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Three-way instrumental data offer the second-order advantage to analysts, a property of great utility in

the field of complex sample analysis in the presence of unsuspected components as potential

interferents. The available multivariate methodologies for obtaining this advantage are all based

on linear models, and hence they are not applicable to spectral information behaving in a non-linear

manner with respect to target analyte concentrations. This work describes the combination of a back-

propagation artificial neural network model with a technique known as residual bilinearization,

applicable to second-order spectral information. The joint model allows one to efficiently extract

analyte concentrations from intrinsically non-linear data, even in the presence of unsuspected

constituents. Simulations have been performed bymimicking deviations from linearity brought about

by: (1) exponential relationship between fluorescence and concentration, (2) kinetic evolution of

responsive reaction products and (3) analytes acting as reaction catalysts. In all of these cases, successful

prediction of the analyte concentrations was achieved on large test sample sets, which included the

presence of overlapping components not included in the training step. The new method not only

obtains the second-order advantage, but also correctly retrieves the contribution of the unsuspected

components to the total test sample signals. The comparisonwith amultivariatemethodology based on

partial least-squares regression with second-order advantage shows that the presently described

method displays better predictive ability. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Instrumental data bearing a non-linear relationship with

component concentration are ubiquitous in analytical

chemistry. This phenomenon arises, for example, when

significant interactions occur among sample components

[1,2], or in fluorescence spectroscopy, due to the exponential

relationship between emission and concentration [3]. They

also appear in kinetic-spectroscopic systems, when a reaction

product is followedwhich is the result of a pseudo first-order

kinetics with respect to reagent [4], or when the analyte
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intervenes as a catalyst [5–7]. When the data structure is

intrinsically non-linear, classical calibration methods with

linear underlying models cannot be successfully applied. In

these cases, an excellent alternative is the use of artificial

neural networks (ANNs) [8–10]. These latter algorithms are

based on concepts loosely related to the behavior of the

human brain: the variables are assigned to mathematical

objects called neurons, and a mathematical function is

associated with the so-called intra-neural connections. A

neural network model is composed of a number of neurons,

organized into a sequence of layers [8]. Mathematically, an

ANN transforms an input vector (a vector of variables

assigned to a number of neurons) into an output vector,

through the operation of a suitable transfer function. Neural

networks show several advantages, namely: (1) they allow

for better generalizations bymodeling complex relationships

without requiring prior knowledge of the model-related

function, and (2) they display more flexibility in comparison
Copyright # 2006 John Wiley & Sons, Ltd.
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with parametric techniques requiring the assumption of a

specific model form. ANNs can be adequately trained to

produce quantitative results, usually by employing the back

propagation model, whose basic theory and application to

chemical problems can be found in the literature [8,9].

A novel aspect of calibration of spectral data for making

valid predictions concerning analyte concentrations in

complex and/or strongly interfering systems is the proces-

sing of multi-way data [11]. The continuous progress in

analytical instrumentation is yielding information of increas-

ing complexity, which does also show distinct advantages in

terms of analytical figures of merit. Second-order data, for

example, provide analysts with the so-called second-order

advantage [12], a property of immense utility in several fields

of analysis, particularly when the samples carry unsuspected

components which have not been included in the training

step (notice that second-order data for a set of samples can be

conveniently grouped into a three-way array, hence the

name three-way data). There are basically two modes of

obtaining the second-order advantage, which are pictorially

illustrated in Figure 1: either data for the test sample has an

influence on the regression coefficients leading to prediction

(Figure 1A), or calibration is first performed using only

training data, with the test sample leading to sample-specific

regression coefficients in a subsequent step (Figure 1B). In

either case, the underlying philosophy implies that the test

sample becomes part of the whole calibration process.

Only a few applications of neural networks to non-linear

spectroscopic second-order data are known: appropriate
Figure 1. Two basic modes of obtaining the second-order

advantage from higher-order information. (A) Combining data

from calibration and test sample before computing the

regression coefficients. (B) Estimating loadings from cali-

bration data only, and then calculating regression coefficients

after the test sample enters the scene.

Copyright # 2006 John Wiley & Sons, Ltd.
examples are the kinetic-spectrophotometric determination

of three carbamate pesticides [13], the correlation between

two-dimensional nuclear magnetic resonance data with the

composition and properties of oil samples [14], and the

monitoring of fermentation processes [15]. Little is known,

however, as to whether the second-order advantage can be

obtained from higher order information in the presence of

unsuspected sample components, in any of the two modes

depicted in Figure 1, or in additional, yet unimagined ways.

The aim of this work is thus to provide with a starting

algorithm which will close the gap between non-linear data

and the second-order advantage.

The present approach is partially based on a model

described more than 15 years ago, in which the well-known

partial least-squares (PLS) linear calibration method was

combined with a procedure known as residual bilineariza-

tion (RBL), which was useful in providing PLS with the

second-order advantage [16]. The combination PLS/RBL has

only recently caught the attention of chemometricians,

however, in order to analyze real systems of high complexity,

andwas shown to provide comparable analytical behavior as

to the standard parallel factor (PARAFAC) model [17]. We

show by means of simulated non-linear data for several

systems mimicking real analytical applications, that the

analogous combination ANN/RBL is adequate to train non-

linear spectroscopic data, and to successfully predict analyte

concentrations in the presence of unsuspected constituents,

thus achieving the important second-order advantage. The

model requires that the unsuspected contribution is bilinear,

and can therefore be adequatelymodeled by RBL. The results

can be considered as a ‘proof of principle’, suggesting that

the model is indeed feasible, although subsequent phases are

necessary for its demonstration.
2. THEORY

2.1. Terminology
It is important to define, in light of the forthcoming

discussion, sample component categories, with particular

focus on components generating a signal that overlaps with

the signal of the analyte of interest, and can therefore be

considered as potential interferents.

A distinction can be first made between components

present in the training set of samples, and those which are

only present in the unknown sample only. The former ones

can be called ‘suspected’ components, because the analyst

should include in the calibration set all components

suspected to be present in unknown samples, in order to

have a sufficiently representative training set. However,

truly unknown samples may carry additional components:

these are called ‘unsuspected’ ones. Note that the suspected

constituents can be further divided into ‘calibrated’ and

‘uncalibrated’: calibrated refers to components for which

calibration concentrations are available (including, as a

specific case, the analyte of interest), whereas uncalibrated

refers to components for which only a common subspace that

contains them is accessible. Some multivariate calibration

models require all suspected components to be properly

calibrated, whereas the combinations PLS/RBL and
J. Chemometrics 2005; 19: 615–624
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ANN/RBL discussed in the present report do only require

the analyte of interest to be calibrated.

Notice that potential interferents will not always produce

an interference, in the sense of generating a systematic error

in the analyte determination [18]. Whether the interference

will be actual or will only remain as potential, depend on the

type of measured instrumental signals and on the employed

calibration methodology. For first-order instrumental data,

unsuspected test sample components most likely constitute

an interference. Thismay not be true, however, in the second-

order multivariate domain involving the second-order

advantage.

2.2. PLS/RBL
In the present report, the results provided by ANN/RBL will

be compared with those obtained from the second-order

multivariatemodel involving the combination of PLS andRBL.

The latter methodology has already been described in the

relevant literature [16]. A recent application discusses its use

for the analysis of therapeutic drugs in biological fluids from

second-order excitation-emission fluorescence data [19]. The

present comparison could also be extended to other popular

second-order multivariate models such as PARAFAC [20],

generalized rank annihilation (GRAM) [21], or multivariate

curve resolution coupled to alternating least-squares (MCR-

ALS) [22]. They all exploit the second-order advantage in the

mode shown in Figure 1A. However, these latter method-

ologies may not be appropriate, in general, to treat the

complete set of data described in the present report. This is due

to the fact that they are not suitable for data which show: (1)

deviations from linearity, or (2) second-order signals having

identical profiles in one of the dimensions (see below).Another

possibility is to employ bilinear least-squares (BLLS) [23–25],

which, once coupled to RBL, achieves the second-order

advantage in the manner illustrated in Figure 1B. This method

is similar to PLS/RBL, although admittedly less reliable with

respect to non-linear systems. Therefore, the comparison was

carried out with PLS/RBL, which is the most flexible second-

order multivariate calibration technique, able to cope with

mild non-linearities and also with linear dependencies in any

of the second-order modes.

2.3. ANN training
In the present report, the back-propagation of errors method

was selected for training the ANNs. Typically, an ANN

suitable for the present analytical problems consists of three

layers: (1) an input layer to accommodate for the input

variables, which might be either the original variables or

appropriate surrogate variables representing the spectral

variability in the training set of samples, (2) a hidden layer of

neurons, whose number is tuned on a trial an error basis and

(3) an output layer with a single neuron, yielding the

concentration of the analyte of interest in each sample (on an

appropriate scale). Both the input and hidden layers do also

include the so-called bias neurons, whose inputs are equal to

1. Since the number of original variables produced by

modern instruments is large (datamatrices have JK elements,

where J and K are the number of channels in each

dimension), a usual approach is to compress the raw

information into a reduced number of latent variables, such
Copyright # 2006 John Wiley & Sons, Ltd.
as, for example, the first A principal components (PCs) or

scores. In this approach the number of input neurons equals

A, where in general A� JK. The value of A can be estimated,

for example, by computing the % of variance explained by

the PCs of the unfolded training data matrix (size I� JK, I is

the number of training samples), and selecting the firstA PCs

which explain more than a certain % (i.e. 99%) of the total

variance.

Once the architecture of the net is established, the first A

PCs are loaded into the A neurons of the input layer, and the

outputs are calculated for each training sample using a set of

randomly selected initial weights and a sigmoidal transfer

function [8]. They are transferred from layer to layer through

a suitable transfer function, which in the present case is the

familiar sigmoidal function f(x)¼ 1/[1þ exp(�x)]. The

weights are thenmodified according to the back-propagation

methodology, which compares the ANN outputs with the

nominal values of the analyte concentration in the training

and monitoring samples. The comparison yields the

calibration root mean square error (RMSEC), which is

computed every training cycle or ‘epoch’, and allows the

correction of the network weights which leads to the

decrease of the RMSEC. Simultaneously, the ANN perform-

ance is monitored by the results provided on an independent

monitoring sample set, which helps to estimate the

corresponding RMSEM (M for monitoring). Usually the

net is trained during a number of epochs until a minimum in

RMSEM (compatible with the noise level present in the

system) is reached, in order to avoid overtraining. The set of

weights so obtained is stored for future prediction on new

samples. Two important parameters for network training are

the learning rate and momentum, which pull the correction

of weights in opposite directions: the learning rate tends

towards a fast, steepest-descent convergence, while the

momentum is a long-range function preventing the solution

from being trapped into local minima. These parameters are

usually tuned around a value of 0.5, also by trial and error.

The above scheme works properly provided the new test

samples have a composition which is representative of the

training set. When unsuspected constituents occur in the test

sample, however, its scores will not be suitable for analyte

prediction using the trained ANN. To copewith this problem,

it is necessary to resort to a techniquewhich is able to: (1)mark

the new sample as an outlier, indicating that further actions

are necessary before ANN prediction, and (2) isolate the

contribution of the unsuspected component from that of the

calibrated analytes, in order to recalculate appropriate

surrogate variables for the test sample. PC analysis (PCA)

is adequate in this regard. In this case, the sample will be

considered as an outlier if the residuals of the PCA of Xu [sp,

see Equation (1)] are abnormally large in comparison with the

typical instrumental noise (the latter is easily assessed by

replicate measurements and the comparison can be carried

out through an F test if the residuals can be assumed to be

identically and independently distributed, otherwise other

non-parametric techniques may be necessary):

sp ¼ jjepjj=ðJK � AÞ1=2 ¼ jjvecðXuÞ � PPT vecðXuÞjj=ðJK � AÞ1=

¼ jjvecðXuÞ � P tujj=ðJK � AÞ1=2

(1)
J. Chemometrics 2005; 19: 615–624
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Figure 2. Flow sheet indicating how prediction is made by

ANN/RBL on a new test sample having unsuspected com-

ponent. The RBL procedure is indicated. For details on

symbols see text.
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where jj � jj indicates the Euclidean norm, P is the matrix

containing the first A loadings obtained by applying PCA to

the unfolded training data, tu is the vector of test sample

scores, and vec() indicates the unfolding operation. The sizes

of the relevant arrays in Equation (1) are as follows: ep and

vec(Xu), JK� 1;Xu, J�K; P, JK�A and tu,A� 1. If sp is indeed

large, then no further analysis is possible, unless a procedure

is devised which takes into account the presence of

unsuspected sample components (see below).

2.4. Second-order advantage with RBL
RBL is a procedure which can handle the presence of

unsuspected components in the test sample. It can be easily

described by decomposing the signal for a test sample

containing unsuspected components into two parts: one

modeled using the calibration latent variables (Xmod) and

the remaining part which cannot be modeled (Xunmod) with

these variables, that is:

Xu ¼ Xmod þ Xunmod (2)

As is usual in PCA, the modeled part can be expressed as a

function of the calibrated latent variables P and the unknown

sample score tu, and hence:

vecðXuÞ ¼ P tu þ emod þ vecðXunmodÞ (3)

where emod is the vector of residuals not fitted to Xmod by the

PCAmodelwithA PCs. Typically, emodwill contain elements

of the order of the instrumental noise. If anything having a

bilinear structure is present in Xunmod which rises above the

noise level, it can be modeled using singular value

decomposition (SVD). This allows one to estimate profiles

for the unsuspected components (buns and cuns) by

minimization of the norm of the residual vector eu, computed

while fitting the sample data to the sum of the relevant

contributions:

vecðXuÞ ¼ P tu þ vec½gunsbunsðcunsÞT� þ eu (4)

During this procedure, P is kept constant at the calibration

values, tu is varied until jj eu jj is minimized, and profiles for

the unsuspected components are estimated by SVD of a

residual matrix obtained after reshaping ep [see Equation (1)]

to a J�K matrix:

ðguns; buns; cunsÞ ¼ SVD1ðEpÞ (5)

where Ep is the J�K matrix obtained after reshaping the

JK� 1 ep vector, and SVD1 indicates taking the first PC.

Minimization can be been carried out using either iterative

or Gauss–Newton procedures, starting with tu as given by

the projection of the vector of responses for the test sample on

the space spanned by the calibration A PCs:

tu ¼ PT vecðXuÞ (6)

In all cases reported in the present paper, we have

employed the Gauss–Newton procedure for achieving RBL.

Should it be necessary to consider a larger number of

unsuspected components (Nuns) in the SVD analysis of Ep

[Equation (5)], then Nuns can be assessed by comparing the

final residuals su with the instrumental noise level, with su
given by:

su ¼ jjeujj=½JK � ðAþNunsÞ�1=2 (7)
Copyright # 2006 John Wiley & Sons, Ltd.
where eu is from Equation (4). Typically, a plot of su
computed for trial values of Nuns will show decreasing

values, starting at sp when Nuns¼ 0, until it stabilizes at a

value compatible with the experimental noise, allowing to

locate the correct number of unsuspected components. It

should be noticed that for Nuns> 1, the profiles provided by

the SVD analysis of Ep no longer resemble the true profiles

for the unsuspected components, due to the rotational

ambiguitywhich is intrinsic to SVD. Once jj eu jj isminimized

in Equation (4), and the correct test sample scores tu have

been found, the final tu vector is introduced into the input

neurons of the trained ANN, providing the analyte

concentration as output. The entire process is schematized

in the flow sheet shown in Figure 2, where it is apparent that

the second-order advantage is achieved in the way shown in

Figure 1B.

2.5. Software
All multivariate methods discussed in the present workwere

implemented in MATLAB 6.0 [26]. The specific scripts for

applying PLS/RBL and ANN/RBL are available from the

author on request, including a graphical user interface,

useful for routine analytical chemistry studies, which

provides access to a variety of second-order multivariate
J. Chemometrics 2005; 19: 615–624
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methodologies, of the type already described for first-order

methods [27].
3. SIMULATIONS

3.1. General considerations
In all cases, second-order data for a calibration set of 20

samples were created starting from noiseless profiles for the

analyte(s) (see below). All data matrices were of size 17� 19

data points (17 points correspond to the first dimension and

19 to the second dimension, which are intended to mimic

emission and excitation wavelengths, respectively, in data

set 1, absorption wavelength and time in data set 2, and

absorption wavelength and time in data set 3). The training

concentrations of the analyte(s) were taken at random

(equally distributed) from the range 0 to 1. A test set of 500

samples was also built, again with random concentrations of

the analyte(s), all in the range 0.2–0.8. To each of these test

samples, second-order signals corresponding to a single

unsuspected component were added in random concen-

trations. Finally, random numbers taken from a Gaussian

distribution were added to all signals. The standard

deviation of the added Gaussian noise was taken as 2% of

the mean calibration signal. The nominal concentrations of

the calibrated component are assumed to carry a significantly

lower error in comparison with the instrumental signals.

3.2. Data set 1
In the case of data set 1, the signals for the training samples

were computed as the sum of the contributions of two

analytes and noise:

Xc;i ¼ ½1� expð�kn1y1;c;iÞ�S1 þ y2;c;iS2 þ RsX (8)

where Xc,i is the J�K matrix of second-order signals for the

ith calibration sample, yn,c,i is the nominal concentration of

each analyte, Sn ¼ gnbnc
T
n are the corresponding matrix

signals at unit-concentration for analyte n (bn and cn are the

profiles in the first and second dimension, both normalized

to unit length, and gn is a scaling factor, in all cases set at 1

unless stated otherwise), R is a matrix of appropriate size

composed of Gaussian random numbers with unit standard

deviation, and sX is the standard deviation of the noise added

to signals. Notice in Equation (8) the non-linear dependence

of signals for analyte 1 with respect to concentration, with the

parameter knl controlling the degree of departure from

linearity. In the present case, knl¼ 2.

The test signals for data set 1, on the other hand, were built

using the following expression, in which a signal due to a

third partner was added:

Xu ¼ ½1� expð�kn1y1;uÞ�S1 þ y2;u S2 þ yuns;u Suns þ RsX (9)

whereXu is the J�Kmatrix for the unknown sample, y1,u and

y2,u are the nominal concentration of each analyte, yuns,u is the

concentration and Suns is the matrix signal for the

unsuspected component (Suns ¼ gunsbunsc
T
uns). Notice that

the presence of the latter in the test samples makes the use of

the second-order mandatory to resolve the presently

simulated mixtures.
Copyright # 2006 John Wiley & Sons, Ltd.
The profiles in both dimensions for the above discussed

data set are shown in Figure 3(A) and (B). They will be

discussed in detail below.

3.3. Data set 2
Data set 2 is designed to mimic a kinetic experiment run

under conditions where two non-responsive analytes (A and

B) react with a third component (R), producing absorbing

species (PA and PB) with spectral profiles shown in Figure

3A. The reaction scheme is thus:

Aþ R �!kA PA (10)

Bþ R �!kB PB (11)

where kA and kB are the corresponding kinetic constants. The

non-absorbing reagent R is present in defect with respect to

the analytes, making the kinetics pseudo-first order with

respect to R. The time evolution of the product concen-

trations is therefore governed by the following equations:

y1ðtÞ ¼
yR½1� expð�r2tÞ�

1þ r1
(12)

y2ðtÞ ¼
yRr1½1� expð�r2tÞ�

1þ r1
(13)

where yR is the initial concentration of R (taken as 0.01), y1(t)

and y2(t) are the concentrations of PA and PB, respectively, at

time t, r1¼ (kByB/kAyA), r2¼ kAyAþ kByB, yA and yB are the

initial concentrations of both analytes and kA¼ 0.5 and

kB¼ 0.02 are the kinetic constants. As can be seen, the time

profiles for the reaction products are a non-linear function of

the nominal analyte concentrations. Only combinations

where (yAþ yB)> (10 yR) were selected, in order to fulfill

the requirement that R is in defect with respect to A and B.

For the simulations, the concentrations of PA and PB were

calculated at 19 different times, in the range 1–19, using

Equations (12) and (13). Two column vectors y1i and y2i (size

19� 1), were constructed for the ith calibration sample, and

converted to (g1ic1) and (g2ic2), respectively, where c1 and c2
are unit-length normalized time profiles, and g1i and g1i are

scaling factors. Calibration absorbance-time matrices were

then built according to:

Xc;i ¼ g1;i b1 c
T
1 þ g2i b2 c

T
2 þ RsX (14)

where b1 and b2 are the spectral profiles (each of size 17� 1)

shown in Figure 3A for each reaction product (notice that the

scaling factors g1i and g2i will change from sample to sample

and will differ from unity in this particular case, depending

on the initial concentrations of the analytes). The normalized

time profiles are depicted in Figure 3C, where it can be

noticed that although the kinetic constants are different,

the normalized time profiles are identical, due to the

appearance of the common factor [1� exp(�r2t)] in the

integrated rate law. The unsuspected component, only

present in the test samples, adds to the contribution of the

products in the following manner:

Xu ¼ g1u b1 c
T
1 þ g2u b2 c

T
2 þ guns buns c

T
uns þ RsX (15)

where g1u and g1u will again depend on the test concen-

trations and kinetic constants for each analyte, buns is the

absorption profile for the unsuspected component given in
J. Chemometrics 2005; 19: 615–624
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Figure 3. Simulated component profiles in both dimensions. (Plot A) shows the emission profiles for

data set 1 (solid line, analyte 1, dashed line, analyte 2, dotted line, unsuspected component), the

absorption profiles for data set 2 (solid line, reaction product PA, dashed line, product PB, dotted line,

unsuspected component), and the absorption profiles for data set 3 (solid line, reagent C, dotted line,

unsuspected component). (B) Excitation profiles for data set 1 (meaning of lines as in plot A). (C)

Kinetic profiles for data set 2 (solid line, reaction products PA and PB, dotted line, unsuspected

component). (D) Kinetic profiles for data set 3 (solid line, reagent C, dotted line, unsuspected

component).
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Figure 3A, cuns is a normalized vector having identical

elements (i.e. a constant time profile, see Figure 3C) and guns a

unit scaling factor.

3.4. Data set 3
In the case of data set 3, a single analyte was considered,

acting as the catalyst of an autocatalytic reaction scheme such

as [28]:

Cþ S �!kS D (16)

CþD �!ka 2D (17)

D
kD
�����!
 ������

kE

E (18)

where the first step is the one affected by the concentration of

the catalyst, in such a way that kS¼ kScat [Catalyst]
ncat¼ kScat

(y1)
ncat. In this latter equation, y1 is the nominal analyte

concentration, and ncat is the reaction order with respect to

the catalyst, which in the present case was set to 2, with

kScat¼ 0.5. The above mechanism can be solved by numerical

calculations, for example, using a Runge–Kutta algorithm.

This allowed to obtain the concentrations of all species as a

function of time, using typical kinetic constants taken from
Copyright # 2006 John Wiley & Sons, Ltd.
the catalytic effect of Cu(II) on the reduction of the organic

dye resazurin by sulfide ions [29]. The concentration of the

responsive reagent C was calculated at 19 different reaction

times, in the range 0–3. The remaining constants employed

were: autocatalytic constant, ka¼ 60, and direct and inverse

constants for the equilibrium step, kD¼ 150, kE¼ 0.2. The

absorption spectrum of Cwas taken as indicated in Figure 3A

(solid line), with an unsuspected spectrum equal to the

dashed line in this same Figure (S, D and E are assumed to be

non-absorbing). Typical time profiles for data set 3 are shown

in Figure 3D, including that for the unsuspected component.

The matrix data for this system were built analogously to

data set 2, that is, in the form (g1b1c
T
1 ) for C (with g1 varying

depending on the analyte concentration in each sample). The

analyte is present in both the calibration and test samples. For

the unsuspected component, which does only affect the test

samples, the signals were given as (gunsbunsc
T
uns), with a unit

scaling factor guns.

3.5. Software
All simulations, including the Runge–Kutta algorithm for

building data set 3, were run using suitable MATLAB 6.0

scripts.
J. Chemometrics 2005; 19: 615–624
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4. RESULTS AND DISCUSSION

4.1. Data set 1
In this data set 2 analytes are calibrated from excitation-

emission fluorescence matrix data, and a single unsuspected

component occurs in the test samples. One of the analytes

(number 1 in this case) significantly deviates from the

linearity between signal and concentration. Profiles for all

components in data set 1 are shown in Figure 3, where it can

be noticed that the unsuspected signal overlaps the analyte

signals across the whole spectral ranges in both dimensions.

The first issue to be assessed in connection with the

achievement of the second-order advantage is the ability of

the multivariate methods to isolate the non-linear contri-

bution of the analyte of interest (component 1 in the present

case) from the combined contribution of the second analyte

and the unsuspected component in the test samples. The

reference PLS model was calibrated using a number of latent

variables obtained from the well-known leave-one-out cross-

validation procedure, employing mean-centered calibration

data, and selecting the number of latent variables as

suggested by Haaland [30], that is, the least number leading
Table I. PLS/RBL and ANN/RBL results on the different

simulated data sets

Method Parameter Value

Data set 1
PLS/RBL Number of latent variables A 2

RMSECV 0.08 (16%)
RMSEP 0.10 (20%)

ANN/RBL Architecture (input-hidden-output
neurons)

3-5-1

Number of training epochs 470
Learning rate 0.5
Momentum 0.5
RMSEC 0.017 (3.4%)
RMSEM 0.024 (4.8%)
RMSEP 0.025 (5.0%)

Data set 2
PLS/RBL Number of latent variables A 3

RMSECV 0.021 (4.2%)
RMSEP 0.027 (5.4%)

ANN/RBL Architecture (input-hidden-output
neurons)

3-4-1

Number of training epochs 20 000
Learning rate 0.5
Momentum 0.5
RMSEC 0.010 (2.0%)
RMSEM 0.012 (2.4%)
RMSEP 0.014 (2.8%)

Data set 3
PLS/RBL Number of latent variables A 2

RMSECV 0.040 (8.0%)
RMSEP 0.029 (5.8%)

ANN/RBL Architecture (input-hidden-output
neurons)

3-4-1

Number of training epochs 362
Learning rate 0.5
Momentum 0.5
RMSEC 0.011 (2.2%)
RMSEM 0.014 (2.8%)
RMSEP 0.015 (3.0%)

RMSE, root mean square error; CV, cross validation; P, prediction; T,
training; M, monitoring. Relative % errors in parenthesis (calculated
with respect to the mean calibration concentration).
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to a variancewhich is statistically undistinguishable from the

number leading to the minimum variance. Alternative

procedures for establishing the correct number of PLS latent

variables, such as Monte Carlo cross-validation [31], were

also applied with identical results to those reported in the

present paper. This allowed to establish the parameter A

required for calibration. The quality of the cross-validation

results can be judged from the root mean square error

RMSECV (Table I), which in this case is rather high due to the

presence of strong non-linearities in the behavior of analyte 1.

For applying the PLS/RBL procedure to each of the analyzed

test samples, the number of unsuspected components (Nuns)

was set to 1. In general, this number can be estimated by

inspection of the variation of su [see Equation (4)] with a trial

number of unsuspected components, as commented above.

Application of the PLS/RBL method rendered profiles for

the unsuspected component which are shown in Figure 4(A)

and (B) in both dimensions. They are similar to those

employed for simulation, confirming the ability of this

multivariate method in retrieving correct information from

the test samples in order to achieve the second-order

advantage. Prediction results for a 500 sample test set

including the unsuspected constituent shows, however, a

poor analytical performance (Table I), with a high RMSEP

(the RMSE for prediction on new samples). Furthermore, the

plot of prediction errors (i.e. predicted minus nominal

concentration) versus nominal concentration values for

analyte 1 (Figure 5A) clearly shows the U-shaped, non-

linear behavior for this analyte, which is not adequately

covered by the PLS model.
Figure 4. Profiles for the unsuspected component in both

dimensions, as retrieved by ANN/RBL (solid lines) and PLS/

RBL (dashed lines). (A, C and E) correspond to the first

dimension in data sets 1, 2 and 3, respectively. (B, D and

F) correspond to the second dimension. All profiles have been

normalized to unit length, and are plotted on a common

vertical scale.
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Figure 5. Prediction errors versus nominal concentration

values found in a 500 sample test set containing an unsus-

pected component. (A) PLS/RBL in data set 1. (B) ANN/RBL

in data set 1. (C) PLS/RBL in data set 2. (D) ANN/RBL in data

set 2. (E) PLS/RBL in data set 3. (F) ANN/RBL in data set 3.
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In the case of the application of ANN/RBL to this data set,

the first step was the training of an appropriate ANN using

only calibration data. The whole calibration set of 20 samples

was first randomly divided into a training set (60% of

samples) and a monitoring set (the remaining 40%). PCA

analysis of the training set suggested the use of three PCs to

employ as input variables, and hence the number of input

neurons was set to 3. Training of several different nets, all

starting from randomweights, suggested that an appropriate

number of hidden neurons was 5. Finally, a single output

neuron was reserved for predicting the concentration of

analyte 1. Table I shows the final architecture along with

other ANN training parameters. The quality of this training

step, as judged from the RMSEC and RMSEM (the RMSEs

corresponding to the training and monitoring sets of

samples, respectively) is significantly better than for PLS

(Table I). Recall that the noise added to the system was 2% of

the mean calibration signal, and hence that a minimum of 2%

error is expected in predicting a set of new samples. After the

training, application of the ANN/RBL procedure (Figure 2)

to the test samples produced typical unsuspected profiles

which are shown in Figure 4(A) and (B) as dashed lines.

Comparison with those retrieved by PLS/RBL shows good

agreement. This confirms the ability of ANN/RBL in

recovering unsuspected profiles, the first requirement in

the obtainment of the second-order advantage. Predictions

on the same 500 sample test set studied by PLS/RBL led to

the RMSEP quoted in Table I, which is significantly better

than for PLS/RBL. Furthermore, the plot of prediction

residuals versus nominal concentrations (Figure 5B) is

acceptable, and demonstrates the ability of the presently

describedmethodology in producing valid predictions for an
Copyright # 2006 John Wiley & Sons, Ltd.
overlapping, severely interfering and strongly non-linear

spectroscopic system.

Although on a different spectroscopic area, this behavior

resembles that of the absorption spectra of pharmaceutical

dexamethasone in mixtures with chlorpheniramine and

naphazoline, which has been previously studied using an

ANN approach [2]. However, in these latter pharmaceutical

samples no unsuspected components occurred, and hence

the second-order advantage issue was unimportant.

4.2. Data set 2
This data set mimics a spectroscopic-kinetic experiment,

where two analytes react with a single reagent (present in

defect with respect to the former ones), and producing

distinctly responsive reaction products. The profiles for this

system are shown in Figure 3(A) and (C) and were already

commented. Notice, however, that the spectral profiles for

the reaction products are different (Figure 3A), but the kinetic

profiles (normalized to unit length) are identical (Figure 3B).

This produces three-way data in which not only non-

linearities are present, but also where component profiles in

the second dimension are equal, which constitutes a specific

case of linear dependency. This latter type of problems

becomes a difficult task for methods such as PARAFAC or

GRAM, although it can be efficiently tackled by PLS/RBL

[17]. Therefore, the latter was again the standardmultivariate

methodology used for comparison.

The application of both PLS/RBL and ANN/RBL to this

data set was analogous to that described above in connection

with data set 1. The relevant parameters for calibration and

prediction with PLS/RBL, and for training, monitoring and

prediction with ANN/RBL, are collected in Table I. Notice

that PLS employs three latent variables for calibration in this

case, indicating that the non-linearities present in the

calibration set require one additional factor than the number

of chemical constituents. As can be seen in Table I, although

PLS/RBL produces results which are better than for data set

1, ANN/RBL outperformed the former for data set 2,

yielding significantly lower RMSE values.

As regards the retrieval of unsuspected profiles, both PLS/

RBL and ANN/RBL were able to distinguish the contri-

bution of the calibrated analytes from that of the unsuspected

component, yielding correct profiles for the latter (both in the

spectral and time dimensions), as is evident in Figure 4(C)

and (D).

The non-linear behavior of this system is apparent in

Figure 5C on inspecting the plot of PLS/RBL errors versus

nominal concentration values. In comparison, the corre-

sponding ANN/RBL plot (Figure 5D) is indicative of a better

predictive ability towards this non-linear data set.

The results are similar to those obtained when mixtures of

amines react with salycilaldehyde to yield colored products,

which has been previously explored using ANN, except that

in this latter case unsuspected componentswere absent in the

test samples [4].

4.3. Data set 3
In this case a single analyte occurs in all samples, and a single

unsuspected component affects the test samples. The analyte

is the catalyst of an autocatalytic reaction, and hence the
J. Chemometrics 2005; 19: 615–624
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relationship between signal (in this case the absorption of a

given reagent) and analyte concentration is non-linear, as in

the recently described reaction of the dye resazurin with

sulfide ions catalyzed by copper(II). The latter reaction

allowed for the determination of copper in real samples

using ANNs [7], although in the absence of unsuspected

constituents.

The profiles for data set 3 are shown in Figure 3(A) and (B)

for the responsive reagent C and for the unsuspected

component, in the form of spectral and time profiles,

respectively. The calibration process with the PLS/RBL

methodology, and the corresponding training, monitoring

and prediction steps with ANN/RBL, were as described

above for the remaining two data sets. Numerical results and

parameter values are quoted in Table I, showing similar

overall results to those discussed above with regard to data

set 2. In this specific case, however, the improvement in

analytical figures of merit is more apparent in going from

PLS/RBL to the ANN/RBL approach.

As with the other studied systems, the unsuspected

profiles (both in the spectral and time dimensions) were

adequately retrieved by PLS/RBL and ANN/RBL, a

necessary step before proceeding to achieve the second-

order advantage. Figure 4(E) and (F) confirm this assertion by

showing the corresponding plots.

Finally, the relevant plot of prediction errors versus

nominal concentration values for the analyte shows the

expected deviation of linearity in the case of PLS/RBL

processing (Figure 5E), and the apparently better perform-

ance of ANN/RBL (Figure 5F).
5. CONCLUSIONS AND OUTLOOK

The approach based on combining ANNs with RBL shows

up as a new and efficient chemometric tool for processing

second-order spectroscopic or spectral-kinetic information in

several non-linear systems, with particular focus on the

achievement of the second-order advantage. Its behavior

towards simulated data of various kinds indicates good

analytical performance, in all cases significantly better than

the closest competitor, which involves a flexible PLS model

and RBL to provide the latter with the second-order

advantage. Although different approaches for achieving

the second-order advantage from non-linear data may be

developed in the future, the present report provides analysts

with a viable alternative based on the combination of two

well-tested procedures.
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