formulation. When Γ𝑁 = 𝜕𝒟, 𝐿2
𝑎(𝒟) has

to be replaced by 𝐿2
𝑎,0(𝒟), the subspace of functions with vanishing mean value.

As usual, the error analysis is divided in two steps. The first one consists in proving estimates for the finite
element approximation error in terms of the error for some appropriate interpolation or projection operator.
This part of the analysis can be done for general mixed finite element spaces provided they satisfy the so called
commutative diagram property as well as some weighted stability estimates for the appropriate projections.
Therefore, we will develop this part of the error analysis for general spaces stating the necessary assumptions
that afterwards have to be proved for each particular choice of approximation spaces. The second part consists
in estimating the interpolation error. We will do this first for the family of Raviart–Thomas spaces of arbitrary
order 𝑘 ≥ 0 in simplex and general dimension 𝑛, and second, for Raviart–Thomas on convex quadrilaterals in
dimension 2 (and we will comment on the generalization to the three dimensional case).
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We assume that we have a family of partitions {𝒯ℎ} of the domain 𝒟 such that each 𝒯ℎ is consistent with
the boundary conditions, i.e. the exterior boundary of an element is completely contained in Γ𝐷 or in Γ𝑁 .
Associated with these partitions we assume that we have finite element spaces 𝑆𝑆𝑆ℎ ⊂ 𝐻𝑎−1(div,𝒟), 𝑉ℎ ⊂ 𝐿2

𝑎(𝒟)
(or 𝑉ℎ ⊂ 𝐿2

𝑎,0(𝒟) when Γ𝑁 = 𝜕𝒟), such that, if

𝑆𝑆𝑆ℎ,𝑁 = 𝑆𝑆𝑆ℎ ∩𝐻𝑎−1,Γ𝑁
(div,𝒟),

then
div𝑆𝑆𝑆ℎ,𝑁 = 𝑉ℎ (2.9)

and there exists an operator Πℎ : 𝑆𝑆𝑆 −→ 𝑆𝑆𝑆ℎ, defined in an appropriate subspace 𝑆𝑆𝑆 ⊂ 𝐻𝑎−1(div,𝒟) containing
the solution 𝜎𝜎𝜎, such that, if 𝜏𝜏𝜏 ∈ 𝑆𝑆𝑆 ∩𝐻𝑎−1,Γ𝑁

(div,𝒟) then Πℎ𝜏𝜏𝜏 ∈ 𝑆𝑆𝑆ℎ,𝑁 and, for all 𝜏𝜏𝜏 ∈ 𝑆𝑆𝑆,∫︁
𝒟

div (𝜏𝜏𝜏 −Πℎ𝜏𝜏𝜏)𝑣 = 0 ∀𝑣 ∈ 𝑉ℎ. (2.10)

Introducing the 𝐿2-orthogonal projection 𝑃ℎ : 𝐿2(𝒟) −→ 𝑉ℎ, (2.9) and (2.10) yield the commutative diagram
property

div Πℎ = 𝑃ℎdiv . (2.11)

The mixed finite element approximation of problem (1.2) is given by

(𝜎𝜎𝜎ℎ, 𝑢ℎ) ∈ 𝑆𝑆𝑆ℎ × 𝑉ℎ

such that,
𝜎𝜎𝜎ℎ ·𝑛𝑛𝑛 = Πℎ𝜎𝜎𝜎 ·𝑛𝑛𝑛 on Γ𝑁 (2.12)

and ⎧⎪⎪⎨⎪⎪⎩
∫︁
𝒟

𝑎−1 𝜎𝜎𝜎ℎ · 𝜏𝜏𝜏 −
∫︁
𝒟

𝑢ℎ div 𝜏𝜏𝜏 = 0 ∀𝜏𝜏𝜏 ∈ 𝑆𝑆𝑆ℎ,𝑁 ,∫︁
𝒟

𝑣 div𝜎𝜎𝜎ℎ, =
∫︁
𝒟

𝑔𝑣 ∀𝑣 ∈ 𝑉ℎ.

(2.13)

Existence and uniqueness of the discrete solution and the following error estimate follow by well known argu-
ments (see e.g. [7, 8]). For completeness we include the proof of the error estimate to show that the usual
arguments can be adapted for degenerate problems and for the mixed boundary conditions considered here. We
neglect numerical integration errors assuming that all the integrals can be computed exactly.

Lemma 2.4. Assume that 𝑎−1 ∈ 𝐿1(𝒟) and 𝜎𝜎𝜎 ∈ 𝐿2
𝑎−1(𝒟)𝑛. If 𝜎𝜎𝜎 is the solution of (2.7) and (2.8), and 𝜎𝜎𝜎ℎ that

of (2.12) and (2.13), then
‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2

𝑎−1
≤ ‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2

𝑎−1
.

Proof. Subtracting the second equation in (2.13) to the second one in (2.8) and using (2.10) we obtain∫︁
𝒟

div (Πℎ𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ) 𝑣 = 0 ∀𝑣 ∈ 𝑉ℎ.

From (2.12) it follows that Πℎ𝜎𝜎𝜎−𝜎𝜎𝜎ℎ ∈ 𝑆𝑆𝑆ℎ,𝑁 , and then, by (2.9) we conclude that div (Πℎ𝜎𝜎𝜎−𝜎𝜎𝜎ℎ) = 0. Moreover,
taking 𝜏𝜏𝜏 = Πℎ𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ in (2.8) and (2.13), we obtain∫︁

𝒟
𝑎−1 (𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ) · (Πℎ𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ) = 0

and so,

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖2𝐿2
𝑎−1

=
∫︁
𝒟

𝑎−1 (𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ) · (𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎)

≤ ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2
𝑎−1

‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2
𝑎−1

,

and the lemma is proved. �
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To estimate the error in the approximation of the scalar variable we need the following result which generalizes
to the weighted case the existence of continuous right inverses of the divergence.

Lemma 2.5. If 𝑎 ∈ 𝐴2 then, given 𝜑 ∈ 𝐿2
𝑎−1(𝒟) (satisfying

∫︀
𝒟 𝜑 = 0 in the case Γ𝑁 = 𝜕𝒟), there exists

𝜏𝜏𝜏 ∈ 𝐻1
𝑎−1(𝒟)𝑛 ∩𝐻𝑎−1,Γ𝑁

(div,𝒟) such that
div𝜏𝜏𝜏 = 𝜑

and
‖𝜏𝜏𝜏‖𝐻1

𝑎−1 (𝒟) ≤ 𝐶‖𝜑‖𝐿2
𝑎−1 (𝒟),

where the constant 𝐶 depends on 𝒟 and 𝑎.

Proof. In the case Γ𝑁 = 𝜕𝒟 we have
∫︀
𝒟 𝜑 = 0 and the result is known. Indeed, for domains which are star-

shaped with respect to a ball it was proved in Theorem 3.1 of [17] and Theorem 1.1 of [33] using Bogovskii’s
solution of the divergence and the theory of singular integrals. The arguments used there can be extended for
the class of John domains using the generalization of Bogovskii’s operator introduced in [3] (for more details
see also [2]). A different proof was given in Theorem 5.2 of [13] also for the class of John domains.

Suppose now that Γ𝑁 ̸= 𝜕𝒟. Enlarging the domain in an appropriate way we can obtain a Lipschitz domaiñ︀𝒟 such that 𝒟  ̃︀𝒟 and Γ𝑁 ⊂ 𝜕 ̃︀𝒟. For example, we can make a smooth deformation of part of Γ𝐷.
Now, we extend 𝜑 to ̃︀𝒟 as

̃︀𝜑 =

⎧⎪⎨⎪⎩
𝜑(𝑥), 𝑥 ∈ 𝒟

−
∫︀
𝒟 𝜑

| ̃︀𝒟 ∖ 𝒟| , 𝑥 ∈ ̃︀𝒟 ∖ 𝒟
and then, since

∫︀
̃︀𝒟
̃︀𝜑 d𝑥 = 0, there exists 𝜏𝜏𝜏 ∈ 𝐻1

𝑎−1( ̃︀𝒟)𝑛, vanishing on 𝜕 ̃︀𝒟 and satisfying

‖𝜏𝜏𝜏‖𝐻1
𝑎−1 ( ̃︀𝒟) ≤ 𝐶‖̃︀𝜑‖𝐿2

𝑎−1 ( ̃︀𝒟).

It is easy to see that ‖̃︀𝜑‖𝐿2
𝑎−1 ( ̃︀𝒟) ≤ 𝐶‖𝜑‖𝐿2

𝑎−1 (𝒟), and, therefore, the restriction of 𝜏𝜏𝜏 to 𝒟 satisfies the required
properties. �

For the next lemma we need to use the following stability result in a weighted norm:

‖Πℎ𝜏𝜏𝜏‖𝐿2
𝑎−1

≤ 𝐶‖𝜏𝜏𝜏‖𝐻1
𝑎−1

. (2.14)

Assuming that 𝑎 ∈ 𝐴2, we will prove this estimate for the Raviart–Thomas interpolation in a forthcoming
section.

Lemma 2.6. Let (𝜎𝜎𝜎, 𝑢) and (𝜎𝜎𝜎ℎ, 𝑢ℎ) be the solutions of (2.7), (2.8) and (2.12), (2.13) respectively. If 𝑎 ∈ 𝐴2

and Πℎ satisfies (2.14) then

‖𝑢− 𝑢ℎ‖𝐿2
𝑎
≤ ‖𝑢− 𝑃ℎ𝑢‖𝐿2

𝑎
+ 𝐶‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2

𝑎−1
, (2.15)

where 𝐶 depends on the constant in Lemma 2.5.

Proof. Assume first that Γ𝐷 ̸= ∅. According to Lemma 2.5 there exists 𝜏𝜏𝜏 ∈ 𝐻1
𝑎−1(𝒟)𝑛 ∩𝐻𝑎−1,Γ𝑁

(div,𝒟) such
that

div 𝜏𝜏𝜏 = (𝑃ℎ𝑢− 𝑢ℎ)𝑎

and
‖𝜏𝜏𝜏‖𝐻1

𝑎−1
≤ 𝐶‖(𝑃ℎ𝑢− 𝑢ℎ)𝑎‖𝐿2

𝑎−1
.



S1000 M. E. CEJAS ET AL.

Then,

‖𝑃ℎ𝑢− 𝑢ℎ‖2𝐿2
𝑎

=
∫︁
𝒟

(𝑃ℎ𝑢− 𝑢ℎ)div 𝜏𝜏𝜏 =
∫︁
𝒟

(𝑃ℎ𝑢− 𝑢ℎ)div Πℎ𝜏𝜏𝜏

=
∫︁
𝒟

(𝑢− 𝑢ℎ)div Πℎ𝜏𝜏𝜏 =
∫︁
𝒟

𝑎−1(𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ) ·Πℎ𝜏𝜏𝜏

≤ ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2
𝑎−1

‖Πℎ𝜏𝜏𝜏‖𝐿2
𝑎−1

≤ 𝐶‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2
𝑎−1

‖𝜏𝜏𝜏‖𝐻1
𝑎−1

≤ 𝐶‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2
𝑎−1

‖𝑃ℎ𝑢− 𝑢ℎ‖𝐿2
𝑎

where we have used (2.10) and (2.14). Then, (2.15) follows by the triangular inequality.
Now, if Γ𝑁 = 𝜕𝒟, there exists 𝜏𝜏𝜏 ∈ 𝐻𝑎−1,Γ𝑁

(div,𝒟) such that

div 𝜏𝜏𝜏 = (𝑃ℎ𝑢− 𝑢ℎ)𝑎− (𝑃ℎ𝑢− 𝑢ℎ)𝑎,

where (𝑃ℎ𝑢− 𝑢ℎ)𝑎 denotes the average of (𝑃ℎ𝑢− 𝑢ℎ)𝑎, and

‖𝜏𝜏𝜏‖𝐻1
𝑎−1

≤ 𝐶‖(𝑃ℎ𝑢− 𝑢ℎ)𝑎‖𝐿2
𝑎−1

.

Indeed, this follows from Lemma 2.5 and the estimate

|(𝑃ℎ𝑢− 𝑢ℎ)𝑎| ≤ 1
|𝒟|

(︂∫︁
𝒟

𝑎

)︂1/2

‖(𝑃ℎ𝑢− 𝑢ℎ)𝑎‖𝐿2
𝑎−1

.

Since
∫︀
𝒟(𝑃ℎ𝑢− 𝑢ℎ) = 0 we have

‖𝑃ℎ𝑢− 𝑢ℎ‖2𝐿2
𝑎(𝒟) =

∫︁
𝒟

(𝑃ℎ𝑢− 𝑢ℎ)
(︁

(𝑃ℎ𝑢− 𝑢ℎ)𝑎− (𝑃ℎ𝑢− 𝑢ℎ)𝑎
)︁

=
∫︁
𝒟

(𝑃ℎ𝑢− 𝑢ℎ)div 𝜏𝜏𝜏 .

The rest of the argument follows as in the previous case. �

Combining Lemmas 2.4 and 2.6 we obtain the following

Corollary 2.7. Under the same hypotheses of Lemma 2.6 we have

‖𝑢− 𝑢ℎ‖𝐿2
𝑎
≤ ‖𝑢− 𝑃ℎ𝑢‖𝐿2

𝑎
+ 𝐶‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2

𝑎−1
.

3. Error estimates for Raviart–Thomas elements on simplices

To apply the results obtained in the previous section we have to prove error estimates for the corresponding
operators Πℎ and 𝑃ℎ. In this section we consider the case of regular partitions made by simplices, namely, if
ℎ𝐾 and 𝜌𝐾 are the diameters of 𝐾 and the biggest ball contained in 𝐾 respectively, we assume that the family
of meshes {𝒯ℎ} satisfy

ℎ𝐾

𝜌𝐾
≤ 𝜂 (3.1)

with a constant 𝜂 independent of ℎ.
Recall that the local Raviart–Thomas space of order 𝑘 ≥ 0 on a simplex 𝐾 ⊂ R𝑛 is given by

ℛ𝒯 𝑘(𝐾) = 𝒫𝑘(𝐾)𝑛 + 𝑥𝒫𝑘(𝐾)
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where we are using the usual notation 𝒫𝑘(𝐾) to denote the polynomials of degree less than or equal to 𝑘
restricted to 𝐾.

Calling 𝐹𝑖 the faces (edges in 2d) of 𝐾 and 𝑛𝑛𝑛𝑖 the corresponding exterior normal vectors, the Raviart–Thomas
interpolation on each element 𝐾 is defined by (see e.g. [7]),∫︁

𝐹𝑖

Π𝐾𝜎𝜎𝜎 ·𝑛𝑛𝑛𝑖𝑝𝑘 =
∫︁

𝐹𝑖

𝜎𝜎𝜎 ·𝑛𝑛𝑛𝑖𝑝𝑘 ∀𝑝𝑘 ∈ 𝒫𝑘(𝐹𝑖), 𝑖 = 1, . . . , 𝑛 + 1

and, if 𝑘 ≥ 1, ∫︁
𝐾

Π𝐾𝜎𝜎𝜎 · p𝑘−1 d𝑥 =
∫︁

𝐾

𝜎𝜎𝜎 · p𝑘−1 ∀p𝑘−1 ∈ 𝒫𝑛
𝑘−1(𝐾).

Since the restriction of functions in 𝑊 1,1(𝐾) belong to 𝐿1(𝜕𝐾), these degrees of freedom are well defined for
𝜎𝜎𝜎 ∈ 𝑊 1,1(𝐾)𝑛. As we already mentioned in Section 2, for 𝑎 ∈ 𝐴2, 𝐻1

𝑎(𝐾) ⊂ 𝑊 1,1(𝐾) and so Π𝐾 is well defined
in 𝐻1

𝑎(𝐾)𝑛.
Then, the global space for the approximation of the vector variable for a partition 𝒯ℎ is

𝑆𝑆𝑆ℎ = {𝜏𝜏𝜏 ∈ 𝐻𝑎−1(div,𝒟) : 𝜏𝜏𝜏 |𝐾 ∈ ℛ𝒯 𝑘(𝐾) ∀𝐾 ∈ 𝒯ℎ}. (3.2)

The associated space for the scalar variable is given by

𝑉ℎ = {𝑣 ∈ 𝑉 : 𝑣|𝐾 ∈ 𝒫𝑘(𝐾) ∀𝐾 ∈ 𝒯ℎ}, (3.3)

where 𝑉 = 𝐿2
𝑎,0(𝒟) when Γ𝑁 = 𝜕𝒟 or 𝑉 = 𝐿2

𝑎(𝒟) otherwise. Then, the projection 𝑃ℎ is given locally by
(𝑃ℎ𝑣)|𝐾 = 𝑃𝐾𝑣 where 𝑃𝐾 : 𝐿2

𝑎(𝐾) → 𝒫𝑘(𝐾) is given by∫︁
𝐾

(𝑣 − 𝑃𝐾𝑣)𝑝𝑘 = 0 ∀𝑝𝑘 ∈ 𝒫𝑘(𝐾),

that is, 𝑃𝐾 is the orthogonal projection in 𝐿2(𝐾) (without the weight). We remark that 𝑃𝐾 is well defined in
𝐿1(𝐾) and so, in particular, in 𝐿2

𝑎(𝐾).
It is not difficult to check that (2.9), (2.10), and consequently (2.11), are satisfied.
To prove error estimates for the Raviart–Thomas interpolation in weighted norms we work first in a fixed

reference element ̂︀𝐾 and then change variables using the Piola transform. Given a simplex 𝐾 let Φ an affine
map given by Φ(𝑥̂) = 𝐴𝑥̂ + 𝑏 that transforms ̂︀𝐾 into 𝐾. The following estimates are well known,

‖𝐴‖ ≤ ℎ𝐾

𝜌𝐾̂

and ‖𝐴−1‖ ≤
ℎ𝐾̂

𝜌𝐾
· (3.4)

The Piola transform is given by

𝜎𝜎𝜎(𝑥) =
1

|det 𝐴|
𝐴𝜎𝜎𝜎(𝑥̂)

where 𝑥 = Φ(𝑥̂). It is known that (see [7], Lem. 3.4 for details),

Π ̂︀𝐾𝜎𝜎𝜎 = Π̂𝐾𝜎𝜎𝜎. (3.5)

The next lemma is a generalization to the case of weighted norms of a classic result on polynomial approximation.
This result was proved in Sections 4.3 and 4.4 of [31] but we give a shorter proof here. Although we will only
work with 𝐿2 based Sobolev norms, we will write the lemma for the general 𝐿𝑝 case because the proof is exactly
the same. We denote by 𝑊 𝑘,𝑝

𝑎 (Ω) the Banach space of functions with derivatives up to the order 𝑘 in 𝐿𝑝
𝑎(Ω).

We refer the reader to [15] for the definition of the 𝐴𝑝 class of weights as well as for the boundedness of the
Hardy–Littlewood maximal operator in weighted norms.
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Suppose that Ω ⊂ R𝑛 is star-shaped with respect to a ball 𝐵 ⊂ Ω and let 𝜙 = 1
|𝐵|𝜒𝐵 , where 𝜒𝐵 denotes the

characteristic function of 𝐵. Given an integer number 𝑚 ≥ 0 and a function 𝑢 ∈ 𝑊𝑚,1(Ω), the averaged Taylor
polynomial of degree less than or equal to 𝑚 associated with 𝑢 ∈ 𝑊𝑚,1(Ω) is given by

𝑝𝑚(𝑢)(𝑥) =
∑︁
|𝛼|≤𝑚

1
𝛼!

∫︁
𝐵

𝐷𝛼𝑢(𝑦)(𝑥− 𝑦)𝛼𝜙(𝑦) d𝑦.

In what follows we will use the notation 𝐷𝑗𝑢 :=
∑︀
|𝛼|=𝑗 |𝐷𝛼𝑢| and extend by zero this function outside Ω.

Lemma 3.1. Let Ω ⊂ R𝑛 be a domain with diameter 𝑑 which is star-shaped with respect to a ball 𝐵 of radius 𝜌.
Then, for 1 < 𝑝 < ∞, 𝑚 ≥ 0 an integer number, and 𝑢 ∈ 𝑊𝑚+1,𝑝

𝑎 (Ω), where 𝑎 ∈ 𝐴𝑝, the polynomial 𝑝𝑚(𝑢) ∈ 𝒫𝑚

satisfies, for 0 ≤ 𝑗 ≤ 𝑚 + 1,

‖𝐷𝑗(𝑢− 𝑝𝑚(𝑢))‖𝐿𝑝
𝑎(Ω) ≤ 𝐶

(︂
𝑑

𝜌

)︂𝑛

𝑑𝑚+1−𝑗‖𝐷𝑚+1𝑢‖𝐿𝑝
𝑎(Ω)

with a constant 𝐶 depending only on 𝑛, 𝑚, 𝑝 and [𝑎]𝐴𝑝 .

Proof. First of all, observe that 𝑝𝑚(𝑢) is well defined because 𝑊𝑚+1,𝑝
𝑎 (Ω) ⊂ 𝑊𝑚+1,1(Ω). On the other hand,

since 𝐷𝛼𝑝𝑚(𝑢) = 𝑝𝑚−|𝛼|(𝐷𝛼𝑢) for all |𝛼| ≤ 𝑚 (see [9], Prop. 4.1.17), it is enough to consider the case 𝑗 = 0.
According to Proposition 4.2.8 of [9], for any 𝑥 ∈ Ω we have

𝑢(𝑥)− 𝑝𝑚(𝑢)(𝑥) = (𝑚 + 1)
∑︁

|𝛼|=𝑚+1

1
𝛼!

∫︁ 1

0

∫︁
Ω

(𝑥− 𝑧)𝛼 1
𝑠𝑛

𝜙

(︂
𝑥 +

𝑧 − 𝑥

𝑠

)︂
𝐷𝛼𝑢(𝑧) d𝑧

d𝑠

𝑠
·

Now, since the integrand vanishes unless 𝑥 + 𝑧−𝑥
𝑠 ∈ 𝐵 and 𝑥 ∈ Ω, we can restrict the set of integration to

|𝑥 + 𝑧−𝑥
𝑠 − 𝑥| ≤ 𝑑, or equivalently, to |𝑧 − 𝑥| ≤ 𝑠𝑑. Therefore, a simple estimate yields

|𝑢(𝑥)− 𝑝𝑚(𝑢)(𝑥)| ≤ 𝐶‖𝜙‖∞𝑑𝑛

∫︁ 1

0

1
(𝑠𝑑)𝑛

∫︁
|𝑧−𝑥|≤𝑠𝑑

|𝑥− 𝑧|𝑚+1𝐷𝑚+1𝑢(𝑧) d𝑧
d𝑠

𝑠

≤ 𝐶

(︂
𝑑

𝜌

)︂𝑛 ∫︁ 1

0

1
(𝑠𝑑)𝑛

∫︁
|𝑧−𝑥|≤𝑠𝑑

(𝑠𝑑)𝑚+1𝐷𝑚+1𝑢(𝑧) d𝑧
d𝑠

𝑠

≤ 𝐶

(︂
𝑑

𝜌

)︂𝑛

𝑑𝑚+1ℳ(𝐷𝑚+1𝑢)(𝑥)

where for the second inequality we have used that ‖𝜙‖∞ ≤ 𝐶/𝜌𝑛 while for the third one the definition of
the Hardy–Littlewood maximal function. Then, the proof concludes by using the boundedness of the maximal
operator in the space 𝐿𝑝

𝑎. �

In what follows we will use the following observation: under the regularity assumption (3.1) it is easy to see
that (︂

1
|𝐾|

∫︁
𝐾

𝑎

)︂(︂
1
|𝐾|

∫︁
𝐾

𝑎−1

)︂
≤ 𝐶[𝑎]𝐴2 (3.6)

with 𝐶 depending only on 𝑛 and 𝜂.
To simplify notation we will prove all the estimates for the weight 𝑎 although some of them will be used later

for 𝑎−1. Note that, from the definition of 𝐴2, it follows immediately that 𝑎 ∈ 𝐴2 if and only if 𝑎−1 ∈ 𝐴2.

Theorem 3.2. Given a simplex 𝐾 = Φ( ̂︀𝐾) ⊂ R𝑛 and 𝑘 ≥ 0, let Π𝐾 be the Raviart–Thomas interpolation over
ℛ𝒯 𝑘(𝐾). Then, if 𝑎 ∈ 𝐴2, there exists a constant 𝐶 depending only on n, k, [𝑎]𝐴2 , and the regularity constant
𝜂 such that, for 0 ≤ 𝑚 ≤ 𝑘,

‖𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝐾) ≤ 𝐶ℎ𝑚+1

𝐾 ‖𝐷𝑚+1𝜎𝜎𝜎‖𝐿2
𝑎(𝐾). (3.7)
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Proof. Proceeding exactly as in Theorem 3.1 of [7], but using here the trace theorem (2.1) on 𝐾̂, and using (2.3)
for 𝑎̂𝐾 in 𝐾̂, we obtain

|Π ̂︀𝐾𝜎𝜎𝜎(𝑥̂)| ≤ 𝐶‖𝜎𝜎𝜎‖𝑊 1,1( ̂︀𝐾) ≤ 𝐶

(︂∫︁
̂︀𝐾

𝑎̂−1
𝐾

)︂1/2

‖𝜎𝜎𝜎‖𝐻1
𝑎̂𝐾

( ̂︀𝐾)

where the constant depends only on the reference element, and so on 𝑛. Then, taking square in this inequality,
multiplying by 𝑎̂𝐾(𝑥̂), and integrating we get

‖Π ̂︀𝐾𝜎𝜎𝜎‖𝐿2
𝑎̂𝐾

( ̂︀𝐾) ≤ 𝐶

(︂∫︁
̂︀𝐾

𝑎̂𝐾

)︂1/2(︂∫︁
̂︀𝐾

𝑎̂−1
𝐾

)︂1/2

‖𝜎𝜎𝜎‖𝐻1
𝑎̂𝐾

( ̂︀𝐾).

But, (︂∫︁
̂︀𝐾

𝑎̂𝐾

)︂(︂∫︁
̂︀𝐾

𝑎̂−1
𝐾

)︂
≤ 𝐶

(︂
1
|𝐾|

∫︁
𝐾

𝑎

)︂(︂
1
|𝐾|

∫︁
𝐾

𝑎−1

)︂
≤ 𝐶[𝑎]𝐴2

where we have used (3.6). Therefore,

‖Π ̂︀𝐾𝜎𝜎𝜎‖𝐿2
𝑎̂𝐾

( ̂︀𝐾) ≤ 𝐶[𝑎]1/2
𝐴2
‖𝜎𝜎𝜎‖𝐻1

𝑎̂𝐾
( ̂︀𝐾)

where 𝐶 depends only on 𝜂 and 𝑛.
Making now the change of variables 𝑥 = Φ(𝑥̂) and using (3.4) we obtain (see details in [7], Thm. 3.1),

‖Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝐾) ≤ 𝐶

{︀
‖𝜎𝜎𝜎‖𝐿2

𝑎(𝐾) + ℎ𝐾‖𝐷𝜎𝜎𝜎‖𝐿2
𝑎(𝐾)

}︀
where the constant depends only on the reference element, [𝑎]𝐴2 , and the regularity constant 𝜂.

To conclude the proof we recall that 𝒫𝑘(𝐾)𝑛 ⊂ ℛ𝒯 𝑘(𝐾) and so, given p ∈ 𝒫𝑘(𝐾)𝑛, Π𝐾p = p . Then,

‖𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝐾) = ‖𝜎𝜎𝜎 − p−Π𝐾(𝜎𝜎𝜎 − p)‖𝐿2

𝑎(𝐾)

≤ 𝐶
{︀
‖𝜎𝜎𝜎 − p‖𝐿2

𝑎(𝐾) + ℎ𝐾‖𝐷(𝜎𝜎𝜎 − p)‖𝐿2
𝑎(𝐾)

}︀
and choosing now, for each 0 ≤ 𝑚 ≤ 𝑘, p = p𝑚(𝜎𝜎𝜎) ∈ 𝒫𝑚(𝐾)𝑛 as in Lemma 3.1, we obtain (3.7). �

Lemma 3.3. Given a simplex 𝐾 ⊂ R𝑛 and 𝑘 ≥ 0, let 𝑃𝐾 be the 𝐿2-orthogonal projection over 𝒫𝑘(𝐾). Then,
if 𝑎 ∈ 𝐴2, there exists a constant 𝐶 depending only on n, k, [𝑎]𝐴2 , and the regularity constant 𝜂 such that,

‖𝑃𝐾𝑢‖𝐿2
𝑎(𝐾) ≤ 𝐶‖𝑢‖𝐿2

𝑎(𝐾) (3.8)

and, for 0 ≤ 𝑚 ≤ 𝑘,
‖𝑢− 𝑃𝐾𝑢‖𝐿2

𝑎(𝐾) ≤ 𝐶ℎ𝑚+1
𝐾 ‖𝐷𝑚+1𝑢‖𝐿2

𝑎(𝐾). (3.9)

Proof. Let {𝑝𝛼}|𝛼|≤𝑘 an orthonormal basis of 𝒫𝑘(𝐾). Then we have

𝑃𝐾𝑢(𝑥) =
∑︁
𝛼

(︂∫︁
𝐾

𝑢𝑝𝛼

)︂
𝑝𝛼(𝑥)

and then,

|𝑃𝐾𝑢(𝑥)| ≤
∑︁
𝛼

‖𝑝𝛼‖2∞‖𝑢‖𝐿1(𝐾) ≤
∑︁
𝛼

‖𝑝𝛼‖2∞
(︂∫︁

𝐾

𝑎−1

)︂1/2

‖𝑢‖𝐿2
𝑎(𝐾).

But, since ‖𝑝𝛼‖2𝐿2 = 1, by a standard inverse estimate we know that ‖𝑝𝛼‖2∞ ≤ 𝐶/|𝐾|, and therefore,

|𝑃𝐾𝑢(𝑥)|2 ≤ 𝐶

|𝐾|2

(︂∫︁
𝐾

𝑎−1

)︂
‖𝑢‖2𝐿2

𝑎(𝐾)
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where the constant depends on 𝑛 and 𝑘. Multiplying by 𝑎(𝑥), integrating, and using (3.6) we obtain

‖𝑃𝐾𝑢‖2𝐿2
𝑎(𝐾) ≤ 𝐶[𝑎]𝐴2‖𝑢‖2𝐿2

𝑎(𝐾)

an so (3.8) holds.
Now, for any 𝑝 ∈ 𝒫𝑚 with 0 ≤ 𝑚 ≤ 𝑘, we have 𝑃𝐾𝑝 = 𝑝, and so

‖𝑢− 𝑃𝐾𝑢‖𝐿2
𝑎(𝐾) ≤ ‖𝑢− 𝑝− 𝑃𝐾(𝑢− 𝑝)‖𝐿2

𝑎(𝐾) ≤ 𝐶‖𝑢− 𝑝‖𝐿2
𝑎(𝐾)

where in the last inequality we have used (3.8). Therefore, choosing 𝑝 = 𝑝𝑚(𝑢) as the averaged Taylor polynomial
in 𝐾 given by Lemma 3.1 we obtain (3.9). �

Combining the error estimates obtained above with the results of the previous section we can now state the
main theorem for approximation by Raviart–Thomas elements on regular families of meshes.

Theorem 3.4. Let 𝒯ℎ be a family of meshes with regularity constant 𝜂 and ℎ = max𝐾∈𝒯ℎ
ℎ𝐾 . For 𝑘 ≥ 0 let

𝑆𝑆𝑆ℎ and 𝑉ℎ the spaces defined in (3.2) and (3.3). If (𝜎𝜎𝜎, 𝑢) and (𝜎𝜎𝜎ℎ, 𝑢ℎ) ∈ 𝑆𝑆𝑆ℎ × 𝑉ℎ are the solutions of (2.7) and
(2.8), and (2.12) and (2.13) respectively then, for 𝑎 ∈ 𝐴2, there exists a constant 𝐶 depending only on 𝒟, 𝑎, 𝑛,
𝑘 and 𝜂 such that, for 0 ≤ 𝑚 ≤ 𝑘,

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎ℎ‖𝐿2
𝑎−1

≤ 𝐶ℎ𝑚+1‖𝐷𝑚+1𝜎𝜎𝜎‖𝐿2
𝑎−1

,

and
‖𝑢− 𝑢ℎ‖𝐿2

𝑎
≤ 𝐶ℎ𝑚+1

{︁
‖𝐷𝑚+1𝜎𝜎𝜎‖𝐿2

𝑎−1
+ ‖𝐷𝑚+1𝑢‖𝐿2

𝑎

}︁
.

Proof. The error estimate for 𝜎𝜎𝜎 follows from Lemma 2.4 combined with the estimate (3.7) applied to the weight
𝑎−1 (recall that 𝑎 ∈ 𝐴2 if and only if 𝑎−1 ∈ 𝐴2).

On the other hand, observe that (3.7) implies the hypothesis (2.14) assumed in Lemma 2.6. Then, to bound
the error for 𝑢 we apply that lemma, (3.7) again, and (3.9). �

Similar results can be proved for general quadrilateral elements in two dimensions. Indeed, it is possible to
extend the results of [6] to the weighted case. Consider an arbitrary convex quadrilateral 𝐾 = 𝐹 ( ̂︀𝐾), wherê︀𝐾 = [0, 1]2, and 𝐹 is an invertible bilinear map. Associated with the change of variables 𝑥 = 𝐹 (𝑥̂) we have the
Piola transform given by

𝜎𝜎𝜎(𝑥) = P𝐹𝜎𝜎𝜎(𝑥̂) := (𝐽𝐹 (𝑥̂))−1𝐷𝐹 (𝑥̂)𝜎𝜎𝜎(𝑥̂),

where 𝐽𝐹 denotes de Jacobian of 𝐹 . For each 𝑘 ≥ 0 the Raviart–Thomas space ℛ𝒯 𝑘(𝐾) and the associated
interpolation are defined first in 𝐾̂ and then in 𝐾 via the Piola transform in such a way that Π ̂︀𝐾𝜎𝜎𝜎 = Π̂𝐾𝜎𝜎𝜎. We
refer the reader to [7] for details.

Following [22] we call 𝑆𝑖, 1 ≤ 𝑖 ≤ 4, the four triangles 𝑆𝑖 obtained by all possible choices of three vertices of
𝐾, and 𝜌𝑆𝑖

the diameter of a circle inscribed in 𝑆𝑖. Then, if ℎ𝐾 is the diameter of 𝐾 and 𝜌𝐾 = min1≤𝑖≤4 𝜌𝑆𝑖
,

the regularity condition is given by ℎ𝐾/𝜌𝐾 ≤ 𝜂.
The arguments and results of [6] can be generalized to weighted norms obtaining, for 𝑎 ∈ 𝐴2 and 0 ≤ 𝑚 ≤ 𝑘,

‖𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝐾) ≤ 𝐶ℎ𝑚+1

𝐾 ‖𝐷𝑚+1𝜎𝜎𝜎‖𝐿2
𝑎(𝐾).

The general error analysis developed in Section 2 cannot be applied directly because now (2.9) does not hold.
However, the arguments given in Section 6 of [6] can be extended to our case to obtain optimal order error
estimates for the mixed finite element approximations.
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4. Anisotropic error estimates

In this section we restrict ourselves to lowest order elements. Our goal is to prove anisotropic error estimates
suitable for problems with boundary layers. For this kind of problems it is useful to have estimates involving a
weighted norm on the right hand side where the weight is a power of the distance to some part of the boundary.

To present the main arguments we consider first the case of rectangular elements. Then we show how similar
ideas can be applied to prismatic elements which are of interest in the application that we are going to consider
in the next section, and more generally, in many problems with solutions presenting boundary layers. The case
of simplex can be treated in a similar way but, as in the un-weighted case, anisotropic error estimates are valid
only for some particular kind of degenerate elements (see [1]).

4.1. Rectangular elements

Recall that the local Raviart–Thomas space of lowest degree for an 𝑛-dimensional rectangular element

𝑅 = [𝑎1, 𝑏1]× . . .× [𝑎𝑛, 𝑏𝑛]

is
ℛ𝒯 0(𝑅) = {𝜏𝜏𝜏 : 𝜏𝜏𝜏(𝑥) = (𝛼1 + 𝛽1𝑥1, . . . , 𝛼𝑛 + 𝛽𝑛𝑥𝑛) with 𝛼𝑖, 𝛽𝑖 ∈ R},

while the corresponding local space for the scalar variable is 𝒫0(𝑅).
The Raviart–Thomas interpolation is given locally by∫︁

𝐹

Π𝑅𝜏𝜏𝜏 ·𝑛𝑛𝑛𝐹 =
∫︁

𝐹

𝜏𝜏𝜏 ·𝑛𝑛𝑛𝐹 (4.1)

for all faces 𝐹 of 𝑅 where 𝑛𝑛𝑛𝐹 denotes a unitary vector normal to 𝐹 . If 𝑃𝑅 is the 𝐿2-orthogonal projection
over 𝒫0(𝑅), it is not difficult to check that the corresponding global projections satisfy (2.9), (2.10), and
consequently (2.11).

We need now the following weighted improved Poincaré inequality, which is well known (see e.g. [14,23]). For
𝑎 ∈ 𝐴2 and 𝑄 a cube,

‖𝑣 − 𝑣𝑄‖𝐿2
𝑎(𝑄) ≤ 𝐶‖𝑑∇𝑣‖𝐿2

𝑎(𝑄) (4.2)

where 𝑑 denotes the distance to 𝜕𝑄 and the constant depends on 𝑛 and [𝑎]𝐴2 .
If we replace 𝑄 by 𝑅 in the above inequality, it is known that the constant in (4.2) blows up when the ratio

between outer and inner diameter goes to infinity. However, we have the following anisotropic version if the
weight belongs to the smaller class 𝐴𝑠

2 defined in the introduction. For 𝑖 = 1, . . . , 𝑛 we define

𝑑𝑖(𝑥) = min{(𝑏𝑖 − 𝑥𝑖), (𝑥𝑖 − 𝑎𝑖)} and ℎ𝑖 = 𝑏𝑖 − 𝑎𝑖.

Lemma 4.1. For 𝑎 ∈ 𝐴𝑠
2,

‖𝑣 − 𝑣𝑅‖𝐿2
𝑎(𝑅) ≤ 𝐶

𝑛∑︁
𝑖=1

⃦⃦⃦⃦
𝑑𝑖

𝜕𝑣

𝜕𝑥𝑖

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

, (4.3)

with 𝐶 depending on 𝑛 and [𝑎]𝐴𝑠
2
.

Proof. We introduce 𝑥𝑖 = ℎ𝑖𝑥̂𝑖 + 𝑎𝑖 and define 𝑎̂𝑅(𝑥̂) := 𝑎(𝑥). It follows immediately from (4.2) that, if 𝑄 is the
unitary cube,

‖𝑣 − 𝑣𝑄‖𝐿2
𝑎̂𝑅

(𝑄) ≤ 𝐶

𝑛∑︁
𝑖=1

⃦⃦⃦⃦
𝑑𝑖

𝜕𝑣

𝜕𝑥𝑖

⃦⃦⃦⃦
𝐿2

𝑎̂𝑅
(𝑄)

where 𝐶 depends only on 𝑛 and [𝑎̂𝑅]𝐴2 . Then, (4.3) follows by changing variables and using that [𝑎̂𝑅]𝐴2 ≤ 𝐶[𝑎]𝐴𝑠
2
,

which can be easily seen. �
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Lemma 4.2. For 𝑎 ∈ 𝐴𝑠
2 and 𝐹 the face contained in 𝑥𝑗 = 𝑎𝑗 we have

‖𝑣 − 𝑣𝐹 ‖𝐿2
𝑎(𝑅) ≤ 𝐶

⎧⎨⎩
⃦⃦⃦⃦

(𝑏𝑗 − 𝑥𝑗)
𝜕𝑣

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

+
∑︁
𝑖̸=𝑗

⃦⃦⃦⃦
𝑑𝑖

𝜕𝑣

𝜕𝑥𝑖

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

⎫⎬⎭ . (4.4)

Proof. By a simple integration by parts in the 𝑥𝑗 variable we have

1
|𝐹 |

∫︁
𝐹

𝑣 d𝑆 =
1
|𝑅|

∫︁
𝑅

𝑣 d𝑥 +
1
|𝑅|

∫︁
𝑅

(𝑥𝑗 − 𝑏𝑗)
𝜕𝑣

𝜕𝑥𝑗
d𝑥.

Then,

𝑣 − 𝑣𝐹 = 𝑣 − 𝑣𝑅 −
1
|𝑅|

∫︁
𝑅

(𝑥𝑗 − 𝑏𝑗)
𝜕𝑣

𝜕𝑥𝑗
d𝑥

and therefore,

‖𝑣 − 𝑣𝐹 ‖𝐿2
𝑎(𝑅) ≤ ‖𝑣 − 𝑣𝑅‖𝐿2

𝑎(𝑅) +
1
|𝑅|

(︂∫︁
𝑅

𝑎 d𝑥

)︂1/2 ∫︁
𝑅

(𝑏𝑗 − 𝑥𝑗)
⃒⃒⃒⃒

𝜕𝑣

𝜕𝑥𝑗

⃒⃒⃒⃒
d𝑥

but, multiplying and dividing by 𝑎1/2 and using the Schwarz inequality we obtain∫︁
𝑅

(𝑏𝑗 − 𝑥𝑗)
⃒⃒⃒⃒

𝜕𝑣

𝜕𝑥𝑗

⃒⃒⃒⃒
d𝑥 ≤

⃦⃦⃦⃦
(𝑏𝑗 − 𝑥𝑗)

𝜕𝑣

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

(︂∫︁
𝑅

𝑎−1 d𝑥

)︂1/2

and consequently,

‖𝑣 − 𝑣𝐹 ‖𝐿2
𝑎(𝑅) ≤ ‖𝑣 − 𝑣𝑅‖𝐿2

𝑎(𝑅) + [𝑎]1/2
𝐴𝑠

2

⃦⃦⃦⃦
(𝑏𝑗 − 𝑥𝑗)

𝜕𝑣

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

·

Therefore, (4.4) follows from (4.3). �

We can now prove anisotropic error estimates for the Raviart–Thomas interpolation Π𝑅. Observe that each
component (Π𝑅𝜎𝜎𝜎)𝑗 depends only on 𝜎𝜎𝜎𝑗 , and so, to simplify notation we will write simply Π𝑅𝜎𝜎𝜎𝑗 .

Lemma 4.3. For 𝑎 ∈ 𝐴𝑠
2 and 1 ≤ 𝑗 ≤ 𝑛,

‖𝜎𝜎𝜎𝑗 −Π𝑅𝜎𝜎𝜎𝑗‖𝐿2
𝑎(𝑅) ≤ 𝐶

⎧⎨⎩∑︁
𝑖̸=𝑗

⃦⃦⃦⃦
𝑑𝑖

𝜕𝜎𝜎𝜎𝑗

𝜕𝑥𝑖

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

+ ℎ𝑗

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎𝑗

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

⎫⎬⎭ . (4.5)

Proof. Since 𝜎𝜎𝜎𝑗 −Π𝑅𝜎𝜎𝜎𝑗 has vanishing mean value on the face defined by 𝑥𝑗 = 𝑎𝑗 , we obtain from (4.4)

‖𝜎𝜎𝜎𝑗 −Π𝑅𝜎𝜎𝜎𝑗‖𝐿2
𝑎(𝑅)

≤ 𝐶

⎧⎨⎩∑︁
𝑖̸=𝑗

⃦⃦⃦⃦
𝑑𝑖

𝜕

𝜕𝑥𝑖
(𝜎𝜎𝜎𝑗 −Π𝑅𝜎𝜎𝜎𝑗)

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

+ ℎ𝑗

⃦⃦⃦⃦
𝜕

𝜕𝑥𝑗
(𝜎𝜎𝜎𝑗 −Π𝑅𝜎𝜎𝜎𝑗)

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

⎫⎬⎭ .

But, for 𝑖 ̸= 𝑗, 𝜕(Π𝑅𝜎𝜎𝜎)𝑗

𝜕𝑥𝑖
= 0. On the other hand, from the definition of Π𝑅 we have

𝜕(Π𝑅𝜎𝜎𝜎)𝑗

𝜕𝑥𝑗
= 𝑃𝑅

(︂
𝜕𝜎𝜎𝜎𝑗

𝜕𝑥𝑗

)︂
and a simple argument using the Schwarz inequality shows that, for any 𝑣 ∈ 𝐿2

𝑎(𝑅),

‖𝑃𝑅𝑣‖𝐿2
𝑎(𝑅) ≤ [𝑎]1/2

𝐴𝑠
2
‖𝑣‖𝐿2

𝑎(𝑅)

and therefore, ⃦⃦⃦⃦
𝜕(Π𝑅𝜎𝜎𝜎)𝑗

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

≤ [𝑎]1/2
𝐴𝑠

2

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎𝑗

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑎(𝑅)

,

and the lemma is proved. �
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4.2. Prismatic elements

For notational convenience we work in R𝑛+1 and introduce the variables (𝑥, 𝑦), with 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛

and 𝑦 ∈ R. Therefore, the class 𝐴𝑠
2 denotes now the class of weights satisfying

[𝑎]𝐴𝑠
2

:= sup
𝑅

(︂
1
|𝑅|

∫︁
𝑅

𝑎

)︂(︂
1
|𝑅|

∫︁
𝑅

𝑎−1

)︂
< ∞,

where the supremum is taken over all 𝑛 + 1-dimensional rectangles.
We consider elements 𝑃 = 𝐾 × [𝑦0, 𝑦1] where 𝐾 is an 𝑛-dimensional simplex and 𝑦𝑗 ∈ R for 𝑗 = 0, 1.
Similar arguments than those used above for the anisotropic estimates in rectangular elements can be used

in this case. To simplify notation, we will prove only the particular weighted estimates that we will need for the
application considered in the next section. We will denote by ℎ𝐾 the diameter of 𝐾. The elements considered
are anisotropic because no relation between ℎ𝐾 and 𝑦1− 𝑦0 is required. On the other hand, for the simplices we
assume the regularity condition ℎ𝐾/𝜌𝐾 ≤ 𝜂.

Lemma 4.4. Given 𝑎 ∈ 𝐴𝑠
2, 𝑃 = 𝐾×[𝑦0, 𝑦1] a prismatic element, and 𝐹𝑃 a face of 𝑃 given by 𝐹𝑃 := 𝐹×[𝑦0, 𝑦1],

where 𝐹 is a face of 𝐾, we have

‖𝑣 − 𝑣𝐹𝑃
‖𝐿2

𝑎(𝑃 ) ≤ 𝐶

{︃⃦⃦⃦⃦
(𝑦 − 𝑦0)

𝜕𝑣

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖∇𝑥𝑣‖𝐿2
𝑎(𝑃 )

}︃
. (4.6)

Proof. Proceeding as in the proof of (4.3) we can prove the Poincaré type inequality

‖𝑣 − 𝑣𝑃 ‖𝐿2
𝑎(𝑃 ) ≤ 𝐶

{︃⃦⃦⃦⃦
(𝑦 − 𝑦0)

𝜕𝑣

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖∇𝑥𝑣‖𝐿2
𝑎(𝑃 )

}︃
. (4.7)

We will denote with d𝑆𝐹 and d𝑆𝐹𝑃
the surface measures on 𝐹 and 𝐹𝑃 respectively. Calling 𝑥𝐹 the vertex of 𝐾

opposite to 𝐹 and integrating by parts we have∫︁
𝐾

(𝑥− 𝑥𝐹 ) · ∇𝑥𝑣 d𝑥 = −𝑛

∫︁
𝐾

𝑣 d𝑥 +
∫︁

𝐹

(𝑥− 𝑥𝐹 ) ·𝑛𝑛𝑛𝐹 𝑣 d𝑆𝐹

but, for 𝑥 ∈ 𝐹 , (𝑥− 𝑥𝐹 ) ·𝑛𝑛𝑛𝐹 = 𝑛|𝐾|/|𝐹 |, and therefore,

1
|𝐹 |

∫︁
𝐹

𝑣 d𝑆 =
1
|𝐾|

∫︁
𝐾

𝑣 d𝑥 +
1

𝑛|𝐾|

∫︁
𝐾

(𝑥− 𝑥𝐹 ) · ∇𝑥𝑣 d𝑥.

Then, integrating in the variable 𝑦,

1
|𝐹 |

∫︁
𝐹𝑃

𝑣 d𝑆𝐹𝑃
=

1
|𝐾|

∫︁
𝑃

𝑣 d𝑥 d𝑦 +
1

𝑛|𝐾|

∫︁
𝑃

(𝑥− 𝑥𝐹 ) · ∇𝑥𝑣 d𝑥 d𝑦

and dividing this equation by (𝑦1 − 𝑦0) we obtain

𝑣 − 𝑣𝐹𝑃
= 𝑣 − 𝑣𝑃 −

1
𝑛|𝑃 |

∫︁
𝑃

(𝑥− 𝑥𝐹 ) · ∇𝑥𝑣 d𝑥 d𝑦

which, using (4.7) and proceeding as in the last part of the proof of Lemma 4.2, implies (4.6). �

Lemma 4.5. Given 𝑎 ∈ 𝐴𝑠
2, 𝑃 = 𝐾× [𝑦0, 𝑦1] a prismatic element, and 𝐹𝑃 a face of 𝑃 given by 𝐹𝑃 := 𝐾×{𝑦𝑗},

𝑗 = 0 or 1, we have

‖𝑣 − 𝑣𝐹𝑃
‖𝐿2

𝑎(𝑃 ) ≤ 𝐶

{︃
(𝑦1 − 𝑦0)

⃦⃦⃦⃦
𝜕𝑣

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖∇𝑥𝑣‖𝐿2
𝑎(𝑃 )

}︃
. (4.8)
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Proof. It is analogous to the proof of Lemma 4.2. �

The local Raviart–Thomas space for 𝑃 = 𝐾 × [𝑦0, 𝑦1] is given by

ℛ𝒯 0(𝑃 ) = {𝜏𝜏𝜏 : 𝜏𝜏𝜏(𝑥) = (𝑎1 + 𝑏𝑥1, . . . , 𝑎𝑛 + 𝑏𝑥𝑛, 𝑎𝑛+1 + 𝑐𝑦) with 𝑎𝑖, 𝑏, 𝑐 ∈ R}.

Given a vector field 𝜎𝜎𝜎 we define 𝜎𝜎𝜎 = (𝜎1, . . . , 𝜎𝑛) and write 𝜎𝜎𝜎 = (𝜎𝜎𝜎, 𝜎𝑛+1). Since the normals to the top and
bottom faces of 𝑃 are orthogonal to the other ones, the Raviart–Thomas interpolation can be written as

Π𝑃𝜎𝜎𝜎 = (Π𝐾𝜎𝜎𝜎, Π𝑛+1𝜎𝑛+1)

where Π𝐾 and Π𝑛+1 depend on 𝜎𝜎𝜎 and 𝜎𝑛+1 respectively. Indeed, they are defined by∫︁
𝐹×[𝑦0,𝑦1]

Π𝐾𝜎𝜎𝜎 ·𝑛𝑛𝑛𝐹 =
∫︁

𝐹×[𝑦0,𝑦1]

𝜎𝜎𝜎 ·𝑛𝑛𝑛𝐹

for all face 𝐹 of 𝐾 and ∫︁
𝐾×{𝑦𝑗}

Π𝑛+1𝜎𝑛+1 =
∫︁

𝐾×{𝑦𝑗}
𝜎𝑛+1

for 𝑗 = 0, 1.

Lemma 4.6. For 𝑎 ∈ 𝐴𝑠
2 and 𝑃 = 𝐾 × [𝑦0, 𝑦1], we have

‖𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝑃 ) ≤ 𝐶

{︃⃦⃦⃦⃦
(𝑦 − 𝑦0)

𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖𝐷𝑥𝜎𝜎𝜎‖𝐿2
𝑎(𝑃 )

}︃
(4.9)

and
‖𝜎𝑛+1 −Π𝑛+1𝜎𝑛+1‖𝐿2

𝑎(𝑃 )

≤ 𝐶

{︃
(𝑦1 − 𝑦0)

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖∇𝑥𝜎𝑛+1‖𝐿2
𝑎(𝑃 )

}︃
(4.10)

where 𝐶 depends only on 𝑎 and the regularity constant 𝜂.

Proof. Since (𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎) ·𝑛𝑛𝑛𝐹 has vanishing mean value on 𝐹𝑃 = 𝐹 × [𝑦0, 𝑦1] we can apply (4.6) to obtain

‖(𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎) ·𝑛𝑛𝑛𝐹 ‖𝐿2
𝑎(𝑃 )

≤ 𝐶

{︃⃦⃦⃦⃦
(𝑦 − 𝑦0)

𝜕

𝜕𝑦
[(𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎) ·𝑛𝑛𝑛𝐹 ]

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖∇𝑥(𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎) ·𝑛𝑛𝑛𝐹 )‖𝐿2
𝑎(𝑃 )

}︃
,

and using this estimate for 𝑛 different faces of 𝐾 together with the regularity assumption, we arrive at

‖𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝑃 )

≤ 𝐶

{︃⃦⃦⃦⃦
(𝑦 − 𝑦0)

𝜕

𝜕𝑦
(𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎)

⃦⃦⃦⃦
𝐿2

𝑎(𝑃 )

+ ℎ𝐾 ‖𝐷𝑥(𝜎𝜎𝜎 −Π𝐾𝜎𝜎𝜎)‖𝐿2
𝑎(𝑃 )

}︃
.

But 𝜕(Π𝐾𝜎𝜎𝜎)
𝜕𝑦 = 0 and 𝜕(Π𝐾𝜎𝜎𝜎)𝑖

𝜕𝑥𝑗
= 0 for 𝑖 ̸= 𝑗. On the other hand, 𝜕(Π𝐾𝜎𝜎𝜎)𝑖

𝜕𝑥𝑖
= div 𝑥Π𝐾𝜎𝜎𝜎

𝑛 and div 𝑥Π𝐾𝜎𝜎𝜎 = 1
|𝑃 |
∫︀

𝑃
div 𝑥𝜎𝜎𝜎,

and so, a simple argument using the Cauchy–Schwarz inequality yields

‖div 𝑥Π𝐾𝜎𝜎𝜎‖𝐿2
𝑎(𝑃 ) ≤ [𝑎]1/2

𝐴𝑠
2
‖div 𝑥𝜎𝜎𝜎‖𝐿2

𝑎(𝑃 )

and putting all together we obtain (4.9).
The proof of (4.10) is analogous using now that 𝜎𝑛+1 − Π𝑛+1𝜎𝑛+1 has vanishing mean value on the face

𝐾 × {𝑦0}, applying (4.8), and using that ∇𝑥(Π𝑛+1𝜎𝑛+1) = 0 and 𝜕
𝜕𝑦 (Π𝑛+1𝜎𝑛+1) = 1

|𝑃 |
∫︀

𝑃
𝜕𝜎𝑛+1

𝜕𝑦 . �
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5. Fractional Laplacian

As an interesting application of the general results for degenerate problems we consider the spectral fractional
Laplacian equation. Given Ω ⊂ R𝑛 and 𝑓 ∈ H−𝑠(Ω) (see the definition of this space below) we want to solve{︂

(−∆)𝑠𝑣 = 𝑓 in Ω
𝑣 = 0 in 𝜕Ω (5.1)

for 0 < 𝑠 < 1.
Caffarelli and Silvestre [10] have shown that the solution of this problem can be obtained as 𝑣(𝑥) = 𝑢(𝑥, 0)

where 𝑢(𝑥, 𝑦) is the solution of a degenerate elliptic problem, as those considered in the previous sections, in a
cylindrical domain in 𝑛 + 1 variables, with 𝑎(𝑥1, . . . , 𝑥𝑛, 𝑦) = |𝑦|𝛼, namely,⎧⎨⎩

div (𝑦𝛼∇𝑢(𝑥, 𝑦)) = 0 in 𝒞 = Ω× (0,∞)
− lim𝑦→0 𝑦𝛼 𝜕𝑢

𝜕𝑦 = 𝑑𝑠𝑓 on Γ𝑁 = Ω× {0}
𝑢 = 0 on Γ𝐷 = 𝜕𝒞 ∖ Γ𝑁

(5.2)

with 𝑑𝑠 = 21−2𝑠 Γ(1−𝑠)
Γ(𝑠) and 𝛼 = 1− 2𝑠. To solve this equation numerically one has to approximate the domain 𝒞

by a bounded one. With this goal we consider a problem analogous to (5.2) with 𝒞 replaced by 𝒞𝐿 = Ω× (0, 𝐿)
and adding a homogeneous Dirichlet boundary condition on the upper boundary of 𝒞𝐿, namely, we look for 𝑢𝐿

such that, ⎧⎨⎩
div (𝑦𝛼∇𝑢𝐿(𝑥, 𝑦)) = 0 in 𝒞𝐿 = Ω× (0, 𝐿)
− lim𝑦→0 𝑦𝛼 𝜕𝑢𝐿

𝜕𝑦 = 𝑑𝑠𝑓 on Γ𝑁 = Ω× {0}
𝑢𝐿 = 0 on Γ𝐷 = 𝜕𝒞𝐿 ∖ Γ𝑁 .

(5.3)

We will use several results proved in [30], therefore, we recall some notation used in that paper. For 0 < 𝑠 < 1,
we denote 𝐻𝑠(Ω) the fractional Sobolev space of order 𝑠. We define for 𝑠 ̸= 1

2 , H𝑠(Ω) := 𝐻𝑠
0(Ω), the closure of

𝐶∞0 (Ω) in 𝐻𝑠(Ω) and H1/2(Ω) := 𝐻
1/2
00 (Ω), the interpolation space [𝐻1

0 (Ω), 𝐿2(Ω)]1/2 obtained by the K-method
(for details see [27]). H−𝑠(Ω) denotes the dual space of H𝑠(Ω) for 𝑠 ∈ (0, 1).

For our error estimates we will need some a priori bounds for the derivatives of the exact solution.
Assuming that Ω is convex, in [30] the following a priori estimates for the solution of problem (5.2) were

proved,
‖∇𝑢‖𝐿2

𝑦𝛼 (𝒞) ≤ 𝐶‖𝑓‖H−𝑠(Ω) (5.4)

and, for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, ⃦⃦⃦⃦
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑦𝛼 (𝒞)
+
⃦⃦⃦⃦

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑦𝛼 (𝒞)
≤ 𝐶‖𝑓‖H1−𝑠(Ω). (5.5)

We will use the following estimate: for 𝛾 > −1 and 𝑣 ∈ 𝐿1(𝒞𝐿) such that
∫︀
𝒞𝐿

𝑣 = 0 and 𝑦|∇𝑣| ∈ 𝐿2
𝑦𝛾 (𝒞𝐿), there

exists a constant 𝐶 independent of 𝐿 such that

‖𝑣‖𝐿2
𝑦𝛾 (𝒞𝐿) ≤ 𝐶‖𝑦∇𝑣‖𝐿2

𝑦𝛾 (𝒞𝐿). (5.6)

This estimate can be proved using the arguments introduced in [14]. Details of the proof are given in Lemma 2.2
of [18] for a square domain but the arguments apply to more general domains, in particular to the cylindrical
ones considered here. That the constant 𝐶 does not depend on 𝐿 follows from the case 𝐿 = 1 combined with a
standard scaling argument.

Lemma 5.1. Let 𝑢 be the solution of (5.2) and 𝜎𝜎𝜎 = (𝜎1, . . . , 𝜎𝑛+1) = −𝑦𝛼∇𝑢. Then, for 1 ≤ 𝑗 ≤ 𝑛 and
1 ≤ 𝑖 ≤ 𝑛 + 1, ⃦⃦⃦⃦

𝜕𝜎𝑖

𝜕𝑥𝑗

⃦⃦⃦⃦
𝐿2

𝑦−𝛼 (𝒞𝐿)

+
⃦⃦⃦⃦

𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑦−𝛼 (𝒞𝐿)

≤ 𝐶‖𝑓‖H1−𝑠(Ω), (5.7)
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and for 1 ≤ 𝑖 ≤ 𝑛 and 𝛽 > 1− 𝛼, ⃦⃦⃦⃦
𝜕𝜎𝑖

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑦−𝛼+𝛽 (𝒞𝐿)

≤ 𝐶𝐿𝛽/2‖𝑓‖H1−𝑠(Ω). (5.8)

Proof. The bound for the first term in (5.7) follows immediately from (5.5). To estimate the second term observe
that, from (5.2),

𝜕𝜎𝑛+1

𝜕𝑦
= −𝑦𝛼∆𝑥𝑢

and use (5.5).
For 1 ≤ 𝑖 ≤ 𝑛 we have

𝜕𝜎𝑖

𝜕𝑦
= −𝛼𝑦𝛼−1 𝜕𝑢

𝜕𝑥𝑖
− 𝑦𝛼 𝜕2𝑢

𝜕𝑥𝑖𝜕𝑦
·

To bound the second term we use again (5.5). For the first one we observe that
∫︀
𝒞𝐿

𝜕𝑢
𝜕𝑥𝑖

= 0 because 𝑢 vanishes
on 𝜕Ω× (0,∞), and therefore, since 𝛽 > 1− 𝛼 we can use (5.6) with 𝛾 = 𝛼− 2 + 𝛽 to obtain∫︁

𝒞𝐿

⃒⃒⃒⃒
𝑦𝛼−1 𝜕𝑢

𝜕𝑥𝑖

⃒⃒⃒⃒2
𝑦−𝛼𝑦𝛽 =

∫︁
𝒞𝐿

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑥𝑖

⃒⃒⃒⃒2
𝑦𝛼−2+𝛽 ≤ 𝐶

∫︁
𝒞𝐿

⃒⃒⃒⃒
∇
(︂

𝜕𝑢

𝜕𝑥𝑖

)︂⃒⃒⃒⃒2
𝑦𝛼+𝛽

≤ 𝐶𝐿𝛽

∫︁
𝒞𝐿

⃒⃒⃒⃒
∇
(︂

𝜕𝑢

𝜕𝑥𝑖

)︂⃒⃒⃒⃒2
𝑦𝛼 ≤ 𝐶𝐿𝛽‖𝑓‖2H1−𝑠(Ω)

where we have used (5.5) for the last inequality. �

Our goal is to approximate 𝑢 and 𝜎𝜎𝜎 = −𝑦𝛼∇𝑢 given by (5.2). Since the problem is posed in the unbounded
domain 𝒞 we need to replace it by 𝒞𝐿 where 𝐿 will be chosen in terms of the mesh parameter ℎ in such a way
that 𝐿 →∞ when ℎ → 0.

It was shown in Theorem 3.5 of [30] that for 𝑓 ∈ H−𝑠(Ω) and 𝐿 ≥ 1, if 𝑢𝐿(𝑥, 𝑦) is extended by zero for 𝑦 > 𝐿,
there exists a constant 𝐶 such that

‖∇(𝑢− 𝑢𝐿)‖𝐿2
𝑦𝛼 (𝒞) ≤ 𝐶𝑒−

√
𝜆1𝐿/4‖𝑓‖H−𝑠(Ω) (5.9)

where 𝜆1 > 0 is the first eigenvalue of the Laplacian with Dirichlet boundary conditions in Ω.
Moreover, using the Poincaré inequality

‖𝑢− 𝑢𝐿‖𝐿2
𝑦𝛼 (𝒞) ≤ 𝐶‖∇(𝑢− 𝑢𝐿)‖𝐿2

𝑦𝛼 (𝒞), (5.10)

which follows easily applying the standard Poincaré inequality in Ω for each 𝑦, multiplying by the weight, and
integrating in 𝑦, we also have

‖𝑢− 𝑢𝐿‖𝐻1
𝑦𝛼 (𝒞) ≤ 𝐶𝑒−

√
𝜆1𝐿/4‖𝑓‖H−𝑠(Ω). (5.11)

Now we consider the mixed finite element approximation of (5.3). We will apply the results of the previous
sections for 𝒟 = 𝒞𝐿 and Γ𝑁 = Ω × {0}. However, since we want error estimates in terms of 𝜎𝜎𝜎 instead of 𝜎𝜎𝜎𝐿,
to take advantage of the known a priori estimates, we need to introduce some minor modifications in the error
analysis.

Given a family of meshes 𝒯ℎ made by prismatic elements as those considered in the last part of Section 4 and
the associated spaces 𝑆𝑆𝑆ℎ ⊂ 𝐻𝑦−𝛼(div , 𝒞𝐿) and 𝑉ℎ ⊂ 𝐿2

𝑦𝛼(𝒞𝐿) defined locally by ℛ𝒯 0(𝑃 ) and 𝒫0(𝑃 ) respectively,
the approximate solutions 𝑢𝐿,ℎ ∈ 𝑉ℎ and 𝜎𝜎𝜎𝐿,ℎ ∈ 𝑆𝑆𝑆ℎ are given by,

𝜎𝜎𝜎𝐿,ℎ ·𝑛𝑛𝑛|𝐹 =
𝑑𝑠

|𝐹 |

∫︁
𝐹

𝑓, (5.12)
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for every face 𝐹 contained in Ω, and⎧⎪⎪⎨⎪⎪⎩
∫︁
𝒞𝐿

𝑦−𝛼 𝜎𝜎𝜎𝐿,ℎ · 𝜏𝜏𝜏 −
∫︁
𝒞𝐿

𝑢𝐿,ℎ div 𝜏𝜏𝜏 = 0 ∀𝜏𝜏𝜏 ∈ 𝑆𝑆𝑆ℎ,𝑁∫︁
𝒞𝐿

𝑣 div𝜎𝜎𝜎𝐿,ℎ = 0 ∀𝑣 ∈ 𝑉ℎ

(5.13)

where 𝑆𝑆𝑆ℎ,𝑁 := 𝑆𝑆𝑆ℎ ∩𝐻𝑦−𝛼,Γ𝑁
(div , 𝒞𝐿).

Theorem 5.2. Let 𝑢 and 𝑢𝐿 be the solutions of (5.2) and (5.3) respectively, 𝜎𝜎𝜎 = −𝑦𝛼∇𝑢 and 𝜎𝜎𝜎𝐿 = −𝑦𝛼∇𝑢𝐿.
If 𝑢𝐿,ℎ and 𝜎𝜎𝜎𝐿,ℎ are the approximate solutions given by (5.13), then

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) ≤ ‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2

𝑦−𝛼 (𝒞𝐿) + 2‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿‖𝐿2
𝑦−𝛼 (𝒞𝐿), (5.14)

and
‖𝑢− 𝑢𝐿,ℎ‖𝐿2

𝑦𝛼 (𝒞𝐿) ≤ 𝐶‖𝑢− 𝑃ℎ𝑢‖𝐿2
𝑦𝛼 (𝒞𝐿)

+ 𝐶𝐿
{︁
‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2

𝑦−𝛼 (𝒞𝐿) + ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿‖𝐿2
𝑦−𝛼 (𝒞𝐿)

}︁
.

(5.15)

Proof. Observing that Πℎ𝜎𝜎𝜎−𝜎𝜎𝜎𝐿,ℎ ∈ 𝑆𝑆𝑆ℎ,𝑁 and div (Πℎ𝜎𝜎𝜎−𝜎𝜎𝜎𝐿,ℎ) = 0 and proceeding as in the proof of Lemma 2.4
we obtain ∫︁

𝒞𝐿

𝑦−𝛼(𝜎𝜎𝜎𝐿 − 𝜎𝜎𝜎𝐿,ℎ) · (Πℎ𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ) = 0.

Then,

‖𝜎𝜎𝜎𝐿 − 𝜎𝜎𝜎𝐿,ℎ‖2𝐿2
𝑦−𝛼 (𝒞𝐿) =

∫︁
𝒞𝐿

𝑦−𝛼(𝜎𝜎𝜎𝐿 − 𝜎𝜎𝜎𝐿,ℎ) · (𝜎𝜎𝜎𝐿 −Πℎ𝜎𝜎𝜎),

and therefore,
‖𝜎𝜎𝜎𝐿 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿𝑦−𝛼 (𝒞𝐿) ≤ ‖𝜎𝜎𝜎𝐿 −Πℎ𝜎𝜎𝜎‖𝐿𝑦−𝛼 (𝒞𝐿), (5.16)

which combined with a triangular inequality yields (5.14).
On the other hand, for our domain 𝒞𝐿 the inequality from Lemma 2.6 can be written as

‖𝑢𝐿 − 𝑢𝐿,ℎ‖𝐿2
𝑦𝛼 (𝒞𝐿) ≤ ‖𝑢𝐿 − 𝑃ℎ𝑢𝐿‖𝐿2

𝑦𝛼 (𝒞𝐿) + 𝐶𝐿‖𝜎𝜎𝜎𝐿 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) (5.17)

where the constant 𝐶 is independent of 𝐿. Indeed, this follows from the proof of that lemma once we know that
the constant in Lemma 2.5 is proportional to 𝐿, which follows from the case 𝐿 = 1 and a scaling argument.

To bound the second term in the right hand side of (5.17) we use (5.16), while for the first one we have

‖𝑢𝐿 − 𝑃ℎ𝑢𝐿‖𝐿2
𝑦𝛼 (𝒞𝐿) ≤ ‖𝑢− 𝑃ℎ𝑢‖𝐿2

𝑦𝛼 (𝒞𝐿) + ‖(𝑢− 𝑢𝐿)− 𝑃ℎ(𝑢− 𝑢𝐿)‖𝐿2
𝑦𝛼 (𝒞𝐿)

≤ ‖𝑢− 𝑃ℎ𝑢‖𝐿2
𝑦𝛼 (𝒞𝐿) + 𝐶‖∇(𝑢− 𝑢𝐿)‖𝐿2

𝑦𝛼 (𝒞𝐿)

where in the last inequality we have used the version for prisms of (4.3). To conclude the proof we observe that

‖∇(𝑢− 𝑢𝐿)‖𝐿2
𝑦𝛼 (𝒞𝐿) = ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿‖𝐿2

𝑦−𝛼 (𝒞𝐿)

and, therefore, from the Poincaré inequality (5.10) we obtain

‖𝑢− 𝑢𝐿‖𝐿2
𝑦𝛼 (𝒞𝐿) ≤ 𝐶‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿‖𝐿2

𝑦−𝛼 (𝒞𝐿).

�



S1012 M. E. CEJAS ET AL.

Next we are going to show that introducing appropriate meshes, graded in the 𝑦-direction, we obtain almost
optimal order of convergence with respect to the number of nodes, i.e. the same order than that valid for
problems with smooth solutions using uniform meshes, up to a logarithmic factor.

Given a mesh-size ℎ > 0, to define 𝒯ℎ we start with a quasi-uniform triangulation of Ω made of simplices of
diameter less than or equal to ℎ. Then, for 𝐿 ≥ 1 to be chosen below in terms of ℎ, we introduce a partition of
[0, 𝐿] given by

𝑦𝑗 =
(︂

𝑗

𝑁

)︂ 2
2−𝛽

𝐿, 𝑗 = 0, . . . , 𝑁 (5.18)

where 𝑁 ∼ 1/ℎ (we take 𝑁 = 1/ℎ if it is an integer or some approximation of it if not), and 𝛽 ∈ (1−𝛼, 2) to be
chosen (in the numerical experiments we have taken 𝛽 as the midpoint of this interval). Finally, the partition
𝒯ℎ of 𝒞𝐿 is formed by the prismatic elements 𝑃 = 𝐾× [𝑦𝑗 , 𝑦𝑗+1], where 𝐾 are the elements in the partition of Ω.

It follows from this definition that, for 𝑗 ≥ 1,

(𝑦𝑗+1 − 𝑦𝑗)2 ≤ 𝐶𝛽ℎ2𝑦𝛽
𝑗 𝐿2−𝛽 , (5.19)

indeed, by the mean value theorem and using that ℎ ∼ 1/𝑁 we have

𝑦𝑗+1 − 𝑦𝑗 ≤ 𝐶
𝛽

2− 𝛽
(𝑗ℎ)

𝛽
2−𝛽 ℎ𝐿 ≤ 𝐶

𝛽

2− 𝛽
𝑦

𝛽
2
𝑗 ℎ𝐿1− 𝛽

2 .

Using the notation introduced for prismatic elements in the previous section, the Raviart–Thomas interpolation
is given by Πℎ𝜎𝜎𝜎 = (Π̃ℎ𝜎𝜎𝜎, Πℎ,𝑛+1𝜎𝑛+1) where Π̃ℎ and Πℎ,𝑛+1 are given locally by Π𝐾 and Π𝑛+1 respectively. We
recall that, since −1 < 𝛼 < 1, 𝑦𝛼 and 𝑦−𝛼 belong to 𝐴𝑠

2.

Theorem 5.3. For some 𝛽 ∈ (1− 𝛼, 2), consider the family of meshes 𝒯ℎ defined above. Let 𝑢 be the solution
of (5.2), 𝜎𝜎𝜎 = −𝑦𝛼∇𝑢, and (𝑢𝐿,ℎ,𝜎𝜎𝜎𝐿,ℎ) be the approximation given by (5.12) and (5.13). Then, if 𝐿 = 𝐶1| log ℎ|
with 𝐶1 ≥ 4/

√
𝜆1, we have

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) ≤ 𝐶ℎ| log ℎ|‖𝑓‖H1−𝑠(Ω), (5.20)

and
‖𝑢− 𝑢𝐿,ℎ‖𝐿2

𝑦𝛼 (𝒞𝐿) ≤ 𝐶ℎ| log ℎ|2 ‖𝑓‖H1−𝑠(Ω), (5.21)

where the constant 𝐶 depends on Ω, 𝛼, and 𝛽.

Proof. From (5.14) and (5.9) we have

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) ≤ ‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖𝐿2

𝑦−𝛼 (𝒞𝐿) + 𝐶𝑒−
√

𝜆1𝐿/4‖𝑓‖H−𝑠(Ω). (5.22)

Applying (4.9) for the elements of the form 𝑃 = 𝐾 × [0, 𝑦1] and summing over all of them we obtain,

‖𝜎𝜎𝜎 − Π̃ℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

+
⃦⃦⃦⃦
𝑦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

⎫⎬⎭ .

But, ⃦⃦⃦⃦
𝑦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

=
∫︁

Ω

∫︁ 𝑦1

0

𝑦2

⃒⃒⃒⃒
𝜕𝜎𝜎𝜎

𝜕𝑦

⃒⃒⃒⃒2
𝑦−𝛼 d𝑦 d𝑥

≤ 𝑦2−𝛽
1

∫︁
Ω

∫︁ 𝑦1

0

⃒⃒⃒⃒
𝜕𝜎𝜎𝜎

𝜕𝑦

⃒⃒⃒⃒2
𝑦−𝛼+𝛽 d𝑦 d𝑥

≤ 𝐶ℎ2𝐿2−𝛽

∫︁
Ω

∫︁ 𝑦1

0

⃒⃒⃒⃒
𝜕𝜎𝜎𝜎

𝜕𝑦

⃒⃒⃒⃒2
𝑦−𝛼+𝛽 d𝑦 d𝑥
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where in the last inequality we have used the definition of 𝑦1. Then,

‖𝜎𝜎𝜎 − Π̃ℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

+ ℎ2𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼+𝛽 (Ω×[0,𝑦1])

⎫⎬⎭ .

Analogously, applying now (4.10), we have

‖𝜎𝑛+1 −Πℎ,𝑛+1𝜎𝑛+1‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

≤ 𝐶

⎧⎨⎩ℎ2‖∇𝑥𝜎𝑛+1‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

+ 𝑦2
1

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

⎫⎬⎭ ,

and therefore, using again the definition of 𝑦1, we obtain

‖𝜎𝑛+1 −Πℎ,𝑛+1𝜎𝑛+1‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

≤ 𝐶

⎧⎨⎩ℎ2‖∇𝑥𝜎𝑛+1‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

+ ℎ2𝐿2

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

⎫⎬⎭ .

Consequently, combining the estimates above, we conclude

‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

+ ℎ2𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼+𝛽 (Ω×[0,𝑦1])

+ℎ2𝐿2

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[0,𝑦1])

⎫⎬⎭ .

(5.23)

Applying now (4.9) and (4.10) for the elements of the form 𝑃 = 𝐾 × [𝑦𝑗 , 𝑦𝑗+1], for each 𝑗 ≥ 1, and summing
over these elements we obtain

‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

+ (𝑦𝑗+1 − 𝑦𝑗)2
⃦⃦⃦⃦

𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

⎫⎬⎭ ,

and using (5.19),

‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

+ 𝐶𝛽ℎ2𝑦𝛽
𝑗 𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

⎫⎬⎭
≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

+ 𝐶𝛽ℎ2𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼+𝛽 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

⎫⎬⎭ ,
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and then, observing that

𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼+𝛽 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

≤ 𝐿2

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (Ω×[𝑦𝑗 ,𝑦𝑗+1])

,

summing over 𝑗, and combining this with (5.23), we obtain

‖𝜎𝜎𝜎 −Πℎ𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (𝒞𝐿)

≤ 𝐶

⎧⎨⎩ℎ2‖𝐷𝑥𝜎𝜎𝜎‖2𝐿2
𝑦−𝛼 (𝒞𝐿) + ℎ2𝐿2−𝛽

⃦⃦⃦⃦
𝜕𝜎𝜎𝜎

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼+𝛽 (𝒞𝐿)

+ℎ2𝐿2

⃦⃦⃦⃦
𝜕𝜎𝑛+1

𝜕𝑦

⃦⃦⃦⃦2

𝐿2
𝑦−𝛼 (𝒞𝐿)

⎫⎬⎭ ,

(5.24)

where, here and in what follows, the constant 𝐶 depends on 𝐶𝛽 .
Applying now Lemma 5.1 and the bound (5.24) it follows from (5.22) that

‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) ≤ 𝐶ℎ𝐿‖𝑓‖H1−𝑠(Ω) + 𝐶𝑒−

√
𝜆1𝐿/4‖𝑓‖H−𝑠(Ω).

From the hypothesis on 𝐶1 we have 𝑒−
√

𝜆1𝐿/4 ≤ ℎ and, therefore, (5.20) is proved.
In view of (5.15), to finish the proof of (5.21) it is enough to show that

‖𝑢− 𝑃ℎ𝑢‖𝐿2
𝑦𝛼 (𝒞𝐿) ≤ 𝐶ℎ𝐿‖𝑓‖H−𝑠(Ω). (5.25)

Using (4.7) for elements of the form 𝐾 × [0, 𝑦1] we obtain

‖𝑢− 𝑃ℎ𝑢‖𝐿2
𝑦𝛼 (Ω×[0,𝑦1])

≤ 𝐶

{︃
ℎ

2
2−𝛽 𝐿

⃦⃦⃦⃦
𝜕𝑢

𝜕𝑦

⃦⃦⃦⃦
𝐿2

𝑦𝛼 (Ω×[0,𝑦1])

+ ℎ‖∇𝑥𝑢‖𝐿2
𝑦𝛼 (Ω×[0,𝑦1])

}︃
≤ 𝐶ℎ𝐿‖∇𝑢‖𝐿2

𝑦𝛼 (Ω×[0,𝑦1]),

because 2/(2− 𝛽) ≥ 1 and 𝐿 ≥ 1.
On the other hand, (4.7) and (5.19) yields

‖𝑢− 𝑃ℎ𝑢‖𝐿2
𝑦𝛼 (Ω×[𝑦1,𝐿]) ≤ 𝐶ℎ𝐿‖∇𝑢‖𝐿2

𝑦𝛼 (Ω×[𝑦1,𝐿])

and, therefore, taking into account (5.4) and (5.25) is proved. �

6. Numerical results

Now we give some examples showing the asymptotic behavior of the error proved in Theorem 5.3. We solve
Problem (5.2) with Ω = (0, 1)× (0, 1) and

𝑓(𝑥1, 𝑥2) = (2𝜋2)𝑠 sin(𝜋𝑥1) sin(𝜋𝑥2).

Recall that 0 < 𝑠 < 1 and 𝛼 = 1− 2𝑠. In this case the solution is given by

𝑢(𝑥1, 𝑥2, 𝑦) =
21−𝑠

Γ(𝑠)
(
√

2𝜋𝑦)𝑠𝐾𝑠(
√

2𝜋𝑦) sin(𝜋𝑥1) sin(𝜋𝑥2)
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Figure 1. Rate of convergence: left 𝛼 = 0.6, right 𝛼 = 0.2.
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Figure 2. Rate of convergence: left 𝛼 = −0.2, right 𝛼 = −0.6.

where 𝐾𝑠 is a modified Bessel function of the second kind (see [30]). We have used Octave for the numerical
integrations and to solve the discrete systems.

We use prismatic elements given by a uniform mesh of triangles in Ω and the refinement given by (5.18)
in the 𝑦-direction. Observe that for these meshes ℎ ∼ (DOF)−1/3 where DOF denotes the degrees of freedom.
Moreover, we choose 𝐿 as in Theorem 5.3 with 𝐶1 = 1, i.e. 𝐿 = | log ℎ|.

Figures 1 and 2 show the order of the errors ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿) and ‖𝑢 − 𝑢𝐿,ℎ‖𝐿2

𝑦𝛼 (𝒞𝐿) for several
values of 𝛼.

6.1. Postprocess to approximate 𝑣(𝑥) = 𝑢(𝑥, 0)

Finally, to solve (5.1), we need to approximate 𝑢(𝑥, 0) where 𝑢 is the solution of (5.2). We will use the
approximations 𝑢𝐿,ℎ and 𝜎𝜎𝜎𝐿,ℎ obtained above.

Since 𝑢𝐿,ℎ is only an approximation in the 𝐿2-norm, one cannot expect that its restriction to 𝑦 = 0 be a
good approximation of 𝑢(𝑥, 0). In order to obtain a better approximation we will make a local correction of
𝑢𝐿,ℎ using also the computed 𝜎𝜎𝜎𝐿,ℎ. This correction corresponds to a first order Taylor expansion, indeed, the
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formula that we are going to prove in the next lemma is motivated by

𝑢(𝑥, 0) ∼ 𝑢(𝑥,
𝑦1

2
)− 𝑦1

2
𝜕𝑢

𝜕𝑦

(︁
𝑥,

𝑦1

2

)︁
·

We will prove that in this way we obtain an approximation in 𝐿2(Ω) of at least the same order than the mixed
finite element approximation of (5.2).

Given 𝑥 ∈ Ω and 0 < 𝑗 < 𝑁 we introduce the jumps

[𝑢𝐿,ℎ(𝑥)]𝑗 = 𝑢𝐿,ℎ(𝑥, 𝑦+
𝑗 )− 𝑢𝐿,ℎ(𝑥, 𝑦−𝑗 ).

If 𝑥 is not in the interior of an element 𝐾 in the partition of Ω we choose arbitrary an element containing it to
evaluate 𝑢𝐿,ℎ (this is irrelevant because afterwards we are going to integrate in 𝑥).

We will use the standard piecewise linear basis functions, namely, for 1 ≤ 𝑗 ≤ 𝑁 − 1,

𝜏𝑗(𝑦) =

{︃
𝑦𝑗+1−𝑦
𝑦𝑗+1−𝑦𝑗

if 𝑦𝑗 < 𝑦 < 𝑦𝑗+1
𝑦−𝑦𝑗−1
𝑦𝑗−𝑦𝑗−1

if 𝑦𝑗−1 < 𝑦 < 𝑦𝑗 ,

𝜏0(𝑦) =
𝑦1 − 𝑦

𝑦1
if 0 < 𝑦 < 𝑦1,

and
𝜏𝑁 =

𝑦 − 𝑦𝑁−1

𝑦𝑁 − 𝑦𝑁−1
if 𝑦𝑛−1 < 𝑦 < 𝑦𝑁 .

Lemma 6.1. For any 𝑥 ∈ Ω we have

𝑢𝐿,ℎ(𝑥, 0) +
∫︁ 𝐿

0

𝜏0(𝑦)𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦) d𝑦 =
∫︁ 𝐿

0

𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦) d𝑦. (6.1)

Proof. Since 𝑢𝐿,ℎ is piecewise constant one can see that

𝑢𝐿,ℎ(𝑥, 𝐿) =
𝑁−1∑︁
𝑗=1

[𝑢𝐿,ℎ(𝑥)]𝑗 + 𝑢𝐿,ℎ(𝑥, 0). (6.2)

Let 𝐾 be the element containing 𝑥. For 1 ≤ 𝑗 ≤ 𝑁 − 1, taking the function (000, 𝜏𝑗) supported in 𝐾 × [𝑦𝑗−1, 𝑦𝑗+1]
as test function in (5.13), we have∫︁ 𝐿

0

∫︁
𝐾

𝑦−𝛼𝜎𝐿,ℎ · (000, 𝜏𝑗) d𝑥 d𝑦 −
∫︁ 𝐿

0

∫︁
𝐾

𝑢𝐿,ℎdiv (000, 𝜏𝑗) d𝑥 d𝑦 = 0

and, since 𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦) is independent of 𝑥 for 𝑥 ∈ 𝐾, we obtain

[𝑢𝐿,ℎ(𝑥)]𝑗 +
∫︁ 𝐿

0

𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦)𝜏𝑗(𝑦) d𝑦 = 0.

Analogously, using now (0, 𝜏𝑁 ) yields

𝑢𝐿,ℎ(𝑥, 𝐿) =
∫︁ 𝐿

0

𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦)𝜏𝑁 (𝑦) d𝑦.

Therefore, replacing in (6.2) we have

𝑁∑︁
𝑗=1

∫︁ 𝐿

0

𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦)𝜏𝑗(𝑦) d𝑦 = 𝑢𝐿,ℎ(𝑥, 0)

which immediately gives (6.1) because
∑︀𝑁

𝑗=0 𝜏𝑗 ≡ 1. �
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To approximate the solution of (5.1) given by 𝑣(𝑥) = 𝑢(𝑥, 0) we introduce

𝑣𝐿,ℎ(𝑥) = 𝑢𝐿,ℎ(𝑥, 0) +
∫︁ 𝐿

0

𝜏0(𝑦)𝑦−𝛼𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦) d𝑦.

We also define 𝑣𝐿(𝑥) = 𝑢𝐿(𝑥, 0).

Lemma 6.2.
‖𝑣𝐿 − 𝑣𝐿,ℎ‖𝐿2(Ω) ≤

1√
1− 𝛼

𝐿
1−𝛼

2 ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿).

Proof. Since 𝑢𝐿(𝑥, 𝐿) = 0 and, recalling that 𝜕𝑢𝐿

𝜕𝑦 = −𝑦−𝛼𝜎𝑛+1, we have

𝑣𝐿(𝑥) =
∫︁ 𝐿

0

𝑦−𝛼𝜎𝑛+1(𝑥, 𝑦) d𝑦.

Therefore, using (6.1) and the definition of 𝑣𝐿,ℎ, we obtain

𝑣𝐿(𝑥)− 𝑣𝐿,ℎ(𝑥) =
∫︁ 𝐿

0

𝑦−𝛼(𝜎𝑛+1(𝑥, 𝑦)− 𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦)) d𝑦,

and, applying the Schwarz inequality,

|𝑣𝐿(𝑥)− 𝑣𝐿,ℎ(𝑥)|2 ≤

(︃∫︁ 𝐿

0

𝑦−𝛼 d𝑦

)︃∫︁ 𝐿

0

𝑦−𝛼|(𝜎𝑛+1(𝑥, 𝑦)− 𝜎𝐿,ℎ,𝑛+1(𝑥, 𝑦))|2 d𝑦,

and integrating now in 𝑥 we conclude the proof. �

We can now prove the error estimate for the approximation of the solution of the fractional Laplacian.

Theorem 6.3. Under the hypotheses of Theorem 5.3 we have

‖𝑣 − 𝑣𝐿,ℎ‖𝐿2(Ω) ≤ 𝐶ℎ| log ℎ|
3−𝛼

2 ‖𝑓‖H1−𝑠(Ω),

where the constant is as in Theorem 5.3 an depends also on 𝛼.

Proof. From Lemma 6.2 and, recalling that 𝐿 = 𝐶1| log ℎ|, we have

‖𝑣𝐿 − 𝑣𝐿,ℎ‖𝐿2(Ω) ≤ 𝐶| log ℎ|
1−𝛼

2 ‖𝜎𝜎𝜎 − 𝜎𝜎𝜎𝐿,ℎ‖𝐿2
𝑦−𝛼 (𝒞𝐿)

where the constant depends on 𝛼. Combining this estimate with (5.20) we obtain

‖𝑣𝐿 − 𝑣𝐿,ℎ‖𝐿2(Ω) ≤ 𝐶ℎ| log ℎ|
3−𝛼

2 ‖𝑓‖H1−𝑠(Ω). (6.3)

It remains to estimate 𝑣−𝑣𝐿. But, from the trace theorem given in Proposition 2.5 of [30] combined with (5.11)

‖𝑣 − 𝑣𝐿‖𝐿2(Ω) ≤ 𝐶‖𝑢− 𝑢𝐿‖𝐻1
𝑦𝛼 (𝒞) ≤ 𝐶𝑒−

√
𝜆1𝐿/4‖𝑓‖H−𝑠(Ω)

and, from the definition of 𝐿 and 𝐶1, we obtain

‖𝑣 − 𝑣𝐿‖𝐿2(Ω) ≤ 𝐶ℎ‖𝑓‖H−𝑠(Ω)

which combined with (6.3) concludes the proof. �
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Figure 3. Rate of convergence: left 𝑠 = 0.2, right 𝑠 = 0.8.

Figure 3 shows the order of the error ‖𝑣 − 𝑣𝐿,ℎ‖𝐿2(Ω) for problem (5.1) with

𝑓(𝑥1, 𝑥2) = (2𝜋2)𝑠 sin(𝜋𝑥1) sin(𝜋𝑥2),

which has as exact solution
𝑣(𝑥1, 𝑥2) = sin(𝜋𝑥1) sin(𝜋𝑥2).

Remark 6.4. The order of the error for the approximation of 𝑣 in the 𝐿2-norm is probably not the optimal
possible. Indeed, with a more complicated postprocessing one could approximate the solution 𝑢 of problem (5.2)
with order almost 𝑂(ℎ) in 𝐻1

𝑦𝛼(𝒞) and, by the trace theorem ‖𝑣‖H𝑠(Ω) ≤ 𝐶‖𝑣‖𝐻1
𝑦𝛼 (𝒞) proved in Proposition 2.5

of [30], one would have the same order for the approximation of 𝑣 in the H𝑠-norm. Therefore, it is reasonable
to expect a higher order in 𝐿2. This problem requires a different analysis and will be the object of our further
research. Let us mention also that such a higher order error estimate has been proved in Proposition 4.7 of [32]
for the standard finite element method analyzed in [30].

Acknowledgements. We thank Enrique Otárola for helpful comments. Supported by ANPCyT under grant PICT
2014-1771, by CONICET under grant 11220130100006CO and by Universidad de Buenos Aires under grant
20020120100050BA.
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[25] T. Kilpeläinen, Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Math. 19 (1994) 95–113.

[26] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted 𝐿𝑝 spaces. Trans. Am. Math. Soc. 259 (1980) 235–254.

[27] A. Lunardi, Interpolation Theory, 3rd edition [of MR2523200]. In: Vol. 16 of Appunti. Scuola Normale Superiore di Pisa
(Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2018).

[28] L.D. Marini and P. Pietra, Mixed finite element approximation of a degenerate elliptic problem. Numer. Math. 71 (1995)
225–236.

[29] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972) 207–226.
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