
Journal of Intelligent Information Systems, 25:3, 251–273, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

An Interface Agent Approach to Personalize Users’
Interaction with Databases

SILVIA SCHIAFFINO∗ sschia@exa.unicen.edu.ar
ANALÍA AMANDI∗ amandi@exa.unicen.edu.ar
ISISTAN Research Institute, Fac. Ciencias Exactas, Univ. Nac. del Centro de la Pcia. Bs. As., Campus Universitario,
Paraje Arroyo Seco, Tandil, 7000, Bs. As., Argentina

Received June 26, 2003; Revised February 17, 2004; Accepted September 22, 2004

Abstract. Making queries to a database system through a computer application can become a repetitive and
time-consuming task for those users who generally make similar queries to get the information they need to work
with. We believe that interface agents could help these users by personalizing the query-making and information
retrieval tasks. Interface agents are characterized by their ability to learn users’ interests in a given domain and
to help them by making suggestions or by executing tasks on their behalf. Having this purpose in mind we have
developed an agent, named QueryGuesser, to assist users of computer applications in which retrieving information
from a database is a key task. This agent observes a user’s behavior while he is working with the database and
builds the user’s profile. Then, QueryGuesser uses this profile to suggest the execution of queries according to
the user’s habits and interests, and to provide the user information relevant to him by making time-demanding
queries in advance or by monitoring the events and operations occurring in the database system. In this way, the
interaction between database users and databases becomes personalized while it is enhanced.

Keywords: interface agents, personalization, user profiling, Bayesian networks, databases

1. Introduction

The legacy of the revolution in technologies and communications that took place in the last
decade is a great volume of information available in a wide variety of electronic media. A
big part of this information is stored in relational databases. The incredible growth of the
WWW made companies leverage their database systems to Internet and intranet contexts.
Consequently, managing the information contained in databases has become even a more
complex and time-demanding process for users of such systems (Han and Sterling, 1997).

For example, consider a group of technicians working with a LIMS (Laboratory Infor-
mation Management System) in a petrochemical plant. These technicians are in charge of
tracking and analyzing information about samples of different products, which are origi-
nated in several sectors within the plant. This information is stored in the laboratory database
system and it can be accessed through the LIMS. Daily, these technicians make queries to the
LIMS to get the information they need. Making queries through the LIMS is a routine task
for these technicians, since they make similar queries in different opportunities to get the

∗Also CONICET, Comisión Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina.

252 SCHIAFFINO AND AMANDI

information they usually work with. Each user makes queries depending on his information
needs, his interests and the tasks he carries out in the plant. For example, an analyst may
be interested in detecting the causes of rejection of samples, while other analyst may be
interested in the whole sample analysis process of a particular product. We can observe that
the task of making queries is different for different users, but repetitive for each of them.
Having some kind of facilities in database systems that provide personalized services would
be quite convenient in this situation.

Personalization is tool-box of technologies and application features used in the design
of an end-user1 experience. The main goal of personalization is providing value to the end
user. Personalization involves a process of gathering user-information during interaction
with the user, which is then used to provide appropriate assistance or services, tailor-made
to the user’s needs (Bonett, 2001). In our domain, and following the example described in
the previous paragraph, the analysts’ work would be alleviated if the system could inform
them when samples are rejected or when samples change their states within the system.
Moreover, the system would save users’ time and effort if it could discover their information
needs and working habits and offer them the information they need before they have to ask
the system for it by, for example, making the necessary queries in advance.

Unfortunately, current database management systems do not provide this kind of
personalization. Some personalization, or properly said customization, can be achieved
with database applications, such as filtering the access of users to a set of tables the user is
supposed to work with. A distinction between customization and personalization should be
made. Customization occurs when the user can configure an application manually, adding
and removing elements in his configuration according to his needs and preferences. In per-
sonalization, the user is seen as being more passive, while the system monitors, analyzes
and reacts to users’ behavior, although users can still configure some parameters. Using
customization, as many information systems and database applications do, it is not possi-
ble to discover the different interests or needs each user has regarding the data stored in
the database, how these interests change over time and the habits or routines users exhibit
when working with the database application. In this work, we aim at personalizing users’
interaction with database systems, as it has been done in other areas where a user’s interests
or needs are represented by queries (Wen et al., 2002; Lenz et al., 1998).

A technology widely used to provide this type of personalization is interface agent
technology. Interface agents are computer programs that have the ability to learn a user’s
preferences and working habits, and help him to deal with one or more computer ap-
plications, reducing in this way the user’s workload (Maes, 1994). Interface agents have
been applied in a wide variety of domains, such as information filtering and information
retrieval (Billsus and Pazzani, 1999), e-commerce (Morris et al., 2000), web browsing assis-
tance (Lieberman et al., 2001), e-mail management (Segal and Kephart, 2000) and meeting
scheduling (Mitchell et al., 1994).

Interface agents can be very helpful to database users for whom making queries to a
database system through a computer application is a repetitive and time-consuming task.
In this work, we propose a solution to personalize users’ work with databases. We have
developed an interface agent named QueryGuesser that acts as a user’s personal assistant.
This agent observes a user’s behavior while he is working with a database application and

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 253

learns his information needs or interests, and also his querying habits or working routines.
This information constitutes the user’s profile. QueryGuesser then uses this profile to suggest
the execution of queries according to the user’s habits and interests, and to provide the user
information relevant to him by making time-demanding queries in advance or by monitoring
the events and operations occurring in the database system. In this way, the interaction
between users and databases is both personalized and enhanced, since each user will have
access to the information he needs when he needs it.

However, deciding how to build a database user profile was not an easy task for us. This
paper describes our approach to build a database user profile and explains how an interface
agent uses it to provide assistance to a database user. In our approach, QueryGuesser has
to achieve two goals: discovering a user’s topics of interests from the user’s queries, and
discovering a user’s querying habits by analyzing his querying behavior.

The rest of this paper is organized as follows. Section 2 presents an overview of the
QueryGuesser agent. In Section 3 we discuss how a set of QueryGuesser agents can assist a
community of users. Section 4 describes the contents of a user profile in our domain. Section
5 describes how QueryGuesser builds a user profile. Section 6 presents our experimental
results. Section 7 describes some related works. Finally, Section 8 presents our conclusions
and future work.

2. The QueryGuesser agent: An overview

Interface agents are computer programs that learn a user’s preferences and working habits
and help him to deal with one or more computer applications, reducing in this way the
user’s workload. A commonly used metaphor for understanding interface agent paradigm
is comparing them to a human secretary or personal assistant who is collaborating with
the user in the same work environment (Maes, 1994). Initially, a personal assistant is not
very familiar with the habits and preferences of her2 employer and may not be very helpful.
The assistant needs some time to become familiar with the particular working habits of
her boss. However, the assistant becomes gradually more effective and competent as she
acquires knowledge about him. This knowledge can be acquired by observing how the
employer performs tasks, by receiving explicit instructions and feedback from the employer,
by asking him for information or by learning from other assistants’ experience. Then, the
assistant can perform tasks that were initially performed by the employer, she can suggest
him the execution of tasks, she can notify the employer about interesting situations and
warn him about problems that may arise. In the same way, an interface agent can become
more competent as it interacts with a user and learns about him.

QueryGuesser is an interface agent that assists users who work with a relational database
system through Web or intranet applications. Its functionality is depicted in figure 1. The
QueryGuesser agent has the capability of personalizing the interaction between a user and
an application through which the user makes queries to a database system. QueryGuesser
observes a user’s behavior while he is making queries to a database system through the
application interface. The agent records the queries and uses this information to build the
user profile. As shown in the figure, the profile comprises both the different topics the user
is interested in and his querying routines. QueryGuesser then uses this profile to provide

254 SCHIAFFINO AND AMANDI

Figure 1. QueryGuesser overview.

assistance to the user with his computer work. In turn, the user can evaluate the agent’s
actions by providing explicit feedback. Besides, the agent observes the user’s actions after
assisting him to capture some implicit feedback. The user feedback is used to update the
user profile so that the agent can provide better assistance to the user in the future.

For example, consider a user of LIMS named John Smith who frequently makes queries to
the lab database looking for information. This database stores information about products,
sampling points, states of samples, different types of samples, analysis of samples and
product specifications. John Smith is in charge of controlling the state of the samples of
various products, mainly of those taken at the Storage, the Polymerization and the Arnipol
departments. To obtain this information, he makes queries hourly to discover which samples
have been rejected, and daily to find out which have finished the analysis process. He is
particularly interested in propane and arnipol samples. QueryGuesser can learn this user’s
interests by observing the queries he makes and when he makes them. The assistant agent
can use this information to assist the user in different ways. First, QueryGuesser can notify
John about information relevant to him while he is working with the LIMS. For example,
suppose that the user has made a query at 5 pm and there are no rejected samples in
the lab. Fifteen minutes after this query, information about two rejected samples becomes
available. Thus, the agent notifies the user about these samples, keeping the user well-
informed and up-to-date. To achieve this goal, the agent monitors the application in order
to detect when information related to the user’s information needs and interests is added or
removed. Second, the agent can present the user a report containing interesting information
regarding the user profile. For example, QueryGuesser can prepare a report about those
samples having a “finished” state and show it to the user when he enters into the system. To
achieve this goal, the agent has to make one or more queries on the user’s behalf, saving in

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 255

this way the user’s time. Third, the agent can make queries on the user’s behalf according
to his routine. To do this, the agent has to learn when the user makes a certain query,
i.e. find patterns in his querying behavior. In our example, the agent can learn that John
makes the same query every hour to find out about rejected samples, and it can automate
this process. In turn, John Smith can also make new queries, without interacting with
QueryGuesser.

To build a user profile in this domain QueryGuesser has to carry out two challenging
tasks: discovering the interests of a user regarding the data stored in the database and
discovering his querying habits. The only sources the agent has to obtain this information
are the queries the user makes through a given application, a LIMS in our example. Thus,
QueryGuesser observes a user’s behavior while he is making queries to a database system
through an information system and records some specific data about each query the user
makes: the features or keywords used by the user to make the query and temporal information
describing the moment in which the query was executed (e.g. date, time, shift). The features
or keywords appearing in a user’s queries provide evidence of the user’s interests regarding
the database, since these keywords reveal his information needs. The date and time enable
the agent to discover behavioral patterns.

Each topic of interest is described by a set of features and the values these features
take, as well as an importance value or weight associated with each feature and feature
value. Besides, each topic comprises the relationships that exist among its components,
represented by the network in figure 1.

The user profile also comprises a user’s working habits or routines, which are described
by a set of situations in which the user makes queries. Each routine is associated with one
or more topics of interest, and vice versa. Section 4 describes in detail the two components
of a user profile in our domain.

QueryGuesser uses the user profile to assist the user with his work. QueryGuesser basi-
cally helps the user in the following ways: it can suggest the user the execution of queries
according to his interests and needs, it can perform some of these queries in advance in order
to save the user’s time, and it can alert the user about new relevant information. Then, the
agent processes the feedback the user provides regarding the assistance it has given him. The
user can explicitly evaluate the quality and relevance of the queries the agent has suggested
him and the behavioral patterns the agent has inferred. Besides, the agent can observe the
user’s behavior after assisting him to detect some indirect (or implicit) feedback, such as
the user making a query different from those the agent has suggested. The user feedback is
used to improve and update the user profile.

3. A set of QueryGuesser agents assisting a set of users

In several domains such as a LIMS, a common scenario is having a set of users working with
a computer application through which they connect to a (distributed) database to get the
information they have to work with or they are interested in. Figure 2 depicts this situation.
Each user makes queries to the database through the LIMS interface and the results are
presented to him through another interface. When interface agent technology is used, each
user has a personal assistant helping him, as shown in the figure. Each QueryGuesser agent

256 SCHIAFFINO AND AMANDI

Figure 2. Assisting a set of users.

assists its user according to the profile it builds from the observation of the user’s behavior
and from the interaction between the user and the agent.

A potential source of learning for interface agents is asking other agents for advice
when they do not know how to assist their users. In such a situation, the agents need some
mechanism to compare the profiles of the users they are assisting, and if they are similar,
the assistance provided to a user can be useful to assist a second user. Nevertheless, in our
domain it is not common that different users show a similar behavior and have the same
interests, unless they do the same job. This can be the case of users doing shift work and
having the same role within a company. Only in this situation a user’s profile could be used
to assist another user, because the agents know that they share the same information needs.

However, a key aspect when working with multiple agents assisting multiple users is
information privacy. It is the user decision if he wants his profile to be public or not. For
example, the manager of a company surely does not want his employees to know what kind
of queries he usually makes and what information he usually gets from the LIMS database.
Due to privacy concerns, the agents in our approach do not share information with each
other and each user profile is private.

4. A database user profile

The knowledge the agent gathers about a user is processed to build the user profile. A
profile is a description of someone containing all the most important or interesting facts
about him. In our context, a user profile contains all the information an agent needs to
provide personalized assistance to a user of a database application.

A user profile often contains both application dependent and application independent
information about a user, and its content varies from one application domain to another.
Application independent information includes mainly personal information about the user,

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 257

such as name, hobbies, job, the department where he works and the section where he works.
Application dependent information includes a user’s interests, preferences, goals, work-
ing habits, behavioral patterns, knowledge, needs, priorities and commitments regarding a
particular domain or application.

We define the application dependent part of a database user profile as the set of topics the
user is interested in, which motivate him to make queries to the database system through
the LIMS, together with the user’s querying habits or routines, i.e. when queries are made.

Profile = Topics ∪ Routine (1)

A topic of interest is defined by a set of features or keywords extracted from the queries a
user makes. Each topic has a relevance value associated with it that indicates how relevant
the topic is for the user. In turn, each feature has an associated relevance value within a
topic, which is given by the amount of times this feature was involved in a user’s queries
regarding that topic.

Formally, we can say that the set of Topics in a user profile is composed of n topics Ti

with their associated relevance values w(Ti):

Topics = {(T1, w(T1)), (T2, w(T2)), . . . , (Tn, w(Tn))} (2)

e.g. Topics = {(T1, 0.8), (T2, 0.6)}
In turn, a topic Ti is defined by a set of m features Fi j with their associated relevance

values w(Fi j):

Ti = {(Fi1, w(Fi1)), (Fi2, w(Fi2)), . . . , (Fim, w(Fim))} (3)

Considering the user John Smith introduced in an example in Section 2, one of his topics
of interest is composed of the following features:

T1 = {(department, 0.7), (product, 0.7), (sample − state, 0.8)}

A feature Fi j may have one or more values vi jk , with different weights w(vi jk):

Fi j = {(vi j1, w(vi j1)), (vi j2, w(vi j2)), . . . , (vi jr , w(vi jr))} (4)

For example, the values that department can take are:

F11 = {(storage, 0.7), (polymerization, 0.7)}

Summarizing the ideas presented above and following the example, John Smith’s profile
comprises two topics, each defined by different sets of features:

Topics = {(T1, 0.8), (T2, 0.6)}
T1 = {(department, 0.7), (product, 0.7), (sample-state, 0.8)}

258 SCHIAFFINO AND AMANDI

F11 = {(storage, 0.7), (polymerization, 0.7)}
F12 = {(propane, 0.7)}
F13 = {(rejected, 0.85)}
T2 = {(department, 0.6), (product, 0.6), (sample-state, 0.8),

(sampling-point, 0.8)}
F21 = {(arnipol, 0.7)}
F22 = {(arnipol, 0.8)}
F23 = {(A44, 0.36), (A46, 0.76), (A18, 0.33)}
F24 = {(finished, 0.8)}

In our approach, a topic also includes the relationships (dependencies) among its feature
values and the strength of these relationships. Thus, a feature value vi jk of feature Fi j in topic
Ti can be related to feature value viqt of feature Fiq in the same topic Ti . This relationship
can be expressed by an arrow from vi jk to viqt : vi jk ⇒ viqt . Each relationship has a strength
value associated with it given by the probability p(viqt/vi jk), which conditions the presence
of viqt in the topic to the presence of feature vi jk . This situation is translated to queries by
saying that the presence of viqt in a query depends on the presence of vi jk in the query.

For example, the relationships between features in topic T1 are the following (we omit
the strength values for simplicity):

storage ⇒ propane

polymerization ⇒ propane

propane ⇒ rejected

A habit or routine is defined by temporal information describing the temporal categories to
which a certain information need or topic is related. Each topic of interest can be associated
with one or more routines. For example, consider that a topic of interest belonging to John
Smith is: T = {(department = storage, 0.7), (sample state = rejected, 0.8), (product =
propane, 0.5)}; and the routine associated with it is “early morning”. This means that John
Smith, when he gets to work every morning, makes a query to get information about rejected
samples of propane originated at the Storage department.

More formally, a routine R is defined by three temporal categories: an hour category HC,
a week category WC and a month category MC. The first indicates a period of hours within
a day, the second the day of the week and the third the day number. For the example given
in the previous paragraph HC = “early morning”, WC = � and MC = �. The meaning of
these categories will be explained in detail in Section 5.4.

A routine has a confidence value attached to it that indicates how sure the agent is about
the user making queries on a given topic on the particular period of time represented in
the routine. The confidence value is always computed with respect to a particular topic of
interest.

Figure 3 shows an example of a database user profile. The following section describes in
detail how each user profile component is obtained.

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 259

Figure 3. User profile.

5. Building and updating user profiles

To build a database user profile, QueryGuesser first observes a user’s behavior while he is
working with a database application and records data about each query the user makes. These
data include the keywords involved in the query and temporal data indicating when the query
was made. QueryGuesser uses the information recorded to cluster similar queries, since we
consider that a set of similar queries represents a topic of interest. In turn, QueryGuesser
determines the relationships among query features within a topic and the strength of these
relationships. Once the topics are defined, the agent analyzes the queries to determine
querying routines and to link routines to the corresponding topics.

This section is organized as follows. The observation task is explained in Section 5.1.
The query clustering process is described in Section 5.2. Section 5.3 explains how the
relationships among query features are obtained. Finally, Section 5.4 describes how the
agent discovers a user’s querying habits.

5.1. Observation of a user’s behavior

To discover the different topics a user is interested in, QueryGuesser observes a user’s
behavior while he is working with an application through which he accesses the information
stored in a database. This is generally done through an user-interface from which the user
selects the features he is looking for, as the one shown in figure 4. These features are known
as filters in the area of databases, and they are the values the user is looking for in certain
columns in the tables that compose the database. In our example, John Smith made the query
to obtain those Propane finished samples taken at Warehouse A at the Storage department

260 SCHIAFFINO AND AMANDI

Figure 4. Data recorded from a query.

from 30th September, 2000 to 18th October, 2000. The application translates this into an
SQL query, as shown at the left bottom of the figure, and the results the query returns are
presented via a user-interface to the user, who can manipulate the information from there.

During observation QueryGuesser records data about each user query that enable it to
discover both the user’s topics of interest and his querying habits. The agent records: the
filters used to make the query, i.e. the query features; the goal of the query; temporal
information indicating when the query was made; and the query results. In the example
shown in figure 4, the filter is composed of particular values of departments, products,
sampling points, sample types, sample states, and sample extraction dates. The goals are the
sample identification numbers that fulfill the conditions specified in the filter. The temporal
data include the hour, the date and the day of the week when the query was executed. We
can observe that the attributes appearing in the representation of the query correspond to
the different conditions stated in the SQL query.

The information recorded during observation is used to build the user profile, as described
in the following section.

5.2. Query clustering

In order to discover the different topics a user is interested in, a user’s queries are clustered
according to their similarity. We consider that a cluster grouping a set of similar queries
constitutes a topic of interest. Thus, when data about a recent query are obtained, the agent
compares the new query against the already recorded ones to determine the cluster to which
it belongs. Each cluster is labelled by a cluster number, which is assigned to each query
after categorizing it.

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 261

To achieve this goal, QueryGuesser compares the features that appear in the new query
against the features that appear in the recorded queries. To be similar, two queries must
contain the same or at least similar features. For example, a query involving departments
and products is not similar to one containing sampling points and sample states. But a query
involving departments, products and sampling points may be similar to one involving only
departments and sampling points. In turn, the agent compares the values each feature takes
in the two queries it is comparing. The agent needs a considerable percentage of the feature
values to take the same value in the two queries in order to consider them as similar, as it
is described below.

Similarity metrics are used to compare both the features involved in the queries and their
values in order to determine the similitude between these queries. QueryGuesser uses a
metric that computes a similarity function that gives as result a score representing how
similar the queries are. If this score is higher than the threshold value τ specified by the
metric, then the queries are similar and they share the same cluster. If not, a new cluster is
created and the new cluster number is assigned to the query.

A domain expert establishes the degree of similarity between the different features that
may be involved in queries. Feature matching is done by computing the distance of feature
values in a qualitative scale. If two values belong to the same qualitative region, then they
are considered as equal. Otherwise, the distance between their qualitative regions provides
a measure of their matching score. In the case of features having lists of values, these lists
should be identical, or one should contain the other or they should have values in common.
Figure 5 shows two similar queries in the LIMS domain.

QueryGuesser assigns different importance values or weights to query features. The
importance of a feature to a match depends on its overall impact to the comparison. The
importance associated with each feature tells us how much attention to pay to matches
and mismatches in that feature when computing how good a match is. For example, when

Figure 5. Matching of queries.

262 SCHIAFFINO AND AMANDI

comparing two queries to determine if they are similar, the features used as filters and the
goal of the query are highly important, but the features involving temporal aspects are not.

Equation (5) shows the function that QueryGuesser uses to compute the similarity be-
tween queries QN and QO . In that function, wi is the weight of feature i , simi is the
similarity function for feature i , and fi N and fi O are the values for features i in the new
and old queries, respectively.

similarity(QN , QO) =
∑n

i=1 wi ∗ simi (fi N , fi O)

n
(5)

For example, the calculus of the similarity between the two queries shown in figure 5 is
shown in Eq. (6). The weight value associated with the attributes composing the filter and
the goal is 1, and the weight associated with the rest of the attributes is 0. The function simi

returns 1 if the values are equal, 0 if the values are different and a value between 0 and 1 if
they are similar.

sim1(Storage, Storage) + · · · + sim7(SamplesI D, SamplesI D)

7
(6)

= 1 + 1 + 0.5 + 1 + 0.5 + 0.4 + 1

7
= 5.4

7
= 0.77

QueryGuesser makes a ranking to determine the most similar query, where queries with
higher scores are ranked higher than those with lower scores. The cluster number of the most
similar query is assigned to the new one. Figure 6 shows an example of clusters grouping
similar queries.

Regarding the user profile described in Section 4, the clustering of queries enables the
agent to discover the different topics a user is interested in and to determine the features and
feature values that each topic comprises. However, the agent cannot establish yet neither
the relevance of the topics and features nor the relationships among features.

Figure 6. Clusters representing different topics of interest.

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 263

5.3. Managing relationships among query features

Once QueryGuesser has discovered via query clustering the different topics of interest a
user has, it must determine the relevance each of these topics has for the user. Besides, it
has to determine the relevance each feature has within a topic and the relationships among
features. Our approach proposes the use of Bayesian networks to obtain this information.
We have chosen this technique because it enables the agent to model both quantitative and
qualitative information about the features composing the different topics a user is interested
in. Besides, Bayesian inference mechanisms enable us to make inferences about the queries
a user can possibly make. Using Bayesian networks is just a viable approach; other machine
learning techniques could have been also used. Our goal was giving a solution to the problem
of learning a database user’s profile, we did not mean neither to find the best solution nor
to compare different approaches.

In the last decade, interest has been growing steadily in the application of Bayesian repre-
sentations and inference methods for modeling the goals and needs of users (Horvitz, 1997).
A BN is a compact, expressive representation of uncertain relationships among parameters
in a domain (D’Ambrosio, 1999). A BN is a directed acyclic graph that represents a proba-
bility distribution where nodes represent random variables and arcs represent probabilistic
correlation between variables. For each node, a probability table specifies the probability
of each possible state of the node given each possible combination of states of its parents.
Tables for root nodes just contain unconditional probabilities (Haddawy, 1999).

In our work BN are used to model, both qualitatively and quantitatively, the topics of
interest of a given user. A node represents a feature or keyword used by the user to make a
query. Each variable can have only two values: true, representing that the item is present in
a user query, and false, indicating that the item is absent. Arcs model existing relationships
between features in the given domain. Probability values indicate the strength of these
relationships, and they represent how the presence of a feature in a query influences the
presence of other feature in the query. Section 5.3.1 explains how BN are built.

Once the agent has constructed a BN that models the dependencies among features be-
longing to a user’s topics of interests, it applies Bayesian inference mechanisms to discover
the relevance values each feature has within the topics and the relevance each topic has for
the user. This process is explained in Section 5.3.2.

5.3.1. Building the BN. QueryGuesser requires that a domain expert establishes the pa-
rameters it needs to build the BN: the features that users can use as filters to make queries,
the values each feature can take and the dependencies that exist between them. The features
involved in queries are the column names of the tables composing the database, and the
values these columns take are the feature values. For example, the Sample table in the LIMS
database has 6 columns: sample-id, product, department, state, sampling point and date. All
these columns are features that can be used in a user’s queries and, in consequence, they are
potential nodes in the user’s BN. As regards values, the product feature for instance, takes
as many values as products exist in the petrochemical plant.

QueryGuesser requires that a domain expert establishes the dependencies among vari-
ables in the domain. This can be a drawback in those cases where a domain expert is not

264 SCHIAFFINO AND AMANDI

Figure 7. Generic relationships in the LIMS domain.

found. If this is the case or the relationships are incomplete, the network structure could
be obtained using Bayesian learning algorithms, such as the ones described in Heckerman
(1999) and Jensen (1996). A log of queries will be used in this case as an input for the learn-
ing algorithm in order to discover the dependencies among query features. The problem
with these algorithms is that, sometimes, some existing relationships are not found.

In the LIMS domain, we can point out some relationships that exist between query
features. Each employee has access to information about samples taken or originated at
a set of departments or sections within the petrochemical plant. Each department is in
charge of tracking samples belonging to a set of products and taken at certain sampling
points. Each product can be sampled at certain sampling points within the plant. The types
of samples taken at a department depend on the characteristics of the sampling point.
Besides, a technician can make queries about particular states of samples depending on the
sampling point, e.g. rejected samples in conflicting sampling points. These restrictions are
modeled using BN by establishing relationships between the corresponding nodes. These
relationships model the probability that a child node (e.g. a sample state) is used in a query
given that a parent node is used in the query too (e.g. a sampling point). Figure 7 shows
these “generic” relationships in the LIMS domain.

The BN of a given user is gradually instantiated as he makes queries to the database.
When a user makes a query, one node is added to the network for each new feature appearing
in the query. Arcs are drawn between the corresponding nodes considering the generic
relationships established for the particular domain. Each feature is also linked to the code
node of the topic (cluster) to which it belongs. In this way, the cluster node is linked to all
its constituents.

Probability values are updated as the frequencies of features in queries are modified
with each new query. This kind of learning is known as sequential learning (Friedman
and Goldszmidt, 1997; Spiegelhalter and Lauritzen, 1990) since we sequentially adapt the
network parameters and the network structure as new information is obtained.

Figure 8 shows an example of a BN that models John Smith’s interests in the LIMS
domain. This network is the result of a sequence of queries made by the user when he was
looking for information about samples. The model shown in the figure is completed by

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 265

Figure 8. BN representing John Smith’s interests.

Figure 9. CPT associated with the POL 12 node.

establishing the probability values in the form of conditional probability tables (CPTs). The
tables in figure 9 represent the CPT associated with the POL 12 node. This table shows the
probability values the POL 12 node takes given a combination of the states of the Resin and
Reactive 12 nodes. POL 12 is a sampling point, while Resin and Reactive 12 are products.
This CPT indicates the influence the presence (or absence) of these products in a query has
on the presence (or absence) of the sampling point in the query.

5.3.2. Applying bayesian inference mechanisms. Once QueryGuesser has built a BN for
a user, it uses Bayesian inference mechanisms to discover the relevance of topics and the
relevance of topic components. There are different types of inference mechanisms: causal
or top-down inference to obtain a probability value for a variable having as evidence an

266 SCHIAFFINO AND AMANDI

ancestor; and diagnostic or bottom-up inference to obtain a probability value for a variable
having as evidence a descendant (Nilsson, 1998). Our approach uses both types of inference.
QueryGuesser uses causal inference to determine the feature values relevant to a given user
and diagnostic inference to discover the relevance of feature values within a given topic of
interest. From the various existing algorithms developed to perform inference in BN, we
use the bucket elimination algorithm (Dechter, 1996; Cozman, 2000).

To determine the components of the different topics of interest, we have to distinguish
among different types of features. Some features are independent, i.e. their nodes do not have
arcs coming from other nodes in the BN. On the other hand, some types of features depend
on others, i.e. they have one or more features as parents in the BN. QueryGuesser deter-
mines: relevant independent features, relevant dependent features, relevant values for each
relevant feature, relevant values of a feature given values of other features, combinations of
relevant feature values, and relevant feature values given a topic of interest. An independent
feature value is relevant if its simple probability value is higher than a specified threshold
λ considered as the minimum level of relevance required by the agent. To determine the
importance of a dependent feature value, our agent first sets as evidence the relevant values
of its parents. Then, via Bayesian inference mechanisms, the agent determines which values
of the child feature have higher posterior probability values. For example, considering the
network in figure 8 the relevance of the department nodes is, directly, the simple probability
value associated with them. Suppose that the relevance of Storage is 0.83 (i.e. the probabil-
ity that Storage appears in a query is 83%) and the relevance of Polymerization is 0.33 (i.e.
the probability that Polymerization appears in a query is 33%). If we consider a threshold
value of λ = 0.40, then the only relevant department is Storage. The relevance of dependent
features, such as products, sampling points and states, is computed using as evidence the
values of their parents. For example, to find out the relevant products, we set as evidence
a true value for Storage and then we compute the posterior probabilities of each children.
Those obtaining probability values higher than the specified threshold are considered as
relevant.

The next step is determining the relevance value associated with each relevant topic.
Topics are represented in the Bayesian model through code nodes (cluster numbers). Rele-
vance values are inferred by setting as evidence the relevant inferred values for each feature
belonging to the topic involved, and computing then its posterior distribution. Finally, a
ranking with the different topics is built, considering as relevance values those obtained via
inferences.

As a result of the process described above, QueryGuesser has completed the definition
of a user’s topics of interest. Now, the agent has learned the relevance of each topic, the
relevance of each feature within a topic, the relationships that exist among topic features
and the strength of these relationships.

5.4. Discovering querying habits

To detect some behavioral patterns in a user’s queries, it is necessary to record information
about the moments or situations in which this user makes queries to the database. The
QueryGuesser agent considers different temporal categories or periods within a day, a

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 267

Table 1. Hour categories.

Hour category Hours involved

Early morning 5–8

Morning 8–12

Midday 12–14

Afternoon 14–17

Evening 17–20

Night 20–22

Midnight 22–24

Dawn 0–5

Table 2. Day categories.

Day category Days involved

Beginning Monday, Tuesday

Middle Wednesday, Thursday

End Friday, Saturday, Sunday

Table 3. Month categories.

Month category Days involved

Beginning 1 to 10

End 26 to 31

Default The rest of the days

week and a month, and it associates the appropriate periods with each query. Tables 1 to 3
show the different categories the agent uses to categorize queries according to their date and
time. For the example in figure 4 in Section 5.1 these periods are: afternoon (hour category),
end (for the week category) and beginning (for the month).

QueryGuesser detects a user’s behavioral patterns from the information stored during
observation: by comparing the temporal categories assigned to two different queries the
agent determines whether these queries are commonly executed or not in similar situations.
The comparison is done regarding the proximity of situations both in qualitative and in
quantitative scales. For example, when comparing the hour categories of two queries, they
are similar if they have the same value or if their categories are neighbors (e.g. early morning
and morning). When comparing the week and the month categories their values have to be
necessary equal for the routines to be similar.

To determine the most frequent temporal categories we use an heuristic based on the
frequency of occurrence of recorded queries. The agent obtains the different “situations”
in which a query was executed and it determines the most frequent hour category. Then,

268 SCHIAFFINO AND AMANDI

it determines the most frequent day category within a week, and finally it determines the
most frequent day category within a month. Complete situations involving combinations of
the three types of categories are also analyzed.

By varying the matching functions that compare queries, we can set the similarity level
we want to obtain when detecting routines. For example, for some purpose a query made on
the 2nd day of every month is similar to those made on the 10th, because we are considering
the beginning of the month. However, these situations can be considered different for some
other purposes.

The routine detection process enables QueryGuesser to discover the routines attached
to the different topics of interest. This means that the agent has discovered when the user
makes queries belonging to each topic of interest.

5.5. Adjusting the profile with user feedback

The QueryGuesser agent becomes more competent as its knowledge about a user’s interests
and habits is augmented and refined as it interacts with the user. A user can provide feedback
for the suggested queries and inferred habits. The user feedback causes modifications to a
user profile by adjusting the relevance value associated with each topic and with the features
that compose each topic of interest for this user. There are two types of feedback: implicit
or indirect, and explicit or direct. The user provides explicit feedback when, for example, he
gives an evaluation for a query suggested by the agent. The user can rank a suggested query
or a notified new item as relevant, more or less relevant, or irrelevant to his information
needs. The implicit feedback has to be obtained via the observation of a user’s actions
once the agent has made its suggestions. Actions such as making new queries, making the
queries proposed by the agent, getting query results, ignoring the suggested new piece of
information, and ignoring suggestions are considered. By adjusting the profile according to
the user feedback, QueryGuesser adapts itself to the user’s changing interests and provides
him assistance accordingly. The profile is adjusted by including the user feedback in the
calculation of the relevance associated with each topic of interest and with each feature
describing them.

We use the formula shown in Eq. (7) to compute the relevance value Rel of a query feature
i . This formula is an adaptation of Rocchio’s formula (Rocchio, 1971), which is commonly
used in Information Retrieval to consider relevance feedback in document weight calculus.
In our formula α, β and γ are the weights of the different terms in the equation (we use
α = 0.8, β = 0.15 and γ = 0.05), Relold

i is the relevance value of feature i obtained from
the BN, PFi is the amount of positive feedback, NFi is the amount of negative feedback
and TFi is the total amount of feedback provided by the user. A similar formula is used to
compute the relevance of a topic.

Reli = α ∗ Relold
i + β ∗ PFi

TFi
− γ

NFi

TFi
(7)

For example, consider the feature Storage whose initial relevance value was 0.83. Suppose
that the agent suggested a query involving Topic 1 to which this feature belongs, and

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 269

that the user ranked this query as relevant. Thus, the new relevance value is computed as
follows:

RelStorage = 0.8 ∗ 0.83 + 0.15 ∗ 1

1
− 0.05 ∗ 0

1
= 0.814 (8)

6. Experimental results

We implemented the QueryGuesser agent in Java and we used JavaBayes3to manipulate BN.
The chosen programming language makes our agent independent of a particular database
technology or platform. The QueryGuesser agent was tested while assisting the users that
operate the subsystem in charge of sample tracking within a LIMS in a petrochemical plant.
The main goal of these tests was to analyze if the content of user profiles improved as the
agent interacts with the user, tending to the user’s needs. We studied the effects of user
feedback in the profile building process, since in this way we can view the evolution of user
profiles (Sheth and Maes, 1993). We used the following parameters to perform the tests:
τ = 0.60 and λ = 0.40. These values were selected after performing a series of experiments
to determine the most appropriate threshold values.

In order to make the tests we developed a series of controlled experiments with 20
(twenty) users. Each of them made 30 (thirty) queries and the agent provided assistance
to them 7 (seven) times (at different time moments for the different users). We chose this
methodology because controlled experiments enable us to settle the context we need to test
our agent (consistency between users’ actions and their interests, explicit feedback, among
others). It would take as long achieving this in an uncontrolled environment.

When users were working with the database application, the agent provided assistance to
them. Once the agent has assisted the user, we asked each user to provide feedback for each
query suggested by the agent, rating them as relevant or irrelevant. The graph in figure 10
plots the performance of the QueryGuesser agent. For each assistance session (i.e. each time
the agent provides assistance to the user), we recorded: the number of queries suggested by
the agent, the number of suggested queries that were relevant to the user and the number
of queries that were not relevant to him. The graph plots, for each session, the average

Figure 10. Evolution of user profiles.

270 SCHIAFFINO AND AMANDI

percentage of suggested queries that received positive feedback, the average percentage of
suggested queries that received negative feedback and the difference between them. We plot
the proportion of queries instead of the absolute numbers of queries because the numbers
of queries suggested for each user varies according to their interests.

We can observe that there is a pattern of improving performance in the queries suggested
by the agent. We can observe a soft learning curve in the initial states, since the first feedback
values are mostly negative. This situation arose because we did not wait until the agent had
acquired a considerable amount of knowledge about users to start testing it. In this way,
the agent gave assistance to the user having information only about a few queries made by
the users. But then, due to the users’ feedback, the agent stopped suggesting too general
(irrelevant) queries and feedback values became positive. The number of suggested queries
that received a positive feedback give us an indication of the amount of user work the agent
saved, since the agent made these queries instead of the user. The agent also “thought” of
making them, not the user, because the agent anticipated the user’s needs.

The experiments we carried out demonstrated that our approach improved the user’s
interaction with the database application since QueryGuesser provided them effective as-
sistance. This is derived from the improvement in the accuracy of user profiles and from
the increase of positive user feedback.

7. Related work

Interface agents have been used in a wide variety of domains such as information filtering
and information retrieval (Billsus and Pazzani, 1999; Cordero et al., 1999), e-commerce
(Morris et al., 2000), web browsing assistance (Lieberman et al., 2001; Godoy and Amandi,
2000), e-mail management (Boone, 1998; Segal and Kephart, 2000), e-learning (Amandi
et al., 2003) and meeting scheduling (Mitchell et al., 1994), among others. Our agent is
innovative in the sense that interface agent technology has not been applied to database
systems and LIMS, as far as we know.

Different interface agents assisting users in domains such as those mentioned above,
use different machine learning techniques to build user profiles. For example, the Person-
alSearcher agent uses hierarchical clustering to obtain the different Web topics a user is
interested in Godoy and Amandi (2000); NewsAgent uses case-based reasoning and a topic
hierarchy to discover which newspaper news a user prefers (Cordero et al., 1999); SwiftFile
uses a TF-IDF style classifier to organize emails (Segal and Kephart, 2000); and CAP uses
decision trees to learn users’ scheduling preferences (Mitchell et al., 1994).

The selection of the technique depends on the task the agent has to perform and on the
application domain. We have chosen BN and clustering to build our profiles. Some other
projects have used BN in domains with inherent uncertainty (Horvitz et al., 1998; Lee et al.,
2001; Conati et al., 2002). For example, the Lumiere project at Microsoft Research (Horvitz
et al., 1998) uses BN to infer a user’s needs by considering a user’s background, actions
and queries (help requests). Based on the beliefs of a user’s needs and the utility theory of
influence diagrams (an extension to BN), an automated assistant provides help for users.
This project ended up in the well known Office Assistant first incorporated into Microsoft
Excel. The problem with this assistant is that the BN is static and it is not updated as the user

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 271

interacts with the system. Thus, the assistant has no learning capabilities and sometimes
the model does not match the user’s profile.

There are some works that analyze a user’s queries in different contexts with various
purposes. These works have focused on learning a user profile from a user’s queries, but
in domains different from databases. For example, (Lenz et al., 1998; Burke et al., 1997)
use Case-Based Reasoning (CBR) to answer queries in help desk applications (FAQs,
frequently asked questions). Lau and Horvitz (1999), Wen et al. (2002), Beeferman and
Berger (2000) try to infer a user’s patterns of search in Web search engines by analyzing
query logs. Lau and Horvitz (1999) discusses the construction of probabilistic models
(dynamic BN) centering on temporal patterns of query refinement in search engines. The
approach presented in Wen et al. (2001, 2002) clusters similar queries according to their
contents for FAQs identification. DBSCAN clustering algorithm is used. The approaches
used in these works have been analyzed and discarded. For example, CBR cannot be applied
since although queries are similar the results obtained from the database may vary instead
of keeping equal as in FAQs. The DBSCAN clustering algorithm is not suitable for our
domain since many of the tasks it involves are not necessary (e.g. stemming, stop word
removal, phrase recognition).

8. Conclusions

In this paper, we have presented QueryGuesser, an agent developed to assist users in their
work with a database system. Our agent has been successfully tested in a LIMS, assisting
users who make queries from distant places in a petrochemical plant. These users had
considerable delays in getting the information they needed and their work was quite routine.
Thus, our agent was very useful to them. The experimental results obtained so far have
proved that our agent is good (and promising) at determining a database user’s topics of
interest.

We can point out two main contributions of our work, one within the area of applications
that use databases intensively and the other within the area of user profiling in agent devel-
opment. First, using interface agents to assist users in their work with a database system
is a novel application. The QueryGuesser agent assists such users by personalizing their
query making process according to their interests and habits. Current database management
systems do not offer such services to users. Second, we combined clustering and BN to
build user profiles. BN allowed us to model the relationships among query features both in a
qualitative and in a quantitative way. Bayesian inference mechanisms enabled us to build a
user’s profile based on the queries we recorded and clustered. By clustering similar queries
we could analyze the different topics of interest a user has. We could not have done it with
other approaches, such as considering single queries and ordering them by frequency of
occurrence, for example.

Acknowledgments

We would like to thank Analyte company for providing us the necessary media to test our
agent in a LIMS domain.

272 SCHIAFFINO AND AMANDI

Notes

1. One who uses a program that was specially made to suit him or his needs.
2. For simplicity, we use “she” for the assistant and “he” for the user, but we do not mean to be sexist.
3. http://www.cs.cmu.edu/∼javabayes/index.html

References

Amandi, A., Campo, M., Armentano, M., and Berdún, L. (2003). Intelligent Agents for Distance Learning.
Informatics in Education 2(2), 161–180.

Beeferman, D. and Berger, A. (2000). Agglomerative Clustering of a Search Engine Query Log. In: KDD 2000
(pp. 407–416).

Billsus, D. and Pazzani, M.J. (1999). A personal news agent that talks, learns and explains. In O. Etzioni, J.P.
Müller, and J.M. Bradshaw (Eds.), Proceedings of the Third International Conference on Autonomous Agents
(Agents’99). ACM Press: Seattle, WA, USA (pp. 268–275).

Bonett, M. (2001). Personalization of Web Services: Opportunities and Challenges. Ariadne Issue 28.
Boone, G. (1998). Concept Features in Re:Agent, an Intelligent Email Agent. In Proceedings of the Second

Interntational Conference on Autonomous Agents—Agents 98 (pp. 141–148).
Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., and Schoenberg, S. (1997). Question Answering

from Frequently Asked Question Files. AI Magazine, 18(2), 57–66.
Conati, C., Gertner, A., and VanLehn, K. (2002). Using Bayesian Networks to Manage Uncertainty in Student

Modeling. Journal of User Modeling and User-Adapted Interaction, 12(4), 371–417.
Cordero, D., Roldán, P., Schiaffino, S., and Amandi, A. 1999. Intelligent Agents Generating Personal Newspapers.

In Proceedings ICEIS 99, International Conference on Enterprise Information Systems (pp. 195–202).
Cozman, F. (2000). Generalizing Variable Elimination in Bayesian Networks. In Workshop on Probabilistic Rea-

soning in AI—IBERAMIA-SBIA 2000 (pp. 27–32).
D’Ambrosio, B. (1999). Inference in Bayesian Networks. AI Magazine, 20(2), 21–35.
Dechter, R. (1996). Bucket Elimination: A Unifying Framework for Probabilistic Inference. In 12th Conf. On

Uncertainty in AI (pp. 211–219).
Friedman, N. and Goldszmidt, M. (1997). Sequential Update of Bayesian Network Structure. In Thirteenth Con-

ference on Uncertainty in Artificial Intelligence (pp. 165–174).
Godoy, D. and Amandi, A. (2000). PersonalSearcher: An Intelligent Agent for Searching Web Pages. Advances

in Artificial Intelligence—Lectures Notes in Artificial Intelligence, LNAI 1952 (pp. 43–52).
Haddawy, P. (1999). An Overview of Some Recent Developments in Bayesian Problem-Solving Techniques. AI

Magazine 20(2), 11–19.
Han, Y. and Sterling, L. (1997). Agents for Citation Finding on the World Wide Web. In PAAM 97 (pp. 303–318).
Heckerman, D. (1999). A Tutorial on Learning with Bayesian Networks. Learning in Graphical Models (Also

appears as Technical Report MSR-TR-95-06, Microsoft Research, March, 1995).
Horvitz, E. (1997). Agents with Beliefs: Reflections on Bayesian Methods for User Modeling. Invited Talk at 6th

International Conference on User Modeling.
Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K. (1998). The Lumiere project: Bayesian

user modeling for inferring the goals and needs of software users. In Fourteenth Conference on Uncertainty in
Artificial Intelligence (pp. 256–265).

Jensen, F.V. (1996). An Introduction to Bayesian Networks, Springer Verlag: New York.
Lau, T. and Horvitz, E. (1999). Patterns of Search: Analyzing and Modeling Web Query Refinement. In Proceeding

7th International Conference On User Modeling (pp. 119–128).
Lee, S.-I., Sung, C., and Cho, S.-B. (2001). An Effective Conversational Agent with User Modeling Based on

Bayesian Network. Web Intelligence: Research and Development: First Asia-Pacific Conference, WI 2001—
Lecture Notes in Computer Sciences 2198 (pp. 428–432).

Lenz, M., Hübner, A., and Kunze, M. (1998). Question Answering with Textual CBR. In 3rd International
Conference (FQAS’ 98), Vol. 1495 of Lecture Notes in Computer Science (pp. 236–247), Springer-Verlag.

AN INTERFACE AGENT APPROACH TO PERSONALIZE USERS’ INTERACTION 273

Lieberman, H., Fry, C., and Weitzman, L. (2001). Exploring the Web with Reconnaissance Agents. Communica-
tions of the ACM, 44(8), 475–484.

Maes, P. (1994). Agents that Reduce Work and Information Overload. Communications of the ACM, 37(7), 31–40.
Mitchell, T., Caruana, R., Dermott, J.M., and Zabowski, D. (1994). Experience with a Learning Personal Assistant.

Communications of the ACM 37(7), 80–91.
Morris, J., Ree, P., and Maes, P. (2000). Sardine: Dynamic Seller Strategies in an Auction Marketplace. In

Proceedings 2nd ACM Conference on Electronic Commerce EC 00 (pp. 128–134).
Nilsson, N. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.
Rocchio, J. (1971). Relevance Feedback in Information Retrieval. The SMART Retrieval System: Experiments in

Automatic Document Processing—Chapter 4 (pp. 313–323).
Segal, R. and Kephart, J. (2000). Swiftfile: An intelligent assistant for organizing e-mail. In In AAAI 2000 Spring

Symposium on Adaptive User Interfaces.
Sheth, B. and Maes, P. (1993). Evolving Agents for Personalized Information Filtering. In Proceedings 9th IEEE

Conference on Artificial Intelligence for Applications (CAIA 93) (pp. 345–352).
Spiegelhalter, D.J. and Lauritzen, S.L. (1990). Sequential updating of conditional probabilities on directed graphical

structures. Networks 20, 579–605.
Wen, J., Nie, J., and Zhang, H. (2002). Query Clustering Using User Logs. ACM Transactions on Information

Systems, 20(1), 59–81.
Wen, J.-R., Nie, J.-Y., and Zhang, H.-J. (2001). Clustering user queries of a search engine. In World Wide Web

(pp. 162–168).

