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Lay summary

A human sperm must swim to the egg to fertilise it. To do this the sperm uses different types of swimming (behaviours) as 
they are needed. When we watch sperm swimming we see that they regularly change behaviour, sometimes repeatedly 
switching between two different types. Calcium ions inside cells are crucial in controlling many cell functions and in 
sperm they play a key role in regulating their behaviour. Here we have measured the concentration of calcium ions inside 
swimming human sperm. We found that in 12/35 (34%) of the cells we assessed, the concentration of calcium changed 
repeatedly, averaging more than one cycle of rise and fall per minute. These changes in the concentration of calcium 
ions occurred as the sperm switched swimming stroke, suggesting that oscillation of calcium concentration is involved 
in controlling the switching of sperm behaviour. Impaired sperm motility is an important cause of subfertility in men. 
Understanding how sperm behaviour is controlled will allow the development of treatments that can rescue the fertility of 
sperm with impaired motility.

Reproduction and Fertility (2021) 1 L5–L7

Repetitive [Ca2+]i transients (oscillations) have been 
observed by ourselves and others in unstimulated and 
progesterone (P4)-stimulated, immobilised human sperm 
(Harper et  al. 2004, Sanchez-Cardenas et  al. 2014). In 
P4-stimulated cells, these [Ca2+]i oscillations reversibly 
modify flagellar beating (Harper et  al. 2004). Since free-
swimming sperm regularly and reversibly ‘switch’ their 
behaviour (Achikanu et  al. 2019), we hypothesised 
that such oscillations also occur in P4-stimulated 
free-swimming sperm and regulate, or contribute to, 
behavioural switching.

Human sperm (consenting donors; ethical approval 
ERN-12-0570) were incubated under capacitating 

conditions (Achikanu et al. 2019), loaded with Fluo4 and 
suspended in supplemented Earle’s balanced salt solution 
containing 3 µM P4. Cells were viewed in an observation 
chamber (20 µm depth; 31°C). Fluorescence images 
(excitation/emission 485/520 nm, 10 Hz) were analysed 
as described previously (Harper et  al. 2004, Achikanu 
et al. 2019). Recorded fluorescence is primarily from the 
head/neck, though oscillations initiate in the flagellum 
(Torrezan-Nitao et al. 2020). 

Frame–frame variation in fluorescence intensity 
significantly exceeded that seen in P4-stimulated 
immobilised cells, consistent with the continuous 
rotation of free-swimming human sperm (Schiffer  
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Figure 1 Panels A, B, C and D show data from a cell where [Ca2+]i transients are associated with increased fractal dimension (FD). Panel A shows the 60 s 
sperm track with colour coding to indicate time (shown by the scale to the right of the plot). Panel B shows the time-course of [Ca2+]i (fluo4 fluorescence; 
black) and FD (red). Data are normalised to their minimum value. Bar above the plot shows colour coding of time for comparison with panel A. Arrows 
(labelled a, b and c) indicate three periods of high FD for comparison with panel D. Panel C shows the relationship between mean fluorescence intensity 
and its coefficient of variation (CV), calculated over the duration of the recording by using a moving five-point sample. CV did not change when 
fluorescence increased. Panel D shows the sperm track colour coded to show FD (1≤FD≤1.2 (dark blue); 1.2 < FD ≤ 1.4 (light blue); 1.4 < FD ≤ 1.6 (green); 
1.6 < FD ≤ 1.8 (yellow); 1.8 < FD ≤ 2.0 (red). Arrows (labelled a, b and c) indicate three periods of high FD associated with increased [Ca2+]i. Panels E, F, G 
and H show data from a cell with a looping path, where both [Ca2+]i and FD remained constant throughout the 60 s recording. Details of data 
presentation are as for panels A, B, C and D.
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et al. 2020). Mean coefficient of variation (CV, calculated 
using moving, five-point samples across the duration of 
the recording) was 0.12 ± 0.03 (mean ± s.e.m.; n  = 7 cells) 
compared to 0.03 ± 0.02 (n  = 7) in immobilised cells 
(P < 0.005). Superimposed on this ‘noise’, we observed 
oscillations or irregular spiking of [Ca2+]i in 34% of 
motile, free-swimming cells (12/35; three donors), 
similar to equivalent observations in immobilised cells 
(29.8%; 17/57; P = 0.65; χ2). Frequency of [Ca2+]i spikes 
also resembled that in immobilised cells (1.03 ± 0.07/
min and 1.09 ± 0.05/min ,respectively; P = 0.60; t-test).

In 18 cells, sperm tracks were generated using the 
position of the sperm head in each video frame. Since 
the video frame rate (10 Hz) was too low for calculation 
of standard CASA parameters, we used fractal dimension 
(FD) to assess the complexity of the sperm path 
(Achikanu et  al. 2019). In six cells where large [Ca2+]i 
spikes occurred, we saw behavioural transitions and rapid 
changes in FD that were associated with [Ca2+]i signals. 
Figure 1A, B, C and D shows such a cell, where three 
periods of elevated FD occurred, each associated with 
an increase in [Ca2+]i (Fig. 1D). CV of the fluorescence 
signal was not related to fluorescence intensity (Fig. 
1C), indicating that increased fluorescence was not an 
artefact caused by extravagant cell behaviour during 
the periods of increased FD. In contrast, in six cells 
where paths were circular or looping, there was little 
variation in FD and negligible [Ca2+]i spiking (Fig. 
1E, F, G and H). In three of the other six cells we saw 
association of [Ca2+]i with average path velocity, but no 
clear correlation with FD.

We conclude that free-swimming human sperm 
show [Ca2+]i oscillations/repetitive spiking similar 
to that observed in immobilised cells. Furthermore, 
these [Ca2+]i signals are frequently associated with 
changes in FD. However, these are preliminary data and 
further investigation is required. In particular, higher 
frame rates (≥60 Hz; Mortimer et  al. 1988) should be  
used to permit detailed analysis of the relationship 
between amplitude/shape of [Ca2+]i signals and cell 
behaviours.
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