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Abstract In spite of being a well articulated proposal, the theory of quantum histories
(TQH), in its different versions, suffers from certain difficulties that have been pointed
out in the literature. Nevertheless, two facets of the proposal have not been sufficiently
stressed. On the one hand, it is a non-collapse formalism that should be technically
appropriate to supply descriptions based on quantum properties at different times. On
the other hand, it intends to provide an interpretation of quantum mechanics that solves
the traditional puzzles of the theory. In this article we spell out the main criticisms to
TQH and classify them into two groups: theoretical and interpretive. Whereas the latter
might be ignored if the TQH were considered as a quantum formalism with its
minimum interpretation, the former seems to point toward technical difficulties that
must be faced in a theoretically adequate proposal. Precisely with the purpose of
solving these difficulties, we introduce a different perspective, called Formalism of
Generalized Contexts or Formalism of Contextual Histories (FCH), which supplies a
precise condition for consistently talking of quantum properties at different times
without the theoretical shortcomings of the TQH.

Keywords Quantum histories . Consistency condition . Formalism of contextual
histories . Time translation of properties . Generalized context . Compatibility condition

1 Introduction

According to the standard formulation of quantum mechanics, a quantum system is
represented by a Hilbert space and every pure state of the system is represented by a
normalized vector in that space (von Neumann 1932). States follow two types of time
evolutions. When there is no measurement, evolutions are governed by the Schrödinger
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equation, leading to a continuous and deterministic dynamics. When a measurement is
performed on the system, the state collapses onto one of the eigenstates of the measured
observable in a discontinuous and non-deterministic process.

From this standard perspective, the properties of the system are represented by
subspaces of the Hilbert space or by their corresponding orthogonal projectors. The
set of all possible properties has an orthocomplemented lattice structure, on which
logical operations between properties can be defined (Birkhoff and von Neumann
1936). The probability of measuring a property of the system is given by the Born
rule; on this basis, the probabilities corresponding to logical operations between
properties can also be computed.

The standard formulation of quantummechanics has a remarkable predictive success.
However, two aspects were considered conceptually unsatisfactory by several authors:

– The first one is the distinction between ordinary physical processes and measure-
ment processes. On the one hand, since probability is defined only for measure-
ments, it cannot be applied to systems which do not admit of being measured by an
external apparatus, as those studied in quantum cosmology. On the other hand,
since measuring devices are made of the same components as the remaining
physical systems, it is expected that measurement processes are not essentially
different from ordinary physical processes.

– The second unsatisfactory aspect is the impossibility of defining logical operations
between properties at different times. This is a shortcoming because in many cases
it is interesting to consider conjunctions or disjunctions of properties at different
times; for instance, in the measurement process, a property of the measured system
before a measurement needs to be logically related to a property of the measuring
apparatus after measurement.

The idea of quantum history was mainly motivated by these two unsatisfactory
aspects of standard quantum mechanics. In 1984, Robert Griffiths presented the first
version of his Theory of Consistent Histories (Griffiths 1984); some years later, he
introduced some modifications to that original version (Griffiths 2002, 2013). Omnès
(1987, 1988a, b, 1994, 1999) also published a series of articles that contributed to the
development of this theory. Simultaneously, Murray Gell-Mann and James Hartle
developed a similar formalism, called Decoherent Histories Interpretation (Gell-Mann
and Hartle 1990, 1993; Hartle 1991). Although these proposals do not agree in every
detail, their strong similarities justify to subsume all of them under the label BTheory of
Quantum Histories^ (TQH).

All the versions of the TQH claim to have solved the two difficulties mentioned
above:

– On the one hand, they provide a formulation of quantum mechanics in which
measurements are treated in the same way as other physical processes. In partic-
ular, measurements are considered ordinary physical interactions between a system
to be measured and a measuring apparatus. Therefore, the quantum dynamics is
always described by the Schrödinger equation: an additional projection postulate is
not required to account for collapse. As a result, the formalism is applicable to
closed systems, such as those studied by cosmology.
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– On the other hand, they extend the standard formalism of quantum mechanics in
order to be able to define logical operations between properties at different times.
For this purpose, they introduce the notion of history, which generalizes the notion
of event: an elemental history is defined as a sequence of events at different times,
where an event is the occurrence of a property. But since it is not possible to assign
probabilities to the set of all histories, it is necessary to select a subset of histories
that satisfies additional conditions.

Since there is no collapse of the state vector, measurements are treated in the same
way as other physical processes. Due to this reason, advocates of the TQH claim that
their theory provides a realist interpretation of quantum mechanics.

In spite of being a well articulated proposal, the TQH in its different versions suffers
from certain difficulties that have been pointed out in the literature. Nevertheless, two
facets of the proposal should be distinguished. On the one hand, it is a non-collapse
formalism that should be technically appropriate to supply descriptions based on
quantum properties at different times. On the other hand, it intends to provide an
interpretation of quantum mechanics that solves the traditional puzzles of the theory.
One might reject the TQH as an acceptable interpretation of quantum mechanics, but
still consider it an adequate non-collapse formalism to describe possible sequences of
quantum properties in time. In general, this distinction is not sufficiently taken into
account in the literature, and the TQH is criticized as a whole. However, the objections
should discriminate those two aspects if the limitations of the theory have to be
overcome.

On this basis, in the first part of this article we will spell out some traditional and
new criticisms to the TQH, and we will classify them into two groups: theoretical and
interpretive. Whereas the latter might be ignored if the TQH were considered a
quantum formalism endowed with a minimum interpretation, the former seems to point
toward technical difficulties that must be faced in a theoretically adequate proposal.
Precisely with the purpose of solving these difficulties, in the second part of this article
we will introduce a different perspective, called Formalism of Generalized Contexts or
Formalism of Contextual Histories (FCH), which supplies a precise condition for
consistently talking of quantum properties at different times without the theoretical
shortcomings of the TQH. Of course, since the FCH is a formalism and does not intend
to supply an interpretation of quantum mechanics, its scope is more restricted than that
of the TQH. Nevertheless, the FCH may turn out to be interpretively relevant if
supplemented with an adequate interpretation.

2 Theory of quantum histories

In this section we will briefly introduce the main tenets of the TQH. We will follow
Griffiths’ version (1984, 2002, 2013), but many of the discussions developed in this
article can be extended to the other versions.

As mentioned above, in standard quantum mechanics the properties of a system are
represented by subspaces of the Hilbert space of the system or by their corresponding
orthogonal projectors. In the TQH, an elementary history is defined as a sequence of
events −occurrences of properties− at different times, and a composite history is defined
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as the result of logical operations between elemental histories. For example, if we

consider n times, t1 <… < tn, and properties pi and qi at each time ti, then p^¼
p1;…; pnð Þ is the elementary history in which, at each time ti, the property pi is the
case, and q^¼ q1;…; qnð Þ is the elementary history in which, at each time ti, the
property qi is the case. Moreover, p^ ∨ q^, p^ ∧ q^ and : p^ are composite histories that
result from logical operations (disjunction, conjunction and negation, respectively)

between histories p^ and q^.
An n-time elementary history, such as p^¼ p1;…; pnð Þ, is represented by the pro-

jector Π
^¼ Π1⊗…⊗Πn, where each Πi corresponds to the property pi. Projector Π

^
is

defined on the Hilbert space , i.e., on the tensor product of n copies of
the Hilbert space of the system. As is a Hilbert space, the set of all the projectors on it
has an orthocomplemented and non-distributive lattice structure. In order to define
probabilities on quantum histories, it is necessary to select a Boolean sub-lattice of the
full lattice, that is, a distributive and orthocomplemented lattice. In this Boolean sub-
lattice of quantum histories, the logical operations in terms of the projectors are
expressed as follows:

p^ ∨ q^↔ Π
^

p^∨q^ ¼ Π
^

p^ þ Π
^

q^−Π
^

p^Π
^

q^ ð1Þ

p^ ∧ q^↔ Π
^

p^∧q^ ¼ Π
^

p^Π
^

q^ ð2Þ

: p^↔ Π
^

:p^ ¼ I
^
−Π
^

p^ ð3Þ

where I
^

is the identity of .
In order to obtain a distributive sub-lattice of histories, a projective decomposition of

the identity of , at each time tj (j = 1, …, n), must be first selected, i.e., a set of

projectors Πk j
j

n o
k j∈σ j

which are mutually orthogonal and sum the identity of :

Πk j
j Π

k
0
j
j ¼ δk jk

0
j
Πk j

j ; ∑k j
Πk j

j ¼ I ; k j; k
0
j∈σ j; j ¼ 1;…; n ð4Þ

Then, all possible combinations of quantum histories are built by picking one projector

Πk j
j at each time tj:

Π
^K

¼ Πk1
1 ⊗…⊗Πkn

n ; K ¼ k1;…knð Þ∈σ1 �…� σn
ð5Þ

These histories Π
^K

are called atomic histories, and they form a projective decomposi-
tion of the identity of :

Π
^K

Π
^K

0

¼ δKK0Π
^K

; ∑KΠ
^K

¼ I
^
; K∈σ1 �…� σn

ð6Þ
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Finally, the set obtained by making arbitrary disjunctions between atomic histories is
called family of histories:

Π
^ j Π^¼ ∑KαKΠ

^K
;αK ¼ 0; 1 and K∈σ1 �…� σn

� �
ð7Þ

Families of histories have a Boolean lattice structure; therefore, it is possible to
define a probability on them. For this purpose, an operator called chain operator is

introduced: for each atomic history represented by Π
^K

, the chain operator is given by

C Π
^K

� �
¼ Πk1

1;0Π
k2
2;0…Πkn

n;0 with Πk j

j;0 ¼ U t0; t j
� �

Πk j
j U

−1 t0; t j
� � ð8Þ

where U(t0, tj) is the time-evolution operator U(t0, tj) = exp[−iH(t0 − tj)/ℏ] (where H is
the system’s Hamiltonian) and t0 is the initial time. The chain operator for non-atomic
histories is obtained by a linear extension of the atomic case: for a generic history, the
chain operator is given by

C Π
^� 	

¼ ∑KαKC Π
^K

� �
K∈σ1 �⋯� σn αK ¼ 0; 1 ð9Þ

Then, the probability of a history is defined as follows:

Pr Π
^� 	

¼ Tr C† Π
^� 	

ρ0C Π
^� 	� 	

ð10Þ

where ρ0 is the state operator at the initial time t0.
However, in general the probability so defined does not satisfy the additivity axiom

of Kolmogorov. Therefore, in order to obtain a well-defined probability, it is necessary
that the family of histories satisfy an additional condition. In his Theory of Consistent
Histories, Griffiths calls it consistency condition:

Re Tr C† Π
^K

� �
ρ0C Π

^K
0� �� �
 �

¼ 0 for all K≠K
0 ð11Þ

In the Decoherent Histories Interpretation version of Gell-Mann and Hartle (1990),
the consistency condition does not need to be satisfied exactly, but only approximately,
that is,

Re Tr C† Π
^K

� �
ρ0C Π

^K
0� �� �
 �

≈0 for all K≠K
0 ð12Þ

A family of histories that satisfies the consistency condition is called consistent
family of histories (also family of consistent histories) or realm. Once a realm is defined,
probabilities can be assigned to its quantum histories, and physical situations involving
properties at different times can be described.
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It is worth noticing that different consistent families of histories can be obtained for a
single physical system. When two consistent families can be combined into another
consistent family that includes both of them, it is said that those families are compat-
ible. Otherwise, the consistent families of histories are incompatible.

A central element of the Theory of Consistent Histories is the Single-Framework
Rule (Griffiths 2002), which states that incompatible realms cannot be combined into a
single description of a quantum system: probabilistic reasoning is valid only if it is
carried out in the framework of a single realm. However, all realms are equally valid to
describe a physical system −Principle of Equality− and, therefore, physicists are free to
select any realm considered appropriate in a specific situation −Principle of Liberty−
(Griffiths 2013). Nevertheless, not all realms are equally useful to describe a particular
system −Principle of Utility− (Griffiths 2013).

3 Traditional objections

The TQH introduces interesting ideas that might work in the attempt to find
solutions to the two conceptual problems of standard quantum mechanics pointed
out in the Introduction. On the one hand, the system always evolves unitarily: a
special postulate is not introduced to account for measurements. On the other
hand, the fact that it relies on a lattice of histories instead of on a lattice of
properties-at-a-time makes it apt to describe the quantum system at different times
in a consistent way.

However, in spite of its advantages, some authors consider that the TQH suffers
from certain shortcomings that cannot be ignored. In this section we will briefly
review some of the traditional objections that have been advanced against the TQH,
along with the usual responses. We will come back to them later, in the next
sections.

3.1 Contrary retrodictions

Two projectors Πa and Πb are said to be complementary when they do not
commute: ΠaΠb ≠ΠbΠa; they are said to be contradictory when they sum to the
identity, and contrary when they are orthogonal and non-contradictory. In standard
quantum mechanics, given two contrary properties p and q, that is, represented by
contrary projectors, there are no property r and state ρ such that, in the state ρ, the
probability of p conditional to r and the probability of q conditional to r are both
equal to one. That is, there is no possibility of contrary inferences in standard
quantum mechanics.

This is not the case in the TQH. Kent (1997) pointed out that, in this case,
probabilistic retrodictions depend on the choice of the realm. This freedom allows
the theory, from a given initial state, to retrodict two contrary properties from different
realms. In other words, given the initial state ρ0 of the system, it is possible to infer,
with certainty, two inconsistent facts about the past from two different consistent
families of histories.

Hartle (2007) developed an example of retrodiction of contrary properties that is a
special case of the example offered by Kent. He focused on a quantum system in a state
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represented by the vector jψ〉 ¼ Aj i þ Bj i þ Cj ið Þ = ffiffiffi
3

p
at time t2, where |A〉, |B〉 and

|C〉 are three orthogonal and normalized vectors. For simplicity, the Hamiltonian is
chosen to be zero. At time t2, the property Φ, represented by the projector PΦ = |Φ〉〈Φ|,
is considered, with jΦ〉 ¼ Aj i þ Bj i− Cj ið Þ = ffiffiffi

3
p

. A suitable consistent family of two-
time histories can be defined on the basis of the properties generated by the projectors
PA = |A〉〈A| and PA ¼ I− Aj i Ah j at time t1 < t2 and the properties generated by the
projectors PΦ = |Φ〉〈Φ| and PΦ ¼ I− Φj i Φh j at time t2. In the framework of this realm,
the following results are obtained:

Prψ A; t1jΦ; t2ð Þ ¼ 1 Prψ A; t1jΦ; t2
� 	

¼ 0 ð13Þ

Therefore, the property Φ at time t2 implies the property A at the previous time t1. An
analogous inference can be performed in a different consistent family of histories,
including the properties generated by projectors PB = |B〉〈B| and PB ¼ I− Bj i Bh j at time
t1 < t2 and the properties generated by projectors PΦ = |Φ〉〈Φ| and PΦ ¼ I− Φj i Φh j at
time t2. In this case, the following results are obtained:

Prψ B; t1jΦ; t2ð Þ ¼ 1 Prψ B; t1jΦ; t2
� 	

¼ 0 ð14Þ

This means that the property Φ at time at time t2 also implies the property B at the
previous time t1. But properties A and B are contrary since represented by orthogonal
vectors. Therefore, from a given property Φ at time t2, contrary properties can be
inferred for a previous time t1.

In summary, according to the TQH, in general there is not a unique past for given
present data (although not the same criticism, an objection of the same kind can be
found in Goldstein 1998 and Bassi and Ghirardi 1999). The advocates of the theory
claim that this is not a real problem (Griffiths and Hartle 1998), because each
retrodiction is obtained in a different consistent family of histories; but different
incompatible realms cannot be considered simultaneously since they correspond to
different event spaces for probabilities (Single-Framework Rule).

3.2 Lack of predictive power

A second criticism to the TQH is that the theory seems to lack predictive power. The
previous objection showed that, from the present situation of the system, contrary
properties can be retrodicted with certainty in different realms. An analogous objection
can be raised about the future: it is possible to predict two contrary properties with
certainty in two different consistent families of histories (Dowker and Kent 1996). This
means that predictions about the future properties of the system depend on the choice of
the realm. Since, according to the TQH, all realms are on a par with each other
regarding the description of a physical system, the theory seems to be useless to predict
the future properties of a system.

For the advocates of the TQH this is not a problem because, as in the first objection,
each prediction is obtained in a different realm. Then, once the specific experiment to
be performed is decided, only one realm turns out to be appropriate. This means that,
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for each experiment, the theory makes the correct predictions. However, this response
needs to count first with a criterion to decide when a measuring experiment is
performed, that is, to distinguish between quantum measurement processes and
ordinary quantum non-measurement processes. But, the need of such a distinction
was one of the interpretive problems due to which the TQH was originally
proposed and that the theory claims to have dissolved by dispensing with collapse
(see Okon and Sudarsky 2014b).

3.3 Discontinuity in property ascription

Let us consider a spin system prepared at time t0 in a pure state represented by |+x〉 or
ρ0 = |+x〉〈+x|, and a family of histories that includes the histories constituted by the two
possible spin values along the x axis at time t1, represented by the projectors Πx = |+x〉
〈+x| and Πx ¼ −xj i −xh j, together with the two possible spin values along the z axis at
time t2, represented by the projectors Πz = |+z〉〈+z| and Πz ¼ −zj i −zh j. By means of Eq.
(10), well defined probabilities can be assigned to all the members of the family.

The probability of the spin to have the value +(1/2) ℏ along the x axis at time t1and to
have the value −(1/2) ℏ along the z axis at time t2 can be computed as (see Eq. (10)):

Pr Πþx
1 ;Πþz

2

� � ¼ Tr Πþz
2 Πþx

1 ρ0Π
þx
1 Πþz

2

� � ¼ þxh jþzij j2 ¼ 1


2

ð15Þ

But since there is no restriction on the selection of time t1, it can be chosen very close to
time t2. Therefore, the following limit can be computed:

lim
t1→t2

Pr Πþx
1 ;Πþz

2

� � ¼ 1


2 ð16Þ

In standard quantum mechanics, assigning well-defined values to different compo-
nents of the spin is forbidden by the Heisenberg Principle, since operators representing
different components of spin do not commute. As a consequence, the limit of Eq. (16)
cannot be understood as the probability of the conjunction of the spin values +(1/2) ℏ
along the x axis and the value −(1/2) ℏ along the z axis at the same time t2. As Laura and
Vanni (2009: 164) correctly notice, this means that the TQH leads to discontinuity in
the assignment of properties of the system at different times.

3.4 Non-persistence of quasi-classicality

Another objection against the TQH has to do with how the theory explains our
perception of a persisting nearly classical world. The TQH’s explanation is based on
selecting suitable quasi-classical realms in which projective decompositions at each
time correspond to macroscopic properties. The appropriate projective decompositions
will be coarse-grained decompositions such that: (i) the resulting projectors correspond
to subspaces of large dimension and (ii) those projectors are maximally refined, i.e., if
they are further fine-grained, they cease to satisfy the consistency condition. Defenders
of the TQH consider that it is possible to find quasi-classical realms containing one
history that approximates the results of classical mechanics and that is endowed with a
probability very close to one.
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However, Dowker and Kent (1996) argued that, in general, histories belonging to a
quasi-classical realm that are quasi-classical up to a certain time, stop being quasi-
classical in the future of that time. In other words, quasi-classicality in a consistent
family of histories does not persist in consistent future extensions of the histories. This
is particularly serious in a theory that intends to explain measurements as quasi-
classical results with no need of collapse: as the authors claim, Bif we have a theory
describing our own quasi-classical domain up to the present time, and if the theory tells
us that the results of some quantum experiment we are about to perform are genuinely
unpredictable, then we can find another theory which reproduces the description up to
the present time, but in which the standard quasi-classical description of the experi-
mental results cannot be made.^ (Dowker and Kent 1996: 1633).

A response to this objection is given by Griffiths (2013). He recognizes that there is
no guarantee that quasi-classicality in a realm will persist in the future, but argues that
the TQH does not need to supply such a guarantee: quasi-classicality is not a property
of the world but a property of a description of the world. Therefore, the use of a quasi-
classical realm up to one time and another quasi-classical realm after that time poses no
conceptual difficulty.

3.5 Violation of probability axioms

The last objection considered in this section points to the fact that, in some versions of
the TQH, such as the Decoherent Histories Interpretation, the consistency condition
holds approximately and, as a consequence, the probability sum rules do not hold
(Barrett 1999).

According to Gell-Mann and Hartle (1990; see also Hartle 1991), it is natural to
consider those sets for which the probability sum rules are slightly violated on an equal
footing with the sets of histories for which the consistency condition holds. They point
out that, if the violation is sufficiently small, no experiment could detect the discrep-
ancy, and that in any case one can remove the sum rule violation by an ad hoc but
equally undetectable renormalization of the probabilities.

However, the authors’ response misses the point. The difficulty is not that the theory
provides approximated probabilities for quantum histories, which would not be a real
problem if the formalism guarantees that discrepancies between approximated proba-
bilities and exact probabilities are maintained small (see Okon and Sudarsky 2014a).
The problem here is that the precise consistency condition is necessary to have well-
defined probabilities: approximation in the consistency condition implies that, in
general, the rule to compute probabilities does not satisfy the axioms of Kolmogorov.
Therefore, if the consistency condition holds approximately, it is not clear whether the
quantities defined by the theory by means of the Born Rule can genuinely be called
probabilities. As Dowker and Kent (1996: 1577) stress, Bthis seems a rather casual
disruption of the mathematical structure of a fundamental theory.^

A possible reply is to consider only theories of quantum histories that exactly satisfy
the consistency condition, such Griffiths’ Theory of Consistent Histories. Moreover,
Dowker and Kent (1996) suggested that there is no need to consider approximately
consistent sets in any fundamental formulation of the TQH, because an exactly
consistent set can always be found in the neighborhood of any approximately consistent
set of histories.
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4 Recent objections

In two recent articles, Okon and Sudarsky (2014a, b) analyzed the conceptual impli-
cations of the TQH and, as the result, raised further objections. In this section we will
briefly review them in the order in which they were introduced by the authors, and will
add a further difficulty usually not considered in the literature.

4.1 Realm-dependent reality

The first objection introduced by Okon and Sudarsky (2014a) has to do with the fact
that the TQH proposes a realm-dependent reality: what is real depends on the choice of
the consistent family of histories. In fact, according to the TQH, there is no privileged
realm. The Principle of Equality states that all realms are equally valid to describe a
physical system, and the Principle of Liberty allows the physicist to choose any realm
considered appropriate for practical reasons. This freedom implies that the actual
history and the actual properties depend on the selected realm: reality becomes relative
to the consistent family of histories picked out in each case.

Regarding this point, Griffiths (2013) argues that selecting a realm is, in a certain
sense, like selecting a reference frame in special relativity: there is no preferred
reference frame, all frames are equally valid to describe a system, but not all frames
are equally useful when a particular problem is considered. However, as Okon and
Sudarsky (2014a) stress, the analogy is not accurate enough. In the case of special
relativity, different relative descriptions can be combined into a unified non-relative
description that might be conceived as the description of an underlying, non-relative
reality. This is not the case in the TQH, since two different realms, in general, cannot be
combined into a single unified description. This means that the realm-relativity of the
TQH is very different from other kinds of relativity in physics. Griffiths (2013)
acknowledges the disanalogy, but he does not offer a way out of the problem.

4.2 Unclear definition of initial conditions

The second objection raised by Okon and Sudarsky (2014a) is related with how the
Hamiltonian and the initial state, subsumed under the label ‘initial conditions’ by the
authors, are determined in the framework of the TQH. In fact, according to the TQH,
the initial state and the Hamiltonian of the system are the same for all realms, i.e., they
do not depend on each consistent family of histories. However, the realm-dependence
of reality makes difficult to understand how one could have access to these two realm-
independent elements of the theory. In a sense, this objection is a refinement of the
previous criticism, directed to the realm-dependence of reality.

Proponents of the Decoherent Histories Interpretation argue that the initial condi-
tions must be determined by an external theory (Gell-Mann and Hartle 1990). However,
as Okon and Sudarsky (2014a) emphasize, if what is real is relative to a realm, no
observation can count as an evidence for this external theory. Moreover, since past is
relative to the realm, whatever it takes to be the initial state in a given realm, it might
not be so in a different one.

A possible answer to the objection would adduce that the TQH generalizes standard
quantum mechanics and, therefore, if the initial state and the Hamiltonian can
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legitimately be selected in standard quantum theory, then the same should be possible
in the TQH. But Okon and Sudarsky (2014a) correctly point out that the realm-
dependence of reality is not an aspect of standard quantum mechanics; so, that feature
cannot legitimately be extrapolated to the TQH.

4.3 Persistence of the measurement problem

As we said in the Introduction, standard quantum mechanics introduces two types of
temporal evolution for the states of a quantum system: Schrödinger evolution and
collapse. The former is a continuous and deterministic evolution that applies to ordinary
physical processes. The latter applies to measurements: when a measurement on a
system is performed, the state collapses to the eigenstate corresponding to the observed
value of the measured observable. Unlike the Schrödinger evolution, collapse evolution
is discontinuous and nondeterministic.

In order to apply this two-evolution theory, it is necessary to previously know which
processes are ordinary physical processes and which ones are measurements. However,
the concept of measurement is not well defined within the theory. The only way to
identify measurement processes as different from ordinary processes is by appealing to
elements external to the theory. This is one of the aspects of the measurement problem
of standard quantum mechanics.

Proponents of the TQH claim that the theory has solved the measurement
problem, since it is capable of making predictions without the addition of the
collapse postulate. However, according to Okon and Sudarsky (2014a, see 2014b
for a detailed argumentation), this is not the case: the TQH does not solve the
measurement problem due to, at least, two different reasons. First, the theory does
not specify how the relevant realm is to be chosen beyond stating that it has to be
selected according to the questions one is trying to answer. But, as in the case of
the identification of measurement processes, this criterion is also clearly external
to the theory. Second, even after (somehow) fixing a realm, the theory does not
offer a way to decide about the status of the different histories within it. If only
one of the histories within the selected realm is actual, then the theory is descrip-
tively incomplete, since it offers no conceptual reason to ascribe a privileged
status to the actual history. If, on the contrary, all the histories within the selected
realm are actual, it is not legitimate to interpret the numbers generated by the Born
rule in the context of the realm as probabilities, since all the alternatives are
realized.

4.4 Weak explanation of the experience of quasi-classicality

The last objection raised by Okon and Sudarsky (2014a) has to do with a particular
element of Gell-Mann and Hartle’s version of the TQH (Gell-Mann and Hartle 1990,
1994; Hartle 2007): information gathering and utilizing system (IGUS). The term
‘IGUS’ refers to a complex adaptive system that has evolved to exploit the predict-
ability of a quasi-classical domain. Human beings constitute a particular type of
IGUSes. The most relevant feature of these adaptive systems is that they are able to
use, at least rudimentarily, a physical theory in order to make predictions about their
environment.
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In the Decoherent Histories Interpretation, the notion of IGUS is introduced to
explain why, among all the possible realms allowed by the theory, we only experience
quasi-classical realms. Gell-Mann and Hartle argue that IGUSes have evolved to make
predictions in quasi-classical domains because this behavior is adaptive and because
quasi-classical domains have enough regularity to make predictions with very simple
means.

Okon and Sudarsky (2014a) correctly remark that the appeal to an evolutionary
explanation does not fit in this case, since the Decoherent Histories Interpretation does
not include any of the essential elements of an evolutionary theory: a varied initial
population, an external environment, heredity and selection. In particular, there is no
external environment in the context of which IGUSes evolve since, according to Gell-
Mann and Hartle’s proposal, the quasi-classical realm is a part of what should be
adaptively selected.

4.5 Dependence of the consistency condition on the initial state

In the TQH, the consistency condition selects the consistent families of histories, that is,
the sets of histories where probabilities can be correctly defined. As shown in Eq. (11),
this condition depends on the initial state ρ0 of the system; therefore, the sets of
histories where probabilities can be correctly defined changes from initial state to initial
state. This is completely different from what happens in standard quantum mechanics,
in which the contexts where probabilities are well defined are all the possible distrib-
utive sublattices of the Hilbert space, which do not depend on the initial state.

Moreover, in the axiomatic approaches to standard quantum mechanics, once the
observables of the system are identified, states are defined as functionals acting on the
space of observables: the basic element of the theory is the space of possible properties,
and states are secondary from a logical viewpoint. Since quantum histories play the role
of properties at different times, it seems reasonable to require that the selected families
of histories satisfy a condition independent from a logically secondary element of the
theory such as the state of the system.

The fact that the consistency condition depends on the initial state of the system adds
a new level of dependence of reality to that pointed out by Okon and Sudarsky (2014a).
In fact, as discussed above, what is real depends on the particular consistent family of
histories selected in the set of all consistent families defined by the consistency
condition. But this set of consistent families depends, in turn, on the initial state of
the system. Therefore, the initial state constrains reality, not merely by selecting the
future evolution of the system among all the possible evolutions, as in classical
mechanics, but in the sense that it takes part in the definition of the domain of
possibility itself.

5 Rearranging the criticisms

Okon and Sudarsky (2014a, b) made a significant contribution to the discussion about the
TQH, not only by clearly summarizing the main traditional objections directed to the
theory, but also by formulating new ones. However, in this paper we are not interested in
the difference between traditional and new objections.What is relevant to our purpose is to
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distinguish between those criticisms that point to theoretical shortcomings of the TQH and
the criticisms directed to interpretive limitations of the theory.

Let us recall that a physical theory is constituted by a formal structure and a semantic
interpretation that endows the formalism with physical content. In the semantic inter-
pretation, in turn, two levels can be distinguished: the so-called ‘minimal interpreta-
tion’, that is, the physical content necessary to apply the formalism to the world, and
what is commonly conceived as the Binterpretation^ of the theory, which supplies the
content of the elements of the theory not accessible by experimentation in a direct way.
As usual in the literature on quantum mechanics, we will consider the formalism with
its minimal interpretation as the theoretical core of the physical theory, and will reserve
the name ‘interpretation’ for the remaining content.

It is quite clear that the TQH is presented as a complete theory, with its theoretical
core and endowed with an interpretation that attempts to solve the traditional interpre-
tive difficulties of quantum mechanics. Therefore, the criticisms raised against it can be
classified into theoretical and interpretive, according to which of the two aspects is
questioned. On this basis, let us reorganize the objections presented in the previous
sections as follows:

Theoretical objections.

– Contrary retrodictions: it is possible to retrodict, with certainty, the occurrence of
two contrary properties in the past from two different consistent families of
histories.

– Lack of predictive power: predictions about the future properties of the system
depend on the choice of one realm among all the realms, which are all equally
legitimate for describing the physical system.

– Discontinuity in property ascription: in the limit of infinitely close times, contrary
properties can be assigned to the system.

– Violation of probability axioms: if the consistency condition holds approximately,
then the rule to compute probabilities does not satisfy the axioms of probability;
therefore, it is not clear why the quantities defined by the theory should genuinely
be called probabilities.

– Dependence of the consistency condition on the initial state: the sets of histories
where probabilities can be correctly defined −the consistent families of histories−
depend on the initial state of the system;

Interpretive objections.

– Realm-dependent reality: reality becomes relative to the consistent family of
histories selected in each case.

– Unclear definition of initial conditions: since the initial conditions are realm-
independent, it is not clear how one can have access to them.

– Persistence of the measurement problem: the measurement problem is not solved
because (a) the theory does not specify how the relevant realm is to be chosen, and
(b) the theory does not supply any reason to ascribe a privileged status to the actual
history.
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– Non-persistence of quasi-classicality: histories belonging to a consistent family
that are quasi-classical up to a certain time may stop being quasi-classical in the
future.

– Weak explanation of the experience of quasi-classicality: quasi-classicality cannot
be explained in evolutionary terms because the theory does not include any of the
essential elements of an acceptable evolutionary explanation.

Assuming that these objections are well founded, a comprehensive view based on
quantum histories should successfully face all of them. The first step toward this goal is
to devise a formalism of quantum histories that solves the theoretical difficulties that
threaten the TQH. In the following section we will introduce a new formalism, the
Formalism of Contextual Histories (FCH), and in Section 7 we will argue that it
provides those required solutions.

6 The formalism of contextual histories

In the TQH, the quantum histories belonging to a realm must satisfy the consistency
condition. Since this condition includes the initial state, the consistent families of
histories depend on the initial conditions of the system. Therefore, a family of histories
may be consistent for one initial state, but not for another. As stressed above, this
situation is different from what happens in standard quantum mechanics, in which the
contexts of Bconsistent^ properties −sets of properties where the axioms of probability
can be applied− are given by all the possible distributive sublattices generated by the
Hilbert space, and they do not depend on the initial state of the system.

In order to avoid that dependence on the initial state, Roberto Laura and Leonardo
Vanni developed an alternative approach to quantum histories, called Formalism of
Contextual Histories. This formalism extends standard quantum mechanics with the
purpose of assigning legitimate probabilities to quantum histories (Laura and Vanni
2008, 2009; Losada and Laura 2014a). It has proved to be useful to supply the time-
dependent description of quantum decay processes (Losada and Laura 2013), to
describe the logics of quantum measurements (Vanni and Laura 2013; Losada et al.
2016), and to explain the double slit experiment with and without measurement
instruments (Losada et al. 2013).

As in the case of the TQH, in the framework of the FCH measurements do not have
a privileged status. They are described as ordinary physical interactions between a
system and a measuring apparatus. The dynamics of measurements is governed by the
Schrödinger equation; therefore, no additional postulate to account for the collapse of
the state vector is required.

The FCH is based on the notion of time translation of properties. As in the TQH,
an additional condition on the sets of histories is necessary to have well-defined
probabilities. In this case, the additional condition imposed on properties at different
times is the commutation of the corresponding projectors translated to a common
time. In this way, the traditional concept of context of standard quantum mechanics,
defined for simultaneous properties, is extended to properties at different times. In
the rest of this section we will briefly describe the main ideas supporting this
formalism.
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6.1 The logical structure of temporal equivalent classes

From a formal viewpoint, in this approach it is not necessary to define the tensor
product of n copies of the Hilbert space: it is sufficient to consider the Hilbert space of
the physical system under consideration. The states of the system are defined in the
same way as in standard quantum mechanics, and their dynamics is governed by the
time-evolution operator U(t′, t) = exp[−iH(t′ − t)/ℏ], where H is the system’s Hamiltoni-
an. Also as usual, the properties of the system are represented by subspaces of Hilbert
space or by their respective projectors: a value-property pa is represented by the
projector Πa.

The starting point of the FCH consists in considering properties at a certain time and
their time evolution. In order to develop this idea, it is convenient to work in the
Heisenberg framework, in which the projectors representing quantum properties evolve
in time. The suggestion of using the Heisenberg representation for the conjunction of
properties at different times was originally proposed by Leslie Ballentine (1998:
Section 9.6), but he did not discuss the conditions for well-defined probabilities.

In the FCH, a value-property pa at time ta is represented by the pair (Πa, ta). In turn,
the value-property pb at time tb, represented by the pair (Πb, tb), is defined as a time
translation of the value-property pa at time ta, represented by the pair (Πa, ta), when

Πb ¼ U tb; tað ÞΠa U−1 tb; tað Þ ð17Þ

It can be proved (Laura and Vanni 2009) that the relationship between (Πa, ta) and its
time translations is transitive, reflexive and symmetric and, therefore, is an equivalence
relation that defines a temporal equivalence class:

Πa; ta½ � ¼ Πb; tbð ÞjΠb ¼ U tb; tað ÞΠa U−1 tb; tað Þ� � ð18Þ

It can be said that the projectorΠa represents the class at ta as well as that each projector
Πb represents the same class at the corresponding time tb. In physical terms, a temporal
equivalence class includes all the properties-at-a-time that can be transformed into each other
by the time evolution of the system. Since theBorn rule assigns the same probability value to
all the properties-at-a-time connected by time translation (see Vanni and Laura 2013: 2387),
the equivalence class might also be conceived as a single property extended in time.

If the set of all temporal equivalence classes is denoted by [E], an order relation
between classes can be defined on it:

Π1; t1½ �≤ Π2; t2½ � if and only if V1;0⊆V2;0 ð19Þ

where V1, 0 and V2, 0 are the subspaces associated to Π1, 0 and Π2, 0, respectively, and

Π1;0 ¼ U t0; t1ð ÞΠ1U−1 t0; t1ð Þ Π2;0 ¼ U t0; t2ð ÞΠ2U−1 t0; t2ð Þ ð20Þ

In turn, complementation can be defined on [E] as follows:

Π; t½ � ¼ Π⊥; t½ � ð21Þ
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where ⊥ is the orthogonal complement of Π, i.e. Π⊥ = I −Π, where I is the identity
operator of the Hilbert space.

On the basis of the above definitions of the order relation and of the complement
operation, the structure 〈 E½ �;≤ ;−〉 turns out to be an orthocomplemented lattice. There-
fore, the basic logical operations between temporal equivalence classes can be defined.
In particular, disjunction and conjunction between temporal equivalence classes are
given by the disjunction and the conjunction of the projectors representative of those
classes but translated to a common time t0:

• Negation : Π1; t½ � ¼ Π; t½ � ¼ Π⊥
1 ; t

� � ¼ I−Π1; t½ � ð22Þ

• Disjunction Π1; t1½ �∨ Π2; t2½ � ¼ Π1;0∨Π2;0; t0
� � ¼ I− lim

n→∞
I−Π1;0

� �
I−Π2;0

� �� �n
; t0

h i

ð23Þ

• Conjuction Π1; t1½ �∧ Π2; t2½ � ¼ Π1;0∧Π2;0; t0
� � ¼ lim

n→∞
Π1;0Π2;0

� �n
; t0

h i
ð24Þ

where t0 is an arbitrary time, and Π1, 0, Π2, 0 are defined as above, in Eq. (20).

6.2 Generalized contexts

In order to correctly define probabilities, an orthocomplemented lattice is not sufficient:
a Boolean lattice is necessary, i.e., a distributive orthocomplemented lattice.

In standard quantum mechanics, the word ‘context’ refers to a set of projectors
representing properties that can be simultaneously applied for the description of a
quantum system at a given time, and that can be endowed with a Boolean structure
with well-defined probabilities. The FCH supplies a prescription to obtain, from the
orthocomplemented lattice of temporal equivalent classes, a Boolean sublattice which
will be called generalized context.

For this purpose, let us select an arbitrary time ti and a projective decomposition of

the identity of the Hilbert space, i.e., a set of projectors Πki
i , which satisfy

Πki
i Π

k 0 i
i ¼ δkik 0 iΠ

ki
i ∑kiΠ

ki
i ¼ I with ki; k

0
i∈σi ð25Þ

Then, we define the context of properties Ci generated by the projectorsΠ
ki
i , i.e., the set

of arbitrary sums of Πki
i :

Ci ¼ Πi : Πi ¼ ∑kiαkiΠ
ki
i ;αki ¼ 0; 1

� �
: ð26Þ

On this basis, the generalized context E½ �Ci
can be defined as:

E½ �Ci
¼ Πi; ti½ �∈ E½ � : Πi∈Cif g ð27Þ

As a result, the structure 〈 E½ �ci ;≤ ;−〉 is a generalized context, that is, a distributive
sublattice of the orthocomplemented lattice 〈[E], ≤,−〉.
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Once a generalized context is so defined, the probabilities of its temporal equiva-
lence classes can be computed by means of a natural generalization of the Born rule.
Given the classes [Πk, t] belonging to the generalized context [E]C, their probability is
given by

Pr Πi; tið Þ ¼ Tr ρtiΠi
� � ð28Þ

where ρti is the state of the system at time ti. These probabilities are well defined and
satisfy the axioms of Kolmogorov.

6.3 The logical structure of contextual histories

The FCH, based on the idea of properties-at-a-time and their time translation, has the
capability of representing histories that involve properties at different times.

Let us consider the contexts of properties C1 at time t1 and C2 at time t2, generated
by the projectors Πk1

1 at t1 and Πk2
2 at t2 respectively, such that:

Πk1
1 Π

k
0
1

1 ¼ δk1k 01
Πk1

1 and ∑k1Π
k1
1 ¼ I with k1; k

0
1∈σ1 ð29Þ

Πk2
2 Π

k
0
2

2 ¼ δk2k 02
Πk2

2 and ∑k2Π
k2
2 ¼ I with k2; k

0
2∈σ2 ð30Þ

Let us now consider the two-time history hk1k2, denoted by the expression ‘the

property represented by Πk1
1 at t1and the property represented by Πk2

2 at t2’. According
to the definition introduced above (see Eq. (24)), the conjunction between time

equivalence classes with representative elements Πk1
1 at t1 and Πk2

2 at t2 is the conjunc-
tion of the classes represented by the projectors Πk1

1;0 and Πk2
2;0, time translations of Πk1

1

and Πk2
2 to a common time t0.

In standard quantum mechanics, the conjunction of simultaneous properties repre-
sented by non-commuting operators is not well defined: conjunctions make sense only
in the commuting case. When the task is to deal with properties at different times, the
commuting requirement must be generalized. A natural way to do it is to accept the

descriptions involving the projectorsΠk1
1 at t1 andΠ

k2
2 at t2 only in the case in which the

projectors commute when translated to an arbitrary common time t0:

Πk1
1;0;Π

k2
2;0

h i
¼ 0 ð31Þ

When this compatibility condition holds, the two-time history hk1k2 turns out to be (see
the definition of conjunction in Eq. (24)):

hk1k2 ¼ Πk1
1 ; t1

� �
∧ Πk2

2 ; t2
� � ¼ Πk1

1;0Π
k2
2;0; t0

h i
ð32Þ
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On the basis of Eq. (31), it is easy to see that the conjunction of properties at

different times, represented by Πk1
1 at t1 and Πk2

2 at t2, is equivalent to a single property
at the common time t0, represented by the projector Πk1k2

0 such that:

Πk1k2
0 ¼ Πk1

1;0Π
k2
2;0 ⇒ hk1k2 ¼ Πk1k2

0 ; t0
� � ð33Þ

For all the two-time histories hk1k2 of the form given by Eq. (33), it can be proved that

Πk1k2
0 Πk

0
1

0

k
0
2 ¼ δk1k 01

δk2k 02
Πk1k2

0 and ∑k1k2Π
k1k2
0 ¼ I with k1; k

0
1∈σ1 and k2; k

0
2∈σ2

ð34Þ

This means that the histories hk1k2 , represented by the complete and exclusive set of

projectorsΠk1k2
0 , can be viewed as properties that generate a generalized context at t0. It

is in this sense that the histories that satisfy the compatibility condition can be called
contextual histories belonging to a context of histories.

In turn, since a generalized context is a distributive sublattice of an
orthocomplemented lattice, if the state of the system at t0 is ρ0, the probabilities of
the histories hk1k2 belonging to the same context of histories can be computed by the
generalization of the Born rule introduced above (see Eq. (28)):

Pr hk1k2
� � ¼ Pr Πk1k2

0 ; t0
� �� � ¼ Tr ρ0Π

k1k2
0

� � ð35Þ

In the standard formalism of quantum mechanics, the order relation p1 ≤ p2 between
two properties is represented by the inclusion of the Hilbert subspaces corresponding to
the respective projectorsΠp1 andΠp2 . If the two properties, considered at the same time
t, belong to the same context, the implication corresponds to the conditional probability

Pr Πp2

Πp1

� � ¼ Pr Πp2∧Πp1ð Þ
Pr Πp1ð Þ ¼ Tr ρtΠ

p2Πp1ð Þ
Tr ρtΠ

p1ð Þ ¼ Tr ρtΠ
p1ð Þ

Tr ρtΠ
p1ð Þ ¼ 1 ð36Þ

where ρt is the state of the system at time t. Equation (36) can be interpreted as saying that
if property p1 is the case at time t, then property p1 is also the case at the same time. The
FCH endows the implication between properties at different times with a clearly analo-
gous meaning. The properties p1 at t1 and p2 at t2 are represented by the temporal
equivalence classes Πp1

1 ; t1
� �

and Πp2
2 ; t2

� �
, respectively, and the order relation between

them is represented by the relation Πp1
1 ; t1

� �
≤ Πp2

2 ; t2
� �

between the corresponding classes
(see Eqs. (19) and (20)). If the two classes belong to the same context of histories, then:

Pr Π
p2
2 ;t2½ �.

Π
p1
1 ;t1½ �

� �
¼

Pr Πp2
2 ; t2

� �
∧
h
Πp1

1 ; t1
i� 	

Pr Πp1
1 ; t1

� �� � ¼
Pr Πp2

2;0; t0
h i

∧
h
Πp1

1;0; t0
i� 	

Pr Πp1
1;0; t0

h i� 	 ¼

¼
Pr Πp2

2;0 Π
p1
1;0; t0

h i� 	

Pr Πp1
1;0; t0

h i� 	 ¼
Pr Πp1

1;0; t0
h i� 	

Pr Πp1
1;0; t0

h i� 	 ¼ 1

ð37Þ
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whereΠp1
1;0 andΠ

p2
2;0 are defined analogously to Eq. (20). Equation (37) can be interpreted

as saying that if property p1 is the case at time t1, then property p1 is also the case at time t2.
What was explained in the previous paragraphs for two-time histories can be

generalized to many-time histories. Given n times t1 <… < tn, let us consider a context
of properties Ci at each time ti, generated by the properties represented by the projectors
Πki

i , which satisfy

Πki
i Π

k
0
i
i ¼ δkik 0i

Πki
i and ∑kiΠ

ki
i ¼ I with ki; k

0
i∈σi ð38Þ

In order to define contextual histories involving properties coming from any of these
contexts, it is necessary that those histories belong to the same context of histories. In
other words, it is necessary that the compatibility condition holds, that is, the projectors
representing the properties at issue must commute when translated to an arbitrary
common time t0:

Πki
i;0;Π

k j

j;0

h i
¼ 0 ki∈σi; k j∈σ j; 1≤ i; j≤n ð39Þ

with

Πki
i;0 ¼ U t0; tið ÞΠki

i U
−1 t0; tið Þ Π

k j

j;0 ¼ U t0; t j
� �

Π
k j
j U

−1 t0; t j
� � ð40Þ

The conjunction of Eqs. (39) and (40) can be considered the general compatibility
condition of the FCH.

7 Comparison and relationships between the two approaches

Although both the TQH and the FCH can represent quantum histories and can assign
probabilities to them, they are different proposals and, as a consequence, the analysis of
their differences and their relationships is a task that deserves to be carried out.

7.1 Comparing the TQH and the FCH

The first difference between the two approaches lies in the condition used to restrict the
set of histories. The compatibility condition of the FCH is a natural generalization of the
commutation condition for compatible properties belonging to a same context at a fixed
time: according to that condition, compatible histories belong to a common generalized
context, and probabilities are defined on them by a generalization of the Born rule. The
consistency condition of the TQH, on the contrary, has no immediate conceptual
counterpart in standard quantum mechanics.

The above feature is related with the fact that the compatibility condition is
necessary in the framework of the FCH from a logical point of view, that is, to define
a Boolean lattice of histories. The consistency condition of the TQH, by contrast, has
no direct connection with the logical structure of quantum histories. All families of
histories, consistent or not, are Boolean lattices; therefore, an additional condition is not
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required to obtain Booleanity. Nevertheless, the consistency condition is necessary to
have a well-defined probability.

Another relevant difference concerns the role played by the initial state in both
approaches. In the TQH, the consistency condition depends on the initial state of the
system; therefore, the consistent families of histories also depend on the initial state.
On the contrary, in the FCH the compatibility condition is independent of the initial
state of the system. Therefore, the logical structure of the sets of contextual histories
is a distributive orthocomplemented lattice independent of the initial state. This
stands in clear analogy to standard quantum mechanics, in which the contexts of
properties are all the possible distributive sublattices of the orthocomplemented
lattice corresponding to the Hilbert space of the system and do not depend on the
initial state of the system.

Moreover, as explained above, the FCH endows the order relation between prop-
erties at different times with a probabilistic meaning, which is manifestly analogous to
that of the order relation between properties-at-a-same-time in standard quantum
mechanics. This allows the new formalism to conceive the implication between
properties at different times as the relation linking them when the corresponding
conditional probability is one, analogously to the implication between properties-at-
a-same-time in standard quantum mechanics. In the TQH, by contrast, there is not such
a strong connection between order relation, conditional probabilities and implication,
unless the consistency condition be imposed for all states (we will come back to this
point below).

Although the above differences are sufficient to clearly show the divergence be-
tween the two proposals, perhaps the main distinction between the TQH and the FCH
lies in their general aim. As explicitly pointed out in the Introduction, the TQH in its
different versions intends to be a generalization of quantum mechanics with a precise
interpretive goal: solving the measurement problem of standard quantum mechanics,
derived from the collapse hypothesis. The purpose of the FCH is more modest: it
intends to be not a theory, but a formalism devoted to Bdeal in a consistent way with
expressions involving different properties of the system at different times. For example,
it is necessary to relate a property of a microscopic system at a given time, previous to a
measurement, with a property of an instrument when the measurement is finished.^
(Laura and Vanni 2009: 160). In other words, the FCH has no interpretive aspirations
and, as a consequence, tries to remain as close to standard quantum mechanics as
possible. For this reason, it is usually introduced as a formalism, and not as a theory.

7.2 Relating the TQH and the FCH

Despite the formal and conceptual differences between the TQH and the FCH, at least
two important relationships can be established between them.

First, there is a significant relation between the conditions proposed by the two
approaches: it can be proved that the compatibility condition of the FCH implies the
consistency condition of the TQH, but in general the converse conditional is not true
(Laura and Vanni 2009; Losada and Laura 2014a, b). This means that the compatibility
condition is stronger than the consistency condition: a context of histories obtained in
the FCH is also a consistent family of histories in the TQH, with the same probabilities
defined on them. In the light of the criticisms directed to the TQH, the strength of the
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FCH may be considered an advantage. For instance, after reporting the possible
responses to some objections, Kent concludes: BIf we reject these defences, we seem
to be left with the conclusion that the contrary inferences implied by the consistent
histories formalism make it hard to take it seriously as a fundamental theory in its
present form. This means that further constraints beyond consistency are needed in
order to construct a natural generalisation of the Copenhagen interpretation to closed
systems.^ (Kent 1997: 2876).

The second relation, which in a certain sense explains conceptually the previous
one, is that the consistency condition of the TQH, when imposed to all possible
initial states, is equivalent to the compatibility condition of the FCH (Losada and
Laura 2014a, b). This means that the two following situations are satisfied. First, if a
quantum history satisfies the consistency condition for all initial states, then it
satisfies the compatibility condition, and vice versa: the consistent families of
histories in the TQH are the same sets as the contexts of histories in the FCH.
Second, both the FCH and the TQHwith the consistency condition valid for all states
assign the same probability values to the selected quantum histories. This result
shows that, although the TQH and the FCH are significantly different approaches,
from a formal viewpoint the FCH is a restriction of the TQH. Such a formal relation
will be relevant in the explanation of how the theoretical objections raised against
the TQH can be managed by the FCH.

8 Reconsidering the criticisms from the new perspective

The FCH was developed in several of papers and has proved to be useful to describe
different physical processes, as the quantum measurement, the decay process and the
double-slit experiment. Moreover, it was compared with the TQH and the relations
between the two approaches were formally proved. Nevertheless, the comparison was
never considered with the purpose of facing the objections raised against the TQH. This
is the task to be undertaken in this section.

8.1 Contrary retrodictions

As explained above, there is no possibility of contrary inferences in standard quantum
mechanics: no quantum state leads to assign probability 1 to the occurrence of contrary
properties conditioned to the occurrence of a single property. On the contrary, accord-
ing to the TQH, from a given initial state two contrary properties, from different realms,
can be retrodicted.

Being a natural generalization of standard quantum mechanics, it can be expected
that the FCH faces this criticism successfully. In fact, the compatibility condition
imposes the commutation of the projectors corresponding to the time translation of
the properties to a single common time. As a consequence, a generalized context of
quantum histories has the logical structure of a distributive orthocomplemented
lattice of subspaces of a Hilbert space (the same logical structure of the properties-
at-a-time in standard quantum mechanics). Because of this logical structure, in the
FCH it is not possible to infer contrary properties from different generalized contexts
(see Losada and Laura 2014b).
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8.2 Lack of predictive power

This criticism points to the fact that, according to the TQH, it is possible to predict
contrary properties with certainty in different consistent families of histories: predic-
tions depend on the choice of the realm, in a set where all the realms are equally
legitimate.

The FCH can face this problem on the basis of the same feature that solves the
previous objection: there is no possibility of contrary inferences from different gener-
alized contexts, neither toward the past nor toward the future (Losada and Laura
2014b). Therefore, in the framework of the FCH the objection is answered with no
need to remain confined to a single realm, as in the case of the TQH.

8.3 Discontinuity in property ascription

This objection points to the fact that, according to the TQH, incompatible properties
can be assigned to a system in the limit of infinitely close times. This result does not fit
comfortably in a theory that admits the Heisenberg Principle, since implies a sort of
time discontinuity in the adscription of properties to the system.

Laura and Vanni (2009) prove that the FCH solves the difficulty since rules out that
kind of discontinuity. In the particular case of the assignment of spin values in
orthogonal space directions, as introduced in Subsection 3.3, the authors show that,
according to the compatibility condition, the z-components of the spin at time t1 are the
only choice compatible with the z-components of the spin at time t2, and this holds for
any initial state ρ0.

8.4 Violation of probability axioms

In the Decoherent Histories version of the TQH, the consistency condition holds
approximately since, according Gell-Mann and Hartle, if the violation is sufficiently
small, no experiment could detect the discrepancy. But, as it was correctly stressed, the
difficulty here is not that the probabilities are approximate, but that they are not well
defined if the consistency condition is not satisfied with complete precision.

In the FCH, the compatibility condition, which selects the set where probabilities
can be correctly defined, is not a conceptual addition to standard quantum mechanics.
Since the compatibility condition requires commutation, saying that the condition is
satisfied only approximately makes no sense. It would be like admitting, in standard
quantum mechanics, that two observables A and B commute when AB is approximately
equal to BA: this would break down the mathematical structure of the theory, as noticed
by Dowker and Kent (1996) when discussing the Decoherent Histories Interpretation.

In other words, the FCH faces this criticism from the same perspective as that of
Griffits’ Theory of Consistent Histories, but in the FCH case on the basis of a strong
analogy to standard quantum mechanics.

8.5 Dependence of the consistency condition on the initial state

Let us recall that, in the TQH, the consistency condition depends on the initial state of
the system. In this sense, the TQH is completely different from standard quantum
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mechanics, in which the contexts where probabilities are well defined do not depend on
the initial state. This sounds particularly odd in the axiomatic approaches to standard
quantum mechanics, where the states are defined as functionals acting on the space of
the properties.

The FCH faces this objection successfully for the simple reason that the compati-
bility condition is not a function of the initial state of the system. As a consequence, the
contexts of histories on which probabilities can be defined are independent of the initial
state. Moreover, as explained above, when the requirement that the consistency condi-
tion is independent of the initial state is added to the condition itself, the formalism of
the TQH collapses onto the FCH.

8.6 Interpretive objections

The interpretive criticisms reported above, mainly proposed by Okon and Sudarsky
(2014a, b), make sense independently of considering them as acceptable or not: the
TQH is proposed as an interpretation of quantum mechanics that intends to offer a
solution to the main interpretive problems of the theory. In fact, an interpretation should
take a position about how reality is as described by the theory, should propose a
solution to the quantum measurement problem, should give an adequate account of
the classical limit of quantum mechanics, etc.

On the contrary, the FCH does not intend to be a theory endowed with an
interpretive content. It is introduced with the only purpose of supplying a formal
complement to standard quantum mechanics that allows the theory to relate proposi-
tions about properties at different times. According to the authors, the aim is to propose
Ba formalism suitable to deal with descriptions and reasonings about physical systems
involving quantum properties at different times.^ (Laura and Vanni 2009: 172). In other
words, the FCH intends to define the universes of discourse in whose framework a
meaningful talk is possible: BEach family of consistent histories generates a possible
universe of discourse about a quantum system.^ (Laura and Vanni 2009: 162; see also
Losada et al. 2013: 1).

As a consequence, the interpretive criticisms raised against the TQH on the basis of
its interpretive aspirations are beyond the scope of the FCH: it cannot be said that the
FCH is superior to the TQH as an interpretation of quantum mechanics. Who wants to
discuss interpretive issues from the perspective of the FCH needs to associate it with
some specific interpretation of quantum mechanics. Only in that case the evaluation of
the behavior of formalism plus interpretation will be possible.

9 Some applications of the formalism of contextual histories

As pointed out in Subsection 7.2, although the TQH and the FCH are significantly
different approaches, from a formal viewpoint the FCH is a restriction of the TQH, and
this fact is essential in the way in which the FCH can manage the objections raised
against the TQH. This fact opens up the question about whether the FCH may account
for the physical situations that are correctly explained in the context of the TQH. In the
following subsection we will introduce the application of the FCH to some examples
that are traditional in the literature on quantum mechanics.
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9.1 Non ideal quantum measurement

Let us consider the generic case of a non-ideal measurement, because the ideal
measurement is a particular case of that one.

A measurement is an interaction between a system S, represented by a
Hilbert space , and a measuring apparatus M, represented by a Hilbert Space

. The interaction, during the time interval (t0, t1), intends to establish a
correlation between the eigenstates |ai〉 of the observable A of S and the
eigenstates |pi〉 of the pointer observable P of M. If the state of the system S
at time t0 is |ψ0〉 =∑ici|ai〉, the interaction is represented in the Hilbert space

⊗ of the composite system S +M by a unitary transformation USM(t1, t0)
such that:

Ψ0j i ¼ ∑ici aij i⊗ p0j i→USM t1;t0ð Þ
Ψ1j i ¼ ∑ici a

0
i

�� E
⊗ pij i ð41Þ

where |Ψ0〉 and |Ψ1〉 are the states of the composite system at t0, and t1
respectively, |ai〉 is the eigenstate with eigenvalue ai of the observable A, |p0〉
is the initial reference eigenstate of the pointer P, |pi〉 is the eigenstate with
eigenvalue pi of P, and a

0
i

�� �
is the result of the non-ideality of the measurement.

The FCH provides the description of the process involving the possible values ai
of the observable A of the system S at time t0 and the possible values pi of the
pointer P of the apparatus M at time t1. These properties are represented by the
projectors:

Πai ¼ aij i aih j⊗ p0j i p0h j Πpi ¼ IS⊗ pij i pih j ð42Þ

These projectors satisfy the compatibility condition when translated to the common
time t0 (see Eq. (31)):

Πai ;USM t0; t1ð ÞΠp j
U−1

SM t0; t1ð Þ
h i

¼ 0 ð43Þ

Therefore, according to the FCH, the following conditional probability can be
computed:

Pr ai;t0ð Þ
.

p j;t1ð Þ

� �
¼

Pr ai; t0ð Þ∧ pj; t1
� 	� 	

Pr pj; t1
� 	� 	 ¼ Ψ0h jΠaiUSM t0; t1ð ÞΠp j

U−1
SM t0; t1ð Þ Ψ0j i

Ψ0h jUSM t0; t1ð ÞΠp j
U−1

SM t0; t1ð Þ Ψ0j i ¼ δij

ð44Þ

This result can be interpreted by saying that if the pointer has the value pj after the
measurement, then the system S had the property A = ai before the measurement (for
a detailed presentation, see Losada and Laura 2013).
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9.2 Consecutive measurements

Let us now suppose that, after the first measurement of the observable A of the system S by
means of the apparatus M at time t1, a second measurement is performed: at t2 > t1, the
observableB of the system S is measured bymeans of the apparatusN, which has a pointer
Q with eigenstates |qj〉. In the general case, the observables A and B do not commute;
therefore, their respective eigenstates are related to each other by a change of basis:

aij i ¼ ∑ jdij b j
�� � ð45Þ

For simplicity we will consider only ideal measurements (non-ideality only intro-
duces complexity in computation). In the Hilbert space ⊗ ⊗ of the com-
posite system S +M+N, the two interactions are represented by unitary transforma-
tions USM(t1, t0) and USN(t2, t1) such that:

Ψ0j i ¼ ∑ici aij i⊗ p0j i⊗ q0j i→USM t1;t0ð Þ Ψ1j i ¼ ∑ici aij i⊗ pij i⊗ q0j i ð46Þ

Ψ1j i ¼ ∑ici aij i⊗ pij i⊗ q0j i ¼ ∑i∑ jci dij b j
�� �

⊗ pij i⊗ q0j i→USN t2;t1ð Þ

→
USN t2;t1ð Þ Ψ2j i ¼ ∑i∑ jci dij b j

�� �
⊗ pij i⊗ q j

�� E ð47Þ

where |q0〉 is the initial reference eigenstate of the pointer Q of the second measuring
apparatus N.

In the composite system S +M+N, the possible values pi of the pointer P of the
apparatus M at time t1 and the possible values qi of the pointer Q of the apparatus N at
time t2 are represented by the projectors:

Πpi ¼ IS⊗ pij i pih j⊗IN Πq j
¼ IS⊗IM⊗ qj

�� E
qj

D �� ð48Þ

Also in this case, these projectors satisfy the compatibility condition when translated to
the common time t1:

Πpi ;USN t1; t2ð ÞΠq j
U−1

SN

�
t1; t2

	h i
¼ 0 ð49Þ

Therefore, according to the FCH, the conditional probability that the second apparatus
N measures qi at t2 given that the first apparatus measured pj at t1 is given by:

Pr q j;t2ð Þ.
pi;t1ð Þ

� �
¼

Pr qj; t2
� 	

∧ pi; t1ð Þ
� 	

Pr pi; t1ð Þð Þ ¼

¼ Ψ0h jUSM t0; t1ð ÞUSN t1; t2ð ÞΠq j
U−1

SN t1; t2ð ÞU−1
SM t0; t1ð ÞUSM t0; t1ð ÞΠpiU

−1
SM t0; t1ð Þ Ψ0j i

Ψ0h jUSM t0; t1ð ÞΠpiU
−1
SM t0; t1ð Þ Ψ0j i ¼

¼ bjjai
� ��� ��2

ð50Þ
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It can be proved that this probability has the same value as that obtained under the
assumption that the first measurement collapses the state |Ψ1〉 =∑ici|ai〉⊗ |pi〉⊗ |q0〉 to
one of its components (see Losada et al. 2016).

9.3 Further physical situations

As it is well known, in the double-slit experiment it is impossible to know which slit the
particle crossed when the interference pattern is observed. In the context of the TQH,
Omnès (1988b) proved that, with no measuring apparatus to detect the particle crossing
one of the slits, there is no family of consistent histories that includes a history of the
particle with the property of crossing a definite slit and arriving to a definite position of
the screen. When the FCH is applied to this physical situation, the correct results are
also obtained (see details in Losada et al. 2013). On the one hand, without measuring
devices before the detection of the particle in the screen, the formalism proves the
impossibility of describing the trajectory of the particle. On the other hand, with an
apparatus recording which slit the particle crossed and another instrument recording the
particle in different positions of the screen, there is a generalized context in which the
records of both instruments can be described. In particular, the conditional probability
of detecting the particle in a definite position of the screen given that it crossed one
particular slit at an earlier time can be computed, and the non-interference pattern is
obtained. The correct result so obtained is not surprising when this experiment is
conceived as a particular case of consecutive measurements.

In the usual presentations of quantum decay processes (see, e.g. Davydov 1965), a
quasi-stationary state of a quantum system with continuous spectrum is defined when
the mean value of the energy has small dispersion. According to the orthodox collapse
interpretation, the survival probability of the initial quasi-stationary state is defined as
the probability for the system to be still found in the same quasi-stationary state in a
future time. The time for which the survival probability is e−1 is called lifetime. For the
description of a decay process that emphasizes the relevant properties of the system and
its probabilities, it is possible to define the properties of decay and non-decay,
mathematically represented by appropriate projectors. On this basis, the survival
probability can be identified with the probability of the non-decay property at time t2,
conditional to the same property at a previous time t1, for an arbitrary state prepared at
time t0 < t1 < t2. Since the conjunction of properties at different times is involved, it
seems natural to appeal to a formalism of quantum histories. In fact, Omnès proposed
to describe the decay process with the theory of consistent histories; however, he found
the problem that the consistency condition is not satisfied (Omnès 1994). The applica-
tion of the FCH to the decay process supplies a framework that not only explains
Omnès’ negative result, but also produces a positive account of the decaying situation.
In fact, if the decaying system is considered as isolated, there is no generalized context
that includes the decay and the non-decay properties at two different times. However, if
the decaying is measured at two different times, it is possible to construct a generalized
context that includes the pointer of the first measuring apparatus at a given time and the
pointer of the second apparatus at a later time. Therefore, the survival probability can be
interpreted as the conditional probability of measuring the non-decay property at a
given time, given that the same non-decay property was measured at an earlier time
(Losada et al. 2013). It is relevant to stress that the possibility of computing the
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conditional probability of measuring non-decay at a time given the measurement of
non-decay at a previous time does not imply that the microscopic properties of decay
and non-decay are Bpreexisting properties^, that is, properties that are definite-valued
independently of measurement.

10 Conclusions

In the present paper we considered the criticisms raised against the TQH, and we have
distinguished between theoretical objections and interpretive objections. This task led
us to analyze the FCH as an approach that is not a target of those criticisms.

The FCH intends to supply a formal complement to standard quantum mechanics
that clearly establishes the conditions for a meaningful talk about properties at different
times and about their probabilities of occurrence. For this purpose, the FCH replaces
the consistency condition of the TQH with a compatibility condition that generalizes
the commutation condition for compatible properties at a fixed time. In standard
quantum theory, properties are compatible when represented by commuting projectors.
In the FCH, histories are compatible if they are constituted by properties that are
compatible when translated to a common time. The histories that satisfy the compat-
ibility condition are called ‘contextual histories’ and belong to a context of histories.

We argued that the FCH supplies adequate solutions to the theoretical objections
raised against the TQH. However, it is not a theory with interpretive import: the FCH
only intends to be a formalism that establishes the boundaries of the meaningful
discourse about a quantum system. In order to endow this formalism with interpretive
content, it is necessary to associate it with a specific interpretation able to be consis-
tently combined with the compatibility condition. For instance, in the field of the realist
perspectives, if the interpretation selects a given context as the set of definite-valued
properties at a certain time, and the FCH temporally translates the context to another
time, then such an interpretation should select precisely that translated context as the set
of definite-valued properties at the second time. But the task of finding an interpretation
that satisfies this requirement is still a work in progress.
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