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Abstract

The recently reported geometrical algorithm to search the conformational space (GASCOS) scans conformational space

exhaustively using an internal coordinate tree search. Using only geometrical operations and a set of criteria for eliminating

chemically unreasonable atomic arrangements, the algorithm generates starting geometries for optimizations by molecular

mechanics or by molecular orbital procedures. Up until now GASCOS has been used for linear structures, but an extension to

cyclic structures is reported here. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Three-dimensional geometry is an important prop-

erty for understanding or predicting the behaviour of

any molecular system. It is the necessary starting

point for the derivation of structural features (surface,

volume, shape, etc.), the estimation of steric require-

ments or the calculation of electronic properties.

Geometry also plays a key role in the study of stereo-

electronic complementarity which is essential for the

ligand±receptor complex formation. Rigid molecules

usually have one structure. Nearly rigid molecules,

such as aspirin, have an enumerable number of

conformers. Furthermore, it is relatively easy to

construct input ®les for molecular computations for

all such conformers. However, nobody can make,

even an educated guess, of how many conformers

might be associated with a large ¯exible cyclic mole-

cules such as cyclosporin (cf. Scheme 1). Further-

more, the construction of input ®les for molecular

computations for each and every plausible structure

of cyclosporin is totally out of question. It is clear

therefore that the choice of good starting geometries

for conformationally ¯exible molecules is one of the

greatest challenges, in applying quantitative molecu-

lar mechanics and molecular orbital calculations.

For systems with numerous degrees of freedom, the

hypersurface of potential energy (in the space of the

parameters de®ning the system) may have a substan-

tial number of local minima, and to determine the

global minimum is not always an easy task. Further-

more, ®nding that global minimum energy conforma-

tion alone may be not suf®cient. In ¯exible molecules,

several conformations may be signi®cantly populated

in given conditions and the observed physicochemical

properties correspond to an average over this confor-

mational mixture.
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Assignment of preferred conformations is not

simple either because the number of possible confor-

mers can be very large. This is illustrated for the case

of conformation generation via a simple systematic

search technique, and limited to single bonds incor-

porated into a straight chain. Given X single bonds and

a step of 3608=Z; the number of conformations, which

need to be considered in such a search, is ZX. Hence,

we are dealing with a problem of considerable compu-

tational magnitude, even for relatively simple ¯exible

acyclic molecules. The conformational problem

becomes even more complex when ¯exible rings are

involved.

There are several reasons for extending the search

for new algorithm and to improve the available meth-

ods. The principal problem is that the various energy

minimization processes do not go through potential

energy barriers. They only move down-hill from the

trial starting structure towards the nearest minimum,

which may of course be only a local minimum. Even

worse, after a search has been completed, there is no

immediate indication of whether important conformers
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have been missed. It might be tempting to assume that

the conformers missed, with some particular search

method, are likely to be either high in energy or kine-

tically very unstable and thus less signi®cant.

However, it is more prudent to locate all the confor-

mers one can possibly ®nd on an energy surface ®rst

and then to examine their stability and their ease of

conversion to other conformers to determine their

relative importance. The most straightforward way

to search the entire conformational space of a ¯exible

molecule is by rotation around single bonds to

construct geometries approximating all the antici-

pated low energy conformations (or transition states)

of the system, followed by local minimization of these

starting geometries.

Recently, we have reported a systematic search

method, GASCOS [1], for open chain compounds.

In the present report, we extend the capability of

this algorithm to study conformationally ¯exible

cyclic molecules. Thus, in this article we describe

an internal coordinate conformer generator for cyclic

compounds which has a number of advantages over

methods described previously using tree search [2],

random incremental pulse search (RIPS) [3] and

stochastic techniques [4].

First, it is quite fast. No energy gradient needs to be

evaluated and no distance matrix equations need to be

solved with the result that the speed increases for

conformer generation over the above methods.

Second, operation of the method, in an internal

coordinate framework, allows the sampling over all

reasonable regions (including those of dif®cult acces-

sibility) of the conformational space. Third, GASCOS

has introduced a novel analytical ring closure

constraint, which substantially improved the perfor-

mance of these search techniques. Finally, the method

is readily applied as a tree search, which makes feasi-

ble analyses of cyclic molecules containing many

internal degrees of freedom (e.g. several dihedral

angles).

2. Method of calculations

The approach we employ to generate molecular

conformers computationally is analogous to the way

a chemist might go about the same task using hand-

held molecular models such as Dreiding or CPK

molecular representations. However, most, if not all,

chemists had bad experiences using these models

because the generation of the actual conformers is

limited by the knowledge, imagination, patience and

manual dexterity of the researcher. Cyclic compounds

produce an additional complication in the sense that

the ring closure cannot always be maintained during

the modelling process.

In contrast, GASCOS can provide a rapid method

for generating molecular geometries approximating

the various conformers of small-, medium- and

large-sized acyclic and cyclic molecules.

2.1. Conformational space scan

GASCOS approach begins with a standard CH2±

CH2±CH2 geometry where the three carbon atoms are

denoted by O±A±B in Fig. 1. Rotation about the A±B

bond is possible only after carbon atom C is included.

The torsional angle about the A±B bond is labelled as

uC because this rotation moves atom C about a circle.

The next rotational angle �uD� moves atom D about a

full circle as illustrated in Fig. 1. This process

involves therefore stepwise torsional rotations about

all rotating bonds, retaining only those conformations

which were passing geometrical tests designed to

reject chemically unreasonable structures. Needless

to say that for the accepted carbon skeleton conforma-

tions, the H-atoms are attached with the appropriate

orientation.

GASCOS is a systematic search method. The
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disadvantage of the existing search methods is that

without some way to select only those conformers

that are unique and structurally reasonable local

minima on the conformational hypersurface, the

generation and energy evaluation of conformations

may become intractable. GASCOS have ®ltering

algorithms, which eliminates the unreasonable

portions of the conformational space from considera-

tion. These ®ltering criteria include: ring-closure

(described in Section 2.3), steric interactions and

rejection of degenerate structures.

2.2. Non-bonded interatomic distance constraint

By applying constraint tests (e.g. tests for non-

bonded interatomic contacts) to the structures gener-

ated by the systematic scan, we can eliminate in a

single operation all structures having some undesir-

able component.

The most general constraint checks are minimum

allowable separations among all non-bonded atoms. It

is a simple distance constraint test which eliminates

conformations which would have high steric proxi-

mity due to severe non-bonded contacts. We apply a

stringent 1.53 AÊ cut off between carbon±carbon

separations and 1.05 AÊ cut off between hydrogen±

hydrogen and carbon±hydrogen separations. The

non-bonded distance test provides one of the most

ef®cient ways to eliminate chemically unreasonable

structures from those generated by the systematic

scan because the tests can be applied early in the

structure generation process, and thus allow highly

effective structure tree pruning. A second distance

test is employed with cyclic molecules; the ring-

closure condition.

2.3. Ring-closure constraints

Whereas in other tree search methods [2] rings are

temporarily opened to form a pseudo-acyclic mole-

cule which is then processed as the acyclic case but

with additional constraints enforcing ring closure.

GASCOS introduces a novel analytical ring-closure

condition which permits the complete conformer

generation.

Let us consider a cyclic molecule containing n

atoms Ak�k � 1;¼; n�: Fig. 2 depicts the situation

for the n � 9 case. Since we wish to retain the cyclic

nature of the ®nal structure, several geometrical

constraints must be introduced. The most important

of these are:

1. The closure distance constraint ukR1nu which is

simply an acceptable distance between the two

atoms (A1 and An) forming the ring-closure bond

(in the case of a C±C bond formation R1n �
1:53 �A�:

2. Two bond angle constraints:

(a) bond angle b 1 which is determined by An, A1

and A2

(b) bond angle b 2 determined by An21; An and

A1.

Starting from Eq. [1] which was reported earlier

[1], it is possible to obtain conditions to close the ring

ukR1nu2 � ukR�init:�
1n u2 1 2kr�init:�

n ´�kr�init:�
n 2 kR�init:�

1n ��1 2 cos un�

12kR�init:�
1n ´�n̂ £ kr�init:�

n � sin un (1)

We de®ne:

(i) ukR1nu � distance between atoms A1 and An after

rotating by un (note that in the case of a nine

member ring un � u9:

(ii) ukR�init:�
1n u � initial distance between atoms A1 and

An before rotating by un:

(iii) kr�init:�
n � rotation vector associated with atom

An giving the radius of the rotational cone.
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(iv) n � the unit vector is determining the rota-

tional axis which is associated with the motion of

atom An along the bond direction of An21 and An22:

We consider uk �k � 1;¼; n� as the torsion angles

associated with the motion of the Ak atoms in the

directions of their respective bonds (Fig. 2). All the

conformations are obtained when we rotate in an arbi-

trary way about all the bonds u4; u5¼un21: However,

we are interested in only those in which the intera-

tomic distance between atoms A1 and An has the

adequate value in order to complete the cyclization

process.

Rotating all the torsional angles (from u 4 to un21�; it

is possible to calculate the above values (i)±(iv). Once

the ukR1nu value is ®xed in Eq. [1], the unknown remain-

ing is the torsional angle u n.

In order to solve Eq. [1] for unwe de®ne:

A � 2kR�init:�
1n ´�n̂ £ kr�init:�

n � �2a�

B � 2kr�init:�
n ´�kr�init:�

n 2 kR�init:�
1n � �2b�

C � ukR1nu2 2 ukR�init:�
1n u2 2 2kr�init:�

n ´�kr�init:�
n 2 kR�init:�

1n � �2c�
then we can write Eq. (1) in the following form:

C � 2B cos un 1 A sin un �3�
Expressing 2cos un we obtain:

2cos un � �C=B�2 �A=B� sin un �4�
Squaring Eq. (4) and using the cos2 un � 1 2 sin2 un

identity, we obtain

1 2 sin2 un � �C=B�2 1 �A=B�2 sin2 un

2 2�AC=B2� sin un �5�
Eq. (5) is second order in the unknown sin un: It is

possible to express Eq. (5) in the following form by

setting X � sin un

�1 1 �A2
=B2��X2 2 �2AC=B2�X 1 �C=B�2 2 1 � 0 �6�

Solving Eq. (6) we obtain two roots (X1 and X2) which

determine the two possible values for the torsional

angle u n.

Two conditions are necessary for the roots in order

to obtain ring-closure solutions:

X1 and X2 must be real numbers �7a�
uX1u # 1 and uX2u # 1 �7b�

If both of the above conditions are satis®ed then de®-

nitely there are two solutions for closure at the ®xed ukR1nu
distance resulting in two structures. Of the above two

conditions, the ®rst one (i.e. Eq. (1)) is stronger than

the second one (i.e. Eq. (2)). If only condition (1) is

satis®ed, and condition (2) is not, then we have three

possibilities. Either we have two roots and therefore

two structures or one root and therefore one structure

or no root at all which means no structure at all. In addi-

tion to the above, namely to satisfy condition (1),

discussed earlier, we must also ful®l the ring closure

conditions set by bond anglesb1 andb2 as condition (1).

With respect to b 1 it is possible to ®x a priori a

tolerance range for the ®nal value of this angle. In

the present study, we may choose b1 � 109:5 ^ 58
In the case of b 2 this angle could be ®xed at 109.58
Applying the cosine theorem, it is possible to deter-

mine the distance between A1 and An21 (i.e. ukR1;n21u):

ukR1;n21u2 � ukR1;nu2 1 ukRn21;nu2 2 2ukR1;nuukRn21;nu cos b2

�8�
In the above equation ukRn21;nu, the interatomic

distance between An21 and An, is taken to be 1.53 AÊ

(Fig. 1).

Taking into account that ukR1;n21u is ®xed, because

b 2 is ®xed, it is possible to apply again Eq. (5) and its

solutions in order to solve the torsional angle un21

associated with the motion of atom An21.

In this case, X � sin un21 and:

A � 2kR�init:�
1n21´�kn 0 £ kr�init:�

n21 � �9a�

B � 2kr�init:�
n21 ´�kr�init:�

n21 2 kR�init:�
1n21� �9b�

C � ukR1n21u2 2 ukR�init:�
1n21u2 2 2kr�init:�

n21 ´�kr�init:�
n21 2 kR�init:�

1n21�
�9c�

where we de®ne:

(i) ukR1n21u � distance between atoms A1 and An21

after rotating byun21 (note: in the present example

un21 � u8).

(ii) ukR�init:�
1n21u � initial distance between atoms A1 and

An21 before rotating by un21.
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(iii) kr�init:�
n21 � rotation vector associated with atom

An21 giving the radius of the rotational cone.

(iv) n 0 � the unit vector is determining the rota-

tional axis which is associated with the motion of

atom An21 along the bond direction of An22 and

An23. Analogously to Eq. (1) we now have Eq. (10)

ukR1n21u2 � ukR�init:�
1n21u2 1 2kr�init:�

n21 ´�kr�init:�
n21 2 kR�init:�

1n21�

£ �1 2 cos un21�1 2kR�init:�
1n21´�n0 £ kr�init:�

n21 � sin un21

�10�
Thus, it is possible to apply the analytical ring-closure

condition reported here to the last two torsional angles

in the molecule (un21 and un) as illustrated in Fig. 3.

2.4. Calculations

We wish to give only a preliminary outline of the

calculations to be performed, cyclononane is used in

the graphical presentation as it is a more general struc-

ture than cycloheptane or even cyclopentane, if we

wish to concentrate on rings with odd number of

carbon atoms.

The ®rst three torsional angles �u1; u2; u3� may be

chosen arbitrarily. These three torsional angles are to

be ®xed. GASCOS then can search torsional angles

from u4 to u7 (Fig. 4) as they may be rotated each by a

preselected increment (e.g. 15, 20, 25 or 308).

Torsional angles u8 and u9 will then be analytically

obtained as result of the ring-closure condition. The

new values of torsional angles u1; u2 and u3 will

become the consequence of the ring closure. The

carbon±carbon and carbon±hydrogen interatomic

distances can be considered to be 1.53 and 1.05 AÊ ,

respectively.

In order to assess the stability of the compounds

which passed all criteria molecular mechanics

(MM2) or quantum mechanics calculations, at semi-

empirical (e.g. AM1 [5,6]), or ab initio (e.g. RHF/3-

21G), levels of theory can be performed using SPAR-

TAN [7] or the Gaussian [8] program system.

3. Conclusions

It appears that surprisingly little effort has been

made toward developing optimal algorithms to

explore the conformational hyperspace using

systematic searches. The recently developed

GASCOS method which was previously designed to

treat open chain system has been extended to treat

cycloalkanes with the help of the analytic ring-closure

constraint.
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